ACID BASE BALANCE & BODY FLUID. Ani Retno Prijanti Renal and Body Fluids Module Juni 2008

Size: px
Start display at page:

Download "ACID BASE BALANCE & BODY FLUID. Ani Retno Prijanti Renal and Body Fluids Module Juni 2008"

Transcription

1 ACID BASE BALANCE & BODY FLUID Ani Retno Prijanti Renal and Body Fluids Module Juni

2 Continuous Mixing of Body Fluids 2

3 Water Balance and ECF Osmolality To remain properly hydrated, water intake must equal water output Water intake sources Ingested fluid (60%) and solid food (30%) Metabolic water or water of oxidation (10%) 3

4 Water Balance and ECF Osmolality Water output Urine (60%) and feces (4%) Insensible losses (28%), sweat (8%) Increases in plasma osmolality trigger thirst and release of antidiuretic hormone (ADH) 4

5 Water Intake and Output 5

6 Regulation of Water Intake The hypothalamic thirst center is stimulated: By a decline in plasma volume of 10% 15% By increases in plasma osmolality of 1 2% Via baroreceptor input, angiotensin II, and other stimuli 6

7 Regulation of Water Intake Thirst is quenched as soon as we begin to drink water Feedback signals that inhibit the thirst centers include: Moistening of the mucosa of the mouth and throat Activation of stomach and intestinal stretch receptors 7

8 Regulation of Water Intake: Thirst Mechanism 8

9 Regulation of Water Output Obligatory water losses include: Insensible water losses from lungs and skin Water that accompanies undigested food residues in feces Sensible water loss of 500ml in urine Kidneys excrete mosm of solutes to maintain blood homeostasis Urine solutes must be flushed out of the body in water 9

10 Influence and Regulation of ADH Water reabsorption in collecting ducts is proportional to ADH release Low ADH levels produce dilute urine and reduced volume of body fluids High ADH levels produce concentrated urine Hypothalamic osmoreceptors trigger or inhibit ADH release Factors that specifically trigger ADH release include prolonged fever; excessive sweating,vomiting, or diarrhea; severe blood loss; and traumatic burns 10

11 Electrolyte Balance Electrolytes are salts, acids, and bases, but electrolyte balance usually refers only to salt balance Salts are important for: Neuromuscular excitability Secretory activity Membrane permeability Controlling fluid movements Salts enter the body by ingestion and are lost via perspiration, feces, and urine 11

12 Sodium in Fluid and Electrolyte Balance Changes in plasma sodium levels affect: Plasma volume, blood pressure ICF and interstitial fluid volumes Renal acid-base control mechanisms are coupled to sodium ion transport 12

13 Regulation of Sodium Balance: Aldosterone Sodium reabsorption 65% of sodium in filtrate is reabsorbed in the proximal tubules 25% is reclaimed in the DCT When aldosterone levels are high, all remaining Na+ is actively reabsorbed Water follows sodium if tubule permeability has been increased with ADH 13

14 Regulation of Sodium Balance: Aldosterone The renin-angiotensin mechanism triggers the release of aldosterone This is mediated by the juxtaglomerular apparatus, which releases renin in response to: Sympathetic nervous system stimulation Decreased filtrate osmolality Decreased stretch (due to decreased blood pressure) Renin catalyzes the production of angiotensin II, which prompts aldosterone release 14

15 Regulation of Sodium Balance: Aldosterone Low aldosterone cause Na excretion and water will follow it High aldosterone levels will cause Na absorption. For the water to be absorbed ADH must also be present Adrenal cortical cells are also directly stimulated to release aldosterone by elevated K+ levels in the ECF Aldosterone brings about its effects (diminished urine output and increased blood volume) slowly 15

16 16

17 What is the acid base balance Acid-base balance is defined by the concentration of hydrogen ions. In order to achieve homeostasis, there must be a balance between the intake or production of hydrogen ions and the net removal of hydrogen ions from the body. 17

18 An Acid Molecules containing hydrogen atoms that can release hydrogen ions in solutions are referred to as an acid. An example of an acid is hydrochloric acid (HCL) 18

19 A Base A base is an ion that can accept a hydrogen ion. An example of a base is is the bicarbonate ion.( HCO3 - ) 19

20 How is Acid-Base balance measured Hydrogen ion concentration is expressed on a logarithm scale using ph units (part/percentage hydrogen). 7.0 being neutral Body systems carefully control ph of the body within the range of

21 ph A low ph corresponds to a high hydrogen ion concentration The term Acidosis refers to the addition of excess hydrogen ions and the body has a ph that falls below

22 ph A high ph corresponds to a low hydrogen concentration The term Alkalosis refers to excess removal of hydrogen ions from the body and has a ph that rises above

23 How the Body defends against fluctuations in ph Three Systems in the body: 1.Buffers in the blood 2.Respiration through the lungs 3.Excretion by the kidneys 23

24 Buffers in the Blood Buffers are substances that neutralize acids or bases Bicarbonate which is a base and carbonic acid in the body fluids protect the body against changes in acidity These buffer systems serve as a first line of defense against changes in the acidbase balance 24

25 Respiration through the lungs Carbon Dioxide which is formed during cellular metabolism forms carbonic acid in the blood decreasing the ph When the ph drops respiration rate increases this hyperventilation increases the amount of CO2 exhaled thereby lowering the carbonic acid concentration and restoring homeostasis 25

26 Excretion by the Kidneys The kidneys play the primary role in maintaining long term control of Acid-Base balance The kidney does this by selecting which ions to retain and which to excrete The kidneys adjust the body s Acid-Base balance 26

27 The Importance of the Body s Buffering Systems Can be quickly realized if one considers the low concentration of hydrogen ions in the body fluids and the relatively large amounts of acids produced by the body each day Example: 80 milliequvilalants of hydrogen is either ingested or produced each day by metabolism. Whereas the hydrogen ion concentration of the body fluids normally is only about.0004meq/l 27

28 Acid-Base Balance Normal ph Alkalosis or alkalemia arterial blood ph rises above 7.45 Acidosis or acidemia arterial ph drops below 7.35 (physiological acidosis) 28

29 Sources of Hydrogen Ions Most hydrogen ions originate from cellular metabolism Breakdown of phosphorus-containing proteins releases phosphoric acid into the ECF Anaerobic respiration of glucose produces lactic acid Fat metabolism yields organic acids and ketone bodies Transporting carbon dioxide as bicarbonate releases hydrogen ions 29

