DEPARTMENT OF BIOCHEMISTRY / TIME / TYD: 90 MIN DEPARTEMENT BIOCHEMIE BCM 255 MARKS / PUNTE: 85

Size: px
Start display at page:

Download "DEPARTMENT OF BIOCHEMISTRY / TIME / TYD: 90 MIN DEPARTEMENT BIOCHEMIE BCM 255 MARKS / PUNTE: 85"

Transcription

1 DEPARTMENT OF BIOCHEMISTRY / TIME / TYD: 90 MIN DEPARTEMENT BIOCHEMIE BCM 255 MARKS / PUNTE: 85 EXAM / EKSAMEN EXTERNAL EXAMINER: / EKSTERNE EKSAMINATOR: INTERNAL EXAMINER: / INTERNE EKSAMINATOR: PROF AWH NEITZ DR ARM GASPAR QUESTION / VRAAG 1: [24] Refer to the figure below to answer the questions that follow: / Verwys na die figuur onder om die volgende vrae te beantwoord: 1 of 12 Pages

2 1.1 Identify and draw the Haworth structures for two of the three sugar substrates (excluding glucose) of the enzyme hexokinase. / Identifiseer en teken die Haworthstrukture vir twee van die drie suikersubstrate (uitsluitend glukose) van die heksokinase ensiem. (3) 1.2 Identify the enzyme catalyzing the reaction at the second control point of glycolysis. / Identifiseer die ensiem wat die reaksie kataliseer by die tweede kontrolepunt van glikolise. (1) The enzyme referred to in 1.2 is activated by high levels of a metabolite produced from fructose-6-phosphate. Show with appropriate reactions (complete, with structures) how this metabolite is formed and broken down, respectively. / Die ensiem verwys na in 1.2 word ge-aktiveer deur hoë vlakke van n metaboliet wat gevorm word vanuit fructose-6-fosfaat. Toon aan mbv toepaslike reaksies (volledig, met strukture) hoe hierdie metaboliet gevorm en afgebreek word, onderskeidelik. (6½) 2 of 12 Pages

3 1.4 The only redox reaction of glycolysis is indicated in the above figure. Give the reverse reaction (complete, with structures) for this step during gluconeogenesis. / Die enigste redoksreaksie in glikolise is aangedui in die bogenoemde figuur. Gee die omgekeerde reaksie (volledig, met strukture) vir hierdie stap tydens glukoneogenese. (4½) 1.5 Which glycolytic intermediate (name only) will glycerol be converted into in order for glycerol to be used for the synthesis of glucose? / Na watter glikolitiese tussenproduk (slegs naam) moet gliserol omgeskakel word sodat gliserol gebruik kan word vir die sintese van glukose? (½) Explain by means of a fully annotated diagram (with structures where applicable) how NADH produced during glycolysis is transported to the mitochondrial matrix by the glycerol-phosphate shuttle mechanism. / Verduidelik mbv n volledige ge-annoteerde diagram hoe NADH geproduseer tydens glikolise dmv die gliserolfosfaat pendelmeganisme na die mitochondriale matriks vervoer word. (8½) 3 of 12 Pages

4 QUESTION / VRAAG 2: [15] 2.1 The following reactions occur in the oxidative phase of the pentose phosphate pathway: / Die volgende reaksies vind plaas in die oksidatiewe fase van die pentosefosfaatpadweg: / Glucose 6 phosphate / Glukose 6 fosfaat Ribulose 5 phosphate / Ribulose 5 fosfaat Phosphoglucono lactone / 6 Fosfoglukono laktoon 2. 6 Phosphogluconate / 6 Fosfoglukonaat Identify each type of reaction for steps 1-3. / Identifiseer elke tipe reaksie vir stappe 1-3. (1½) 1:... 2:... 3: Give the names of the enzymes that catalyze the following steps. / Gee die name vir die ensieme wat die volgende stappe kataliseer. (3) 1:... 2:... 3: Draw the structure for 6-phosphogluconate and indicate on the structure the functional group that is released as well the functional group that is modified during reaction 3. / Teken die struktuur vir 6-fosfoglukonaat en dui op die struktuur aan watter funksionele groep vrygestel word asook watter funksionele groep gemodifiseer word tydens reaksie 3. (2) 4 of 12 Pages

5 2.1.4 Draw the structures for the products formed by the action of phosphopentose isomerase and phosphopentose-3-epimerase on ribulose-5-phosphate, respectively. / Teken die strukture vir die produkte wat vorm deur die aksie van fosfopentoseisomerase en fosfopentose-3-epimerase op ribulose-5- fosfaat, onderskeidelik. (2) ribulose-5-phosphate/-fosfaat ribulose-5-phosphate/-fosfaat 2.2 Name or give. / Noem of gee The enantiomer of L-sedoheptulose. / Die enantiomeer van L-sedoheptulose. (½) The number of phosphoanhydride bonds in ATP. / Die aantal fosfo-anhidriedbindings in ATP. (½) The biochemical reason why muscle glycogen cannot be utilized to supplement the blood with glucose. / Die biochemiese rede waarom spierglikogeen nie gebruik kan word om bloedglukose-vlakke aan te vul nie. (1½) 5 of 12 Pages

6 2.2.4 The pentose phosphate pathway enzymes that will be affected by a shortage of thiamine in the diet. / Die pentosefosfaatpadweg ensieme wat beïnvloed sal word deur n tekort aan tiamien in die dieet. (1) The activated form of glucose (give structure) that is used as a substrate by glycogen synthase. / Die geaktiveerde vorm van glukose (gee struktuur) wat gebruik word as substraat deur glikogeensintase. (1) The type of glycosidic bonds in glycogen. / Die tipe glikosidiese bindings in glikogeen. (1) The enzyme that releases glucose-1-phosphate from the non-reducing ends of glycogen. / Die ensieme wat glukose-1-fosfaat vrystel vanaf die nie-reduserende ente van glikogeen. (1) QUESTION / VRAAG 3: [24] 3.1 The pyruvate dehydrogenase complex catalyzes the conversion of pyruvate to acetyl-coa. / Die piruvaatdehidrogenasekompleks kataliseer die omskakeling van piruvaat na asetiel-koa Draw the structures for pyruvate and acetyl-coa. / Teken die strukture vir piruvaat en asetiel-koa. (2) 6 of 12 Pages

