INTERNATIONAL TURKISH HOPE SCHOOL ACADEMIC YEAR CHITTAGONG SENIOR SECTION BIOLOGY HANDOUT OSMOSIS, DIFFUSION AND ACTIVE TRANSPORT CLASS 9

Size: px
Start display at page:

Download "INTERNATIONAL TURKISH HOPE SCHOOL ACADEMIC YEAR CHITTAGONG SENIOR SECTION BIOLOGY HANDOUT OSMOSIS, DIFFUSION AND ACTIVE TRANSPORT CLASS 9"

Transcription

1 INTERNATIONAL TURKISH HOPE SCHOOL ACADEMIC YEAR CHITTAGONG SENIOR SECTION BIOLOGY HANDOUT OSMOSIS, DIFFUSION AND ACTIVE TRANSPORT CLASS 9 Name :... Date:... d) Movement of substances into and out of cells Students will be assessed on their ability to: 2.12 understand definitions of diffusion, osmosis and active transport 2.13 understand that movement of substances into and out of cells can be by diffusion, osmosis and active transport 2.14 understand the importance in plants of turgid cells as a means of support 2.15 understand the factors that affect the rate of movement of substances into and out of cells, to include the effects of surface area to volume ratio, temperature and concentration gradient 2.16 describe experiments to investigate diffusion and osmosis using living and non-living systems. Human Biology Students will be assessed on their ability to: a) Recall simple definitions of diffusion, osmosis and active transport. b) Understand that movement of substances into and out of cells can be by diffusion, osmosis and active transport. c) Understand the factors that affect the rate of movement of substances into and out of cells to include the effects of surface area to volume ratio, temperature and concentration gradient. d) Describe how to carry out simple experiments on diffusion and osmosis using living and non-living systems. Cambridge Specification 2.1 Diffusion 2.2 Osmosis 2.3 Active transport Candidates should be able to: (a) define diffusion as the movement of molecules from a region of their higher concentration to a region of their lower concentration, down a concentration gradient; (b) define osmosis as the passage of water molecules from a region of higher water potential to a region of lower water potential, through a partially permeable membrane; (c) describe the importance of a water potential gradient in the uptake of water by plants and the effects of osmosis on plant and animal tissues; (d) define active transport as the movement of ions into or out of a cell through the cell membrane, from a region of their lower concentration to a region of their higher concentration against a concentration gradient, using energy released during respiration; (e) discuss the importance of active transport as an energy-consuming process by which substances aretransported against a concentration gradient, as in ion uptake by root hairs and glucose uptake by cells in the villi. Teacher in Charge: ARIF ULLAH Page 1

2 The movement of water molecules from a region of higher water potential to a region of lower water potential, across a partially permeable membrane, along the gradient, is known as OSMOSIS. Eg: Absorption of water from soil by Root Hair Cells and Turgidity in Plant Cells. Movement of water into cells. The movement of particles from a region of Higher concentration to a region of Lower concentration, along the concentration gradient, is known as DIFFUSION. Eg: Dissolving of ink; Smell travelling across room. The movement of ions from a region of Lower concentration to a region of Higher concentration, against the concentration gradient, using ENERGY (ATP) [from Mitochondria by Respiration] is known as ACTIVE TRANSPORT Examples of active transport include the uptake of glucose in the intestines in humans and the uptake of mineral ions into root hair cells of plants. Concentration gradient: The difference between the water potential of two solutions which causes substances to move from higher to lower regions. Teacher in Charge: ARIF ULLAH Page 2

3 Comparison between osmosis and diffusion Similarities 1. They are both a passive process [do not require energy]. 2. They occur down a concentration gradient [higher to lower]. Differences Diffusion 1. It is the movement of particles. 2. It does not require a semi permeable membrane. Osmosis It is the movement of water molecules. Requires a semi permeable membrane Water Potential: The tendency of a solution to lose water from a higher water potential to a lower water potential region, i.e. Dilute solution to concentrated solution, or hypertonic to hypotonic. Solution: A mixture of a Solute (Sugar) and a Solvent (Water) Solutions are compared using the following terms. Hypotonic: A solution containing a higher water potential. [More water] Hypertonic: A solution containing a lower water potential. [Less water] Isotonic: Same solute and solvent. Wilting: The condition of a plant in the presence of less water in cells which cause the cells to lose turgidity and ultimately lose their shape. Turgidity: Plant cells have cell walls which prevent the cells from bursting when placed in a hypotonic solution. The water inside the cell exerts pressure on the cell wall and becomes swollen. This is known as turgor pressure. The process is known as turgidity. Partially permeable membrane: The membrane that allows only small molecules to enter and exit a cell. Large molecules are prevented to enter through the tiny pores, e.g. cell membrane. Plasmolysis: The shrinkage of the cytoplasm of a plant cell. Crenation: The shrinkage of the cytoplasm of an animal cell. Teacher in Charge: ARIF ULLAH Page 3

4 EFFECT OF OSMOSIS IN PLANT AND ANIMAL CELL. a) Plant cell in hypotonic solution (dilute) -water moves into the cytoplasm which has a lower water potential, from the outside (solution), which has a higher water potential, through the partially permeable membrane by osmosis. -The cell sap in the vacuole has a lower water potential. Therefore water moves into it from the cytoplasm. The vacuole swells and pushes the cytoplasm and the cell membrane. -The cell wall is strong and prevent the cell from bursting. -The cell wall is known as turgid. b) Plant cell in hypertonic solution: (concentrated solution) -water moves out of the cytoplasm, which has a higher water potential, from the outside solution, through the partially permeable membrane by osmosis. -the cell sap in the vacuole has a higher water potential. Therefore, water moves out of it into the cytoplasm. The vacuole and the cell membrane loses shape and shrinks in size. -the cell wall is strong and prevents the cell from collapsing. -the cell is said to be flaccid and plasmolysed. c) Animal cell in hypertonic solution: (dilute) -water moves into the cell by osmosis from outside. -the cell swells in size and bursts, as there is no cell wall to prevent it from bursting. -the cell is said to be plasmolysed. d) Animal cell in hypertonic solution (less water/concentrated): -water moves out of the cell by osmosis, from inside. -the cell loses shape and forms spikes, as there is no cell wall to keep it firm. -the cell is said to be crenated. e) Plant and Animal cell in isotonic solution: -a solution that is isotonic with respect to both cells, there is no net movement of water in or out of the cell. Both cells remain unaffected. Teacher in Charge: ARIF ULLAH Page 4