30 Hydrogen Ion Regulation Concentration of hydrogen ions is regulated sequentially by: Chemical buffer systems act within seconds The respiratory center in the brain stem acts within 1-3 minutes Renal mechanisms require hours to days to effect ph changes 30

31 Chemical Buffer Systems Strong acids all their H+ is dissociated completely in water Weak acids dissociate partially in water and are efficient at preventing ph changes Strong bases dissociate easily in water and quickly tie up H+ Weak bases accept H+ more slowly (e.g.,hco3 and NH3) 31

32 Strong and Weak Acids 32

33 Chemical Buffer Systems One or two molecules that act to resist ph changes when strong acid or base is added Three major chemical buffer systems Bicarbonate buffer system Phosphate buffer system Protein buffer system Any drifts in ph are resisted by the entire chemical buffering system 33

34 Bicarbonate Buffer System A mixture of carbonic acid (H2CO3) and its salt, sodium bicarbonate (NaHCO3) (potassium or magnesium bicarbonates work as well) If strong acid is added: Hydrogen ions released combine with the bicarbonate ions and form carbonic acid (a weak acid) The ph of the solution decreases only slightly HCl + NaHCO3 = H2CO3 + NaCl 34

35 Bicarbonate Buffer System If strong base is added: It reacts with the carbonic acid to form sodium bicarbonate (a weak base) The ph of the solution rises only slightly NaOH + H2CO3 = NaHCO3 + H2O This system is the only important ECF buffer 35

36 Phosphate Buffer System Nearly identical to the bicarbonate system Its components are: Sodium salts of dihydrogen phosphate (H2PO4 ), a weak acid Monohydrogen phosphate (HPO42 ), a weak base HCl + Na2HPO4 = NaH2PO4 + NaCl NaOH + NaH2PO4 = Na2HPO4 + H2O This system is an effective buffer in urine and intracellular fluid 36

37 Protein Buffer System Plasma and intracellular proteins are the body s most plentiful and powerful buffers Some amino acids of proteins have: Organic acid groups (weak acids) COOH (carboxyl) R-COOH RCOO- + H+ Groups that act as weak bases NH2 (amino) R-NH2 R-NH3 Amphoteric molecules are protein molecules that can function as both a weak acid and a weak base 37

38 Physiological Buffer Systems The respiratory system regulation of acid-base balance is a physiological buffering system There is a reversible equilibrium between: Dissolved carbon dioxide and water Carbonic acid and the hydrogen and bicarbonate ions CO2 + H2O H2CO3 H + + HCO3 38

39 Physiological Buffer Systems During carbon dioxide unloading, hydrogen ions are incorporated into water When hypercapnia or rising plasma H+ occurs: Deeper and more rapid breathing expels more carbon dioxide Hydrogen ion concentration is reduced Alkalosis causes slower, more shallow breathing, causing H+ to increase Respiratory system impairment causes acid-base imbalance (respiratory acidosis or respiratory alkalosis) 39

40 Renal Mechanisms of Acid- Base Balance Chemical buffers can tie up excess acids or bases, but they cannot eliminate them from the body The lungs can eliminate carbonic acid (volatile acid) by eliminating carbon dioxide Only the kidneys can rid the body of metabolic acids (phosphoric, uric, and lactic acids and ketones) and prevent metabolic acidosis The ultimate acid-base regulatory organs are the kidneys 40

41 Renal Mechanisms of Acid- Base Balance The most important renal mechanisms for regulating acid-base balance are: Conserving (reabsorbing) or generating new bicarbonate ions Excreting bicarbonate ions Losing a bicarbonate ion is the same as gaining a hydrogen ion (the blood becomes acidic); reabsorbing a bicarbonate ion is the same as losing a hydrogen ion (the blood becomes alkaline) 41

42 Renal Mechanisms of Acid- Base Balance Hydrogen ion secretion occurs in the PCT and in the collecting ducts Hydrogen ions come from the dissociation of carbonic acid 42

43 Reabsorption of Bicarbonate Carbon dioxide combines with water in tubule cells, forming carbonic acid Carbonic acid splits into hydrogen ions and bicarbonate ions For each hydrogen ion secreted, a sodium ion and a bicarbonate ion are reabsorbed by the PCT cells Secreted hydrogen ions form carbonic acid; thus, bicarbonate disappears from filtrate at the same rate that it enters the peritubular capillary blood 43

44 Reabsorption of Bicarbonate Carbonic acid formed in filtrate dissociates to release carbon dioxide and water Carbon dioxide then diffuses into tubule cells, where it acts to trigger further hydrogen ionsecretion 44

45 Generating New Bicarbonate Ions Two mechanisms carried out collecting ducts cells generate new bicarbonate ions Both involve renal excretion of acid via secretion and excretion of hydrogen ions or ammonium ions (NH4+) 45

46 Hydrogen Ion Excretion Dietary hydrogen ions must be counteracted by generating new bicarbonate The excreted hydrogen ions must bind to buffers in the urine (phosphate buffer system) Collecting duct cells actively secrete hydrogen ions into urine, which is buffered and excreted Bicarbonate generated is: Moved into the interstitial space via a cotransport system Passively moved into the peritubular capillary blood 46

47 Hydrogen Ion Excretion In response to acidosis: Kidneys generate bicarbonate ions and add them to the blood An equal amount of hydrogen ions are added to the urine 47

48 Ammonium Ion Excretion This method uses ammonium ions produced by the metabolism of glutamine in PCT cells Each glutamine metabolized produces two ammonium ions and two bicarbonate ions Bicarbonate moves to the blood and ammonium ions are excreted in urine 48

49 Ammonium ion Excretion 49

50 Bicarbonate Ion Secretion When the body is in alkalosis, type B intercalated cells of collecting ducts : Exhibit bicarbonate ion secretion Reclaim hydrogen ions and acidify the blood The mechanism is the opposite of type A intercalated cells and the bicarbonate ion reabsorption process Even during alkalosis, the nephrons and collecting ducts excrete fewer bicarbonate ions than they conserve 50

51 Respiratory Acidosis and Alkalosis Result from failure of the respiratory system to balance ph PCO2 is the single most important indicator of respiratory inadequacy PCO2 levels Normal PCO2 fluctuates between 35 and 45mm Hg Values above 45 mm Hg signal respiratory acidosis Values below 35 mm Hg indicate respiratory alkalosis 51