7 3.1.2 List the coenzymes (as well as the vitamin precursor for each) required for the action of the enzyme complex. / Lys die koënsieme (asook elk se vitamien voorganger) wat benodig word vir die werking van die ensiemkompleks. (4½) Pyruvate is used for the anabolism of an amino acid. Which one? / Piruvaat word gebruik vir die anabolisme van n aminosuur. Watter een? (1) Which reaction (give only name and structure for the main substrate) in the Krebs cycle is similar to the reaction catalyzed by the pyruvate dehydrogenase complex? / Watter reaksie in die Krebs-siklus (gee slegs naam en struktuur vir die hoof substraat) is soortgelyk aan die reaksie gekataliseer deur die piruvaatdehidrogenasekompleks? (1½) 3.2 The following is reaction 5 of the Krebs cycle: / Die volgende is reakie 5 van die Krebs-siklus: of 12 Pages

8 3.2.1 Indicate the thioester bond on the above structure. / Dui die tioesterbinding op die bogenoemde struktuur aan. (½) Provide the relevant information 1-5 in the space below (give structures where applicable). / Verskaf die relevante inligting 1-5 in die spasie hieronder (gee strukture waar van toepassing). (3½) Show clearly how you would calculate the G 0 ' for the above reaction if the G 0 ' values for the hydrolysis of the substrate and GTP are 8.0 and 7.3 kcal/mol, respectively. / Dui duidelik aan hoe jy die G 0 ' vir die bogenoemde reaksie sou bereken indien die G 0 '-waardes vir die hidrolise van die substraat en GTP, 8.0 en 7.3 kkal/mol is, onderskeidelik. (2½) 3.3 The following are reactions 7 and 8 of the Krebs-cycle. / Die volgende is reaksies 7 en 8 van die Krebs-siklus. Fumarate / Fumaraat 7 L-Malate / 8 L-Malaat Oxaloacetate (OAA) / Oksaloasetaat (OAA) 8 of 12 Pages

9 3.3.1 Draw the structures for fumarate and L-malate. / Teken die strukture vir fumaraat en L-malaat. (2) Give the names for the enzymes for reactions 7 and 8, respectively. / Gee die name vir die ensieme vir reaksies 7 en 8, onderskeidelik. (2) 7:... 8: Which other product is formed at reaction 8? / Watter ander produk vorm by reaksie 8? (½) Give the reaction (complete, without structures) that replenishes the level of OAA when the level of this metabolite drops. / Gee die reaksie, (volledig, sonder strukture) wat OAA vlakke aanvul wanneer die vlak van die metaboliet daal. (4) QUESTION / VRAAG 4: [22] 4.1 Complete the reaction below (give names and structures for the products) for one of the unique reactions of the glyoxylate cycle. / Voltooi die reaksie onder (gee name en strukture vir die produkte) vir een van die unieke reaksies van die glioksilaatsiklus. (3) 9 of 12 Pages

10 4.2 Consider the following schematic representation of oxidative phosphorylation and answer the questions that follow: / Beskou die volgende skematiese voorstelling van oksidatiewe fosforilasie en beantwoord die vrae wat volg: a b I II CoQ III Cytc IV V c Give names for complexes II, IV and V. / Gee name vir komplekse II, IV en V. (3) II:... IV:... V: Identify mitochondrion compartments a, b and c. / Identifiseer mitochondrion kompartemente a, b en c. (1½) a:... b:... c: of 12 Pages

11 4.2.3 Identify substrates and products 1-9. / Identifiseer substrate en produkte 1-9. (4½) 1:... 2:... 3:... 4:... 5:... 6:... 7:... 8:... 9: Which component is not bound to any protein? / Watter komponent is nie gebind aan enige proteïen nie? (½) Which complexes (give numbers) are inhibited by rotenone and CO, respectively? / Watter komplekse (gee nommers) word geïnhibeer deur rotenoon en CO, onderskeidelik? (1) Indicate on the above scheme the flow of protons during phosphorylation. / Dui aan op bogenoemde skema die vloei van protone tydens fosforilasie. (½) Consider the following half reactions: / Beskou die volgende halfreaksies: FAD + 2H + + 2e - FADH 2 ½ O 2 + 2H + + 2e - H 2 O E o = V E o = V Calculate both E o and G 0 for the net reaction of the electron transport system. [F = (kcal/v)] Bereken beide E o en G 0 vir die netto reaksie van die elektronvervoersisteem. [F = kkal/ V]. (4) 11 of 12 Pages

12 4.3 Compare the Krebs cycle with the Calvin cycle by giving the structures (and names) for the acceptor molecules for each respective cycle. Which molecules enter the respective cycles? / Vergelyk die Krebs-siklus met die Calvin-siklus deur die strukture (en name) vir die ontvanger molekule vir elke siklus te gee. Watter molekule word deur elk van die onderskeie ontvanger molekuul ontvang? (4) Calvin cycle/ -siklus Krebs cycle/ -siklus Name of acceptor molecule / Naam van ontvanger molekuul Structure of acceptor molecule / Struktuur van ontvanger molekuul - Unit entering cycle / Eenhede wat by siklus aansluit ********** 12 of 12 Pages

Faculty of Natural and Agricultural Sciences / Fakulteit Natuur- en Landbouwetenskappe. Department of Biochemistry / Departement Biochemie