5 Effect of OSMOSIS on an Animal Cell (RBC) Effect of OSMOSIS on a Plant Cell Teacher in Charge: ARIF ULLAH Page 5

6 Teacher in Charge: ARIF ULLAH Page 6

7 Factors favoring diffusion Distance (the shorter the better), e.g. thin walls of alveoli and capillaries. Concentration gradient (the bigger the better). This can be maintained by removing the substance as it passes across the diffusion surface. (Think about oxygenated blood being carried away from the surface of alveoli). Size of the molecules (the smaller the better). Surface area for diffusion (the larger the better). Temperature (molecules have more kinetic energy at higher temperature). Teacher in Charge: ARIF ULLAH Page 7

8 EXPERIMENTS related to OSMOSIS and DIFFUSION 1. Selectively permeable membrane - only allows small sized molecules (water, glucose & amino acid) but not the large sized molecules (protein & starch) to pass through. e.g. cell membrane of all living cells, the internal wall of the gut & visking (dialysis) tubing. Dialysis - A physical process by which small sized molecules (water, glucose & maltose) are separated from large-sized molecules (starch & protein) by using a selectively permeable membrane. Food tests: Test for Starch-Iodine test Add few drops of Iodine solution to the food sample. If the colour changes to blue/black, starch is present. If the colour remains brown/yellow, starch is absent. Test for Glucose (reducing sugar)-benedict's test. Add equal amount of benedict's solution to the food sample. Crush the food sample and add water in the food sample, if the food sample is solid. Heat the solution in water bath. If red precipitate is seen, glucose is present. If the colour remains blue, glucose is absent. Teacher in Charge: ARIF ULLAH Page 8

9 2. Experiment to show the selective permeability of visking (dialysis) tubing to starch and glucose Procedure 1. Set up the apparatus as shown above. 2. Wash the filled visking tubing under water before immersion in the distilled water (to remove any starch and glucose on the outer surface). 3. Test for the presence of starch and glucose (reducing sugar) in the distilled water after 1 hour. Result Only glucose (simple sugar) is present in the distilled water outside the visking tubing. Interpretation Glucose molecules are small enough to pass through the tiny pores on the selectively permeable membrane of the visking tubing by diffusion. Starch molecules are too large so they cannot pass through the membrane. 4. Experiment to show the action of saliva on starchy food Procedure 1. Fill one visking tubing with starch solution. 2. Fill the other visking tubing with starch and saliva solution. 3. Tie the other ends of both visking tubings with threads and support them with glass rods. 4. Wash the two visking tubings under water and then put them separately into a beaker of distilled water as shown. 5. After 30 minutes, take samples of distilled water from the two beakers to test for starch and reducing sugar. Teacher in Charge: ARIF ULLAH Page 9

10 Result Solution in dialysis tubing Starch Starch + saliva Distilled water outside the dialysis tubing Benedict's Test Iodine Test 1. No reducing sugar and starch are found in the distilled water surrounding the visking tubing containing only starch solution. 2. Only reducing sugar is found in the distilled water surrounding the visking tubing containing both starch and saliva solution. Interpretation Saliva contains a digestive enzyme, amylase, which can digest starch into smaller molecule - maltose. In the absence of saliva, the starch molecules are too large to pass through the visking tubing. In the presence of saliva, the large starch molecules are broken down into smaller maltose molecules which can then pass through the visking tubing Conclusion The visking tubing represents the internal wall of the small intestine and the distilled water represents the blood. In the presence of digestive enzyme (e.g. amylase) can the large food molecules (e.g. starch) be broken down into smaller molecules (e.g. maltose) and passed through the membrane or absorbed. 5. A potato was set up as shown in the figure below (left-hand side). The investigation was left for several hours. The results are shown on the righthand side of the figure. Teacher in Charge: ARIF ULLAH Page 10

11 1. Describe what happened to a. the water in the disk b. the salt solution in the hollow in the potato. [2 mark] 2. Name the process that is responsible for the changes that have occurred. [1 mark] 3. Explain why these changes have occurred. [3 mark] 4. Where does this process occur in a plant? [1 mark] 5. What is the importance to the plant of this process? [1 mark] Answers 1. a. The volume of water in the dish decreased. b. The volume of salt solution in the potato increased. 2. Osmosis 3. (3 points from) - there was a higher concentration of water in the dish than in the potato - so water moved into the potato. - from a high concentration of water to a lower concentration of water - by osmosis. 4. Root hairs, or in the roots. 5. Osmosis enables the plant to absorb water to maintain cell turgidity (or to replace water lost by transpiration). Teacher in Charge: ARIF ULLAH Page 11

12 Surface area to volume ratio Side = 1cm Area = 1x1 Volume = 1x1x1 SA 6x1x1 Vo 1x1x1 Side = 10cm Area = 10x10 Volume = 10x10x10 SA 6x10x Vo 10x10x10 10 Side = 100cm Area = 100x100 Volume = 100x100x100 SA 6x100x100 _6_ 0.06 Vo 100x100x We can see that, as the cubes become bigger, their surface area increases. But their surface area to volume ratio decreased. Therefore, it would take more time for substances to diffuse into the longer cube. For example v An ant has a small area v An Elephant has a large surface area v An ant has a small volume v An Elephant has a large volume v But the surface area to volume ratio of an ant is greater than that of an Elephant. Teacher in Charge: ARIF ULLAH Page 12