52 Respiratory Acidosis and Alkalosis Respiratory acidosis is the most common cause of acid-base imbalance Occurs when a person breathes shallowly, or gas exchange is hampered by diseases such as pneumonia, cystic fibrosis, or emphysema Respiratory alkalosis is a common result of hyperventilation 52

53 Metabolic Acidosis All ph imbalances except those caused by abnormal blood carbon dioxide levels Metabolic acid-base imbalance bicarbonate ion levels above or below normal (22-26 meq/l) Metabolic acidosis is the second most common cause of acid-base imbalance Typical causes are ingestion of too much alcohol and excessive loss of bicarbonateions Other causes include accumulation of lactic acid, shock, ketosis in diabetic crisis, starvation, and kidney failure 53

54 Metabolic Alkalosis Rising blood ph and bicarbonate levels indicate metabolic alkalosis Typical causes are: Vomiting of the acid contents of the stomach Intake of excess base (e.g., from antacids) Constipation, in which excessive bicarbonate is reabsorbed 54

55 Respiratory and Renal Compensations Acid-base imbalance due to inadequacy of a physiological buffer system is compensated for by the other system The respiratory system will attempt to correct metabolic acid-base imbalances The kidneys will work to correct imbalances caused by respiratory disease 55

56 Respiratory Compensation Metabolic acidosis has low ph: Bicarbonate level is low Pco2 is falling below normal to correct the imbalance The rate and depth of breathing are elevated 56

57 Respiratory Compensation Metabolic alkalosis has high ph: High levels of bicarbonate Correction is revealed by: Rising PCO2 Compensation exhibits slow, shallow breathing, allowing carbon dioxide to accumulate in the blood 57

58 Renal Compensation To correct respiratory acid-base imbalance, renal mechanisms are stepped up Respiratory Acidosis has low ph Has high PCO2 (the cause of acidosis) In respiratory acidosis, the respiratory rate is often depressed and is the immediate cause of the acidosis High bicarbonate levels indicate the kidneys are retaining bicarbonate to offset the acidosis 58

59 Renal Compensation Respiratory Alkalosis has high ph Low PCO2 (the cause of the alkalosis) Low bicarbonate levels The kidneys eliminate bicarbonate from the body by failing to reclaim it or by actively secreting it 59

60 Developmental Aspects Water content of the body is greatest at birth (70-80%) and declines until adulthood, when it is about 58% At puberty, sexual differences in body water content arise as males develop greater muscle mass Homeostatic mechanisms slow down with age Elders may be unresponsive to thirst clues and are at risk of dehydration The very young and the very old are the most frequent victims of fluid, acid-base, and electrolyte imbalances 60

Acid-Base Balance 11/18/2011. Regulation of Potassium Balance. Regulation of Potassium Balance. Regulatory Site: Cortical Collecting Ducts.

Acid-Base Balance 11/18/2011. Regulation of Potassium Balance. Regulation of Potassium Balance. Regulatory Site: Cortical Collecting Ducts. Influence of Other Hormones on Sodium Balance Acid-Base Balance Estrogens: Enhance NaCl reabsorption by renal tubules May cause water retention during menstrual cycles Are responsible for edema during

More information

Renal Physiology. April, J. Mohan, PhD. Lecturer, Physiology Unit, Faculty of Medical Sciences, U.W.I., St Augustine.

Renal Physiology. April, J. Mohan, PhD. Lecturer, Physiology Unit, Faculty of Medical Sciences, U.W.I., St Augustine. Renal Physiology April, 2011 J. Mohan, PhD. Lecturer, Physiology Unit, Faculty of Medical Sciences, U.W.I., St Augustine. Office : Room 105, Physiology Unit. References: Koeppen B.E. & Stanton B.A. (2010).

More information

Fluids and electrolytes

Fluids and electrolytes Body Water Content Fluids and electrolytes Infants have low body fat, low bone mass, and are 73% or more water Total water content declines throughout life Healthy males are about 60% water; healthy females

More information

Chapter 26 Fluid, Electrolyte, and Acid- Base Balance

Chapter 26 Fluid, Electrolyte, and Acid- Base Balance Chapter 26 Fluid, Electrolyte, and Acid- Base Balance 1 Body Water Content Infants: 73% or more water (low body fat, low bone mass) Adult males: ~60% water Adult females: ~50% water (higher fat content,

More information

Acid-base balance is one of the most important of the body s homeostatic mechanisms Acid-base balance refers to regulation of hydrogen ion (H + )

Acid-base balance is one of the most important of the body s homeostatic mechanisms Acid-base balance refers to regulation of hydrogen ion (H + ) Acid-base balance is one of the most important of the body s homeostatic mechanisms Acid-base balance refers to regulation of hydrogen ion (H + ) concentration in body fluids Precise regulation of ph at

More information

Chapter 27: WATER, ELECTROLYTES, AND ACID-BASE BALANCE

Chapter 27: WATER, ELECTROLYTES, AND ACID-BASE BALANCE Chapter 27: WATER, ELECTROLYTES, AND ACID-BASE BALANCE I. RELATED TOPICS Integumentary system Cerebrospinal fluid Aqueous humor Digestive juices Feces Capillary dynamics Lymph circulation Edema Osmosis

More information

Acid-Base Balance Dr. Gary Mumaugh

Acid-Base Balance Dr. Gary Mumaugh Acid-Base Balance Dr. Gary Mumaugh Introduction Acid-base balance is one of the most important of the body s homeostatic mechanisms Acid-base balance refers to regulation of hydrogen ion (H + ) concentration

More information

The Urinary System 15PART B. PowerPoint Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College

The Urinary System 15PART B. PowerPoint Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College PowerPoint Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College The Urinary System 15PART B Ureters Slender tubes attaching the kidney to the bladder Continuous with

More information

Water, Electrolytes, and Acid-Base Balance

Water, Electrolytes, and Acid-Base Balance Chapter 27 Water, Electrolytes, and Acid-Base Balance 1 Body Fluids Intracellular fluid compartment All fluids inside cells of body About 40% of total body weight Extracellular fluid compartment All fluids

More information

Principles of Anatomy and Physiology

Principles of Anatomy and Physiology Principles of Anatomy and Physiology 14 th Edition CHAPTER 27 Fluid, Electrolyte, and Acid Base Fluid Compartments and Fluid In adults, body fluids make up between 55% and 65% of total body mass. Body

More information

Questions? Homework due in lab 6. PreLab #6 HW 15 & 16 (follow directions, 6 points!)