Faculty of Natural and Agricultural Sciences / Fakulteit Natuur- en Landbouwetenskappe. Department of Biochemistry / Departement Biochemie Kopiereg voorbehou/copyright reserved Faculty of Natural and Agricultural Sciences / Fakulteit Natuur- en Landbouwetenskappe Department of Biochemistry / Departement Biochemie Lipid and Nitrogen metabolism

More information

III. Metabolism - Gluconeogenesis

III. Metabolism - Gluconeogenesis Department of Chemistry and Biochemistry University of Lethbridge III. Metabolism - Gluconeogenesis Carl & Gertrude Cori Slide 1 Carbohydrate Synthesis Lactate, pyruvate and glycerol are the important

More information

CITRIC ACID CYCLE ERT106 BIOCHEMISTRY SEM /19 BY: MOHAMAD FAHRURRAZI TOMPANG

CITRIC ACID CYCLE ERT106 BIOCHEMISTRY SEM /19 BY: MOHAMAD FAHRURRAZI TOMPANG CITRIC ACID CYCLE ERT106 BIOCHEMISTRY SEM 1 2018/19 BY: MOHAMAD FAHRURRAZI TOMPANG Chapter Outline (19-1) The central role of the citric acid cycle in metabolism (19-2) The overall pathway of the citric

More information

FACULTY OF SCIENCE FAKULTEIT NATUURWETENSKAPPE DEPARTMENT OF BOTANY AND PLANT BIOTECHNOLOGY DEPARTEMENT PLANTKUNDE EN PLANTBIOTEGNOLOGIE

FACULTY OF SCIENCE FAKULTEIT NATUURWETENSKAPPE DEPARTMENT OF BOTANY AND PLANT BIOTECHNOLOGY DEPARTEMENT PLANTKUNDE EN PLANTBIOTEGNOLOGIE FACULTY OF SCIENCE FAKULTEIT NATUURWETENSKAPPE DEPARTMENT OF BOTANY AND PLANT BIOTECHNOLOGY DEPARTEMENT PLANTKUNDE EN PLANTBIOTEGNOLOGIE MODULE CAMPUS KAMPUS MCB2A01 BACTERIOLOGY & VIROLOGY BAKTERIOLOGIE

More information

NAME KEY ID # EXAM 3a BIOC 460. Wednesday April 10, Please include your name and ID# on each page. Limit your answers to the space provided!

NAME KEY ID # EXAM 3a BIOC 460. Wednesday April 10, Please include your name and ID# on each page. Limit your answers to the space provided! EXAM 3a BIOC 460 Wednesday April 10, 2002 Please include your name and ID# on each page. Limit your answers to the space provided! 1 1. (5 pts.) Define the term energy charge: Energy charge refers to the

More information

CELLULAR RESPIRATION SUMMARY EQUATION. C 6 H 12 O 6 + O 2 6CO2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION

CELLULAR RESPIRATION SUMMARY EQUATION. C 6 H 12 O 6 + O 2 6CO2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION CELLULAR RESPIRATION SUMMARY EQUATION C 6 H 12 O 6 + O 2 6CO2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION Oxidation: partial or complete loss of electrons Reduction: partial or complete gain of electrons

More information

Respiration. Respiration. Respiration. How Cells Harvest Energy. Chapter 7

Respiration. Respiration. Respiration. How Cells Harvest Energy. Chapter 7 How Cells Harvest Energy Chapter 7 Organisms can be classified based on how they obtain energy: autotrophs: are able to produce their own organic molecules through photosynthesis heterotrophs: live on

More information

Notes CELLULAR RESPIRATION SUMMARY EQUATION C 6 H 12 O 6 + O 2. 6CO 2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION

Notes CELLULAR RESPIRATION SUMMARY EQUATION C 6 H 12 O 6 + O 2. 6CO 2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION AP BIOLOGY CELLULAR ENERGETICS ACTIVITY #2 Notes NAME DATE HOUR SUMMARY EQUATION CELLULAR RESPIRATION C 6 H 12 O 6 + O 2 6CO 2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION Oxidation: partial or complete

More information

Aerobic Respiration. The four stages in the breakdown of glucose

Aerobic Respiration. The four stages in the breakdown of glucose Aerobic Respiration The four stages in the breakdown of glucose 1 I. Aerobic Respiration Why can t we break down Glucose in one step? (Flaming Gummy Bear) Enzymes gently lower the potential energy until

More information

TCA CYCLE (Citric Acid Cycle)

TCA CYCLE (Citric Acid Cycle) TCA CYCLE (Citric Acid Cycle) TCA CYCLE The Citric Acid Cycle is also known as: Kreb s cycle Sir Hans Krebs Nobel prize, 1953 TCA (tricarboxylic acid) cycle The citric acid cycle requires aerobic conditions!!!!

More information

Chapter 9. Cellular Respiration and Fermentation

Chapter 9. Cellular Respiration and Fermentation Chapter 9 Cellular Respiration and Fermentation Energy flows into an ecosystem as sunlight and leaves as heat Photosynthesis generates O 2 and organic molecules, which are used in cellular respiration

More information

Syllabus for BASIC METABOLIC PRINCIPLES

Syllabus for BASIC METABOLIC PRINCIPLES Syllabus for BASIC METABOLIC PRINCIPLES The video lecture covers basic principles you will need to know for the lectures covering enzymes and metabolism in Principles of Metabolism and elsewhere in the

More information

Notes CELLULAR RESPIRATION SUMMARY EQUATION C 6 H 12 O 6 + O 2. 6CO 2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION

Notes CELLULAR RESPIRATION SUMMARY EQUATION C 6 H 12 O 6 + O 2. 6CO 2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION AP BIOLOGY CELLULAR ENERGETICS ACTIVITY #2 Notes NAME DATE HOUR SUMMARY EQUATION CELLULAR RESPIRATION C 6 H 12 O 6 + O 2 6CO 2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION Oxidation: partial or complete

