Enzyme Regulation I. Dr. Kevin Ahern

Size: px
Start display at page:

Download "Enzyme Regulation I. Dr. Kevin Ahern"

Transcription

1 Enzyme Regulation I Dr. Kevin Ahern

2 Enzyme Regulation Mechanisms

3 Enzyme Regulation Mechanisms 1. Allosterism

4 Enzyme Regulation Mechanisms 1. Allosterism 2. Covalent Modification

5 Enzyme Regulation Mechanisms 1. Allosterism 2. Covalent Modification 3. Control of Synthesis

6 Enzyme Regulation Mechanisms Allosterism Covalent Modification Control of Synthesis Availability of Substrate

7 Control of Enzyme Activity

8 Control of Enzyme Activity

9 Control of Enzyme Activity

10 Control of Enzyme Activity Substrate Does Not Change Enzyme Binding of Substrate

11 Control of Enzyme Activity Substrate Does Not Change Enzyme Binding of Substrate Substrate Does Change Enzyme Binding of Substrate

12 Control of Enzyme Activity Homotropic and Heterotropic Effectors

13 Control of Enzyme Activity Homotropic and Heterotropic Effectors

14 Control of Enzyme Activity Homotropic and Heterotropic Effectors

15 Control of Enzyme Activity Aspartate Transcarbamoylase (ATCase)

16 Control of Enzyme Activity Aspartate Transcarbamoylase (ATCase) Six Regulatory Subunits

17 Control of Enzyme Activity Aspartate Transcarbamoylase (ATCase) Six Regulatory Subunits Six Catalytic Subunits

18 Control of Enzyme Activity

19 Control of Enzyme Activity Aspartate Transcarbamoylase (ATCase)

20 Control of Enzyme Activity Aspartate Transcarbamoylase (ATCase)

21 Control of Enzyme Activity Aspartate Transcarbamoylase (ATCase) Aspartate - Amino Acid

22 Control of Enzyme Activity Aspartate Transcarbamoylase (ATCase) Aspartate - Amino Acid ATP - High Energy, Purine

23 Control of Enzyme Activity Aspartate Transcarbamoylase (ATCase) Aspartate - Amino Acid ATP - High Energy, Purine CTP - End Product of Pathway

24 Control of Enzyme Activity Aspartate Transcarbamoylase (ATCase) Substrates Aspartate - Amino Acid ATP - High Energy, Purine CTP - End Product of Pathway

25 Control of Enzyme Activity

26 Control of Enzyme Activity ATCase is Affected by One of its Substrates - Aspartate Aspartate is a Heterotropic Effector of ATCase

27 Control of Enzyme Activity ATCase is Affected by One of its Substrates - Aspartate Aspartate is a Heterotropic Effector of ATCase Binding of Aspartate by ATCase Favors the R-State so Additional Substrate Binding is Favored

28 Control of Enzyme Activity Allosteric Control of ATCase

29 Control of Enzyme Activity Allosteric Control of ATCase 2 mm ATP

30 Control of Enzyme Activity Allosteric Control of ATCase 2 mm ATP No ATP

31 Control of Enzyme Activity Allosteric Control of ATCase In the Presence of ATP, the V0 is Increased Compared to No ATP

32 Control of Enzyme Activity Allosteric Control of ATCase ATP Activates ATCase (Converts to R State) In the Presence of ATP, the V0 is Increased Compared to No ATP

33 Control of Enzyme Activity Allosteric Control of ATCase

34 Control of Enzyme Activity Allosteric Control of ATCase CTP Reduces the Activity of ATCase - Converts to T State

35 Control of Enzyme Activity Allosteric Control of ATCase CTP Reduces the Activity of ATCase - Converts to T State V0 Decreases as [CTP] Increases

36 Control of Enzyme Activity Allosteric Control

37 Control of Enzyme Activity Allosteric Control Aspartate is a Substrate, but Neither ATP nor CTP is. All Affect the Enzyme

38 Control of Enzyme Activity Allosteric Control Aspartate is a Substrate, but Neither ATP nor CTP is. All Affect the Enzyme Six Regulatory Subunits - R1 to R6

39 Control of Enzyme Activity Allosteric Control Aspartate is a Substrate, but Neither ATP nor CTP is. All Affect the Enzyme ATP and CTP Bind Regulatory Sites Six Regulatory Subunits - R1 to R6

40 Control of Enzyme Activity Allosteric Control Aspartate is a Substrate, but Neither ATP nor CTP is. All Affect the Enzyme ATP and CTP Bind Regulatory Sites ATP Favors R State Six Regulatory Subunits - R1 to R6

41 Control of Enzyme Activity Allosteric Control Aspartate is a Substrate, but Neither ATP nor CTP is. All Affect the Enzyme ATP and CTP Bind Regulatory Sites ATP Favors R State CTP Favors T State Six Regulatory Subunits - R1 to R6

42 Control of Enzyme Activity Allosteric Control Aspartate is a Substrate, but Neither ATP nor CTP is. All Affect the Enzyme ATP and CTP Bind Regulatory Sites ATP Favors R State CTP Favors T State

43 Control of Enzyme Activity Allosteric Control Aspartate is a Substrate, but Neither ATP nor CTP is. All Affect the Enzyme ATP and CTP Bind Regulatory Sites ATP Favors R State CTP Favors T State Six Catalytic Subunits - C1 to C6

44 Control of Enzyme Activity Allosteric Control Aspartate is a Substrate, but Neither ATP nor CTP is. All Affect the Enzyme ATP and CTP Bind Regulatory Sites ATP Favors R State CTP Favors T State Six Catalytic Subunits - C1 to C6 Aspartate Binds to Catalytic Subunits Favors R State

45 Control of Enzyme Activity Allosteric Control

46 Control of Enzyme Activity Allosteric Control At Low [S], ATCase in T State

47 Control of Enzyme Activity Allosteric Control At Low [S], ATCase in T State As [S] Increases, ATCase Increasingly in R State

48 Control of Enzyme Activity Allosteric Control At High [S], ATCase Mostly in R State At Low [S], ATCase in T State As [S] Increases, ATCase Increasingly in R State

49 Control of Enzyme Activity Allosteric Control

50 Control of Enzyme Activity Allosteric Control Thus, ATCase is Most Active When Energy (ATP) is High and When Pyrimidines are Low in Concentration Relative to Purines

51 Control of Enzyme Activity Allosteric Control Thus, ATCase is Most Active When Energy (ATP) is High and When Pyrimidines are Low in Concentration Relative to Purines ATCase is Least Active When Pyrimidine Concentration (CTP) is High

52 Feedback Inhibition Aspartate Transcarbamoylase (ATCase) Carbamoyl Phosphate Aspartate Pi ATCase Carbamoyl Aspartate Multiple Reactions CTP

