Enzymes & Experimental Design

Size: px
Start display at page:

Download "Enzymes & Experimental Design"

Transcription

1 Lab 4- Bio 201 Name: Enzymes & Experimental Design OBJECTIVES: To continue to practice to apply hypothesis testing. To continue to practice experimental design. To gain a better understanding of enzymes and some conditions (temperature, ph, and enzyme and substrate concentration) that affect enzyme activity and the rate of an enzyme-catalyzed reaction. To learn the concepts behind the workings of the spectrophotometer. To learn to use the spectrophotometer. To understand these terms: enzyme, enzyme activity, active site, substrate, enzyme-substrate complex, product, denature, variable, control. Now that we have spent some time considering the steps scientists go through in doing science, we ll try our hands at formulating our own hypotheses, and designing experiments to test them. Unlike other labs you have done, this will not be a cookbook exercise. You will be writing your own protocol. To do this effectively, you must read this lab thoroughly, and complete the prelab assignments, before coming to class! The subject of our inquiry will be enzymes and the various factors that influence their activity. Without enzymes, most biochemical reactions would take place at a rate far too slow to keep pace with the metabolic needs and other life functions of organisms. Enzymes are catalysts that speed up chemical reactions but are not themselves consumed or changed by the reactions. The cell's biological catalysts are proteins. These enzymes have a very complex three-dimensional structure consisting of one or more polypeptide chains folded to form an active site-a special area into which the substrate (material to be acted on by the enzyme) will fit. Changes in temperature, alterations in ph, the addition of certain ions or molecules, and the presence of inhibitors all may affect the structure of an enzyme's active site and thus the ability of the enzyme to catalyze the reaction ( enzyme activity ), and hence the rate of the reaction in which it participates. The rate of an enzymatic reaction can also be affected by the relative concentrations of enzyme and substrate in the reaction mixture. During this exercise you will study the activity of the enzyme catecholase contained in some fruits and vegetables. Peeled potatoes and bruised fruits turn brown when exposed to air because catecholase facilitates a reaction between catechol and oxygen. In the presence of oxygen, the compound catechol is oxidized by the removal of two hydrogen atoms. Catechol is thus converted to benzoquinone, and oxygen is reduced by the addition of two hydrogen atoms to form water. Benzoquinone molecules then link together to form long, branched chains. These chains are the structural backbones of the red and brown melanoid pigments that cause darkening. Keep in mind that whenever you use potato juice in the following experiments, you are using an enzyme preparation (in which the enzyme is catecholase). 1

2 MATERIALS (per group) test tubes 12 pieces of Parafilm 2 pipets 250 ml beaker 1 test tube rack MATERIALS (to share) ph 7 phosphate buffer 50 C water bath extra pipets catechol, with pipets ice wax pencils potato extract, with pipets spectrophotometer Kimwipes HCl and NaOH solutions thermometers ph Indicator Paper PREPARATION Before lab, read over this lab and material in the book on enzymes. Generate a list of variables, or factors that might affect the rate at which an enzyme can catalyze the conversion of substrate to product. Think about how you might test the effects of some of these variables. In the space provided on the sheet at the end of the lab, select one of the variables you identified, and outline the protocol you would use to test its effects. (You may want to coordinate with your lab group in selecting a variable, but each student needs to write out their own protocol before coming to lab.) Think carefully about how many conditions you might want to test in your experiment, and what type of controls you might need to use to validate your results. Be sure to consult the sample protocol below as you plan your experiment. GENERAL PROCEDURES 1. Work in groups (the size of the groups will be determined by the size of the class and by the amount of equipment available). Your instructor will consult with each group to approve their protocol before you begin your experiment! SAMPLE PROTOCOL- USE THIS PROTOCOL AS A GUIDE IN WRITING YOUR OWN! 1. Identify the variable you wish to explore, and establish the conditions under which you will test the activity level of our enzyme, catecholase. For instance, if you choose to explore the effects of temperature, you ll need to decide on the exact temperatures you wish to test, and set-up the appropriate ice baths or warm water baths. You should test your enzyme under three conditions. For example, your group may choose to test your enzyme at 4 C, 24 C, and 50 C. Be aware that you may need to adapt your experiment to fit the time and supplies available in the lab. 2. Label three tubes with a wax pencil so that you can distinguish one treatment from the next. Prepare the tubes, each containing 3 ml of ph 7 phosphate buffer, and 10 drops of potato juice (our enzyme!), and 10 drops of water. These will be the blanks for the three conditions you decide to test. 3. Fill three additional test tubes with 3 ml of ph 7 phosphate buffer, and 10 drops of potato juice. Label these tubes such that you can distinguish them from your blanks. These are your experimental tubes. 4. Label a final tube and fill it with 40 drops of catechol (our substrate). This will be your stock solution. When you are ready to begin your experiment, you can add the substrate, catechol, directly from this tube. 5. With your experimental conditions established, add 10 drops of catechol to each of your experimental tubes. (Water has been used to replace this in your blanks.) Cover each tube with Parafilm and invert it several times to mix the contents. 6. Allow the reaction to proceed for 6 minutes. In the meantime, prepare to take a reading on the Spectronic 20 ( Spec 20 for short). You should be sure to turn on your Spec 20 before your experiment as it will need minutes to warm up! Be sure the wavelength is set to 420. Adjust the Spectronic 20 to total absorbance, or zero transmission using the zeroing knob (on/off) on the left. Turn it until the needle 2