Questions? Homework due in lab 6. PreLab #6 HW 15 & 16 (follow directions, 6 points!) Questions? Homework due in lab 6 PreLab #6 HW 15 & 16 (follow directions, 6 points!) Part 3 Variations in Urine Formation Composition varies Fluid volume Solute concentration Variations in Urine Formation

More information

Acid and Base Balance

Acid and Base Balance Acid and Base Balance 1 2 The Body and ph Homeostasis of ph is tightly controlled Extracellular fluid = 7.4 Blood = 7.35 7.45 < 7.35: Acidosis (acidemia) > 7.45: Alkalosis (alkalemia) < 6.8 or > 8.0: death

More information

Body Water Content Total Body Water is the percentage of a person s weight that is water. TBW can easily vary due to: gender

Body Water Content Total Body Water is the percentage of a person s weight that is water. TBW can easily vary due to: gender BIOL 221 Chapter 26 Fluids & Electrolytes 35 slides!1 Body Water Content Total Body Water is the percentage of a person s weight that is water. TBW can easily vary due to: gender males have higher TBW

More information

Acids, Bases, and Salts

Acids, Bases, and Salts Acid / Base Balance Objectives Define an acid, a base, and the measure of ph. Discuss acid/base balance, the effects of acidosis or alkalosis on the body, and the mechanisms in place to maintain balance

More information

Chapter 19 The Urinary System Fluid and Electrolyte Balance

Chapter 19 The Urinary System Fluid and Electrolyte Balance Chapter 19 The Urinary System Fluid and Electrolyte Balance Chapter Outline The Concept of Balance Water Balance Sodium Balance Potassium Balance Calcium Balance Interactions between Fluid and Electrolyte

More information

CHAPTER 27 LECTURE OUTLINE

CHAPTER 27 LECTURE OUTLINE CHAPTER 27 LECTURE OUTLINE I. INTRODUCTION A. Body fluid refers to body water and its dissolved substances. B. Regulatory mechanisms insure homeostasis of body fluids since their malfunction may seriously

More information

BIOL 2402 Fluid/Electrolyte Regulation

BIOL 2402 Fluid/Electrolyte Regulation Dr. Chris Doumen Collin County Community College BIOL 2402 Fluid/Electrolyte Regulation 1 Body Water Content On average, we are 50-60 % water For a 70 kg male = 40 liters water This water is divided into

More information

Chapter 24 Water, Electrolyte and Acid-Base Balance

Chapter 24 Water, Electrolyte and Acid-Base Balance Chapter 24 Water, Electrolyte and Acid-Base Balance Total body water for 150 lb. male = 40L 65% ICF 35% ECF 25% tissue fluid 8% blood plasma, lymph 2% transcellular fluid (CSF, synovial fluid) Water Movement

More information

Fluid, Electrolyte, and Acid Base Balance

Fluid, Electrolyte, and Acid Base Balance 25 Fluid, Electrolyte, and Acid Base Balance Lecture Presentation by Lori Garrett Note to the Instructor: For the third edition of Visual Anatomy & Physiology, we have updated our PowerPoints to fully

More information

1. 09/07/16 Ch 1: Intro to Human A & P 1

1. 09/07/16 Ch 1: Intro to Human A & P 1 Table of Contents # Date Title Page # 1. 09/07/16 Ch 1: Intro to Human A & P 1 2. 09/19/16 Ch 18: Water, Electrolyte, and Acid-Base Balance 5 i 1 09/19/16 Chapter 18: Water, Electrolyte, and Acid-Base

More information

UNIT VI: ACID BASE IMBALANCE

UNIT VI: ACID BASE IMBALANCE UNIT VI: ACID BASE IMBALANCE 1 Objectives: Review the physiological mechanism responsible to regulate acid base balance in the body i.e.: Buffers (phosphate, hemoglobin, carbonate) Renal mechanism Respiratory

More information

Body Water Content Infants have low body fat, low bone mass, and are 73% or more water Total water content declines throughout life Healthy males are

Body Water Content Infants have low body fat, low bone mass, and are 73% or more water Total water content declines throughout life Healthy males are Fluid, Electrolyte, and Acid-Base Balance Body Water Content Infants have low body fat, low bone mass, and are 73% or more water Total water content declines throughout life Healthy males are about 60%

More information

Renal Physiology Part II. Bio 219 Napa Valley College Dr. Adam Ross

Renal Physiology Part II. Bio 219 Napa Valley College Dr. Adam Ross Renal Physiology Part II Bio 219 Napa Valley College Dr. Adam Ross Fluid and Electrolyte balance As we know from our previous studies: Water and ions need to be balanced in order to maintain proper homeostatic

More information

Chapter 26 Electrolyte & Acid-Base Balance

Chapter 26 Electrolyte & Acid-Base Balance Chapter 26 Electrolyte & Acid-Base Balance Slides by Barbara Heard and W. Rose. figures from Marieb & Hoehn 9 th ed. Portions copyright Pearson Education Major fluid compartments of the body Total body

More information

Chapter 15 Fluid and Acid-Base Balance

Chapter 15 Fluid and Acid-Base Balance Chapter 15 Fluid and Acid-Base Balance by Dr. Jay M. Templin Brooks/Cole - Thomson Learning Fluid Balance Water constitutes ~60% of body weight. All cells and tissues are surrounded by an aqueous environment.

More information

Body water content. Fluid compartments. Regulation of water output. Water balance and ECF osmolallty. Regulation of water intake

Body water content. Fluid compartments. Regulation of water output. Water balance and ECF osmolallty. Regulation of water intake Body water content Infants have low body fat, low bone mass, and are 73% or more water Total water content declines throughout life Healthy males are about 60% water; females 50% This difference reflects

More information

Fluid and Electrolytes P A R T 4

Fluid and Electrolytes P A R T 4 Fluid and Electrolytes P A R T 4 Mechanisms that control acid-base homeostasis Acids and bases continually enter and leave body Hydrogen ions also result from metabolic activity Acids Hydrogen ion donors

More information

BIO132 Chapter 27 Fluid, Electrolyte and Acid Base Balance Lecture Outline

BIO132 Chapter 27 Fluid, Electrolyte and Acid Base Balance Lecture Outline BIO132 Chapter 27 Fluid, Electrolyte and Acid Base Balance Lecture Outline Fluid divisions 1. Extracellular fluid (ECF) 2. Intracellular fluid (ICF) Stabilization 1. Fluid balance 2. Electrolyte balance

More information

Acid Base Balance. Chapter 26 Balance. ph Imbalances. Acid Base Balance. CO 2 and ph. Carbonic Acid. Part 2. Acid/Base Balance