53 Feedback Inhibition Aspartate Transcarbamoylase (ATCase) Carbamoyl Phosphate Aspartate Pi ATCase Carbamoyl Aspartate Accumulating CTP Inhibits Enzyme Multiple Reactions CTP

54 Feedback Inhibition Aspartate Transcarbamoylase (ATCase) Aspartate Pi Carbamoyl Phosphate ATCase Cells in a High Energy State Have Lots of ATP ATP Activates ATCase Carbamoyl Aspartate Accumulating CTP Inhibits Enzyme Multiple Reactions CTP

55 Feedback Inhibition Aspartate Transcarbamoylase (ATCase) Aspartate Pi Carbamoyl Phosphate ATCase Carbamoyl Aspartate Cells With Abundant Amino Acids Have Lots of Aspartate - Activates ATCase Cells in a High Energy State Have Lots of ATP ATP Activates ATCase Accumulating CTP Inhibits Enzyme Multiple Reactions CTP

56 Covalent Modification

57 Covalent Modification

58 Zymogen Activation

59 Zymogen Activation Trypsinogen Enteropeptidase Trypsin

60 Zymogen Activation Chymotrypsinogen Trypsinogen Chymotrypsin Enteropeptidase Trypsin

61 Zymogen Activation Chymotrypsinogen Trypsinogen Chymotrypsin Enteropeptidase Proelastase Trypsin Elastase

62 Zymogen Activation Chymotrypsinogen Trypsinogen Chymotrypsin Enteropeptidase Proelastase Trypsin Elastase Procarboxypeptidase Carboxypeptidase

63 Zymogen Activation Chymotrypsinogen Trypsinogen Chymotrypsin Enteropeptidase Proelastase Trypsin Elastase Procarboxypeptidase Prolipase Carboxypeptidase Lipase

64 Zymogen Activation Chymotrypsinogen Trypsinogen Chymotrypsin Enteropeptidase Cascading Effects Trypsin Proelastase Elastase Procarboxypeptidase Prolipase Carboxypeptidase Lipase

65 Control of Enzyme of Activity Covalent Modification Control S-S Chymotrypsinogen (Inactive) S-S 1 245

66 Control of Enzyme of Activity Covalent Modification Control S-S Chymotrypsinogen (Inactive) S-S 1 Trypsin 245 S-S π - Chymotrypsin (Partly Active) S-S

67 Control of Enzyme of Activity Covalent Modification Control S-S Chymotrypsinogen (Inactive) S-S 1 Trypsin Peptide Bond Broken 245 S-S π - Chymotrypsin (Partly Active) S-S

68 Control of Enzyme of Activity Covalent Modification Control S-S Chymotrypsinogen (Inactive) S-S 1 Trypsin Peptide Bond Broken 245 S-S π - Chymotrypsin (Partly Active) S-S π - Chymotrypsin π - Chymotrypsin S-S α - Chymotrypsin (Fully Active) S-S

69 Control of Enzyme of Activity Covalent Modification Control S-S Chymotrypsinogen (Inactive) S-S 1 Trypsin Peptide Bond Broken 245 S-S π - Chymotrypsin (Partly Active) S-S π - Chymotrypsin π - Chymotrypsin S-S α - Chymotrypsin (Fully Active) S-S Peptide Bond Broken, Dipeptide Released

70 Control of Enzyme of Activity Covalent Modification Control S-S Chymotrypsinogen (Inactive) S-S 1 Trypsin Peptide Bond Broken 245 S-S π - Chymotrypsin (Partly Active) S-S π - Chymotrypsin π - Chymotrypsin S-S α - Chymotrypsin (Fully Active) S-S Peptide Bond Broken, Dipeptide Released Peptide Bonds Broken, Tripeptide Released

71 Control of Enzyme of Activity Zymogens

72 Control of Enzyme of Activity Zymogens Protease Precursors Pepsinogen Proenteropeptidase Trypsinogen Chymotrypsinogen Procarboxypeptidases Blood Clotting Proteins Procaspases Proelastase

73 Control of Enzyme of Activity Zymogens Protease Precursors Pepsinogen Proenteropeptidase Trypsinogen Chymotrypsinogen Procarboxypeptidases Blood Clotting Proteins Procaspases Proelastase Other Pacifastin Plasminogen Angiotensinogen Prolipase Pre-proinsulin

74 Control of Enzyme of Activity Other Covalent Modifications to Proteins

75 Control of Enzyme of Activity Other Covalent Modifications to Proteins Phosphorylation - Kinase Cascades

76 Control of Enzyme of Activity Other Covalent Modifications to Proteins Phosphorylation - Kinase Cascades Acetylation - Histones

77 Control of Enzyme of Activity Other Covalent Modifications to Proteins Phosphorylation - Kinase Cascades Acetylation - Histones Formylation - All Prokaryotic Proteins

78 Control of Enzyme of Activity Other Covalent Modifications to Proteins Phosphorylation - Kinase Cascades Acetylation - Histones Formylation - All Prokaryotic Proteins Acylation - Anchored Membrane Proteins (SRC)

79 Control of Enzyme of Activity Other Covalent Modifications to Proteins Phosphorylation - Kinase Cascades Acetylation - Histones Formylation - All Prokaryotic Proteins Acylation - Anchored Membrane Proteins (SRC) ADP Ribosylation - Transcription Factors

80 Control of Enzyme of Activity Other Covalent Modifications to Proteins Phosphorylation - Kinase Cascades Acetylation - Histones Formylation - All Prokaryotic Proteins Acylation - Anchored Membrane Proteins (SRC) ADP Ribosylation - Transcription Factors Prenylation - Ras

81 Control of Enzyme of Activity Other Covalent Modifications to Proteins Phosphorylation - Kinase Cascades Acetylation - Histones Formylation - All Prokaryotic Proteins Acylation - Anchored Membrane Proteins (SRC) ADP Ribosylation - Transcription Factors Prenylation - Ras Sulfation - Serine Protease Inhibitors

82 Control of Enzyme of Activity Other Covalent Modifications to Proteins Phosphorylation - Kinase Cascades Acetylation - Histones Formylation - All Prokaryotic Proteins Acylation - Anchored Membrane Proteins (SRC) ADP Ribosylation - Transcription Factors Prenylation - Ras Sulfation - Serine Protease Inhibitors Ubiquitination - Many Proteins

83 Control of Enzyme of Activity Other Covalent Modifications to Proteins Phosphorylation - Kinase Cascades Acetylation - Histones Formylation - All Prokaryotic Proteins Acylation - Anchored Membrane Proteins (SRC) ADP Ribosylation - Transcription Factors Prenylation - Ras Sulfation - Serine Protease Inhibitors Ubiquitination - Many Proteins γ-carboxylation - Clotting Proteins