1. How many fatty acid molecules combine with a glycerol to form a phospholipid molecule? A. 1 B. 2 C. 3 D. 4

1. How many fatty acid molecules combine with a glycerol to form a phospholipid molecule? A. 1 B. 2 C. 3 D. 4 Topic 3: Movement of substances across cell membrane 1. How many fatty acid molecules combine with a glycerol to form a phospholipid molecule? A. 1 B. 2 C. 3 D. 4 Directions: Questions 2 and 3 refer to

More information

CELL BOUNDARIES. Cells create boundaries through: Cell Membranes made of the phospholipid bilayer Cell Walls made of cellulose in plants

CELL BOUNDARIES. Cells create boundaries through: Cell Membranes made of the phospholipid bilayer Cell Walls made of cellulose in plants CELL BOUNDARIES CELL BOUNDARIES Cells create boundaries through: Cell Membranes made of the phospholipid bilayer Cell Walls made of cellulose in plants TYPES OF MEMBRANES Some substances = too large or

More information

DIFFUSON AND OSMOSIS INTRODUCTION diffusion concentration gradient. net osmosis water potential active transport

DIFFUSON AND OSMOSIS INTRODUCTION diffusion concentration gradient. net osmosis water potential active transport DIFFUSON AND OSMOSIS NAME DATE INTRODUCTION The life of a cell is dependent on efficiently moving material into and out of the cell across the cell membrane. Raw materials such as oxygen and sugars needed

More information

Passive Transport. Does not expend cellular energy for the movement to take place. Ex-rolling down a hill

Passive Transport. Does not expend cellular energy for the movement to take place. Ex-rolling down a hill Passive Transport Fluid Mosaic Model Passive Transport Does not expend cellular energy for the movement to take place Ex-rolling down a hill Parts of a Solution Solute: what gets dissolved Solvent: What

More information

Cellular Transport. 1. A potato core was placed in a beaker of water as shown in the figure below.

Cellular Transport. 1. A potato core was placed in a beaker of water as shown in the figure below. Name: Date: 1. potato core was placed in a beaker of water as shown in the figure below. Which diagram best represents the net movement of molecules?.. C. D. page 1 2. The following question(s) is/are

More information

Movement of substances across the cell membrane

Movement of substances across the cell membrane Ch 4 Movement of substances across the cell membrane Think about (Ch 4, p.2) 1. The structure of the cell membrane can be explained by the fluid mosaic model. It describes that the cell membrane is mainly

More information

Diffusion and Osmosis

Diffusion and Osmosis Diffusion and Osmosis Keywords Diffusion Osmosis Selectively permeable Turgor Pressure Keywords Visking Tubing Food preservation Selectively Permeable membranes Selectively permeable membrane allows some

More information

Chapter MEMBRANE TRANSPORT

Chapter MEMBRANE TRANSPORT Chapter 3 I MEMBRANE TRANSPORT The cell membrane, or plasma membrane, is the outermost layer of the cell. It completely surrounds the protoplasm or living portion of the cell, separating the cell s interior

More information

3 Movement in and out of cells

3 Movement in and out of cells For more awesome GSE and level resources, visit us at www.savemyexams.co.uk/ Movement in and out of cells Question Paper Level IGSE Subject iology Exam oard ambridge International Examinations Unit 3 Movement

More information

Unit 3: Cellular Processes. 1. SEPARTION & PROTECTION: the contents of the cell from the. 2. TRANSPORT: the transport of in and out of the cell

Unit 3: Cellular Processes. 1. SEPARTION & PROTECTION: the contents of the cell from the. 2. TRANSPORT: the transport of in and out of the cell Unit 3: Cellular Processes Name: Aim #14 Cell Membrane: How does the cell membrane function to maintain homeostasis? Date: _ I. The Cell Membrane: What is it? Also known as A thin structure that acts as

More information

Diffusion, Osmosis and Active Transport

Diffusion, Osmosis and Active Transport Diffusion, Osmosis and Active Transport 1 of 25 Boardworks Ltd 2012 2 of 25 Boardworks Ltd 2012 Substances spread out by diffusion 3 of 25 Boardworks Ltd 2012 Particles in solutions and in gases move around

More information

Maintained by plasma membrane controlling what enters & leaves the cell

Maintained by plasma membrane controlling what enters & leaves the cell CELL TRANSPORT AND HOMEOSTASIS Homeostasis Balanced internal condition of cells Also called equilibrium Maintained by plasma membrane controlling what enters & leaves the cell Functions of Plasma Membrane

More information

Ch3: Cellular Transport Review KEY

Ch3: Cellular Transport Review KEY Ch3: Cellular Transport Review KEY OSMOSIS Label the pictures below ( isotonic, hypertonic, or hypotonic environments) hypotonic hypertonic isotonic hypertonic means there is a GREATER concentration of

More information

Learning Outcomes. 2. Diffusion takes place through the cell membrane because it is selectively permeable.

Learning Outcomes. 2. Diffusion takes place through the cell membrane because it is selectively permeable. Diffusion Learning Outcomes 1. Diffusion is the movement of molecules from a high concentration to a low concentration down a concentration gradient until evenly spread. 2. Diffusion takes place through

More information

Describe two ways in which the cell in the strong sugar solution is different from the cell in distilled water.