Acid Base Balance. Chapter 26 Balance. ph Imbalances. Acid Base Balance. CO 2 and ph. Carbonic Acid. Part 2. Acid/Base Balance Acid Base Balance Chapter 26 Balance Part 2. Acid/Base Balance Precisely balances production and loss of hydrogen ions (ph) The body generates acids during normal metabolism, tends to reduce ph Kidneys:

More information

Acid-Base Balance * OpenStax

Acid-Base Balance * OpenStax OpenStax-CNX module: m46409 1 Acid-Base Balance * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the end of this section, you will be

More information

adam.com (http://www.adam.com/) Benjamin/Cummings Publishing Co (http://www.awl.com/bc) -42-

adam.com (http://www.adam.com/) Benjamin/Cummings Publishing Co (http://www.awl.com/bc) -42- Graphics are used with permission of : adam.com (http://www.adam.com/) Benjamin/Cummings Publishing Co (http://www.awl.com/bc) -42-74. (1) Carbon dioxide arrives at the kidney tubule cell in the proximal

More information

Acids and Bases their definitions and meanings

Acids and Bases their definitions and meanings Acids and Bases their definitions and meanings Molecules containing hydrogen atoms that can release hydrogen ions in solutions are referred to as acids. (HCl H + Cl ) (H 2 CO 3 H + HCO 3 ) A base is an

More information

Chapter 27: Fluid, Electrolyte, and Acid Base Balance

Chapter 27: Fluid, Electrolyte, and Acid Base Balance Chapter 27: Fluid, Electrolyte, and Acid Base Balance Fluid, Electrolyte, and Acid Base Balance: An Overview, p. 995 Most of your body weight is water. Water accounts for up to 99 percent of the volume

More information

BIOL 221 Chapter 26 Fluids & Electrolytes. 35 slides

BIOL 221 Chapter 26 Fluids & Electrolytes. 35 slides BIOL 221 Chapter 26 Fluids & Electrolytes 35 slides 1 Body Water Content Total Body Water is the percentage of a person s weight that is water. TBW can easily vary due to: gender males have higher TBW

More information

Body Water Content Total Body Water is the percentage of a person s weight that is water. TBW can easily vary due to: gender

Body Water Content Total Body Water is the percentage of a person s weight that is water. TBW can easily vary due to: gender BIOL 221 Chapter 26 Fluids & Electrolytes 35 slides 1 Body Water Content Total Body Water is the percentage of a person s weight that is water. TBW can easily vary due to: gender males have higher TBW

More information

Physio 12 -Summer 02 - Renal Physiology - Page 1

Physio 12 -Summer 02 - Renal Physiology - Page 1 Physiology 12 Kidney and Fluid regulation Guyton Ch 20, 21,22,23 Roles of the Kidney Regulation of body fluid osmolarity and electrolytes Regulation of acid-base balance (ph) Excretion of natural wastes

More information

Fluid, Electrolyte, and Acid Base Balance

Fluid, Electrolyte, and Acid Base Balance Chapter 26 Fluid, Electrolyte, and Acid Base Balance Bi 233 Body Water Content Largest component of the body Infants have low body fat, low bone mass, and are 73% or more water Healthy males are about

More information

Dr. Suzana Voiculescu Discipline of Physiology and Fundamental Neurosciences Carol Davila Univ. of Medicine and Pharmacy

Dr. Suzana Voiculescu Discipline of Physiology and Fundamental Neurosciences Carol Davila Univ. of Medicine and Pharmacy Dr. Suzana Voiculescu Discipline of Physiology and Fundamental Neurosciences Carol Davila Univ. of Medicine and Pharmacy Definition All the processes inside the body which keep the H+ concentration within

More information

Urine Formation. Urinary Physiology Urinary Section pages Urine Formation. Glomerular Filtration 4/24/2016

Urine Formation. Urinary Physiology Urinary Section pages Urine Formation. Glomerular Filtration 4/24/2016 Urine Formation Urinary Physiology Urinary Section pages 9-17 Filtrate Blood plasma minus most proteins Urine

More information

EXCRETION QUESTIONS. Use the following information to answer the next two questions.

EXCRETION QUESTIONS. Use the following information to answer the next two questions. EXCRETION QUESTIONS Use the following information to answer the next two questions. 1. Filtration occurs at the area labeled A. V B. X C. Y D. Z 2. The antidiuretic hormone (vasopressin) acts on the area

More information

RENAL PHYSIOLOGY. Physiology Unit 4

RENAL PHYSIOLOGY. Physiology Unit 4 RENAL PHYSIOLOGY Physiology Unit 4 Renal Functions Primary Function is to regulate the chemistry of plasma through urine formation Additional Functions Regulate concentration of waste products Regulate

More information

Major intra and extracellular ions Lec: 1

Major intra and extracellular ions Lec: 1 Major intra and extracellular ions Lec: 1 The body fluids are solutions of inorganic and organic solutes. The concentration balance of the various components is maintained in order for the cell and tissue

More information

Principles of Fluid Balance

Principles of Fluid Balance Principles of Fluid Balance I. The Cellular Environment: Fluids and Electrolytes A. Water 1. Total body water (TBW) = 60% of total body weight 2. Fluid Compartments in the Body a. Intracellular Compartment

More information

Acid/Base Balance. the concentrations of these two ions affect the acidity or alkalinity of body fluids

Acid/Base Balance. the concentrations of these two ions affect the acidity or alkalinity of body fluids Acid/Base Balance some of most critical ions in body fluids are H + (hydrogen) and OH - (hydroxyl) ions the concentrations of these two ions affect the acidity or alkalinity of body fluids acidity/alkalinity

More information

The Urinary System PART B

The Urinary System PART B 15 The Urinary System PART B PowerPoint Lecture Slide Presentation by Jerry L. Cook, Sam Houston University ESSENTIALS OF HUMAN ANATOMY & PHYSIOLOGY EIGHTH EDITION ELAINE N. MARIEB Urinary Bladder Smooth,

More information

Fluid, Electrolyte, and Acid-Base Balance. Maintaining Water and Electrolyte Balance of Blood

Fluid, Electrolyte, and Acid-Base Balance. Maintaining Water and Electrolyte Balance of Blood 514 Essentials of Human Anatomy and Physiology Intracellular fluid volume = 25 L, 40% body weight Total body water volume = 40 L, 60% body weight Extracellular fluid (ECF) volume =15 L, 20% body weight