3 aligns on top of the line, just to the left of 2 on the absorbance scale. This is called zeroing the Spec. (See Figure 1.) 7. After 6 minutes, use the blank for your first treatment to adjust the machine to 0% absorbance using the blanking knob. This is called blanking the Spec 20. Wipe condensation off the tube before reading. Then read the absorbance of your experimental tube and record your reading in Table 1. Figure 1: Baush & Lomb, Spectronic Repeat for the other 2 experimental tubes. Remember to use appropriate blanks at each condition you test. zeroing knob (L) blanking Knob (R) Sample chamber above zeroing knob CLEAN-UP 1. When done, please empty all tubes in the sink, rinse them out, place them in your test tube rack, and put the rack on the table at the front. Throw away your pipets, pieces of Parafilm, and any papers. Wipe your desk off. DATA ANALYSIS 1. Graph the data in Table 1 (use graph paper). Be sure to label the x- and y-axes appropriately. Think carefully about what type of graph might be most appropriate for the data you have generated. 2. Fill in the rest of Table 2. Based on the data, did you support or reject your hypothesis? Explain your reasoning for your conclusion: why did you choose support or reject?. 3. Identify the optimal condition for the enzyme activity. 4. Be prepared to present your results to the class. 3

4 Lab 4- Enzyme Activity: To Hand In This and the following page. A graph of the data attached to these two pages. Answers to Questions Name: Pre-Lab 1. Identify three factors you expect to affect the activity of the enzyme, catechcolase. For each of the factors you identify, describe why you expect the enzyme to be affected. Note that these are all possible hypotheses you might test in your experiment! 2. Select one of the factors you have identified above and, in the space below, write out the protocol for an experiment you might conduct to test your hypothesis. Use the example provided in the lab handout as a template for your protocol. Be precise as these are the directions you will be following in lab! 4

5 Data Analysis Table 1. Effect of on Enzyme Activity Minutes Condition 1: 6 Absorbance (420 nm) Condition 2: Condition 3: Table 2 Hypothesis: Prediction: Interpretation (circle one): support reject Reasoning for choosing "support" or "reject" (if supported, why; if rejected, why): What is the optimal condition for this enzyme reaction? Why did you choose it as the optimal condition? ADDITIONAL QUESTIONS- Answer these questions on a separate page. 1. What would ph do to enzyme activity, and why? 2. If an enzyme were isolated from an organism, such as a clam, that lived in seawater that averages 14 C, what would you predict would be the optimal temperature for that enzyme, and why? 3. Define enzyme denaturation in terms of protein structure. 4. What would a graph of the relationship between substrate concentration and rate of reaction look like, and why? 5. How could you calculate the rate of reaction for your enzyme? 6. How would you expect increasing enzyme concentration to affect the rate of an enzyme-catalyzed reaction in the presence of unlimited substrate? 5

EXERCISE 6 - Lab Procedures

EXERCISE 6 - Lab Procedures EXERCISE 6 - Lab Procedures I. Determine the effect of substrate concentration on enzyme activity. e sure you do not confuse the enzyme (glucose oxidase) with the substrate (glucose)! 1. Turn on the Spec-20

More information

ENZYME ACTIVITY. Readings: Review pp , and in your text (POHS, 5 th ed.).

ENZYME ACTIVITY. Readings: Review pp , and in your text (POHS, 5 th ed.). ENZYME ACTIVITY Readings: Review pp. 51-58, and 128-139 in your text (POHS, 5 th ed.). Introduction Enzymes are biological catalysts; that is, enzymes are able to mediate the conversion of substrate into

More information

ENZYMES: BIOLOGICAL CATALYSTS OF LIFE

ENZYMES: BIOLOGICAL CATALYSTS OF LIFE Potential Energy Lab 6 ENZYMES: BIOLOGICAL CATALYSTS OF LIFE OBJECTIVES Define catalyst, enzyme, activation energy, enzyme-substrate complex, substrate, product, active site, denaturation, and cofactor;

More information

Analysis of Polyphenoloxidase Enzyme Activity from Potato Extract Biochemistry Lab I (CHEM 4401)

Analysis of Polyphenoloxidase Enzyme Activity from Potato Extract Biochemistry Lab I (CHEM 4401) Analysis of Polyphenoloxidase Enzyme Activity from Potato Extract Biochemistry Lab I (CHEM 4401) Background Enzymes are protein molecules (primarily) that serve as biological catalysts. They are responsible

More information

Progressive Science Initiative. Click to go to website:

Progressive Science Initiative. Click to go to website: Slide 1 / 28 New Jersey Center for Teaching and Learning Progressive Science Initiative This material is made freely available at www.njctl.org and is intended for the non-commercial use of students and

More information

TITLE OF LAB: Effects of Temperature and Solvents on the Cell Membrane

TITLE OF LAB: Effects of Temperature and Solvents on the Cell Membrane SOTM LAB: B14 12/99 I. TEACHER NOTES & GUIDELINES TITLE OF LAB: Effects of Temperature and Solvents on the Cell Membrane DEVELOPERS OF LAB: Adapted by James Kirby JD726, Jennifer Mortellaro JD449, and

More information

AP BIOLOGY Enzyme Catalysis

AP BIOLOGY Enzyme Catalysis AP BIOLOGY Enzyme Catalysis Introduction In general, enzymes are proteins produced by living cells; they act as catalysts in biochemical reactions. A catalyst affects the rate of a chemical reaction. One

More information

How do abiotic or biotic factors influence the rates of enzymatic reactions?