Describe two ways in which the cell in the strong sugar solution is different from the cell in distilled water. The diagram shows the same plant cell: after hour in distilled water after hour in strong sugar solution. Describe two ways in which the cell in the strong sugar solution is different from the cell in

More information

Lab #6: Cellular Transport Mechanisms Lab

Lab #6: Cellular Transport Mechanisms Lab Lab #6: Cellular Transport Mechanisms Lab OVERVIEW One of the major functions of the plasma membrane is to regulate the movement of substances into and out of the cell. This process is essential in maintaining

More information

Constant Motion of Molecules. Kinetic Theory of Matter Molecules move randomly and bump into each other and other barriers

Constant Motion of Molecules. Kinetic Theory of Matter Molecules move randomly and bump into each other and other barriers CELL TRANSPORT Constant Motion of Molecules Kinetic Theory of Matter Molecules move randomly and bump into each other and other barriers Solution homogenous liquid throughout which two or more substances

More information

The Transport of Materials Across Cell Membranes

The Transport of Materials Across Cell Membranes The Transport of Materials Across Cell Membranes EK 2.B.1.b. LO 2.10 The Plasma Membrane 2 EK 2.B.1.b. LO 2.10 The Plasma Membrane The cell membrane is said to be semi permeable or selectively permeable

More information

Chapter 3.4 & 3.5 Cell Transport (Osmosis and Diffusion) = only some molecules can get in or out of the cell

Chapter 3.4 & 3.5 Cell Transport (Osmosis and Diffusion) = only some molecules can get in or out of the cell Chapter 3.4 & 3.5 Cell Transport (Osmosis and Diffusion) I. Cell Membrane (cells need an inside and outside) a. separate cell from its environment b. cell membrane is the boundary c. cell membrane controls

More information

Passive Cellular Transport. Unit 2 Lesson 4

Passive Cellular Transport. Unit 2 Lesson 4 Unit 2 Lesson 4 Students will be able to: Define passive transport Enumerate the three types of passive transport Described each type of passive transport: osmosis, diffusion, and facilitated diffusion

More information

Slide 2 of 47. Copyright Pearson Prentice Hall. End Show

Slide 2 of 47. Copyright Pearson Prentice Hall. End Show 2 of 47 7-3 Cell Boundaries All cells are surrounded by a thin, flexible barrier known as the cell membrane. Many cells also produce a strong supporting layer around the membrane known as a cell wall.

More information

[S] [S] Hypertonic [H O] [H 2 O] g. Osmosis is the diffusion of water through membranes! 15. Osmosis. Concentrated sugar solution

[S] [S] Hypertonic [H O] [H 2 O] g. Osmosis is the diffusion of water through membranes! 15. Osmosis. Concentrated sugar solution Concentrated sugar solution Sugar molecules (Water molecules not shown) 100ml 100ml Hypertonic [S] g [H2 Hypotonic [H O] 2 O] [H 2 O] g Semipermeable Dilute sugar solution (100ml) Time 125ml Osmosis 75ml

More information

Chapter 5 Homeostasis and Cell Transport

Chapter 5 Homeostasis and Cell Transport Chapter 5 Homeostasis and Cell Transport Palabra Palooza! Role #1: The Definer says: The word can be explained as Role #2: The Re-stater says: Then I understand (word) to mean Words: Passive transport

More information

Cellular Transport. Biology Honors

Cellular Transport. Biology Honors Cellular Transport Biology Honors Review of Concepts and Introduction to the Current Concepts https://www.youtube.com/watch?v=ptmlvtei 8hw Passive Active No energy Requires / needs energy Passive Transport-

More information

Arif Ullah - ITHS

Arif Ullah - ITHS INTERNATIONAL TURKISH HOPE SCHOOL 2017 2018 ACADEMIC YEAR CHITTAGONG SENIOR SECTION BIOLOGY HANDOUT BIOLOGICAL MOLECULES (ENZYMES) CLASS 9 Name :... Date:... c) Biological molecules Students will be assessed

More information

Diffusion & Osmosis - Exercise 4

Diffusion & Osmosis - Exercise 4 Diffusion & Osmosis - Exercise 4 Objectives -Define: Solvent, Solute, and Solution -Define: Diffusion, Selectively permeable membrane, Osmosis, and Dialysis -Understand rule of thumb: Concentration will

More information

Cell Transport. Movement of molecules

Cell Transport. Movement of molecules Cell Transport Movement of molecules TEKS Students will investigate and explain cellular processes, including homeostasis and transport of molecules Homeostasis The maintaining of a stable body system

More information

BIOLOGY 12 - Cell Membrane and Cell Wall Function: Chapter Notes

BIOLOGY 12 - Cell Membrane and Cell Wall Function: Chapter Notes BIOLOGY 12 - Cell Membrane and Cell Wall Function: Chapter Notes The cell membrane is the gateway into the cell, and must allow needed things such as nutrients into the cell without letting them escape.

More information

BIOLOGY 12 - Cell Membrane and Cell Wall Function: Chapter Notes

BIOLOGY 12 - Cell Membrane and Cell Wall Function: Chapter Notes BIOLOGY 12 - Cell Membrane and Cell Wall Function: Chapter Notes The cell membrane is the gateway into the cell, and must allow needed things such as nutrients into the cell without letting them escape.

More information

Movement Through the Cell Membrane

Movement Through the Cell Membrane Movement Through the Cell Membrane Cellular Movement All living organisms rely on diffusion Get oxygen for respiration Removing waste products Transpiration in plants Cellular Movement The cell membrane

More information

Cellular Transport Notes

Cellular Transport Notes Cellular Transport Notes About Cell Membranes All cells have a cell membrane Functions: a. Controls what enters and exits the cell to maintain an internal balance called homeostasis b. Provides protection

More information

Diffusion and Osmosis

Diffusion and Osmosis Diffusion and Osmosis Introduction: In this exercise you will measure diffusion of small molecules through dialysis tubing, an example of a semi permeable membrane. The movement of a solute through a semi

More information

Unit 7: Topic 7.4 Cellular Transport

Unit 7: Topic 7.4 Cellular Transport Unit 7: Topic 7.4 Cellular Transport Name: Class key Period: Page 1 of 39 Topic 7.4 assignments Pages/Sections Date Assigned Date Due Page 2 of 39 Topic: Membrane Channels Objective: Why do molecules move

More information

Diffusion and Osmosis

Diffusion and Osmosis Diffusion and Osmosis The Cell Membrane The cell membrane is: Selectively permeable Permeable = Pass through (Latin) Cell membrane = Gate-Keeper that determines what can and can t enter the cell. The

More information

Section 4: Cellular Transport. Cellular transport moves substances within the cell and moves substances into and out of the cell.