More information

FLUID, ELECTROLYTES, AND ACID-BASE HOMEOSTASIS

FLUID, ELECTROLYTES, AND ACID-BASE HOMEOSTASIS Chapter 27 1 BIOLOGY 2402 Anatomy and Physiology Lecture Chapter 27 FLUID, ELECTROLYTES, AND ACID-BASE HOMEOSTASIS Chapter 27 2 FLUID, ELECTROLYTES, AND ACID-BASE HOMEOSTAIS Body fluid refers to the body

More information

Unit 15 - The Urinary System 1

Unit 15 - The Urinary System 1 Unit 15 - The Urinary System 1 I. Unit 15: The Urinary System A. Functions of the Urinary System 1. Elimination of waste products a) Nitrogenous wastes b) Toxins c) Drugs 2. Regulate aspects of homeostasis

More information

Unit 15: The Urinary System

Unit 15: The Urinary System Unit 15: The Urinary System I. Functions of the Urinary System A. Elimination of waste products 1. Nitrogenous wastes 2. Toxins 3. Drugs B. Regulate aspects of homeostasis 1. Water balance 2. Electrolytes

More information

Dr. Suzana Voiculescu

Dr. Suzana Voiculescu Dr. Suzana Voiculescu Definition All the processes inside the body which keep the H+ concentration within normal values. Depends on water and ion balance blood gas homeostasis Blood acidity may be expressed

More information

Acid-Base Physiology. Dr. Tamás Bense Dr. Alexandra Turi

Acid-Base Physiology. Dr. Tamás Bense Dr. Alexandra Turi Acid-Base Physiology Dr. Tamás Bense Dr. Alexandra Turi What is a blood gas assessment? We get it from an arterial sample (a.radialis, a. brachialis, a. femoralis) Invasive technique If the patient is

More information

1. a)label the parts indicated above and give one function for structures Y and Z

1. a)label the parts indicated above and give one function for structures Y and Z Excretory System 1 1. Excretory System a)label the parts indicated above and give one function for structures Y and Z W- renal cortex - X- renal medulla Y- renal pelvis collecting center of urine and then

More information

Fluid, electrolyte, and acid-base balance

Fluid, electrolyte, and acid-base balance Fluid, electrolyte, and acid-base balance Chapter 50 Ra'eda Almashaqba 1 Fluid, electrolyte, and acid-base balance About 46% to 60%of the average adult's weight is water, which is vital to health and normal

More information

Renal physiology V. Regulation of acid-base balance. Dr Alida Koorts BMS

Renal physiology V. Regulation of acid-base balance. Dr Alida Koorts BMS Renal physiology V Regulation of acidbase balance Dr Alida Koorts BMS 712 012 319 2921 akoorts@medic.up.ac.za Hydrogen ions (H + ): Concentration and origin Concentration in arterial blood, resting: [H

More information

Osmoregulation and Renal Function

Osmoregulation and Renal Function 1 Bio 236 Lab: Osmoregulation and Renal Function Fig. 1: Kidney Anatomy Fig. 2: Renal Nephron The kidneys are paired structures that lie within the posterior abdominal cavity close to the spine. Each kidney

More information

Carbon Dioxide Transport and Acid-Base Balance

Carbon Dioxide Transport and Acid-Base Balance CHAPTER 7 Carbon Dioxide Transport and Acid-Base Balance Carbon Dioxide Transport Dioxide Transport In plasma: Carbamino compound (bound to protein) Bicarbonate Dissolved CO 2 CO 2 Is Converted to HCO

More information

H 2 O, Electrolytes and Acid-Base Balance

H 2 O, Electrolytes and Acid-Base Balance H 2 O, Electrolytes and Acid-Base Balance Body Fluids Intracellular Fluid Compartment All fluid inside the cells 40% of body weight Extracellular Fluid Compartment All fluid outside of cells 20% of body

More information

I. Metabolic Wastes Metabolic Waste:

I. Metabolic Wastes Metabolic Waste: I. Metabolic Wastes Metabolic Waste: a) Carbon Dioxide: by-product of cellular respiration. b) Water: by-product of cellular respiration & dehydration synthesis reactions. c) Inorganic Salts: by-product

More information

The Excretory System. Biology 20

The Excretory System. Biology 20 The Excretory System Biology 20 Introduction Follow along on page 376 What dangers exist if your body is unable to regulate the fluid balance of your tissues? What challenged would the body have to respond

More information

12/7/10. Excretory System. The basic function of the excretory system is to regulate the volume and composition of body fluids by:

12/7/10. Excretory System. The basic function of the excretory system is to regulate the volume and composition of body fluids by: Excretory System The basic function of the excretory system is to regulate the volume and composition of body fluids by: o o removing wastes returning needed substances to the body for reuse Body systems

More information

ACID-BASE BALANCE URINE BLOOD AIR

ACID-BASE BALANCE URINE BLOOD AIR ACIDBASE BALANCE URINE BLOOD AIR H 2 PO 4 NH 4 HCO 3 KIDNEY H H HCO 3 CELLS Hb H LUNG H 2 CO 3 HHb CO 2 H 2 O ph = 7.4 [HCO 3 ] = 24 meq/l PCO 2 = 40 mm Hg CO 2 PRIMARY RENAL MECHANISMS INVOLVED IN ACIDBASE

More information

BIPN100 F15 Human Physiology (Kristan) Lecture 18: Endocrine control of renal function. p. 1

BIPN100 F15 Human Physiology (Kristan) Lecture 18: Endocrine control of renal function. p. 1 BIPN100 F15 Human Physiology (Kristan) Lecture 18: Endocrine control of renal function. p. 1 Terms you should understand by the end of this section: diuresis, antidiuresis, osmoreceptors, atrial stretch

More information

Urinary System Organization. Urinary System Organization. The Kidneys. The Components of the Urinary System

Urinary System Organization. Urinary System Organization. The Kidneys. The Components of the Urinary System Urinary System Organization The Golden Rule: The Job of The Urinary System is to Maintain the Composition and Volume of ECF remember this & all else will fall in place! Functions of the Urinary System

More information

Chapter 12. Excretion and the Interaction of Systems

Chapter 12. Excretion and the Interaction of Systems Chapter 12 Excretion and the Interaction of Systems 1 2 Goals for This Chapter 1. Identify the main structures and functions of the human excretory system 2. Explain the function of the nephron 3. Describe