How do abiotic or biotic factors influence the rates of enzymatic reactions? Big Idea 4 Interactions investigation 13 ENZYME ACTIVITY* How do abiotic or biotic factors influence the rates of enzymatic reactions? BACKGROUND Enzymes are the catalysts of biological systems. They speed

More information

Investigation 13: Enzyme Activity Notes From the teacher

Investigation 13: Enzyme Activity Notes From the teacher Day 1: Investigation 13: Enzyme Activity Notes From the teacher Before class: Read Entire Lab and Complete Pre Lab. Pre-Lab: 1. What is the difference between catalytic and anabolic enzymes? 2. Describe

More information

ENZYME ACTION: TESTING CATALASE ACTIVITY

ENZYME ACTION: TESTING CATALASE ACTIVITY Name Date Period ENZYME ACTION: TESTING CATALASE ACTIVITY Many organisms can decompose hydrogen peroxide (H 2 O 2 ) enzymatically. Enzymes are globular proteins, responsible for most of the chemical activities

More information

Enzymes - Exercise 3 - Rockville

Enzymes - Exercise 3 - Rockville Enzymes - Exercise 3 - Rockville Objectives -Understand the function of an enzyme. -Know what the substrate, enzyme, and the product of the reaction for this lab. -Understand how at various environments

More information

Properties of an Enzyme: Wheat Germ Acid Phosphatase Experiment #10

Properties of an Enzyme: Wheat Germ Acid Phosphatase Experiment #10 Properties of an Enzyme: Wheat Germ Acid Phosphatase Experiment #10 Objective To show the catalysis of a chemical reaction by an active enzyme and to observe the effects of temperature, killing the enzyme

More information

ENZYME ACTIVITY. Practical 3

ENZYME ACTIVITY. Practical 3 Practical 3 ENZYME ACTIVITY BACKGROUND Enzymes speed up chemical reactions by lowering activation energy (that is, the energy needed for a reaction to begin). In every chemical reaction, the starting materials

More information

Catalase Lab - A Bio ENZYME ACTIVITY Investigation Created by Gen Nelson, modified by Dr G

Catalase Lab - A Bio ENZYME ACTIVITY Investigation Created by Gen Nelson, modified by Dr G Catalase Lab - A Bio ENZYME ACTIVITY Investigation Created by Gen Nelson, modified by Dr G INTRODUCTION Hydrogen peroxide (H 2O 2) is a poisonous byproduct of metabolism that can damage cells if it is

More information

Evaluation copy. Enzyme Action: Testing Catalase Activity. Computer

Evaluation copy. Enzyme Action: Testing Catalase Activity. Computer Enzyme Action: Testing Catalase Activity Computer 6A Many organisms can decompose hydrogen peroxide (H 2 O 2 ) enzymatically. Enzymes are globular proteins, responsible for most of the chemical activities

More information

Day 1 Discuss activation energy enzyme graph Initial notebook entries Watch enzyme activation energy/enzyme introductory video Begin to brainstorm

Day 1 Discuss activation energy enzyme graph Initial notebook entries Watch enzyme activation energy/enzyme introductory video Begin to brainstorm Day 1 Discuss activation energy enzyme graph Initial notebook entries Watch enzyme activation energy/enzyme introductory video Begin to brainstorm experimental design ideas Investigating Enzyme Function

More information

Evaluation copy 17B. Enzyme Action: Testing Catalase Activity. Computer

Evaluation copy 17B. Enzyme Action: Testing Catalase Activity. Computer Enzyme Action: Testing Catalase Activity Computer 17B Many organisms can decompose hydrogen peroxide (H 2 O 2 ) enzymatically. Enzymes are globular proteins, responsible for most of the chemical activities

More information

EXERCISE 5. Enzymes H amylase + starch + amylase-starch complex maltose+ amylase.

EXERCISE 5. Enzymes H amylase + starch + amylase-starch complex maltose+ amylase. EXERCISE 5 Enzymes LEARNING OBJECTIVES Demonstrate enzyme activity by the hydrolysis of starch by amylase. Determine the effect of different temperatures on the rate of starch hydrolysis. Determine the

More information

Student Manual. Background STUDENT MANUAL BACKGROUND. Enzymes

Student Manual. Background STUDENT MANUAL BACKGROUND. Enzymes Background Enzymes Enzymes are typically proteins (some nucleic acids have also been found to be enzymes) that act as catalysts, speeding up chemical reactions that would take far too long to occur on

More information

Enzymes - Exercise 3 - Germantown

Enzymes - Exercise 3 - Germantown Enzymes - Exercise 3 - Germantown Objectives -Understand the function of an enzyme. -Know where catechol oxidase (enzyme) used in today s experiment came from. -Understand why enzymes require a cofactor.

More information

Enzyme Action: Testing Catalase Activity

Enzyme Action: Testing Catalase Activity Enzyme Action: Testing Catalase Activity LabQuest 6A Many organisms can decompose hydrogen peroxide (H 2 O 2 ) enzymatically. Enzymes are globular proteins, responsible for most of the chemical activities

More information

EXPERIMENT 3 ENZYMATIC QUANTITATION OF GLUCOSE

EXPERIMENT 3 ENZYMATIC QUANTITATION OF GLUCOSE EXPERIMENT 3 ENZYMATIC QUANTITATION OF GLUCOSE This is a team experiment. Each team will prepare one set of reagents; each person will do an individual unknown and each team will submit a single report.