Section 4: Cellular Transport. Cellular transport moves substances within the cell and moves substances into and out of the cell. Section 4: Cellular transport moves substances within the cell and moves substances into and out of the cell. Essential Questions What are the processes of diffusion, facilitated diffusion, and active

More information

= only some molecules can get in or out of the cell. allow substances (other than lipids) in and out

= only some molecules can get in or out of the cell. allow substances (other than lipids) in and out Name: Cell Membrane and Cell Transport Notes I. Cell Membrane (cells need an inside and outside) a. separate cell from its environment b. cell membrane is the boundary c. cell membrane controls what gets

More information

Investigating Osmosis By Amy Dewees,Jenkintown.High School and Dr. Ingrid Waldron, Department of Biology, University of Pennsylvania, 20091

Investigating Osmosis By Amy Dewees,Jenkintown.High School and Dr. Ingrid Waldron, Department of Biology, University of Pennsylvania, 20091 Investigating Osmosis By Amy Dewees,Jenkintown.High School and Dr. Ingrid Waldron, Department of Biology, University of Pennsylvania, 20091 What is diffusion? What does it mean to say that a membrane is

More information

BIOLOGY 12 - Cell Membrane and Cell Wall Function: Chapter Notes

BIOLOGY 12 - Cell Membrane and Cell Wall Function: Chapter Notes BIOLOGY 12 - Cell Membrane and Cell Wall Function: Chapter Notes The cell membrane is the gateway into the cell, and must allow needed things such as nutrients into the cell without letting them escape.

More information

Name: There are two things that will determine which particles will pass through and which will not:

Name: There are two things that will determine which particles will pass through and which will not: 18 Diffusion and Osmosis in Living Systems Name: Problem: How do substances move into and out of cells? Introduction: In order for cells to carry on their life processes, they must take in materials and

More information

Unit 2 Warm Ups. Equilibrium

Unit 2 Warm Ups. Equilibrium Unit 2 Warm Ups Equilibrium 1. Cell wall 2. Mitochondria 3. Chloroplast 4. Vesicle 5. Vacuole 6. Rough Endoplasmic Reticulum 7. Smooth Endoplasmic Reticulum 8. Cytoskeleton 9. Lysosomes 10.Cell Membrane

More information

Movement across the Membrane

Movement across the Membrane Chapter 8. Movement across the Membrane 2003-2004 1 Cell membrane Cells have an inside & an outside Cell membrane is the boundary Can it be an impenetrable boundary? NO! Why not? The cell needs materials

More information

Diffusion, Osmosis and Active Transport

Diffusion, Osmosis and Active Transport Diffusion, Osmosis and Active Transport Particles like atoms, molecules and ions are always moving Movement increases with temperature (affects phases of matter - solid, liquid, gas) Solids - atoms, molecules

More information

Ch. 7 Diffusion, Osmosis, and Movement across a Membrane

Ch. 7 Diffusion, Osmosis, and Movement across a Membrane Ch. 7 Diffusion, Osmosis, and Movement across a Membrane Diffusion Spontaneous movement of particles from an area of high concentration to an area of low concentration Does not require energy (exergonic)

More information

Osmosis and Diffusion: How biological membranes are important This page is a lab preparation guide for instructors.

Osmosis and Diffusion: How biological membranes are important This page is a lab preparation guide for instructors. Osmosis and Diffusion: How biological membranes are important This page is a lab preparation guide for instructors. **All solutions and dialysis bags can easily be prepared prior to lab start to maximize

More information

CELL TRANSPORT and THE PLASMA MEMBRANE. SB1d. Explain the impact of water on life processes (i.e., osmosis, diffusion).

CELL TRANSPORT and THE PLASMA MEMBRANE. SB1d. Explain the impact of water on life processes (i.e., osmosis, diffusion). CELL TRANSPORT and THE PLASMA MEMBRANE SB1d. Explain the impact of water on life processes (i.e., osmosis, diffusion). What if What would happen if an organism could not get energy or get rid of wastes?

More information

INVESTIGATION : Determining Osmolarity of Plant Tissue

INVESTIGATION : Determining Osmolarity of Plant Tissue INVESTIGATION : Determining Osmolarity of Plant Tissue AP Biology This lab investigation has two main components. In the first component, you will learn about the osmolarity of plant tissues and the property

More information

Plasma Membrane Structure and Function

Plasma Membrane Structure and Function Plasma Membrane Structure and Function The plasma membrane separates the internal environment of the cell from its surroundings. The plasma membrane is a phospholipid bilayer with embedded proteins. The

More information

Movement across the Cell Membrane (Ch. 7.3)

Movement across the Cell Membrane (Ch. 7.3) Movement across the Cell Membrane (Ch. 7.3) 2007-2008 Diffusion 2nd Law of Thermodynamics governs biological systems universe tends towards disorder (entropy) Diffusion movement from HIGH LOW concentration

More information

Cell structure and function flash cards

Cell structure and function flash cards Process Cell structure and function flash cards involved in aerobic respiration releasing ATP / energy has a double membrane folded into cristae (to make large SA) mostly occurs in mitochondria; needing

More information

3.5 Unit 3: Biology 3 B3.1.1 Dissolved Substances

3.5 Unit 3: Biology 3 B3.1.1 Dissolved Substances 3.5 Unit 3: Biology 3 B3.1.1 Dissolved Substances Substances are sometimes absorbed against a concentration gradient. This requires the use of energy from respiration. The process is called active transport.