84 Control of Enzyme of Activity γ-carboxylation Glutamate Side Chain γ - carboxyglutamate

85 Control of Enzyme of Activity γ-carboxylation Carboxyl Group Added Glutamate Side Chain γ - carboxyglutamate

86 Control of Enzyme of Activity γ-carboxylation Carboxyl Group Added Glutamate Side Chain γ - carboxyglutamate

87 Metabolic Melody

88 Protein Wonderland (to the tune of Winter Wonderland ) Copyright Kevin Ahern

89 Protein Wonderland (to the tune of Winter Wonderland ) Copyright Kevin Ahern Mechan-i-sm.. determines How an en.. zyme is workin Here are the ways That each elastase Breaks a peptide bond so easily Starting with the binding of the substrate Catalytic triad is the star Histidine s electron sink reacts to Pull a proton from a serine s a-r-r-r-r Then the al... koxide ion Gets elec... trons a-flyin It makes a big fuss For one nuc-le-us And breaks and makes a bond with carbonyl

90 Protein Wonderland (to the tune of Winter Wonderland ) Copyright Kevin Ahern Mechan-i-sm.. determines How an en.. zyme is workin Here are the ways That each elastase Breaks a peptide bond so easily Starting with the binding of the substrate Catalytic triad is the star Histidine s electron sink reacts to Pull a proton from a serine s a-r-r-r-r Then the al... koxide ion Gets elec... trons a-flyin It makes a big fuss For one nuc-le-us And breaks and makes a bond with carbonyl Then the process switches in its action Water comes to free the carbonyl Loss of proton yields hydroxide ion Attacking on the peptide bound there still -ll -ll Which the en.... zyme releases Otherwise... action ceases The process is done Until the S1 Binds a substrate starting up again

Chapter 10. Regulatory Strategy

Chapter 10. Regulatory Strategy Chapter 10 Regulatory Strategy Regulation of enzymatic activity: 1. Allosteric Control. Allosteric proteins have a regulatory site(s) and multiple functional sites Activity of proteins is regulated by

More information

The R-subunit would not the able to release the catalytic subunit, so this mutant of protein kinase A would be incapable of being activated.

The R-subunit would not the able to release the catalytic subunit, so this mutant of protein kinase A would be incapable of being activated. 1. Explain how one molecule of cyclic AMP can result in activation of thousands of molecules of glycogen phosphorylase. Technically it takes four molecules of cyclic AMP to fully activate one molecule

More information

Student number. University of Guelph Department of Chemistry and Biochemistry Structure and Function In Biochemistry

Student number. University of Guelph Department of Chemistry and Biochemistry Structure and Function In Biochemistry University of Guelph Department of Chemistry and Biochemistry 19356 Structure and Function In Biochemistry Midterm Test, March 3, 1998. Time allowed, 90 min. Answer questions 120 on the computer scoring

More information

CHAPTER 10: REGULATORY STRATEGIES. Traffic signals control the flow of traffic

CHAPTER 10: REGULATORY STRATEGIES. Traffic signals control the flow of traffic CHAPTER 10: REGULATORY STRATEGIES Traffic signals control the flow of traffic INTRODUCTION CHAPTER 10 The activity of enzymes must often be regulated so that they function at the proper time and place.

More information

Tala Saleh. Ahmad Attari. Mamoun Ahram

Tala Saleh. Ahmad Attari. Mamoun Ahram 23 Tala Saleh Ahmad Attari Minna Mushtaha Mamoun Ahram In the previous lecture, we discussed the mechanisms of regulating enzymes through inhibitors. Now, we will start this lecture by discussing regulation

More information

Lecture 6: Allosteric regulation of enzymes

Lecture 6: Allosteric regulation of enzymes Chem*3560 Lecture 6: Allosteric regulation of enzymes Metabolic pathways do not run on a continuous basis, but are regulated according to need Catabolic pathways run if there is demand for ATP; for example

More information

REGULATION OF ENZYME ACTIVITY. Medical Biochemistry, Lecture 25

REGULATION OF ENZYME ACTIVITY. Medical Biochemistry, Lecture 25 REGULATION OF ENZYME ACTIVITY Medical Biochemistry, Lecture 25 Lecture 25, Outline General properties of enzyme regulation Regulation of enzyme concentrations Allosteric enzymes and feedback inhibition

More information

2018 Biochemistry 110 California Institute of Technology Lecture 11: Enzyme Regulatory Strategies

2018 Biochemistry 110 California Institute of Technology Lecture 11: Enzyme Regulatory Strategies 2018 Biochemistry 110 California Institute of Technology Lecture 11: Enzyme Regulatory Strategies 1. Aspartate Transcarbamoylase (ATCase) 2. Zymogen and Digestive Enzyme Regulation 3. Blood Clotting and

More information

Enzyme Catalytic Mechanisms. Dr. Kevin Ahern

Enzyme Catalytic Mechanisms. Dr. Kevin Ahern Enzyme Catalytic Mechanisms Dr. Kevin Ahern Cleave Peptide Bonds Specificity of Cutting Common Active Site Composition/Structure Mechanistically Well Studied Chymotrypsin Chymotrypsin Catalysis H2O Chymotrypsin

More information

Student number. University of Guelph Department of Chemistry and Biochemistry Structure and Function In Biochemistry

Student number. University of Guelph Department of Chemistry and Biochemistry Structure and Function In Biochemistry University of Guelph Department of Chemistry and Biochemistry 19356 Structure and Function In Biochemistry Midterm Test, March 3, 1998. Time allowed, 90 min. Answer questions 120 on the computer scoring

More information

Anas Kishawi. Zaid Emad. Nafez abu tarboush

Anas Kishawi. Zaid Emad. Nafez abu tarboush 24 Anas Kishawi Zaid Emad Nafez abu tarboush Hello everybody, this sheet is done according to Dr. Nafith s lecture so try to use his slides for the best understanding, and good luck. WAYS OF CHANGING THE

More information

Margaret A. Daugherty Fall 2003

Margaret A. Daugherty Fall 2003 Enzymes & Kinetics IV Regulation and Allostery ENZYME-SUBSTRATE INTERACTIONS THE LOCK & KEY MODEL Margaret A. Daugherty Fall 2003 A perfect match between enzyme and substrate can explain enzyme specificity

More information

Enzymes Part III: regulation II. Dr. Mamoun Ahram Summer, 2017

Enzymes Part III: regulation II. Dr. Mamoun Ahram Summer, 2017 Enzymes Part III: regulation II Dr. Mamoun Ahram Summer, 2017 Advantage This is a major mechanism for rapid and transient regulation of enzyme activity. A most common mechanism is enzyme phosphorylation