More information

III. 6. Test. Respiració cel lular

III. 6. Test. Respiració cel lular III. 6. Test. Respiració cel lular Chapter Questions 1) What is the term for metabolic pathways that release stored energy by breaking down complex molecules? A) anabolic pathways B) catabolic pathways

More information

BY: RASAQ NURUDEEN OLAJIDE

BY: RASAQ NURUDEEN OLAJIDE BY: RASAQ NURUDEEN OLAJIDE LECTURE CONTENT INTRODUCTION CITRIC ACID CYCLE (T.C.A) PRODUCTION OF ACETYL CoA REACTIONS OF THE CITIRC ACID CYCLE THE AMPHIBOLIC NATURE OF THE T.C.A CYCLE THE GLYOXYLATE CYCLE

More information

Enzymes and Metabolism

Enzymes and Metabolism PowerPoint Lecture Slides prepared by Vince Austin, University of Kentucky Enzymes and Metabolism Human Anatomy & Physiology, Sixth Edition Elaine N. Marieb 1 Protein Macromolecules composed of combinations

More information

2. What is molecular oxygen directly converted into? a. Carbon Dioxide b. Water c. Glucose d. None of the Above

2. What is molecular oxygen directly converted into? a. Carbon Dioxide b. Water c. Glucose d. None of the Above Biochem 1 Mock Exam 3 Chapter 11: 1. What is glucose completely oxidized into? a. Carbon Dioxide and Water b. Carbon Dioxide and Oxygen c. Oxygen and Water d. Water and Glycogen 2. What is molecular oxygen

More information

CHE 242 Exam 3 Practice Questions

CHE 242 Exam 3 Practice Questions CHE 242 Exam 3 Practice Questions Glucose metabolism 1. Below is depicted glucose catabolism. Indicate on the pathways the following: A) which reaction(s) of glycolysis are irreversible B) where energy

More information

3. Distinguish between aerobic and anaerobic in terms of cell respiration. Outline the general process of both.

3. Distinguish between aerobic and anaerobic in terms of cell respiration. Outline the general process of both. 3.7 Cell Respiration 1. Define cell respiration. Cell respiration is the controlled release of energy from organic molecules in cells to form ATP. 2. State the equation for the process of cell respiration.

More information

Cellular Pathways That Harvest Chemical Energy. Cellular Pathways That Harvest Chemical Energy. Cellular Pathways In General

Cellular Pathways That Harvest Chemical Energy. Cellular Pathways That Harvest Chemical Energy. Cellular Pathways In General Cellular Pathways That Harvest Chemical Energy A. Obtaining Energy and Electrons from Glucose Lecture Series 12 Cellular Pathways That Harvest Chemical Energy B. An Overview: Releasing Energy from Glucose

More information

Biology 638 Biochemistry II Exam-2

Biology 638 Biochemistry II Exam-2 Biology 638 Biochemistry II Exam-2 Biol 638, Exam-2 (Code-1) 1. Assume that 16 glucose molecules enter into a liver cell and are attached to a liner glycogen one by one. Later, this glycogen is broken-down

More information

Cell Respiration Assignment Score. Name Sec.. Date.

Cell Respiration Assignment Score. Name Sec.. Date. Cell Respiration Assignment Score. Name Sec.. Date. Working by alone or in a group, answer the following questions about Cell Respiration. This assignment is worth 30 points with the possible points for

More information

How Cells Harvest Energy. Chapter 7. Respiration

How Cells Harvest Energy. Chapter 7. Respiration How Cells Harvest Energy Chapter 7 Respiration Organisms classified on how they obtain energy: autotrophs: produce their own organic molecules through photosynthesis heterotrophs: live on organic compounds

More information

4. Which step shows a split of one molecule into two smaller molecules? a. 2. d. 5

4. Which step shows a split of one molecule into two smaller molecules? a. 2. d. 5 1. Which of the following statements about NAD + is false? a. NAD + is reduced to NADH during both glycolysis and the citric acid cycle. b. NAD + has more chemical energy than NADH. c. NAD + is reduced

More information

MULTIPLE CHOICE QUESTIONS

MULTIPLE CHOICE QUESTIONS MULTIPLE CHOICE QUESTIONS 1. Which of the following statements concerning anabolic reactions is FALSE? A. They are generally endergonic. B. They usually require ATP. C. They are part of metabolism. D.

More information

Photosynthesis in chloroplasts. Cellular respiration in mitochondria ATP. ATP powers most cellular work

Photosynthesis in chloroplasts. Cellular respiration in mitochondria ATP. ATP powers most cellular work Light energy ECOSYSTEM CO + H O Photosynthesis in chloroplasts Cellular respiration in mitochondria Organic molecules + O powers most cellular work Heat energy 1 becomes oxidized (loses electron) becomes

More information

Respiration. Respiration. How Cells Harvest Energy. Chapter 7

Respiration. Respiration. How Cells Harvest Energy. Chapter 7 How Cells Harvest Energy Chapter 7 Respiration Organisms can be classified based on how they obtain energy: autotrophs: are able to produce their own organic molecules through photosynthesis heterotrophs:

More information

How Cells Release Chemical Energy. Chapter 7

How Cells Release Chemical Energy. Chapter 7 How Cells Release Chemical Energy Chapter 7 7.1 Overview of Carbohydrate Breakdown Pathways All organisms (including photoautotrophs) convert chemical energy of organic compounds to chemical energy of

More information

Chemical Energy. Valencia College

Chemical Energy. Valencia College 9 Pathways that Harvest Chemical Energy Valencia College 9 Pathways that Harvest Chemical Energy Chapter objectives: How Does Glucose Oxidation Release Chemical Energy? What Are the Aerobic Pathways of

More information

Tutorial 27: Metabolism, Krebs Cycle and the Electron Transport Chain

Tutorial 27: Metabolism, Krebs Cycle and the Electron Transport Chain Tutorial 27: Metabolism, Krebs Cycle and the Electron Transport Chain Goals: To be able to describe the overall catabolic pathways for food molecules. To understand what bonds are hydrolyzed in the digestion

More information

This is an example outline of 3 lectures in BSC (Thanks to Dr. Ellington for sharing this information.)