More information

Chapter 7-3 Cell Boundaries

Chapter 7-3 Cell Boundaries Chapter 7-3 Cell Boundaries The Plasma Membrane: Cell Membrane Regulates what enters and leaves the cell. Provides protection and support. Highly selective barrier!!!! What the plasma membrane is made

More information

1 Living organisms: variety and common features

1 Living organisms: variety and common features Living organisms: variety and common features Using and interpreting data a) S = scale linear and uses at least half of the grid L = lines neat, straight and through points A = axes correct way round (Temperature

More information

Cell Structure and Function Practice Exam - KEY

Cell Structure and Function Practice Exam - KEY Biology 12 Name: Cell Structure and Function Practice Exam - KEY Cell parts and Function 1. Identify each part of the cell indicated and give one role for each structure in the secretion and/or synthesis

More information

Equilibrium is a condition of balance. Changes in temperature, pressure or concentration can cause a shift in the equilibrium.

Equilibrium is a condition of balance. Changes in temperature, pressure or concentration can cause a shift in the equilibrium. Copy into Note Packet and Return to Teacher Cells and Their Environment Section 1: Passive Transport Objectives Relate concentration gradients, diffusion, and equilibrium. Predict the direction of water

More information

Equilibrium when two areas have the same concentration or are filled evenly

Equilibrium when two areas have the same concentration or are filled evenly Aim: How does the cell membrane function to maintain homeostasis? Do Now: Describe what homeostasis is. Homework: Vocab: Homeostasis, equilibrium, concentration gradient, diffusion, carrier protein, osmosis,

More information

What is the function of the cell membrane?

What is the function of the cell membrane? What is the function of the cell membrane? 1. DIFFUSION: The movement of molecules from an area of high concentration to an area of lower concentration. Why do molecules move from high concentration to

More information

Separate Science Revision & Exam Practice

Separate Science Revision & Exam Practice AS Level Biology Summer Work Separate Science Revision & Exam Practice The booklet needs to be completed and handed in as part of the enrolment process on Thursday 20 th August 2015 Please ensure your

More information

How Things Get In and Out of Cells, or gummy bears, zip lock bags or whatever!

How Things Get In and Out of Cells, or gummy bears, zip lock bags or whatever! How Things Get In and Out of Cells, or gummy bears, zip lock bags or whatever! SC.912.L.14.3 Benchmark Clarifications: Students will compare and/or contrast the structures found in plant cells and in animal

More information

Big. Cellular Processes: Idea. Energy and Communication DIFFUSION AND OSMOSIS. What causes my plants to wilt if I forget to water them?

Big. Cellular Processes: Idea. Energy and Communication DIFFUSION AND OSMOSIS. What causes my plants to wilt if I forget to water them? Big Cellular Processes: Idea 2 Energy and Communication INVESTIGATION 4 DIFFUSION AND OSMOSIS What causes my plants to wilt if I forget to water them? BACKGROUND Cells must move materials through membranes

More information

Transport: Cell Membrane Structure and Function. Biology 12 Chapter 4

Transport: Cell Membrane Structure and Function. Biology 12 Chapter 4 Transport: Cell Membrane Structure and Function Biology 12 Chapter 4 FLUID-MOSAIC MODEL OF MEMBRANE STRUCTURE The cell membrane (plasma membrane) is made of two layers of phospholipid molecules (bilayer)

More information

Plasma Membrane Function

Plasma Membrane Function Plasma Membrane Function Cells have to maintain homeostasis, they do this by controlling what moves across their membranes Structure Double Layer of phospholipids Head (polar) hydrophiliclikes water -

More information

The Plasma Membrane. 5.1 The Nature of the Plasma Membrane. Phospholipid Bilayer. The Plasma Membrane

The Plasma Membrane. 5.1 The Nature of the Plasma Membrane. Phospholipid Bilayer. The Plasma Membrane 5.1 The Nature of the Plasma Membrane The Plasma Membrane Four principal components in animals Phospholipid bilayer Molecules of cholesterol interspersed within the bilayer. Membrane proteins embedded

More information

Lesson Overview. 7.3 Cell Transport

Lesson Overview. 7.3 Cell Transport 7.3 THINK ABOUT IT When thinking about how cells move materials in and out, it can be helpful to think of a cell as a nation. The boundaries of a nation are its borders, and nearly every country tries

More information

Cellular Transport Notes

Cellular Transport Notes Cellular Transport Notes About Cell Membranes 1.All cells have a cell membrane a.controls what enters and exits the cell to maintain an internal balance called homeostasis b.provides protection and support

More information

What kind of things must pass into and out of cells?? Be careful not to go too fast.

What kind of things must pass into and out of cells?? Be careful not to go too fast. 1. A membrane s molecular organization results in selective permeability What kind of things must pass into and out of cells?? Be careful not to go too fast. Permeability of a molecule through a membrane

More information

Movement of Substances in and out of Cells

Movement of Substances in and out of Cells Movement of Substances in and out of Cells Mark Scheme Level Subject Exam Board Unit Topic Difficulty Level Booklet GCSE Biology AQA B3 Movement of Substances in and out of Cells Gold Level Mark Scheme

More information

Movement across the Cell Membrane

Movement across the Cell Membrane Movement across the Cell Membrane Diffusion 2nd Law of Thermodynamics governs biological systems universe tends towards disorder (entropy) Diffusion u movement from HIGH LOW concentration Simple Diffusion

More information

To understand osmosis, we must focus on the behavior of the solvent, not the solute.