More information

FIRST BIOCHEMISTRY EXAM Tuesday 25/10/ MCQs. Location : 102, 105, 106, 301, 302

FIRST BIOCHEMISTRY EXAM Tuesday 25/10/ MCQs. Location : 102, 105, 106, 301, 302 FIRST BIOCHEMISTRY EXAM Tuesday 25/10/2016 10-11 40 MCQs. Location : 102, 105, 106, 301, 302 The Behavior of Proteins: Enzymes, Mechanisms, and Control General theory of enzyme action, by Leonor Michaelis

More information

ENZYMOLOGY. Regulation of enzyme activity. P.C. Misra Professor Department of Biochemistry Lucknow University Lucknow

ENZYMOLOGY. Regulation of enzyme activity. P.C. Misra Professor Department of Biochemistry Lucknow University Lucknow ENZYMOLOGY Regulation of enzyme activity P.C. Misra Professor Department of Biochemistry Lucknow University Lucknow-226 007 5-May-2006 (Revised 17-Aug-2006) CONTENTS Introduction Regulation of activity

More information

Chapter 11: Enzyme Catalysis

Chapter 11: Enzyme Catalysis Chapter 11: Enzyme Catalysis Matching A) high B) deprotonated C) protonated D) least resistance E) motion F) rate-determining G) leaving group H) short peptides I) amino acid J) low K) coenzymes L) concerted

More information

Biochem sheet (5) done by: razan krishan corrected by: Shatha Khtoum DATE :4/10/2016

Biochem sheet (5) done by: razan krishan corrected by: Shatha Khtoum DATE :4/10/2016 Biochem sheet (5) done by: razan krishan corrected by: Shatha Khtoum DATE :4/10/2016 Note about the last lecture: you must know the classification of enzyme Sequentially. * We know that a substrate binds

More information

Biological Sciences 4087 Exam I 9/20/11

Biological Sciences 4087 Exam I 9/20/11 Name: Biological Sciences 4087 Exam I 9/20/11 Total: 100 points Be sure to include units where appropriate. Show all calculations. There are 5 pages and 11 questions. 1.(20pts)A. If ph = 4.6, [H + ] =

More information

PAPER No. : 16, Bioorganic and biophysical chemistry MODULE No. : 22, Mechanism of enzyme catalyst reaction (I) Chymotrypsin

PAPER No. : 16, Bioorganic and biophysical chemistry MODULE No. : 22, Mechanism of enzyme catalyst reaction (I) Chymotrypsin Subject Paper No and Title 16 Bio-organic and Biophysical Module No and Title 22 Mechanism of Enzyme Catalyzed reactions I Module Tag CHE_P16_M22 Chymotrypsin TABLE OF CONTENTS 1. Learning outcomes 2.

More information

Theme 1 CONTROL OF ENZYME ACTIVITY

Theme 1 CONTROL OF ENZYME ACTIVITY Theme 1 CONTROL OF ENZYME ACTIVITY Included in this section: Enzyme Activity: Control Notes in study material as well as slides used in class. Please use the study material provide as well as Matthews

More information

Bio 100 Serine Proteases 9/26/11

Bio 100 Serine Proteases 9/26/11 Assigned Reading: 4th ed. 6.4.1 The Chymotrypsin Mechanism Involves Acylation And Deacylation Of A Ser Residue p. 213 BOX 20-1 Penicillin and β-lactamase p. 779 6.5.7 Some Enzymes Are Regulated By Proteolytic

More information

GENERAL THOUGHTS ON REGULATION. Lecture 16: Enzymes & Kinetics IV Regulation and Allostery REGULATION IS KEY TO VIABILITY

GENERAL THOUGHTS ON REGULATION. Lecture 16: Enzymes & Kinetics IV Regulation and Allostery REGULATION IS KEY TO VIABILITY GENERAL THOUGHTS ON REGULATION Lecture 16: Enzymes & Kinetics IV Regulation and Allostery Margaret A. Daugherty Fall 2004 1). Enzymes slow down as product accumulates 2). Availability of substrates determines

More information

Regulation Through Conformational Changes

Regulation Through Conformational Changes Regulation Through Conformational Changes These regulatory mechanisms (conformational changes) include: 1. Allosteric activation and inhibition. 2. Phoshorylation or other covalent modification. 3. Protein-protein

More information

Enzymes: Regulation 2-3

Enzymes: Regulation 2-3 Enzymes: Regulation 2-3 Reversible covalent modification Association with regulatory proteins Irreversible covalent modification/proteolytic cleavage Reading: Berg, Tymoczko & Stryer, 6th ed., Chapter

More information

Enzymes: The Catalysts of Life

Enzymes: The Catalysts of Life Chapter 6 Enzymes: The Catalysts of Life Lectures by Kathleen Fitzpatrick Simon Fraser University Activation Energy and the Metastable State Many thermodynamically feasible reactions in a cell that could

More information

Catalysis & specificity: Proteins at work

Catalysis & specificity: Proteins at work Catalysis & specificity: Proteins at work Introduction Having spent some time looking at the elements of structure of proteins and DNA, as well as their ability to form intermolecular interactions, it

More information

PROTEIN METABOLISM: NITROGEN CYCLE; DIGESTION OF PROTEINS. Red meat is an important dietary source of protein nitrogen

PROTEIN METABOLISM: NITROGEN CYCLE; DIGESTION OF PROTEINS. Red meat is an important dietary source of protein nitrogen PROTEIN METABOLISM: NITROGEN CYCLE; DIGESTION OF PROTEINS Red meat is an important dietary source of protein nitrogen The Nitrogen Cycle and Nitrogen Fixation Nitrogen is needed for amino acids, nucleotides,

More information

Previous Class. Today. Term test I discussions. Detection of enzymatic intermediates: chymotrypsin mechanism

Previous Class. Today. Term test I discussions. Detection of enzymatic intermediates: chymotrypsin mechanism Term test I discussions Previous Class Today Detection of enzymatic intermediates: chymotrypsin mechanism Mechanistic Understanding of Enzymemediated Reactions Ultimate goals: Identification of the intermediates,

More information

PROTEIN METABOLISM DEPT OF BIOCHEMISTRY ACS MEDICAL COLLEGE CHENNAI - 77

PROTEIN METABOLISM DEPT OF BIOCHEMISTRY ACS MEDICAL COLLEGE CHENNAI - 77 PROTEIN METABOLISM DEPT OF BIOCHEMISTRY ACS MEDICAL COLLEGE CHENNAI - 77 DIGESTION & ABSORPTION DIETARY PROTEINS SERVE 3 FUNCTIONS 1. THEIR CONSTITUTENT AMINOACIDS ARE USED FOR SYNTHESIS OF BODY PROTEINS

More information

Enzyme Catalysis-Serine Proteases

Enzyme Catalysis-Serine Proteases Enzyme Catalysis-Serine Proteases Concepts to be learned Activation Energy Transition State Example: Proteases Requirements for proteolysis Families of proteases Protein Folds used by proteases for catalysis

More information

PHRM 836 September 1, 2015

PHRM 836 September 1, 2015 PRM 836 September 1, 2015 Protein structure- function relationship: Catalysis example of serine proteases Devlin, section 9.3 Physiological processes requiring serine proteases Control of enzymatic activity

More information

We will usually use the common name for an enzyme, such as carboxypeptidase, or chymotrypsin.