More information

ENZYME ACTIVITY. Introduction

ENZYME ACTIVITY. Introduction ENZYME ACTIVITY This activity is an alternative to the titration proposed for Enzyme Catalysis (AP Bio Lab #2, Biology Lab Manual). There are numerous alternative lab activities that measure the rate of

More information

Activity # 4. Measurement of Enzyme Activity

Activity # 4. Measurement of Enzyme Activity Activity # 4. Measurement of Enzyme Activity Adapted from Experimental Molecular Biology Lab Manual, Stephen H. Munroe, Marquette University Week 1 Protein Extraction, Concentration Measurement & Instrument

More information

INVESTIGATION 13 ENZYME ACTIVITY

INVESTIGATION 13 ENZYME ACTIVITY INVESTIGATION 13 ENZYME ACTIVITY BACKGROUND Enzymes are the catalysts of biological systems. They speed up chemical reactions in biological systems by lowering the activation energy, the energy needed

More information

Amylase: a sample enzyme

Amylase: a sample enzyme Amylase: a sample enzyme Objectives: After completion of this laboratory exercise you will be able to: 1. Explain the importance of enzymes in biology. 2. Explain the basic properties of an enzyme as a

More information

The Effect of Hydrogen Peroxide Concentration (substrate) on the Activity of the Enzyme Catalase

The Effect of Hydrogen Peroxide Concentration (substrate) on the Activity of the Enzyme Catalase The Effect of Hydrogen Peroxide Concentration (substrate) on the Activity of the Enzyme Catalase Exercise adapted from: Allot, A. & Mindorff, D. (2007). Biology Course Companion. Oxford: Oxford University

More information

Catalytic Activity of Enzymes

Catalytic Activity of Enzymes Catalytic Activity of Enzymes Introduction Enzymes are biological molecules that catalyze (speed up) chemical reactions. You could call enzymes the Builders and Do-ers in the cell; without them, life could

More information

Lab: Enzymes and the factors that affect their function

Lab: Enzymes and the factors that affect their function Name Date Hour Lab: Enzymes and the factors that affect their function INTRODUCTION: What would happen to your cells if they made a poisonous chemical? You might think that they would die. If fact, your

More information

BIOLOGY 1101 LAB 1: OSMOSIS & DIFFUSION. READING: Please read pages & in your text prior to lab.

BIOLOGY 1101 LAB 1: OSMOSIS & DIFFUSION. READING: Please read pages & in your text prior to lab. BIOLOGY 1101 LAB 1: OSMOSIS & DIFFUSION READING: Please read pages 27-31 & 83-86 in your text prior to lab. INTRODUCTION: All living things depend on water. A water molecule is made up of an oxygen atom

More information

SAFETY & DISPOSAL onpg is a potential irritant. Be sure to wash your hands after the lab.

SAFETY & DISPOSAL onpg is a potential irritant. Be sure to wash your hands after the lab. OVERVIEW In this lab we will explore the reaction between the enzyme lactase and its substrate lactose (i.e. its target molecule). Lactase hydrolyzes lactose to form the monosaccharides glucose and galactose.

More information

Name: Date: AP Biology LAB : FACTORS INFLUENCING ENZYME ACTIVITY

Name: Date: AP Biology LAB : FACTORS INFLUENCING ENZYME ACTIVITY LAB : FACTORS INFLUENCING ENZYME ACTIVITY Background Enzymes are biological catalysts capable of speeding up chemical reactions by lowering activation energy. One benefit of enzyme catalysts is that the

More information

Terminology-Amino Acids

Terminology-Amino Acids Enzymes 1 2 Terminology-Amino Acids Primary Structure: is a polypeptide (large number of aminoacid residues bonded together in a chain) chain of amino acids linked with peptide bonds. Secondary Structure-

More information

Studying the Effect of Hydrogen Peroxide Substrate Concentration on Catalase Induced Reaction

Studying the Effect of Hydrogen Peroxide Substrate Concentration on Catalase Induced Reaction Studying the Effect of Hydrogen Peroxide Substrate Concentration on Catalase Induced Reaction Submitted by: [Student Name] [Course Name] [University Name] Table of Contents 1.0 Aim... 3 2.0 Background

More information

Lactase Action. Evaluation copy

Lactase Action. Evaluation copy Lactase Action Computer 24A Lactose, a disaccharide sugar found naturally in mammalian milk, is utilized by infants as one of their initial sources of energy. During infancy, mother s milk is often the

More information

Experiment The Thermodynamics of the Dissolution of Borax

Experiment The Thermodynamics of the Dissolution of Borax Experiment The Thermodynamics of the Dissolution of Borax Borax is a commonly added to (clothes) wash water to increase the ph for more effective cleansing. 0 B.J E C T I V E S = -RTln K R. X T K, standard

More information

Enzyme Action: Testing Catalase Activity

Enzyme Action: Testing Catalase Activity Enzyme Action: Testing Catalase Activity Pennsylvania Science Standards: S11.A.1.1.4 S11.A.1.3.1 S11.A.2.2.2.1 S11.A.2.2.2.2 Keystone Eligible Content Bio.B.4.1.1, Bio.B.4.1.2, and Bio.B.4.2.5 Introduction

More information

APBiology Unit 1, Chapter 5

APBiology Unit 1, Chapter 5 APBiology Unit 1, Chapter 5 Research Question How do abiotic or biotic factors influence the rates of enzymatic reactions? Background Enzymes are the catalysts of biological systems. They speed up chemical