To understand osmosis, we must focus on the behavior of the solvent, not the solute. GCC CHM 130LL Osmosis and Dialysis Purpose: The purpose of this experiment is to observe the closely related phenomena of osmosis and diffusion as it relates to dialysis. It is hoped that you will be able

More information

Exam 2 Practice Problems

Exam 2 Practice Problems Exam 2 Practice Problems Cell Structure and Function Practice Questions 1. One of the relationships that exists between ribosomes and lysosomes is that a. ribosomes produce enzymes that could be stored

More information

CELL MEMBRANE & CELL TRANSPORT

CELL MEMBRANE & CELL TRANSPORT CELL MEMBRANE & CELL TRANSPORT Homeostasis: Maintaining a Balance Organisms must adjust to changes in their environment. If not DEATH! A formal definition is maintaining a stable internal condition despite

More information

Review: Cellular Transport

Review: Cellular Transport Review: Cellular Transport OSMOSIS 1. Label the pictures below ( isotonic, hypertonic, or hypotonic). The dots represent solutes. A. B. C. 2. means there is a GREATER concentration of solute molecules

More information

8.8b Osmosis Project. Grade 8 Activity Plan

8.8b Osmosis Project. Grade 8 Activity Plan 8.8b Osmosis Project Grade 8 Activity Plan Reviews and Updates 2 8.8b Osmosis Project Objectives: 1. To demonstrate osmosis and the permeability of the cell membrane. 2. Use plant cells to demonstrate

More information

BIOL 305L Spring 2019 Laboratory Six

BIOL 305L Spring 2019 Laboratory Six Please print Full name clearly: BIOL 305L Spring 2019 Laboratory Six Osmosis in potato and carrot samples Introduction Osmosis is the movement of water molecules through a selectively permeable membrane

More information

c Angel International School - Manipay 1 st Term Examination November, 2017 Biology Part I D. Amphibians

c Angel International School - Manipay 1 st Term Examination November, 2017 Biology Part I D. Amphibians c Grade 09 Angel International School - Manipay 1 st Term Examination November, 2017 Biology Duration: 03 hours Part I Index No:- 1. Which is not a characteristic of fungi A. Have a nuclei B. Do not have

More information

Chapter 3: Exchanging Materials with the Environment. Cellular Transport Transport across the Membrane

Chapter 3: Exchanging Materials with the Environment. Cellular Transport Transport across the Membrane Chapter 3: Exchanging Materials with the Environment Cellular Transport Transport across the Membrane Transport? Cells need things water, oxygen, balance of ions, nutrients (amino acids, sugars..building

More information

PASSIVE TRANSPORT. Diffusion Facilitative Diffusion diffusion with the help of transport proteins Osmosis diffusion of water

PASSIVE TRANSPORT. Diffusion Facilitative Diffusion diffusion with the help of transport proteins Osmosis diffusion of water PASSIVE TRANSPORT cell uses no energy molecules move randomly Molecules spread out from an area of high concentration to an area of low concentration. (High Low) Three types: Diffusion Facilitative Diffusion

More information

Unit 1 Matter & Energy for Life

Unit 1 Matter & Energy for Life Unit 1 Matter & Energy for Life Chapter 2 Interaction of Cell Structure Biology 2201 Primary Membrane Function: Homeostasis Conditions in the cell must remain more or less constant under many different

More information

National 5 Biology Unit 1 Cell Biology Ink Exercise Two Cell Transport

National 5 Biology Unit 1 Cell Biology Ink Exercise Two Cell Transport National 5 Biology Unit Cell Biology Ink Exercise Two Cell Transport Name: Class: . Four thin sections of onion tissue were immersed in 5% sugar solution. The sections were left for 5 minutes then viewed

More information

Q1. (a) The diagrams show cells containing and surrounded by oxygen molecules. Oxygen can move into cells or out of cells.

Q1. (a) The diagrams show cells containing and surrounded by oxygen molecules. Oxygen can move into cells or out of cells. Q. (a) The diagrams show cells containing and surrounded by oxygen molecules. Oxygen can move into cells or out of cells. Into which cell, A, B, C or D, will oxygen move the fastest? Write your answer,

More information

BIOLOGY 1101 LAB 1: OSMOSIS & DIFFUSION. READING: Please read pages & in your text prior to lab.

BIOLOGY 1101 LAB 1: OSMOSIS & DIFFUSION. READING: Please read pages & in your text prior to lab. BIOLOGY 1101 LAB 1: OSMOSIS & DIFFUSION READING: Please read pages 27-31 & 83-86 in your text prior to lab. INTRODUCTION: All living things depend on water. A water molecule is made up of an oxygen atom

More information

1 Which of the following is NOT a characteristic of an animal plasma membrane?

1 Which of the following is NOT a characteristic of an animal plasma membrane? 1 Which of the following is NOT a characteristic of an animal plasma membrane? A) separates the internal environment of the cell from the external environment B) helps the cell maintain homeostasis C)

More information

Ch 3 Movement of substances across cell membrane

Ch 3 Movement of substances across cell membrane Ch 3 Movement of substances across cell membrane Practical 3.1 Demonstration of osmosis using dialysis tubing Results (p. 3-2) Set-up Experimental Control Rises Change in liquid level in the capillary

More information

1. Structure A is the a. Cell wall b. Cell membrane c. Vacuole d. Lysosome

1. Structure A is the a. Cell wall b. Cell membrane c. Vacuole d. Lysosome Figure 1 Use Figure 1 to answer the following questions: 1. Structure A is the a. Cell wall b. Cell membrane c. Vacuole d. Lysosome 2. Structure E controls cellular functions. It is the a. Nucleolus b.

More information

LAB 04 Diffusion and Osmosis

LAB 04 Diffusion and Osmosis LAB 04 Diffusion and Osmosis Objectives: Describe the physical mechanisms of diffusion and osmosis. Understand the relationship between surface area and rate of diffusion. Describe how molar concentration

More information

Each cell has its own border, which separates the cell from its surroundings and also determines what comes in and what goes out.