We will usually use the common name for an enzyme, such as carboxypeptidase, or chymotrypsin. Chapter 11 - Enzymatic Catalysis Introduction: In the late 1800's the Buchner brothers discovered that yeast extracts were capable of alcholic fermentation, thus refuting Pasteur s contention that intact

More information

Amino acids. Side chain. -Carbon atom. Carboxyl group. Amino group

Amino acids. Side chain. -Carbon atom. Carboxyl group. Amino group PROTEINS Amino acids Side chain -Carbon atom Amino group Carboxyl group Amino acids Primary structure Amino acid monomers Peptide bond Peptide bond Amino group Carboxyl group Peptide bond N-terminal (

More information

Chemical Mechanism of Enzymes

Chemical Mechanism of Enzymes Chemical Mechanism of Enzymes Enzyme Engineering 5.2 Definition of the mechanism 1. The sequence from substrate(s) to product(s) : Reaction steps 2. The rates at which the complex are interconverted 3.

More information

CHAPTER 9: CATALYTIC STRATEGIES. Chess vs Enzymes King vs Substrate

CHAPTER 9: CATALYTIC STRATEGIES. Chess vs Enzymes King vs Substrate CHAPTER 9: CATALYTIC STRATEGIES Chess vs Enzymes King vs Substrate INTRODUCTION CHAPTER 9 What are the sources of the catalytic power and specificity of enzymes? Problems in reactions in cells Neutral

More information

University of Guelph Department of Chemistry and Biochemistry Structure and Function In Biochemistry

University of Guelph Department of Chemistry and Biochemistry Structure and Function In Biochemistry University of Guelph Department of Chemistry and Biochemistry 19-356 Structure and Function In Biochemistry Final Exam, April 21, 1997. Time allowed, 120 min. Answer questions 1-30 on the computer scoring

More information

Mechanisms of Enzymes

Mechanisms of Enzymes Mechanisms of Enzymes Presented by Dr. Mohammad Saadeh The requirements for the Pharmaceutical Biochemistry I Philadelphia University Faculty of pharmacy How enzymes work * Chemical reactions have an energy

More information

BIOCHEMISTRY I HOMEWORK III DUE 10/15/03 66 points total + 2 bonus points = 68 points possible Swiss-PDB Viewer Exercise Attached

BIOCHEMISTRY I HOMEWORK III DUE 10/15/03 66 points total + 2 bonus points = 68 points possible Swiss-PDB Viewer Exercise Attached BIOCHEMISTRY I HOMEWORK III DUE 10/15/03 66 points total + 2 bonus points = 68 points possible Swiss-PDB Viewer Exercise Attached 1). 20 points total T or F (2 points each; if false, briefly state why

More information

BIOB111 - Tutorial activity for Session 25

BIOB111 - Tutorial activity for Session 25 BIOB111 - Tutorial activity for Session 25 General topics for week 14 Session 25 The metabolism of proteins Students are asked to draw the concept map showing all details of protein metabolism 1 Instructions:

More information

AMINO ACIDS NON-ESSENTIAL ESSENTIAL

AMINO ACIDS NON-ESSENTIAL ESSENTIAL Edith Frederika Introduction A major component of food is PROTEIN The protein ingested as part of our diet are not the same protein required by the body Only 40 to 50 gr of protein is required by a normal

More information

Lecture 18 (10/27/17) Lecture 18 (10/27/17)

Lecture 18 (10/27/17) Lecture 18 (10/27/17) Reading: Ch6; 225-232 Lecture 18 (10/27/17) Problems: Ch5 (text); 2 Ch6 (study guide-facts); 5, 6, 7, 14 NEXT Reading: Ch5; 164, 166-169 Problems: none Remember Monday at 6:30 in PHO-206 is the first MB

More information

Regulation of Enzyme Activity

Regulation of Enzyme Activity Regulation of Enzyme Activity Enzyme activity must be regulated so that the proper levels of products are produced at all times and places This control occurs in several ways: - biosynthesis at the genetic

More information

Chymotrypsin Lecture. Aims: to understand (1) the catalytic strategies used by enzymes and (2) the mechanism of chymotrypsin

Chymotrypsin Lecture. Aims: to understand (1) the catalytic strategies used by enzymes and (2) the mechanism of chymotrypsin Chymotrypsin Lecture Aims: to understand (1) the catalytic strategies used by enzymes and (2) the mechanism of chymotrypsin What s so great about enzymes? They accomplish large rate accelerations (10 10-10

More information

CHM 341 C: Biochemistry I. Test 2: October 24, 2014

CHM 341 C: Biochemistry I. Test 2: October 24, 2014 CHM 341 C: Biochemistry I Test 2: ctober 24, 2014 This test consists of 14 questions worth points. Make sure that you read the entire question and answer each question clearly and completely. To receive

More information

Past Years Questions Chpater 6

Past Years Questions Chpater 6 Past Years Questions Chpater 6 **************************************** 1) Which of the following about enzymes is Incorrect? A) Most enzymes are proteins. B) Enzymes are biological catalysts. C) Enzymes

More information

CH395 G Exam 2 Multiple Choice - Fall 2004

CH395 G Exam 2 Multiple Choice - Fall 2004 C395 G Exam 2 Multiple Choice - Fall 2004 1. Which of the following fatty acids has the lowest melting point? a. Fatty acids with sites of unsaturation with cis double bonds b. Fatty acids with sites of

More information

Chemistry 107 Exam 4 Study Guide

Chemistry 107 Exam 4 Study Guide Chemistry 107 Exam 4 Study Guide Chapter 10 10.1 Recognize that enzyme catalyze reactions by lowering activation energies. Know the definition of a catalyst. Differentiate between absolute, relative and

More information

Aerobic Fate of Pyruvate. Chapter 16 Homework Assignment. Chapter 16 The Citric Acid Cycle

Aerobic Fate of Pyruvate. Chapter 16 Homework Assignment. Chapter 16 The Citric Acid Cycle Chapter 16 Homework Assignment The following problems will be due once we finish the chapter: 1, 3, 7, 10, 16, 19, 20 Additional Problem: Write out the eight reaction steps of the Citric Acid Cycle, using