This is an example outline of 3 lectures in BSC (Thanks to Dr. Ellington for sharing this information.) This is an example outline of 3 lectures in BSC 2010. (Thanks to Dr. Ellington for sharing this information.) Topic 10: CELLULAR RESPIRATION (lectures 14-16) OBJECTIVES: 1. Know the basic reactions that

More information

Section B: The Process of Cellular Respiration

Section B: The Process of Cellular Respiration CHAPTER 9 CELLULAR RESPIRATION: HARVESTING CHEMICAL ENERGY Section B: The Process of Cellular Respiration 1. Respiration involves glycolysis, the Krebs cycle, and electron transport: an overview 2. Glycolysis

More information

Metabolism Energy Pathways Biosynthesis. Catabolism Anabolism Enzymes

Metabolism Energy Pathways Biosynthesis. Catabolism Anabolism Enzymes Topics Microbial Metabolism Metabolism Energy Pathways Biosynthesis 2 Metabolism Catabolism Catabolism Anabolism Enzymes Breakdown of complex organic molecules in order to extract energy and dform simpler

More information

Cellular Respiration

Cellular Respiration Cellular I can describe cellular respiration Cellular respiration is a series of metabolic pathways releasing energy from a foodstuff e.g. glucose. This yields energy in the form of ATP adenosine P i P

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Still having trouble understanding the material? Check

More information

Krebs cycle Energy Petr Tůma Eva Samcová

Krebs cycle Energy Petr Tůma Eva Samcová Krebs cycle Energy - 215 Petr Tůma Eva Samcová Overview of Citric Acid Cycle Key Concepts The citric acid cycle (Krebs cycle) is a multistep catalytic process that converts acetyl groups derived from carbohydrates,

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy You should be able to: 1. Explain how redox reactions are involved in energy exchanges. Name and describe the three stages of cellular respiration;

More information

Physiological Chemistry II Exam IV Dr. Melissa Kelley April 13, 2004

Physiological Chemistry II Exam IV Dr. Melissa Kelley April 13, 2004 Name Write your name on the back of the exam Physiological Chemistry II Exam IV Dr. Melissa Kelley April 13, 2004 This examination consists of forty-four questions, each having 2 points. The remaining

More information

Chapter 9. Cellular Respiration: Harvesting Chemical Energy

Chapter 9. Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy Living cells require energy from outside sources Energy flows into an ecosystem as sunlight and leaves as heat Photosynthesis generates O 2 and

More information

Oxidative Phosphorylation

Oxidative Phosphorylation Electron Transport Chain (overview) The NADH and FADH 2, formed during glycolysis, β- oxidation and the TCA cycle, give up their electrons to reduce molecular O 2 to H 2 O. Electron transfer occurs through

More information

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 9 Cellular Respiration and Fermentation Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Figure 9.2 Light energy

More information

Biol 219 Lec 7 Fall 2016

Biol 219 Lec 7 Fall 2016 Cellular Respiration: Harvesting Energy to form ATP Cellular Respiration and Metabolism Glucose ATP Pyruvate Lactate Acetyl CoA NAD + Introducing The Players primary substrate for cellular respiration

More information

Chapter 9 Overview. Aerobic Metabolism I: The Citric Acid Cycle. Live processes - series of oxidation-reduction reactions. Aerobic metabolism I

Chapter 9 Overview. Aerobic Metabolism I: The Citric Acid Cycle. Live processes - series of oxidation-reduction reactions. Aerobic metabolism I n n Chapter 9 Overview Aerobic Metabolism I: The Citric Acid Cycle Live processes - series of oxidation-reduction reactions Ingestion of proteins, carbohydrates, lipids Provide basic building blocks for

More information

Class XI Chapter 14 Respiration in Plants Biology. 1. It is a biochemical process. 1. It is a physiochemical process.

Class XI Chapter 14 Respiration in Plants Biology. 1. It is a biochemical process. 1. It is a physiochemical process. Question 1: Differentiate between (a) Respiration and Combustion (b) Glycolysis and Krebs cycle (c) Aerobic respiration and Fermentation (a) Respiration and combustion Respiration Combustion 1. It is a

More information

Campbell Biology 9. Chapter 9 Cellular Respiration and Fermentation. Chul-Su Yang, Ph.D., Lecture on General Biology 1

Campbell Biology 9. Chapter 9 Cellular Respiration and Fermentation. Chul-Su Yang, Ph.D., Lecture on General Biology 1 Lecture on General Biology 1 Campbell Biology 9 th edition Chapter 9 Cellular Respiration and Fermentation Chul-Su Yang, Ph.D., chulsuyang@hanyang.ac.kr Infection Biology Lab., Dept. of Molecular & Life

More information

Vocabulary. Chapter 19: The Citric Acid Cycle

Vocabulary. Chapter 19: The Citric Acid Cycle Vocabulary Amphibolic: able to be a part of both anabolism and catabolism Anaplerotic: referring to a reaction that ensures an adequate supply of an important metabolite Citrate Synthase: the enzyme that

More information

Objective: You will be able to construct an explanation for how each phase of respiration captures and stores free energy.

Objective: You will be able to construct an explanation for how each phase of respiration captures and stores free energy. Objective: You will be able to construct an explanation for how each phase of respiration captures and stores free energy. Do Now: Compare and contrast the three black equations below ADP + P + Energy

More information

Citric Acid Cycle: Central Role in Catabolism. Entry of Pyruvate into the TCA cycle

Citric Acid Cycle: Central Role in Catabolism. Entry of Pyruvate into the TCA cycle Citric Acid Cycle: Central Role in Catabolism Stage II of catabolism involves the conversion of carbohydrates, fats and aminoacids into acetylcoa In aerobic organisms, citric acid cycle makes up the final

More information

CLASS 11 th. Respiration in Plants

CLASS 11 th. Respiration in Plants CLASS 11 th 01. Introduction All living cells require continuous supply of energy to perform various vital activities. This energy is released in controlled manner for cellular use via the process of respiration.