More information

EXPERIMENT 26: Detection of DNA-binding Proteins using an Electrophoretic Mobility Shift Assay Gel shift

EXPERIMENT 26: Detection of DNA-binding Proteins using an Electrophoretic Mobility Shift Assay Gel shift EXPERIMENT 26: Detection of DNA-binding Proteins using an Electrophoretic Mobility Shift Assay Gel shift Remember to use sterile conditions (tips, tubes, etc.) throughout this experiment Day 1: Biotinylation

More information

Beverage Density Lab Sugar Content Analysis (Due Nov. 11)

Beverage Density Lab Sugar Content Analysis (Due Nov. 11) Beverage Density Lab Sugar Content Analysis (Due Nov. 11) Introduction: Nutritionists have recently raised concerns about the increasing popularity of sodas, fruit drinks and other beverages dur to their

More information

The Hydrogen Peroxide Breakdown

The Hydrogen Peroxide Breakdown Biology The Hydrogen Peroxide Breakdown Examining Factors That Affect the Reaction Rate of Enzymes MATERIALS AND RESOURCES EACH GROUP aprons 2 beakers, 50 ml calculator, graphing forceps goggles graduated

More information

Enzyme Analysis using Tyrosinase. Evaluation copy

Enzyme Analysis using Tyrosinase. Evaluation copy Enzyme Analysis using Tyrosinase Computer 15 Enzymes are molecules that regulate the chemical reactions that occur in all living organisms. Almost all enzymes are globular proteins that act as catalysts,

More information

MiSP ENZYME ACTION Teacher Guide, L1 - L3. Introduction

MiSP ENZYME ACTION Teacher Guide, L1 - L3. Introduction MiSP ENZYME ACTION Teacher Guide, L1 - L3 Introduction The subject of this unit, enzymes, is typically a high school topic and is studied in depth in Advanced Placement Biology. Even so, it can be successfully

More information

AP Biology Unit 1, Chapter 5

AP Biology Unit 1, Chapter 5 AP Biology Unit 1, Chapter 5 Research Question How do abiotic or biotic factors influence the rates of enzymatic reactions? Background Enzymes are the catalysts of biological systems. They speed up chemical

More information

WATER AND SOLUTE MOVEMENT THROUGH RED BLOOD CELLS

WATER AND SOLUTE MOVEMENT THROUGH RED BLOOD CELLS WATER AND SOLUTE MOVEMENT THROUGH RED BLOOD CELLS Purpose This exercise is designed to demonstrate the properties of cellular membranes and the movement of water and solutes across them. In this lab, you

More information

Experiment 2 Introduction

Experiment 2 Introduction Characterization of Invertase from Saccharomyces cerevisiae Experiment 2 Introduction The method we used in A Manual for Biochemistry I Laboratory: Experiment 7 worked well to detect any created reducing

More information

Worksheet. Worksheet. Worksheet. Worksheet. Student Performance Guide. Student Performance Guide

Worksheet. Worksheet. Worksheet. Worksheet. Student Performance Guide. Student Performance Guide LESSON 6-3 Laboratory Reagent Preparation and Calculations Worksheet LESSON 6-4 Chemistry Instrumentation in the Physician Office Laboratory Worksheet LESSON 6-6 Measuring Blood Glucose Worksheet LESSON

More information

Enzymes Adapted from Air All Around: Oxygen Investigation

Enzymes Adapted from Air All Around: Oxygen Investigation Enzymes Adapted from Air All Around: Oxygen Investigation Author: Doris Pun & Brittland DeKorver Institute for Chemical Education and Nanoscale Science and Engineering Center University of Wisconsin-Madison

More information

OBJECTIVE INTRODUCTION. Biology 3A Laboratory CELLULAR RESPIRATION

OBJECTIVE INTRODUCTION. Biology 3A Laboratory CELLULAR RESPIRATION Biology 3A Laboratory CELLULAR RESPIRATION OBJECTIVE To study anaerobic and aerobic respiration. To determine the amount of oxygen consumed during aerobic respiration. To determine the amount of carbon

More information

How do abiotic or biotic factors influence the rates of enzymatic reactions?

How do abiotic or biotic factors influence the rates of enzymatic reactions? Investigation 13 ENZYME ACTIVITY* How do abiotic or biotic factors influence the rates of enzymatic reactions? BACKGROUND Enzymes are the catalysts of biological systems. They speed up chemical reactions

More information

Enzyme Reaction Rates Using TOOTHPICKASE

Enzyme Reaction Rates Using TOOTHPICKASE Name Date Period Enzyme Reaction Rates Using TOOTHPICKASE INTRODUCTION: Enzymes are proteins that are used as catalysts in biochemical reactions. A catalyst is a factor that controls the rate of a reaction

More information

ENZYME CONCENTRATIONS AND ENZYME ACTIVITY: PLANNING SHEET

ENZYME CONCENTRATIONS AND ENZYME ACTIVITY: PLANNING SHEET Activity 2.11 Student Sheet ENZYME CONCENTRATIONS AND ENZYME ACTIVITY: PLANNING SHEET To investigate how enzyme concentration can affect the initial rate of reaction. Wear eye protection, lab coats and

More information

Work in groups of 3 to 4 students (enough materials for 5 groups total)