More information

Lecture: Amino Acid catabolism: Nitrogen-The Urea cycle

Lecture: Amino Acid catabolism: Nitrogen-The Urea cycle BIOC 423: Introductory Biochemistry Biochemistry Education Department of Biochemistry & Molecular Biology University of New Mexico Lecture: Amino Acid catabolism: Nitrogen-The Urea cycle OBJECTIVES Describe

More information

Hormones and Signal Transduction. Dr. Kevin Ahern

Hormones and Signal Transduction. Dr. Kevin Ahern Dr. Kevin Ahern Signaling Outline Signaling Outline Background Signaling Outline Background Membranes Signaling Outline Background Membranes Hormones & Receptors Signaling Outline Background Membranes

More information

Enzymes. Enzyme. Aim: understanding the basic concepts of enzyme catalysis and enzyme kinetics

Enzymes. Enzyme. Aim: understanding the basic concepts of enzyme catalysis and enzyme kinetics Enzymes Substrate Enzyme Product Aim: understanding the basic concepts of enzyme catalysis and enzyme kinetics Enzymes are efficient Enzyme Reaction Uncatalysed (k uncat s -1 ) Catalysed (k cat s -1 )

More information

Biochemistry 2 Recita0on Amino Acid Metabolism

Biochemistry 2 Recita0on Amino Acid Metabolism Biochemistry 2 Recita0on Amino Acid Metabolism 04-20- 2015 Glutamine and Glutamate as key entry points for NH 4 + Amino acid catabolism Glutamine synthetase enables toxic NH 4 + to combine with glutamate

More information

Lecture 19: Review of regulation

Lecture 19: Review of regulation Chem*3560 Lecture 19: Review of regulation What is meant by cooperative allosteric regulation? Positive cooperativity - characteristic is the sigmoidal binding/activity curve T-state has weaker affinity,

More information

7.05 Spring 2004 March 12, Recitation #4

7.05 Spring 2004 March 12, Recitation #4 7.05 Spring 2004 March 12, 2004 Recitation #4 ontact Information TA: Victor Sai Recitation: Friday, 34pm, 2132 Email: sai@mit.edu ffice ours: Friday, 45pm, 2132 Unit 2 Schedule Recitation/Exam Date Lectures

More information

Lujain Hamdan. Faisal Nimri ... Diala Abu-Hassan

Lujain Hamdan. Faisal Nimri ... Diala Abu-Hassan 31 Lujain Hamdan Faisal Nimri... Diala Abu-Hassan Amino Acids Metabolism Amino acid has an alpha-carbon which is connected to Carboxyl group, Amino group, hydrogen atom and R group which differs from an

More information

Protein regulation Protein motion

Protein regulation Protein motion Lecture 13 Protein regulation Protein motion Antoine van Oijen BCMP201 Spring 2008 04/02 Section IV 04/09 Hands-on methods session / PS 4 due 1 Today s lecture 1) Mechanisms of protein regulation 2) Molecular

More information

it s a specific enzyme, the mechanism is that the intermediate which is the thioester ( aldehyde, substrate ) is covalently bound to the enzyme.

it s a specific enzyme, the mechanism is that the intermediate which is the thioester ( aldehyde, substrate ) is covalently bound to the enzyme. Oxidation of glyceraldehyde 3 phosphate : glyceraldehyde 3 phosphate on carbon1 it s an aldehyde group, which is oxidized and converted to carboxylic group ( aldehyde - becomes carboxylic acid ) this is

More information

Week 3 The Pancreas: Pancreatic ph buffering:

Week 3 The Pancreas: Pancreatic ph buffering: Week 3 The Pancreas: A gland with both endocrine (secretion of substances into the bloodstream) & exocrine (secretion of substances to the outside of the body or another surface within the body) functions

More information

Lecture 34. Carbohydrate Metabolism 2. Glycogen. Key Concepts. Biochemistry and regulation of glycogen degradation

Lecture 34. Carbohydrate Metabolism 2. Glycogen. Key Concepts. Biochemistry and regulation of glycogen degradation Lecture 34 Carbohydrate Metabolism 2 Glycogen Key Concepts Overview of Glycogen Metabolism Biochemistry and regulation of glycogen degradation Biochemistry and regulation of glycogen synthesis What mechanisms

More information

Amino acid metabolism: Disposal of Nitrogen

Amino acid metabolism: Disposal of Nitrogen Amino acid metabolism: Disposal of Nitrogen Dr. Diala Abu-Hassan, DDS, PhD Medical students-first semester All images were taken from Lippincott s Biochemistry textbook except where noted Amino acids (AAs)

More information

Module No. # 01 Lecture No. # 19 TCA Cycle

Module No. # 01 Lecture No. # 19 TCA Cycle Biochemical Engineering Prof. Dr. Rintu Banerjee Department of Agricultural and Food Engineering Asst. Prof. Dr. Saikat Chakraborty Department of Chemical Engineering Indian Institute of Technology, Kharagpur

More information

number Done by Corrected by Doctor Nayef Karadsheh

number Done by Corrected by Doctor Nayef Karadsheh number 15 Done by BaraaAyed Corrected by Mamoon Alqtamin Doctor Nayef Karadsheh 1 P a g e Regulation of glycogen synthesis and degradation Regulation of glycogen synthesis and degradation involves two

More information

Chapter 23 Enzymes 1

Chapter 23 Enzymes 1 Chapter 23 Enzymes 1 Enzymes Ribbon diagram of cytochrome c oxidase, the enzyme that directly uses oxygen during respiration. 2 Enzyme Catalysis Enzyme: A biological catalyst. With the exception of some

More information

Amino acid metabolism: Disposal of Nitrogen

Amino acid metabolism: Disposal of Nitrogen Amino acid metabolism: Disposal of Nitrogen Dr. Diala Abu-Hassan, DDS, PhD All images were taken from Lippincott s Biochemistry textbook except where noted Textbook Amino acid metabolism: Biochemistry

More information

number Done by Corrected by Doctor Nafeth Abu Tarboush

number Done by Corrected by Doctor Nafeth Abu Tarboush number 7 Done by حسام أبو عوض Corrected by Shahd Alqudah Doctor Nafeth Abu Tarboush 1 P a g e As we have studied before, in the fourth reaction of the Krebs cycle, α- ketoglutarate is converted into Succinyl-CoA

More information

Citric Acid Cycle: Central Role in Catabolism. Entry of Pyruvate into the TCA cycle

Citric Acid Cycle: Central Role in Catabolism. Entry of Pyruvate into the TCA cycle Citric Acid Cycle: Central Role in Catabolism Stage II of catabolism involves the conversion of carbohydrates, fats and aminoacids into acetylcoa In aerobic organisms, citric acid cycle makes up the final