More information

CH 7: Cell Respiration and Fermentation Overview. Concept 7.1: Catabolic pathways yield energy by oxidizing organic fuels

CH 7: Cell Respiration and Fermentation Overview. Concept 7.1: Catabolic pathways yield energy by oxidizing organic fuels CH 7: Cell Respiration and Fermentation Overview Living cells require energy from outside sources Some animals obtain energy by eating plants, and some animals feed on other organisms Energy flows into

More information

Cellular Respiration. Overview of Cellular Respiration. Lecture 8 Fall Overview of Cellular Respiration. Overview of Cellular Respiration

Cellular Respiration. Overview of Cellular Respiration. Lecture 8 Fall Overview of Cellular Respiration. Overview of Cellular Respiration Overview of Cellular Respiration 1 Cellular Respiration Lecture 8 Fall 2008 All organisms need ATP to do cellular work Cellular Respiration: The conversion of chemical energy of carbon compounds into another

More information

Chapter 9 Cellular Respiration Overview: Life Is Work Living cells require energy from outside sources

Chapter 9 Cellular Respiration Overview: Life Is Work Living cells require energy from outside sources Chapter 9 Cellular Respiration Overview: Life Is Work Living cells require energy from outside sources Some animals, such as the giant panda, obtain energy by eating plants, and some animals feed on other

More information

RESPIRATION Worksheet

RESPIRATION Worksheet A.P. Bio L.C. RESPIRATION Worksheet 1. In the conversion of glucose and oxygen to carbon dioxide and water a) which molecule becomes reduced? b) which molecule becomes oxidized? c) what happens to the

More information

Photosynthesis in chloroplasts CO2 + H2O. Cellular respiration in mitochondria ATP. powers most cellular work. Heat energy

Photosynthesis in chloroplasts CO2 + H2O. Cellular respiration in mitochondria ATP. powers most cellular work. Heat energy Figure 9-01 LE 9-2 Light energy ECOSYSTEM Photosynthesis in chloroplasts CO2 + H2O Cellular respiration in mitochondria Organic + O molecules 2 powers most cellular work Heat energy LE 9-UN161a becomes

More information

Unit 2: Metabolic Processes

Unit 2: Metabolic Processes How is energy obtained biologically? Recall: Red Ox Reactions Unit 2: Metabolic Processes Oxidation Is the chief mechanism by which chemical potential energy is released This energy comes from reduced

More information

Question 1: Differentiate between (a) Respiration and Combustion (b) Glycolysis and Krebs cycle (c) Aerobic respiration and Fermentation (a) Respiration and combustion Respiration Combustion 1. It is a

More information

What s the point? The point is to make ATP! ATP

What s the point? The point is to make ATP! ATP 2006-2007 What s the point? The point is to make ATP! ATP Glycolysis 2 ATP Kreb s cycle 2 ATP Life takes a lot of energy to run, need to extract more energy than 4 ATP! There s got to be a better way!

More information

Metabolism. Metabolism. Energy. Metabolism. Energy. Energy 5/22/2016

Metabolism. Metabolism. Energy. Metabolism. Energy. Energy 5/22/2016 5//016 Metabolism Metabolism All the biochemical reactions occurring in the body Generating, storing and expending energy ATP Supports body activities Assists in constructing new tissue Metabolism Two

More information

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 7 Cellular Respiration and Fermentation Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION

More information

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 7 Cellular Respiration and Fermentation Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION

More information

Biochemistry: A Short Course

Biochemistry: A Short Course Tymoczko Berg Stryer Biochemistry: A Short Course First Edition CHAPTER 19 Harvesting Electrons from the Cycle 2013 W. H. Freeman and Company Chapter 19 Outline The citric acid cycle oxidizes the acetyl

More information

3.2 Aerobic Respiration

3.2 Aerobic Respiration 3.2 Aerobic Respiration Aerobic Cellular Respiration Catabolic pathways Breaks down energy-rich compounds to make ATP Requires oxygen Occurs in different parts of the cell C 6 H 12 O 6 (s) + 6O 2 (g) 6CO

More information

Yield of energy from glucose

Yield of energy from glucose Paper : Module : 05 Yield of Energy from Glucose Principal Investigator, Paper Coordinator and Content Writer Prof. Ramesh Kothari, Professor Dept. of Biosciences, Saurashtra University, Rajkot - 360005

More information

3.7.1 Define cell respiration [Cell respiration is the controlled release of energy from organic compounds in cells to form ATP]

3.7.1 Define cell respiration [Cell respiration is the controlled release of energy from organic compounds in cells to form ATP] 3.7 Cell respiration ( Chapter 9 in Campbell's book) 3.7.1 Define cell respiration [Cell respiration is the controlled release of energy from organic compounds in cells to form ATP] Organic compounds store

More information

BIOLOGY - CLUTCH CH.9 - RESPIRATION.