Work in groups of 3 to 4 students (enough materials for 5 groups total) Chemical and Physical Processes of Digestion Exercise 39A / 39 (begins page 597 in 9 th &10 th eds, page 595 in 11 th edition, page 599 in 12 th edition) Lab 7 Objectives Read lab Exercise 39A / 39 Do

More information

Chemistry Mr. O Sullivan Lab Report Experiment #11. Determination of techniques to prevent the Browning of Cut Produce

Chemistry Mr. O Sullivan Lab Report Experiment #11. Determination of techniques to prevent the Browning of Cut Produce Chemistry 101-292 Mr. O Sullivan Lab Report Experiment #11 Determination of techniques to prevent the Browning of Cut Produce Abstract The purpose of this experiment was to determine effective techniques

More information

Carbohydrates Chemical Composition and Identification

Carbohydrates Chemical Composition and Identification Carbohydrates Chemical Composition and Identification Introduction: Today, scientists use a combination of biology and chemistry for their understanding of life and life processes. Thus, an understanding

More information

EXPERIMENT. Titration of the Weak Acid Potassium Hydrogen Phthalate (KHP)

EXPERIMENT. Titration of the Weak Acid Potassium Hydrogen Phthalate (KHP) INTRODUCTION EXPERIMENT Titration of the Weak Acid Potassium Hydrogen Phthalate (KHP) Materials generally considered to possess acidic and/or basic properties are widely distributed in nature and range

More information

WEAR GOGGLES, GLOVES AND A LAB APRON!!!!

WEAR GOGGLES, GLOVES AND A LAB APRON!!!! Organic Food Lab =) Problem: What test are used to discover if certain organic molecules are present in food? Could these tests be used to identify an unknown food? Background: We will be studying various

More information

Biochemical Analysis of Plant Enzymes

Biochemical Analysis of Plant Enzymes EDVOTEK P.O. Box 1232 West Bethesda, MD 20827-1232 The Biotechnology Biochemical Analysis of Plant Enzymes 904 EDVO-Kit # Storage: Store entire experiment in the refrigerator. Experiment Objective: In

More information

Pre-lab Homework Lab 6: Photosynthesis & Cellular Respiration

Pre-lab Homework Lab 6: Photosynthesis & Cellular Respiration Lab Section: Name: Pre-lab Homework After reading over the lab and the topics of photosynthesis and cellular respiration from your textbook, answer these questions to be turned in at the beginning of the

More information

BIO 322/122L Laboratory Plant Water Relations

BIO 322/122L Laboratory Plant Water Relations BIO 322/122L Laboratory Plant Water Relations I. Water Potential. The cytoplasm of the plant cell, with its enclosed vacuole, is contained within a membrane that is more permeable to water than to most

More information

LAB Catalase in Liver HONORS BIOLOGY, NNHS

LAB Catalase in Liver HONORS BIOLOGY, NNHS Name Date Block LAB Catalase in Liver HONORS BIOLOGY, NNHS OBJECTIVES: 1. To observe the effect of catalase on the chemical breakdown of hydrogen peroxide. 2. To observe the effects of temperature and

More information

PhosFree TM Phosphate Assay Biochem Kit

PhosFree TM Phosphate Assay Biochem Kit PhosFree TM Phosphate Assay Biochem Kit (Cat. # BK050) ORDERING INFORMATION To order by phone: (303) - 322-2254 To order by Fax: (303) - 322-2257 To order by e-mail: cservice@cytoskeleton.com Technical

More information

Macromolecule Virtual Lab

Macromolecule Virtual Lab Part A Macromolecule Virtual Lab Go to the website: http://faculty.kirkwood.edu/apeterk/learningobjects/biologylabs.htm CARBOHYDRATES Scroll down to the bottom and click on Carbohydrate 1. What do carbohydrates

More information

What Is the Relationship Between the Amount of Transmitted Light Through a Solution and Its Concentration?

What Is the Relationship Between the Amount of Transmitted Light Through a Solution and Its Concentration? What Is the Relationship Between the Amount of Transmitted Light Through a and Its Concentration? Blue Food Dye Treats Spine Injury in Rats HTTP://WWW.WIRED.COM/WIREDSCIENCE/2009/07/BLUERATS/ BY HADLEY

More information

Digestive Enzyme Lab

Digestive Enzyme Lab Digestive Enzyme Lab Objectives 1. To describe the function of enzymes 2. To define: reactants, products, activation energy 3. To describe the enzymatic digestion of carbohydrates by salivary amylase 4.

More information

Lab 3 - Organic Molecules of Biological Importance (April 2014)

Lab 3 - Organic Molecules of Biological Importance (April 2014) Lab 3 - Organic Molecules of Biological Importance (April 2014) Section 1 - Organic Molecules [2] Hi this is Lyn Koller and I would like to welcome you to this week s lab. We will explore the organic molecules

More information

fossum/files/2012/01/10 Enzymes.pdf

fossum/files/2012/01/10 Enzymes.pdf http://www.laney.edu/wp/cheli fossum/files/2012/01/10 Enzymes.pdf Enzyme Catalysis Enzymes are proteins that act as catalysts for biological reactions. Enzymes, like all catalysts, speed up reactions without

More information

Experiment 9. NATURE OF α-amylase ACTIVITY ON STARCH

Experiment 9. NATURE OF α-amylase ACTIVITY ON STARCH Experiment 9 NATURE OF α-amylase ACTIVITY ON STARC In Experiment 1 we described the action of α-amylase on starch as that of catalyzing the hydrolysis of α-1,4-glucosidic bonds at random in the interior