More information

Disorders of Acid-Base

Disorders of Acid-Base Disorders of Acid-Base Balance Bởi: OpenStaxCollege Normal arterial blood ph is restricted to a very narrow range of 7.35 to 7.45. A person who has a blood ph below 7.35 is considered to be in acidosis

More information

Regulation of fluid and electrolytes balance

Regulation of fluid and electrolytes balance Regulation of fluid and electrolytes balance Three Compartment Fluid Compartments Intracellular = Cytoplasmic (inside cells) Extracellular compartment is subdivided into Interstitial = Intercellular +

More information

Nephron Structure inside Kidney:

Nephron Structure inside Kidney: In-Depth on Kidney Nephron Structure inside Kidney: - Each nephron has two capillary regions in close proximity to the nephron tubule, the first capillary bed for fluid exchange is called the glomerulus,

More information

Acid Base Balance. Professor Dr. Raid M. H. Al-Salih. Clinical Chemistry Professor Dr. Raid M. H. Al-Salih

Acid Base Balance. Professor Dr. Raid M. H. Al-Salih. Clinical Chemistry Professor Dr. Raid M. H. Al-Salih Acid Base Balance 1 HYDROGEN ION CONCENTRATION and CONCEPT OF ph Blood hydrogen ion concentration (abbreviated [H + ]) is maintained within tight limits in health, with the normal concentration being between

More information

Excretion and Waste Management. Biology 30S - Miss Paslawski

Excretion and Waste Management. Biology 30S - Miss Paslawski Excretion and Waste Management Biology 30S - Miss Paslawski Lesson 1 Waste Products and Organs 2 3 Excretion Excretion: Process by which dissolved metabolic wastes are separated from body fluids and removed

More information

Blood Pressure Regulation Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.

Blood Pressure Regulation Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc. Blood Pressure Regulation Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.com) Page 1. Introduction There are two basic mechanisms for regulating

More information

Chapter 24 Lecture Outline

Chapter 24 Lecture Outline Chapter 24 Lecture Outline See separate PowerPoint slides for all figures and tables preinserted into PowerPoint without notes. Copyright McGraw-Hill Education. Permission required for reproduction or

More information

Osmotic Regulation and the Urinary System. Chapter 50

Osmotic Regulation and the Urinary System. Chapter 50 Osmotic Regulation and the Urinary System Chapter 50 Challenge Questions Indicate the areas of the nephron that the following hormones target, and describe when and how the hormones elicit their actions.

More information

CASE 27. What is the response of the kidney to metabolic acidosis? What is the response of the kidney to a respiratory alkalosis?

CASE 27. What is the response of the kidney to metabolic acidosis? What is the response of the kidney to a respiratory alkalosis? CASE 27 A 21-year-old man with insulin-dependent diabetes presents to the emergency center with mental status changes, nausea, vomiting, abdominal pain, and rapid respirations. On examination, the patient

More information

Regulating the Internal Environment. AP Biology

Regulating the Internal Environment. AP Biology Regulating the Internal Environment 2006-2007 Conformers vs. Regulators Two evolutionary paths for organisms regulate internal environment maintain relatively constant internal conditions conform to external

More information

Fluid and electrolyte balance, imbalance

Fluid and electrolyte balance, imbalance Fluid and electrolyte balance, imbalance Body fluid The fluids are distributed throughout the body in various compartments. Body fluid is composed primarily of water Water is the solvent in which all solutes

More information

014 Chapter 14 Created: 9:25:14 PM CST

014 Chapter 14 Created: 9:25:14 PM CST 014 Chapter 14 Created: 9:25:14 PM CST Student: 1. Functions of the kidneys include A. the regulation of body salt and water balance. B. hydrogen ion homeostasis. C. the regulation of blood glucose concentration.

More information

The kidneys are excretory and regulatory organs. By

The kidneys are excretory and regulatory organs. By exercise 9 Renal System Physiology Objectives 1. To define nephron, renal corpuscle, renal tubule, afferent arteriole, glomerular filtration, efferent arteriole, aldosterone, ADH, and reabsorption 2. To

More information

Acid-base balance (ABB)

Acid-base balance (ABB) Acid-base balance (ABB) Overview of the lecture ph, relationships between metabolism and changes of ph: Definition of ph, ph values in the different body compartments Production of acids and bases in the

More information

Part 1 The Cell and the Cellular Environment

Part 1 The Cell and the Cellular Environment 1 Chapter 3 Anatomy and Physiology Part 1 The Cell and the Cellular Environment 2 The Human Cell The is the fundamental unit of the human body. Cells contain all the necessary for life functions. 3 Cell

More information

Disclaimer. Chapter 3 Disorder of Water, Electrolyte and Acid-base Professor A. S. Alhomida. Disorder of Water and Electrolyte

Disclaimer. Chapter 3 Disorder of Water, Electrolyte and Acid-base Professor A. S. Alhomida. Disorder of Water and Electrolyte Disclaimer King Saud University College of Science Department of Biochemistry The texts, tables, figures and images contained in this course presentation (BCH 376) are not my own, they can be found on:

More information

Ch. 44 Regulating the Internal Environment

Ch. 44 Regulating the Internal Environment Ch. 44 Regulating the Internal Environment 2006-2007 Conformers vs. Regulators Two evolutionary paths for organisms regulate internal environment maintain relatively constant internal conditions conform

More information

Urinary System. Dr. ZHANG Xiong. Dept. of Physiology. ZJU School of Medicine. QUESTION 6

Urinary System. Dr. ZHANG Xiong. Dept. of Physiology. ZJU School of Medicine.  QUESTION 6 Urinary System Dr. ZHANG Xiong Dept. of Physiology ZJU School of Medicine http://10.71.121.158 Copyright@ Xiong Zhang QUESTION 6 How is the filtrate reabsorbed in tubular system? Copyright@ Xiong Zhang

More information

CREATININE: is another nitrogenous waste. Creatinine comes from creatinine phosphate in muscle metabolism (a Phosphate-storage molecule)

CREATININE: is another nitrogenous waste. Creatinine comes from creatinine phosphate in muscle metabolism (a Phosphate-storage molecule) BIOLOGY 12 - EXCRETION: CHAPTER NOTES Your cells are constantly carrying out chemical reactions to maintain homeostasis. Many of these chemical reactions produce wastes that must be removed from cells

More information

Carbon Dioxide Transport. Carbon Dioxide. Carbon Dioxide Transport. Carbon Dioxide Transport - Plasma. Hydrolysis of Water