More information

Enzymes. Gibbs Free Energy of Reaction. Parameters affecting Enzyme Catalysis. Enzyme Commission Number

Enzymes. Gibbs Free Energy of Reaction. Parameters affecting Enzyme Catalysis. Enzyme Commission Number SCBC203 Enzymes Jirundon Yuvaniyama, Ph.D. Department of Biochemistry Faculty of Science Mahidol University Gibbs Free Energy of Reaction Free Energy A B + H 2 O A OH + B H Activation Energy Amount of

More information

Syllabus for BASIC METABOLIC PRINCIPLES

Syllabus for BASIC METABOLIC PRINCIPLES Syllabus for BASIC METABOLIC PRINCIPLES The video lecture covers basic principles you will need to know for the lectures covering enzymes and metabolism in Principles of Metabolism and elsewhere in the

More information

Protein Modification Overview DEFINITION The modification of selected residues in a protein and not as a component of synthesis

Protein Modification Overview DEFINITION The modification of selected residues in a protein and not as a component of synthesis Lecture Four: Protein Modification & Cleavage [Based on Chapters 2, 9, 10 & 11 Berg, Tymoczko & Stryer] (Figures in red are for the 7th Edition) (Figures in Blue are for the 8th Edition) Protein Modification

More information

Concept 8.3: ATP powers cellular work by coupling exergonic reactions to endergonic reactions

Concept 8.3: ATP powers cellular work by coupling exergonic reactions to endergonic reactions Concept 8.3: ATP powers cellular work by coupling exergonic reactions to endergonic reactions A cell does three main kinds of work: Chemical Transport Mechanical To do work, cells manage energy resources

More information

An Introduction to Enzyme Structure and Function

An Introduction to Enzyme Structure and Function An Introduction to Enzyme Structure and Function Enzymes Many reactions in living systems are similar to laboratory reactions. 1. Reactions in living systems often occur with the aid of enzymes. 2. Enzymes

More information

The elements of G protein-coupled receptor systems

The elements of G protein-coupled receptor systems The elements of G protein-coupled receptor systems Prostaglandines Sphingosine 1-phosphate a receptor that contains 7 membrane-spanning domains a coupled trimeric G protein which functions as a switch

More information

BIOL 4374/BCHS 4313 Cell Biology Exam #1 February 13, 2001

BIOL 4374/BCHS 4313 Cell Biology Exam #1 February 13, 2001 BIOL 4374/BCHS 4313 Cell Biology Exam #1 February 13, 2001 SS# Name This exam is worth a total of 100 points. The number of points each question is worth is shown in parentheses. Good luck! 1. (2) The

More information

Final Review Sessions. 3/16 (FRI) 126 Wellman (4-6 6 pm) 3/19 (MON) 1309 Surge 3 (4-6 6 pm) Office Hours

Final Review Sessions. 3/16 (FRI) 126 Wellman (4-6 6 pm) 3/19 (MON) 1309 Surge 3 (4-6 6 pm) Office Hours Final Review Sessions 3/16 (FRI) 126 Wellman (4-6 6 pm) 3/19 (MON) 1309 Surge 3 (4-6 6 pm) Office ours 3/14 (WED) 9:30 11:30 am (Rebecca) 3/16 (FRI) 9-11 am (Abel) Final ESSENTIALS Posted Lecture 20 ormonal

More information

18 Amino Acid Oxidation and Production of Urea W. H. Freeman and Company

18 Amino Acid Oxidation and Production of Urea W. H. Freeman and Company 18 Amino Acid Oxidation and Production of Urea 2013 W. H. Freeman and Company 1 Last Class of Biomolecules For Energy 1. Production of acetyl-coa. Glucose. To pyruvate via glycolysis. To acetyl-coa by

More information

SYLLABUS MBMB/CHEM/BCHM 451b 2013 This class meets from pm every Tuesday and Thursday in Room 1059 (Auditorium) LS III.

SYLLABUS MBMB/CHEM/BCHM 451b 2013 This class meets from pm every Tuesday and Thursday in Room 1059 (Auditorium) LS III. 1 SYLLABUS MBMB/CHEM/BCHM 451b 2013 This class meets from 12.35-1.50 pm every Tuesday and Thursday in Room 1059 (Auditorium) LS III. FACULTY P. M. D. Hardwicke, Room 210W, Neckers "C" Wing, Tel. 618-453-6469;

More information

Signal Transduction Cascades

Signal Transduction Cascades Signal Transduction Cascades Contents of this page: Kinases & phosphatases Protein Kinase A (camp-dependent protein kinase) G-protein signal cascade Structure of G-proteins Small GTP-binding proteins,

More information

3.7.1 Define cell respiration [Cell respiration is the controlled release of energy from organic compounds in cells to form ATP]

3.7.1 Define cell respiration [Cell respiration is the controlled release of energy from organic compounds in cells to form ATP] 3.7 Cell respiration ( Chapter 9 in Campbell's book) 3.7.1 Define cell respiration [Cell respiration is the controlled release of energy from organic compounds in cells to form ATP] Organic compounds store

More information

Highlights Pentose Phosphate Pathway

Highlights Pentose Phosphate Pathway Highlights Pentose Phosphate Pathway 1. The pentose phosphate pathway (PPP) is an interchange of metabolic pathways. 2. It is important to cells as a) an important source of NADPH, b) an important source

More information

Properties of Allosteric Enzymes

Properties of Allosteric Enzymes Properties of Allosteric Enzymes (1) An allosteric enzyme possesses at least spatially distinct binding sites on the protein molecules the active or the catalytic site and the regulator or the allosteric

More information

Regulation. 1. Short term control 8-1

Regulation. 1. Short term control 8-1 Regulation Several aspects of regulation have been alluded to or described in detail as we have progressed through the various sections of the course. These include: (a) compartmentation: This was not

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Still having trouble understanding the material? Check

More information

BIOCHEMISTRY Protein Metabolism

BIOCHEMISTRY Protein Metabolism BIOCHEMISTRY Protein Metabolism BIOB111 CHEMISTRY & BIOCHEMISTRY Session 25 Session Plan Digestion & Absorption of Proteins Amino Acid Utilization Amino Acid Degradation Transamination Oxidative Deamination

More information

Charges on amino acids and proteins. ph 1. ph 7. Acidic side chains: glutamate and aspartate

Charges on amino acids and proteins. ph 1. ph 7. Acidic side chains: glutamate and aspartate harges on amino acids and proteins Acidic side chains: glutamate and aspartate A A- + + + - + Basic side chains: arginine, lysine & histidine Glycine @ p 1 B+ B + + + The amino group, pka 9.6 3 N+ The