More information

Enzymes: What s in your spit? Teacher Version

Enzymes: What s in your spit? Teacher Version Enzymes: What s in your spit? Teacher Version In this lab students will investigate a few of the different enzymes from our body. You will learn how these enzymes work and how their activity is dependent

More information

Identification of Organic Compounds Lab

Identification of Organic Compounds Lab Identification of Organic Compounds Lab Introduction All organic compounds contain the element carbon (C). Organic compounds usually also contain oxygen (O) or hydrogen (H) or both. They may also contain

More information

Digestion and Human Health

Digestion and Human Health Digestion and Human Health The Molecules of Living Systems There are three main fluid components in your body Cytoplasm in your cells Fluid between your cells Fluid in your blood The also contain many

More information

Experiment 1. Isolation of Glycogen from rat Liver

Experiment 1. Isolation of Glycogen from rat Liver Experiment 1 Isolation of Glycogen from rat Liver Figure 35: FIG-2, Liver, PAS, 100x. Note the presence of a few scattered glycogen granules (GG). Objective To illustrate the method for isolating glycogen.

More information

For example, monosaccharides such as glucose are polar and soluble in water, whereas lipids are nonpolar and insoluble in water.

For example, monosaccharides such as glucose are polar and soluble in water, whereas lipids are nonpolar and insoluble in water. Biology 4A Laboratory Biologically Important Molecules Objectives Perform tests to detect the presence of carbohydrates, lipids, proteins, and nucleic acids Recognize the importance of a control in a biochemical

More information

GCSE. Biology Practical Manual. Unit 3: Practical Skills CCEA GCSE TEACHER GUIDANCE

GCSE. Biology Practical Manual. Unit 3: Practical Skills CCEA GCSE TEACHER GUIDANCE GCSE CCEA GCSE TEACHER GUIDANCE Biology Practical Manual Unit 3: Practical Skills 1.4 Investigate the effect of temperature on the action of an enzyme For first teaching from September 2017 Practical

More information

Chemistry 212. Experiment 3 ANALYSIS OF A SOLID MIXTURE LEARNING OBJECTIVES. - learn to analyze a solid unknown with volumetric techniques.

Chemistry 212. Experiment 3 ANALYSIS OF A SOLID MIXTURE LEARNING OBJECTIVES. - learn to analyze a solid unknown with volumetric techniques. Experiment 3 The objectives of this experiment are to LEARNING OBJECTIVES - learn to analyze a solid unknown with volumetric techniques. - use stoichiometry to determine the percentage of KHP in a solid

More information

Standards: Next Generation Science Standards ( )

Standards: Next Generation Science Standards (   ) Discovering Enzymes Author(s): Pascale Chenevier and Gil Toombes Date Created: 2000 Subject: Chemistry Grade Level: Middle & High School Standards: Next Generation Science Standards ( www.nextgenscience.org

More information

Carbohydrate Metabolism by Yeast Experiment #12

Carbohydrate Metabolism by Yeast Experiment #12 Carbohydrate Metabolism by Yeast Experiment #12 Objective: To observe enzyme activities in respiring yeast by observing color changes in methylene blue dye as a substitute for NAD + in the yeast respiratory

More information

Laboratory 8 Succinate Dehydrogenase Activity in Cauliflower Mitochondria

Laboratory 8 Succinate Dehydrogenase Activity in Cauliflower Mitochondria BIO354: Cell Biology Laboratory 1 I. Introduction Laboratory 8 Succinate Dehydrogenase Activity in Cauliflower Mitochondria In eukaryotic cells, specific functions are localized to different types of organelles.

More information

2. Now that you have made your hypothesis, you will begin. must perform at least 3 trials. Pleasee complete

2. Now that you have made your hypothesis, you will begin. must perform at least 3 trials. Pleasee complete Water Olympics Lab Pre-Lab Questions: 1. What does it mean to be a polar molecule? 2. Draw the water molecule showing its polarity. 3. List and explain the different properties of water. Part 1: Drops

More information

Assignment #1: Biological Molecules & the Chemistry of Life

Assignment #1: Biological Molecules & the Chemistry of Life Assignment #1: Biological Molecules & the Chemistry of Life A. Important Inorganic Molecules Water 1. Explain why water is considered a polar molecule. The partial negative charge of the oxygen and the

More information

Lab 6: Cellular Respiration

Lab 6: Cellular Respiration Lab 6: Cellular Respiration Metabolism is the sum of all chemical reactions in a living organism. These reactions can be catabolic or anabolic. Anabolic reactions use up energy to actually build complex

More information

Biomolecule: Carbohydrate

Biomolecule: Carbohydrate Biomolecule: Carbohydrate This biomolecule is composed of three basic elements (carbon, hydrogen, and oxygen) in a 1:2:1 ratio. The most basic carbohydrates are simple sugars, or monosaccharides. Simple

More information

H 3N + COO - H 3 N + COO - Enzyme-Substrate Complex. Enzyme-Product Complex

H 3N + COO - H 3 N + COO - Enzyme-Substrate Complex. Enzyme-Product Complex Background Most of the chemical reactions that take place within a cell involve protein catalysts called enzymes. Enzymes, like other catalysts, speed up the rates of chemical reactions by lowering the

More information

Copy into Note Packet and Return to Teacher Section 3 Chemistry of Cells

Copy into Note Packet and Return to Teacher Section 3 Chemistry of Cells Copy into Note Packet and Return to Teacher Section 3 Chemistry of Cells Objectives Summarize the characteristics of organic compounds. Compare the structures and function of different types of biomolecules.