BIOLOGY - CLUTCH CH.9 - RESPIRATION. !! www.clutchprep.com CONCEPT: REDOX REACTIONS Redox reaction a chemical reaction that involves the transfer of electrons from one atom to another Oxidation loss of electrons Reduction gain of electrons

More information

Ch. 9 Cell Respiration. Title: Oct 15 3:24 PM (1 of 53)

Ch. 9 Cell Respiration. Title: Oct 15 3:24 PM (1 of 53) Ch. 9 Cell Respiration Title: Oct 15 3:24 PM (1 of 53) Essential question: How do cells use stored chemical energy in organic molecules and to generate ATP? Title: Oct 15 3:28 PM (2 of 53) Title: Oct 19

More information

Metabolism Gluconeogenesis/Citric Acid Cycle

Metabolism Gluconeogenesis/Citric Acid Cycle Metabolism Gluconeogenesis/Citric Acid Cycle BIOB111 CHEMISTRY & BIOCHEMISTRY Session 21 Session Plan Gluconeogenesis Cori Cycle Common Metabolic Pathway The Citric Acid Cycle Stoker 2014, p859 Gluconeogenesis

More information

Pathway overview. Glucose + 2NAD + + 2ADP +2Pi 2NADH + 2pyruvate + 2ATP + 2H 2 O + 4H +

Pathway overview. Glucose + 2NAD + + 2ADP +2Pi 2NADH + 2pyruvate + 2ATP + 2H 2 O + 4H + Glycolysis Glycolysis The conversion of glucose to pyruvate to yield 2ATP molecules 10 enzymatic steps Chemical interconversion steps Mechanisms of enzyme conversion and intermediates Energetics of conversions

More information

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 9 Cellular Respiration and Fermentation Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Life Is Work Living cells

More information

Energy Transformation: Cellular Respiration Outline 1. Sources of cellular ATP 2. Turning chemical energy of covalent bonds between C-C into energy

Energy Transformation: Cellular Respiration Outline 1. Sources of cellular ATP 2. Turning chemical energy of covalent bonds between C-C into energy Energy Transformation: Cellular Respiration Outline 1. Sources of cellular ATP 2. Turning chemical energy of covalent bonds between C-C into energy for cellular work (ATP) 3. Importance of electrons and

More information

Growth. Principles of Metabolism. Principles of Metabolism 1/18/2011. The role of ATP energy currency. Adenosine triphosphate

Growth. Principles of Metabolism. Principles of Metabolism 1/18/2011. The role of ATP energy currency. Adenosine triphosphate Metabolism: Fueling Cell Growth Principles of Metabolism Cells (including your own) must: Synthesize new components (anabolism/biosynthesis) Harvest energy and convert it to a usable form (catabolism)

More information

BIOLOGY. Cellular Respiration and Fermentation. Concept 9.1: Catabolic pathways yield energy by oxidizing organic fuels

BIOLOGY. Cellular Respiration and Fermentation. Concept 9.1: Catabolic pathways yield energy by oxidizing organic fuels 9 Cellular Respiration and Fermentation CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson Energy flows into an ecosystem as sunlight and leaves as heat Photosynthesis generates

More information

Ch 9: Cellular Respiration

Ch 9: Cellular Respiration Ch 9: Cellular Respiration Cellular Respiration An overview Exergonic reactions and catabolic pathway Energy stored in bonds of food molecules is transferred to ATP Cellular respiration provides the energy

More information

Link download full of Test Bank for Fundamentals of Biochemistry 4th Edition by Voet

Link download full of Test Bank for Fundamentals of Biochemistry 4th Edition by Voet Link download full of Test Bank for Fundamentals of Biochemistry 4th Edition by Voet http://testbankair.com/download/test-bank-for-fundamentals-ofbiochemistry-4th-edition-by-voet/ Chapter 16: Glycogen

More information

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 9 Cellular Respiration and Fermentation Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Life Is Work Living cells

More information

2/4/17. Cellular Metabolism. Metabolism. Cellular Metabolism. Consists of all of the chemical reactions that take place in a cell.

2/4/17. Cellular Metabolism. Metabolism. Cellular Metabolism. Consists of all of the chemical reactions that take place in a cell. Metabolism Cellular Metabolism Consists of all of the chemical reactions that take place in a cell. Can be reactions that break things down. (Catabolism) Or reactions that build things up. (Anabolism)

More information

Metabolism. Chapter 5. Catabolism Drives Anabolism 8/29/11. Complete Catabolism of Glucose

Metabolism. Chapter 5. Catabolism Drives Anabolism 8/29/11. Complete Catabolism of Glucose 8/29/11 Metabolism Chapter 5 All of the reactions in the body that require energy transfer. Can be divided into: Cell Respiration and Metabolism Anabolism: requires the input of energy to synthesize large

More information

Chapter 7 Cellular Respiration and Fermentation*

Chapter 7 Cellular Respiration and Fermentation* Chapter 7 Cellular Respiration and Fermentation* *Lecture notes are to be used as a study guide only and do not represent the comprehensive information you will need to know for the exams. Life Is Work

More information

7 Cellular Respiration and Fermentation

7 Cellular Respiration and Fermentation CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 7 Cellular Respiration and Fermentation Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION

More information

AP BIOLOGY Chapter 7 Cellular Respiration =

AP BIOLOGY Chapter 7 Cellular Respiration = 1 AP BIOLOGY Chapter 7 Cellular Respiration = Day 1 p. I. Overview A. Cellular Respiration 1. Respiration breathing, exchange of O 2 for CO 2 2. Cellular respiration aerobic harvesting of energy from food

More information

Chap 3 Metabolism and Growth

Chap 3 Metabolism and Growth Chap 3 Metabolism and Growth I. Metabolism Definitions: Metabolism includes two parts: anabolism and catabolism Catabolism: Anabolism: Aerobic metabolism: catabolism anabolis m catabolis anabolis m Anaerobic

More information

Case Study: Carbohydrate Metabolism. eating an early dinner the night before and skipping breakfast that morning, Sid goes to the

Case Study: Carbohydrate Metabolism. eating an early dinner the night before and skipping breakfast that morning, Sid goes to the Student Name Biochemistry 4320 Case Study Part I 4 November 2013 Case Study: Carbohydrate Metabolism Sid is a high school student who has decided to start exercising before school. After eating an early

More information

7 Cellular Respiration and Fermentation

7 Cellular Respiration and Fermentation CAMPBELL BIOLOGY IN FOCUS Urry Cain Wasserman Minorsky Jackson Reece 7 Cellular Respiration and Fermentation Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge Overview: Life Is Work Living

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with

More information

7 Cellular Respiration and Fermentation

7 Cellular Respiration and Fermentation CAMPBELL BIOLOGY IN FOCUS Urry Cain Wasserman Minorsky Jackson Reece 7 Cellular Respiration and Fermentation Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge Overview: Life Is Work Living