More information

Bio& 242 Unit 1 / Lecture 4

Bio& 242 Unit 1 / Lecture 4 Bio& 242 Unit 1 / Lecture 4 system: Gastric hormones GASTRIN: Secretion: By enteroendocrine (G) in gastric pits of the mucosa. Stimulus: Stomach distention and acid ph of chyme causes Gastrin. Action:

More information

Exam 3 Fall 2015 Dr. Stone 8:00. V max = k cat x E t. ΔG = -RT lnk eq K m + [S]

Exam 3 Fall 2015 Dr. Stone 8:00. V max = k cat x E t. ΔG = -RT lnk eq K m + [S] Exam 3 Fall 2015 Dr. Stone 8:00 Name There are 106 possible points (6 bonus points) on this exam. There are 8 pages. v o = V max x [S] k cat = kt e - ΔG /RT V max = k cat x E t ΔG = -RT lnk eq K m + [S]

More information

Hind Abu Tawileh. Moh Tarek & Razi Kittaneh. Ma moun

Hind Abu Tawileh. Moh Tarek & Razi Kittaneh. Ma moun 26 Hind Abu Tawileh Moh Tarek & Razi Kittaneh... Ma moun Cofactors are non-protein compounds, they are divided into 3 types: Protein-based. Metals: if they are bounded tightly (covalently) to the enzyme

More information

UNIVERSITY OF GUELPH CHEM 4540 ENZYMOLOGY Winter 2005 Quiz #2: March 24, 2005, 11:30 12:50 Instructor: Prof R. Merrill ANSWERS

UNIVERSITY OF GUELPH CHEM 4540 ENZYMOLOGY Winter 2005 Quiz #2: March 24, 2005, 11:30 12:50 Instructor: Prof R. Merrill ANSWERS UNIVERSITY F GUELPH CHEM 4540 ENZYMLGY Winter 2005 Quiz #2: March 24, 2005, 11:30 12:50 Instructor: Prof R. Merrill ANSWERS Instructions: Time allowed = 80 minutes. Total marks = 30. This quiz represents

More information

Adenosine triphosphate (ATP)

Adenosine triphosphate (ATP) Adenosine triphosphate (ATP) 1 High energy bonds ATP adenosine triphosphate N NH 2 N -O O P O O P O- O- O O P O- O CH 2 H O H N N adenine phosphoanhydride bonds (~) H OH ribose H OH Phosphoanhydride bonds

More information

Bio 366: Biological Chemistry II Test #2, 100 points total

Bio 366: Biological Chemistry II Test #2, 100 points total Bio 366: Biological Chemistry II Test #2, 100 points total Please neatly PRINT YOUR NAME on EACH PAGE. PRINT the l ast four digits of your SOCIAL SECURITY NUMBER on the BACK SIDE OF PAGE 11 of this test.

More information

Figure 1 Original Advantages of biological reactions being catalyzed by enzymes:

Figure 1 Original Advantages of biological reactions being catalyzed by enzymes: Enzyme basic concepts, Enzyme Regulation I III Carmen Sato Bigbee, Ph.D. Objectives: 1) To understand the bases of enzyme catalysis and the mechanisms of enzyme regulation. 2) To understand the role of

More information

CHEM121. Unit 6: Enzymes. Lecture 10. At the end of the lecture, students should be able to:

CHEM121. Unit 6: Enzymes. Lecture 10. At the end of the lecture, students should be able to: CHEM121 Unit 6: Enzymes Lecture 10 At the end of the lecture, students should be able to: Define the term enzyme Name and classify enzymes according to the: type of reaction catalyzed type of specificity

More information

PPP_glycogen_metabolism Part 2 الفريق الطبي األكاديمي. Done By: - Shady Soghayr

PPP_glycogen_metabolism Part 2 الفريق الطبي األكاديمي. Done By: - Shady Soghayr PPP_glycogen_metabolism Part 2 الفريق الطبي األكاديمي Done By: - Shady Soghayr لكية الطب البرشي البلقاء التطبيقية / املركز 6166 6102/ **How we get glucose-1-phosphate from glucose (source of glucose-1-

More information

Previous Class. Today. Detection of enzymatic intermediates: Protein tyrosine phosphatase mechanism. Protein Kinase Catalytic Properties

Previous Class. Today. Detection of enzymatic intermediates: Protein tyrosine phosphatase mechanism. Protein Kinase Catalytic Properties Previous Class Detection of enzymatic intermediates: Protein tyrosine phosphatase mechanism Today Protein Kinase Catalytic Properties Protein Phosphorylation Phosphorylation: key protein modification

More information

The concepts of conformation and dynamics developed in Sections 1 through

The concepts of conformation and dynamics developed in Sections 1 through SECTIN 6 Basic Concepts and Design of Metabolism Learning bjectives ow are dietary proteins, carbohydrates and lipids digested? ow is the release of pancreatic enzymes coordinated with digestion in the

More information

Moh Tarek. Razi Kittaneh. Jaqen H ghar

Moh Tarek. Razi Kittaneh. Jaqen H ghar 14 Moh Tarek Razi Kittaneh Jaqen H ghar Naif Karadsheh Gluconeogenesis is making glucose from non-carbohydrates precursors. Although Gluconeogenesis looks like Glycolysis in many steps, it is not the simple

More information

TRANSLATION. Translation is a process where proteins are made by the ribosomes on the mrna strand.

TRANSLATION. Translation is a process where proteins are made by the ribosomes on the mrna strand. TRANSLATION Dr. Mahesha H B, Yuvaraja s College, University of Mysore, Mysuru. Translation is a process where proteins are made by the ribosomes on the mrna strand. Or The process in the ribosomes of a

More information

Lecture Sixteen: METABOLIC ENERGY: [Based on GENERATION Chapter 15

Lecture Sixteen: METABOLIC ENERGY: [Based on GENERATION Chapter 15 Lecture Sixteen: METABOLIC ENERGY: [Based on GENERATION Chapter 15 AND STORAGE Berg, (Figures in red are for the 7th Edition) Tymoczko (Figures in Blue are for the 8th Edition) & Stryer] Two major questions

More information

Chapter 20. Proteins & Enzymes. Proteins & Enzymes - page 1

Chapter 20. Proteins & Enzymes. Proteins & Enzymes - page 1 Chapter 20 Proteins & Enzymes Proteins & Enzymes - page 1 Proteins & Enzymes Part 1: Amino Acids The building blocks of proteins are -amino acids, small molecules that contain a carboxylic acid and an

More information

Chapter 5. Microbial Metabolism

Chapter 5. Microbial Metabolism Chapter 5 Microbial Metabolism Metabolism Collection of controlled biochemical reactions that take place within a microbe Ultimate function of metabolism is to reproduce the organism Metabolic Processes

More information