Carbon Dioxide Transport. Carbon Dioxide. Carbon Dioxide Transport. Carbon Dioxide Transport - Plasma. Hydrolysis of Water Module H: Carbon Dioxide Transport Beachey Ch 9 & 10 Egan pp. 244-246, 281-284 Carbon Dioxide Transport At the end of today s session you will be able to : Describe the relationship free hydrogen ions

More information

Kidneys and Homeostasis

Kidneys and Homeostasis 16 The Urinary System The Urinary System OUTLINE: Eliminating Waste Components of the Urinary System Kidneys and Homeostasis Urination Urinary Tract Infections Eliminating Waste Excretion Elimination of

More information

Human Anatomy and Physiology - Problem Drill 23: The Urinary System, Fluid, Electrolyte and Acid-Base Balance

Human Anatomy and Physiology - Problem Drill 23: The Urinary System, Fluid, Electrolyte and Acid-Base Balance Human Anatomy and Physiology - Problem Drill 23: The Urinary System, Fluid, Electrolyte and Acid-Base Balance Question No. 1 of 10 Which of the following statements about the functions of the urinary system

More information

BIOLOGY - CLUTCH CH.44 - OSMOREGULATION AND EXCRETION.

BIOLOGY - CLUTCH CH.44 - OSMOREGULATION AND EXCRETION. !! www.clutchprep.com Osmoregulation regulation of solute balance and water loss to maintain homeostasis of water content Excretion process of eliminating waste from the body, like nitrogenous waste Kidney

More information

1/3/2008. Karen Burke Priscilla LeMone Elaine Mohn-Brown. Medical-Surgical Nursing Care, 2e Karen Burke, Priscilla LeMone, and Elaine Mohn-Brown

1/3/2008. Karen Burke Priscilla LeMone Elaine Mohn-Brown. Medical-Surgical Nursing Care, 2e Karen Burke, Priscilla LeMone, and Elaine Mohn-Brown Medical-Surgical Nursing Care Second Edition Karen Burke Priscilla LeMone Elaine Mohn-Brown Chapter 7 Caring for Clients with Altered Fluid, Electrolyte, or Acid-Base Balance Water Primary component of

More information

Ch 17 Physiology of the Kidneys

Ch 17 Physiology of the Kidneys Ch 17 Physiology of the Kidneys Review Anatomy on your own SLOs List and describe the 4 major functions of the kidneys. List and explain the 4 processes of the urinary system. Diagram the filtration barriers

More information

Other Factors Affecting GFR. Chapter 25. After Filtration. Reabsorption and Secretion. 5 Functions of the PCT

Other Factors Affecting GFR. Chapter 25. After Filtration. Reabsorption and Secretion. 5 Functions of the PCT Other Factors Affecting GFR Chapter 25 Part 2. Renal Physiology Nitric oxide vasodilator produced by the vascular endothelium Adenosine vasoconstrictor of renal vasculature Endothelin a powerful vasoconstrictor

More information

Renal Quiz - June 22, 21001

Renal Quiz - June 22, 21001 Renal Quiz - June 22, 21001 1. The molecular weight of calcium is 40 and chloride is 36. How many milligrams of CaCl 2 is required to give 2 meq of calcium? a) 40 b) 72 c) 112 d) 224 2. The extracellular

More information

The principal functions of the kidneys

The principal functions of the kidneys Renal physiology The principal functions of the kidneys Formation and excretion of urine Excretion of waste products, drugs, and toxins Regulation of body water and mineral content of the body Maintenance

More information

Acid - base equilibrium

Acid - base equilibrium Acid base equilibrium ph concept ph = log [H + ] ph [H+] 1 100 mmol/l D = 90 mmol/l 2 10 mmol/l D = 9 mmol/l 3 1 mmol/l 2 ph = log [H + ] 3 ph ph = log [H + ] ph of capillary blood norm: 7,35 7,45 Sorensen

More information

The Urinary System. Copyright 2003 Pearson Education, Inc. publishing as Benjamin Cummings

The Urinary System. Copyright 2003 Pearson Education, Inc. publishing as Benjamin Cummings The Urinary System Functions of the Urinary System Elimination of waste products Nitrogenous wastes Toxins Drugs Functions of the Urinary System Regulate aspects of homeostasis Water balance Electrolytes

More information

PARAMEDIC RESOURCE MANUAL

PARAMEDIC RESOURCE MANUAL ONTARIO BASE HOSPITAL GROUP PARAMEDIC RESOURCE MANUAL ACID-BASE BALANCE SECTION SIX Version 1.1 2010 Update PARAMEDIC RESOURCE MANUAL OBJECTIVES: ACID-BASE BALANCE The objectives indicate what you should

More information

BODY FLUID. Outline. Functions of body fluid Water distribution in the body Maintenance of body fluid. Regulation of fluid homeostasis

BODY FLUID. Outline. Functions of body fluid Water distribution in the body Maintenance of body fluid. Regulation of fluid homeostasis BODY FLUID Nutritional Biochemistry Yue-Hwa Chen Dec 13, 2007 Chen 1 Outline Functions of body fluid Water distribution in the body Maintenance of body fluid Intake vs output Regulation of body fluid Fluid

More information

Metabolic Alkalosis: Vomiting

Metabolic Alkalosis: Vomiting RENAL ANL) ACID-BASE PHYSIOLOGY 213 Case 37 Metabolic Alkalosis: Vomiting Maria Cuervo is a 20-year-old philosophy major at a state university. When the "24-hour" stomach flu went around campus during

More information

Glomerular Capillary Blood Pressure

Glomerular Capillary Blood Pressure Glomerular Capillary Blood Pressure Fluid pressure exerted by blood within glomerular capillaries Depends on Contraction of the heart Resistance to blood flow offered by afferent and efferent arterioles

More information

Chapter 20 8/23/2016. Fluids and Electrolytes. Fluid (Water) Fluid (Water) (Cont.) Functions

Chapter 20 8/23/2016. Fluids and Electrolytes. Fluid (Water) Fluid (Water) (Cont.) Functions Chapter 20 Fluids and Electrolytes All items and derived items 2015, 2011, 2006 by Mosby, Inc., an imprint of Elsevier Inc. All rights reserved. Fluid (Water) Functions Provides an extracellular transportation

More information

Kidneys in regulation of homeostasis

Kidneys in regulation of homeostasis Kidneys in regulation of homeostasis Assoc. Prof. MUDr. Markéta Bébarová, Ph.D. Department of Physiology Faculty of Medicine, Masaryk University This presentation includes only the most important terms

More information