More information

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 9 Cellular Respiration and Fermentation

More information

THE PENTOSE PHOSPHATE PATHWAY. Dr. Gamal Gabr, College of Pharmacy

THE PENTOSE PHOSPHATE PATHWAY. Dr. Gamal Gabr, College of Pharmacy THE PENTOSE PHOSPHATE PATHWAY Dr. Gamal Gabr, College of Pharmacy METABOLISM OF OTHER IMPORTANT SUGARS THE PENTOSE PHOSPHATE PATHWAY The pentose phosphate pathway is an alternative metabolic pathway for

More information

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Photosynthesis in chloroplasts. Light energy ECOSYSTEM. Organic molecules CO 2 + H 2 O

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Photosynthesis in chloroplasts. Light energy ECOSYSTEM. Organic molecules CO 2 + H 2 O 9 Cellular Respiration and Fermentation CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Figure 9.1 Figure 9.2

More information

Cellular Respiration- -conversion of stored energy in glucose to usable energy for the cell -energy in cells is stored in the form of ATP

Cellular Respiration- -conversion of stored energy in glucose to usable energy for the cell -energy in cells is stored in the form of ATP Cellular Respiration Notes Chapter 7 How Cells Make ATP Energy Releasing Pathways Cellular Respiration- -conversion of stored energy in glucose to usable energy for the cell -energy in cells is stored

More information

Chapter 9: Cellular Respiration Overview: Life Is Work. Living cells. Require transfusions of energy from outside sources to perform their many tasks

Chapter 9: Cellular Respiration Overview: Life Is Work. Living cells. Require transfusions of energy from outside sources to perform their many tasks Chapter 9: Cellular Respiration Overview: Life Is Work Living cells Require transfusions of energy from outside sources to perform their many tasks Biology, 7 th Edition Neil Campbell and Jane Reece The

More information

Module No. # 01 Lecture No. # 19 TCA Cycle

Module No. # 01 Lecture No. # 19 TCA Cycle Biochemical Engineering Prof. Dr. Rintu Banerjee Department of Agricultural and Food Engineering Asst. Prof. Dr. Saikat Chakraborty Department of Chemical Engineering Indian Institute of Technology, Kharagpur

More information

Chapter 10. Cellular Respiration Pearson Education Ltd

Chapter 10. Cellular Respiration Pearson Education Ltd Chapter 10 Cellular Respiration Life Is Work a) Living cells require energy from outside sources b) Some animals, such as the giraffe, obtain energy by eating plants, and some animals feed on other organisms

More information

Reading Assignments. A. Energy and Energy Conversions. Lecture Series 9 Cellular Pathways That Harvest Chemical Energy. gasoline) or elevated mass.

Reading Assignments. A. Energy and Energy Conversions. Lecture Series 9 Cellular Pathways That Harvest Chemical Energy. gasoline) or elevated mass. Lecture Series 9 Cellular Pathways That Harvest Chemical Energy Reading Assignments Review Chapter 3 Energy, Catalysis, & Biosynthesis Read Chapter 13 How Cells obtain Energy from Food Read Chapter 14

More information

Marah Bitar. Faisal Nimri ... Nafeth Abu Tarboosh

Marah Bitar. Faisal Nimri ... Nafeth Abu Tarboosh 8 Marah Bitar Faisal Nimri... Nafeth Abu Tarboosh Summary of the 8 steps of citric acid cycle Step 1. Acetyl CoA joins with a four-carbon molecule, oxaloacetate, releasing the CoA group and forming a six-carbon

More information

CHY2026: General Biochemistry UNIT 7& 8: CARBOHYDRATE METABOLISM

CHY2026: General Biochemistry UNIT 7& 8: CARBOHYDRATE METABOLISM CHY2026: General Biochemistry UNIT 7& 8: CARBOHYDRATE METABOLISM Metabolism Bioenergetics is the transfer and utilization of energy in biological systems The direction and extent to which a chemical reaction

More information

INTRODUCTORY BIOCHEMISTRY. BI 28 Second Midterm Examination April 3, 2007

INTRODUCTORY BIOCHEMISTRY. BI 28 Second Midterm Examination April 3, 2007 INTRODUCTORY BIOCHEMISTRY BI 28 Second Midterm Examination April 3, 2007 Name SIS # Make sure that your name or SIS # is on every page. This is the only way we have of matching you with your exam after

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy Edited by Shawn Lester PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated

More information

7 Cellular Respiration and Fermentation

7 Cellular Respiration and Fermentation CAMPBELL BIOLOGY IN FOCUS Urry Cain Wasserman Minorsky Jackson Reece 7 Cellular Respiration and Fermentation Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge Overview: Life Is Work Living

More information

Gluconeogenesis. Gluconeogenesis / TCA 11/12/2009. Free energy changes in glycolysis 11/13/2009

Gluconeogenesis. Gluconeogenesis / TCA 11/12/2009. Free energy changes in glycolysis 11/13/2009 Gluconeogenesis Gluconeogenesis / TCA 11/12/2009 Gluconeogenesis is the process whereby precursors such as lactate, pyruvate, glycerol, and amino acids are converted to glucose. Fasting requires all the

More information

Biochemistry - I SPRING Mondays and Wednesdays 9:30-10:45 AM (MR-1307) Lecture 16. Based on Profs. Kevin Gardner & Reza Khayat

Biochemistry - I SPRING Mondays and Wednesdays 9:30-10:45 AM (MR-1307) Lecture 16. Based on Profs. Kevin Gardner & Reza Khayat Biochemistry - I Mondays and Wednesdays 9:30-10:45 AM (MR-1307) SPRING 2017 Lecture 16 Based on Profs. Kevin Gardner & Reza Khayat 1 Catabolism of Di- and Polysaccharides Catabolism (digestion) begins

More information