Each cell has its own border, which separates the cell from its surroundings and also determines what comes in and what goes out. 7.3 Cell Transport Wednesday, December 26, 2012 10:02 AM Vocabulary: Diffusion: process in which cells become specialized in structure and function Facilitated diffusion: process of diffusion in which

More information

Investigation 4: Diffusion and Osmosis Notes From the teacher

Investigation 4: Diffusion and Osmosis Notes From the teacher Day 1: Investigation 4: Diffusion and Osmosis Notes From the teacher Before class: Read Learning Objectives through Procedure 1 and complete Day 1 Pre Lab. Pre-Lab: 1. What is diffusion? 2. What is kinetic

More information

Research Experiences for Teachers (RET) 2012 LESSON PLAN TEMPLATE

Research Experiences for Teachers (RET) 2012 LESSON PLAN TEMPLATE LESSON PLAN TEMPLATE MODULE TOPIC: Inquiry based learning- Osmosis and Diffusion The acquisition of biochemical and life sustaining compounds is a major theme in life science. This lesson provides students

More information

The diagram shows four ways in which molecules may move into and out of a cell. The dots show the concentration of molecules.

The diagram shows four ways in which molecules may move into and out of a cell. The dots show the concentration of molecules. The diagram shows four ways in which molecules may move into and out of a cell. The dots show the concentration of molecules. The cell is respiring aerobically. Which arrow, A, B, C or D, represents: (i)

More information

The Cell Membrane & Movement of Materials In & Out of Cells PACKET #11

The Cell Membrane & Movement of Materials In & Out of Cells PACKET #11 1 February 26, The Cell Membrane & Movement of Materials In & Out of Cells PACKET #11 Introduction I 2 Biological membranes are phospholipid bilayers with associated proteins. Current data support a fluid

More information

The Cell Membrane AP Biology

The Cell Membrane AP Biology The Cell Membrane 2007-2008 Warm Up What would happen if you gave a patient an IV of pure water? a. Their blood cells would shrink. b. Their blood cells would burst. c. The patient would slowly become

More information

II. Active Transport (move molecules against conc. gradient - cell must expend energy) (uses carrier proteins)

II. Active Transport (move molecules against conc. gradient - cell must expend energy) (uses carrier proteins) Chapter 5 - Homeostasis and Transport I. Passive Transport (no energy from cell required) A. Diffusion 1. movement of molecules from an area of higher concentration to an area of lower concentration a.

More information

Cellular Transport Worksheet

Cellular Transport Worksheet Cellular Transport Worksheet Name Section A: Cell Membrane Structure 1. Label the cell membrane diagram. You ll need to draw lines to some of the structures. **Draw cholesterol molecules in the membrane.**

More information

Transport. Slide 1 of 47. Copyright Pearson Prentice Hall

Transport. Slide 1 of 47. Copyright Pearson Prentice Hall & Transport 1 of 47 Learning Targets TN Standard CLE 3216.1.3 Explain how materials move into and out of cells. CLE 3216.1.5 Investigate how proteins regulate the internal environment of a cell through

More information

Name: Bio A.P. Lab Diffusion & Osmosis

Name: Bio A.P. Lab Diffusion & Osmosis Name: Bio A.P. Lab Diffusion & Osmosis BACKGROUND: Many aspects of the life of a cell depend on the fact that atoms and molecules are constantly in motion (kinetic energy). This kinetic energy results

More information

Diffusion, Osmosis and Active Transport

Diffusion, Osmosis and Active Transport Diffusion, Osmosis and Active Transport Part A: Diffusion A living cell interacts constantly with the environmental medium that surrounds it. The plasma membrane surrounding a cell is a living, selectively

More information

Transport Systems in Plants and Animals

Transport Systems in Plants and Animals Transport Systems in Plants and Animals Mark Scheme Level Subject Exam Board Unit Topic Difficulty Level Booklet GCSE Biology AQA B3 Transport Systems in Plants and Animals Bronze Level Mark Scheme Time

More information

STATION 4: TONICITY due to OSMOSIS / Turgor Pressure in Plants

STATION 4: TONICITY due to OSMOSIS / Turgor Pressure in Plants STATION 4: TONICITY due to OSMOSIS / Turgor Pressure in Plants Tonicity is the concentration of solutions that determines the direction water will move across a semi-permeable membrane. A solution is a

More information

Low Demand Questions QUESTIONSHEET 1 The diagrams show some organs in the human body.

Low Demand Questions QUESTIONSHEET 1 The diagrams show some organs in the human body. Low Demand Questions QUESTIONSHEET 1 The diagrams show some organs in the human body. (a) Name the organs labelled A, B, C, D and E. A.... [1] B.... [1] C.... [1] D.... [1] E.... [1] (b) Which of the organs

More information

Describe the Fluid Mosaic Model of membrane structure.

Describe the Fluid Mosaic Model of membrane structure. Membranes and Cell Transport All cells are surrounded by a plasma membrane. Eukaryotic cells also contain internal membranes and membranebound organelles. In this topic, we will examine the structure and

More information

Modul biology 1 : 1. CELL STRUCTURE & CELL ORGANISATION 2. MOVEMENT OF SUSTANCES ACROSS THE PLASMA MEMBRANE. MODUL EMaS JPNTrg

Modul biology 1 : 1. CELL STRUCTURE & CELL ORGANISATION 2. MOVEMENT OF SUSTANCES ACROSS THE PLASMA MEMBRANE. MODUL EMaS JPNTrg MODUL EMaS JPNTrg MODULE 1 BIOLOGY FORM 4 CHAPTER 1. Cell structure & Cell organisation CHAPTER 2. Movement of substances across the plasma membrane Module Panels: 1. Tn. Haji Meli bin Hussin SM Sains

More information