More information

MONDAY Review ( SL 2.5)

MONDAY Review ( SL 2.5) Enzymes 8.1 MONDAY Review ( SL 2.5) -Active site to which specific substrate binds -Enzymes are catalysts: bring about biochemical reactions! -Optimal environment: affected by ph, temp, and substrate concentration

More information

Problem: What would happen to enzyme activity if enzymes are placed outside their normal conditions? Hypothesis:

Problem: What would happen to enzyme activity if enzymes are placed outside their normal conditions? Hypothesis: Name: Date: Period: Honors Biology: Enzyme Lab Background information What would happen to your cells if they made a poisonous chemical? You might think that they would die. In fact, your cells are always

More information

Bridging task for 2016 entry. AS/A Level Biology. Why do I need to complete a bridging task?

Bridging task for 2016 entry. AS/A Level Biology. Why do I need to complete a bridging task? Bridging task for 2016 entry AS/A Level Biology Why do I need to complete a bridging task? The task serves two purposes. Firstly, it allows you to carry out a little bit of preparation before starting

More information

LAB 4 Macromolecules

LAB 4 Macromolecules LAB 4 Macromolecules Overview In addition to water and minerals, living things contain a variety of organic molecules. Most of the organic molecules in living organisms are of 4 basic types: carbohydrate,

More information

Biodiversity Study & Biomass Analysis

Biodiversity Study & Biomass Analysis PR072 G-Biosciences 1-800-628-7730 1-314-991-6034 technical@gbiosciences.com A Geno Technology, Inc. (USA) brand name Biodiversity Study & Biomass Analysis Teacher s Guidebook (Cat. # BE-403) think proteins!

More information

An Investigation of Biofuels

An Investigation of Biofuels Please print Full name clearly: Introduction: BIOL 305L Laboratory Six An Investigation of Biofuels To me, this is the ultimate use of the plant cell wall the potential to obtain an alternative fuel from

More information

Lab 4: Osmosis and Diffusion

Lab 4: Osmosis and Diffusion Page 4.1 Lab 4: Osmosis and Diffusion Cells need to obtain water and other particles from the fluids that surround them. Water and other particles also move out of cells. Osmosis (for water) and diffusion

More information

MOHAWK COLLEGE OF APPLIED ARTS AND TECHNOLOGY CHEMICAL AND ENVIRONMENTAL TECHNOLOGY DEPARTMENT. Lab Report ROOM NO: FE E309

MOHAWK COLLEGE OF APPLIED ARTS AND TECHNOLOGY CHEMICAL AND ENVIRONMENTAL TECHNOLOGY DEPARTMENT. Lab Report ROOM NO: FE E309 MOHAWK COLLEGE OF APPLIED ARTS AND TECHNOLOGY CHEMICAL AND ENVIRONMENTAL TECHNOLOGY DEPARTMENT Lab Report ROOM NO: FE E309 EXPERIMENT NO : 9 TITLE : Factors Affecting Enzyme Function Submitted by Class

More information

Chapter 5 MITOCHONDRIA AND RESPIRATION 5-1

Chapter 5 MITOCHONDRIA AND RESPIRATION 5-1 Chapter 5 MITOCHONDRIA AND RESPIRATION All organisms must transform energy. This energy is required to maintain a dynamic steady state, homeostasis, and to insure continued survival. As will be discussed

More information

Chemical Basis For Life Open Ended Questions:

Chemical Basis For Life Open Ended Questions: Chemical Basis For Life Open Ended Questions: Answer the following questions to the best of your ability: Make sure you read each question carefully and provide answers to all of the parts of the question.

More information

LIFE SCIENCES: PAPER III

LIFE SCIENCES: PAPER III NATIONAL SENIOR CERTIFICATE EXAMINATION NOVEMBER 2017 LIFE SCIENCES: PAPER III EXAMINATION NUMBER Time: 1½ hours 50 marks PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY 1. Write your examination number

More information

Name: Date Block Selective Permeability

Name: Date Block Selective Permeability LAB Name: Date Block Selective Permeability OBJECTIVES: Observe the selective permeability of an artificial membrane. Observe diffusion of substances across an artificial membrane. Devise a model for the

More information

Source 1 Evaluation. Source (using Harvard reference style)

Source 1 Evaluation. Source (using Harvard reference style) 1 Evaluation (using Harvard reference style) Type of Overview of Secondary Relevance and Reliability of the Morton, D. and Perry, J.B. (2011) Laboratory manual for human biology. Available at: https://books.google.com.au/books?id=aenovttzlpcc&pg=pt78&dq=the

More information

Unit 2: Cellular Chemistry, Structure, and Physiology Module 2: Cellular Chemistry

Unit 2: Cellular Chemistry, Structure, and Physiology Module 2: Cellular Chemistry Unit 2: Cellular Chemistry, Structure, and Physiology Module 2: Cellular Chemistry NC Essential Standard: 1.2.1 Explain how cells use buffers to regulate cell ph 4.1.1 Compare the structure and functions

More information

Properties of Alcohols and Phenols Experiment #3

Properties of Alcohols and Phenols Experiment #3 Properties of Alcohols and Phenols Experiment #3 Objectives: To observe the solubility of alcohols relative to their chemical structure, to perform chemical tests to distinguish primary, secondary and

More information