SWITCH FROM METABOLIC TO VENTILATORY COMPENSATION OF EXTRACELLULAR ph IN CRAYFISH

Size: px
Start display at page:

Download "SWITCH FROM METABOLIC TO VENTILATORY COMPENSATION OF EXTRACELLULAR ph IN CRAYFISH"

Transcription

1 J. exp. Biol. 137, (1988) 411 Printed in Great Britain The Company of Biologists Limited 1988 SWITCH FROM METABOLIC TO VENTILATORY COMPENSATION OF EXTRACELLULAR ph IN CRAYFISH BY B. BURTIN AND J.-C. MASSABUAU Laboratoire d'etude des Regulations Physiologiques (associe a Vuniversite Louis Pasteur), Centre National de la Recherche Scientifique, 23 rue Becquerel, Strasbourg, France Accepted 23 March 1988 Summary The mechanisms of extracellular ph regulation were studied in crayfish Astacus leptodactylus under conditions that were either favourable or unfavourable for ionoregulation. Animals in intermoult or premoult stages were kept in normoxic artificial waters at 13 C. In intermoult, acid-base balance (ABB) and ionoregulatory disturbances were induced by increasing the ambient partial pressure of CO 2 (Pw CO2 ), by decreasing the concentration of NaCl in the water ([NaCl] w ) or by associating both changes. In premoult we took advantage of the spontaneously occurring endogenous problems of ionoregulation which are linked to shell shedding. In intermoult, an increase of Pw CO2 alone induced a hypercapnic acidosis compensated by metabolic means, whereas in association with a decrease of [NaCl] w (which induced a decrease of [NaCl] in the haemolymph) it led to a ventilatory compensation. In intermoult a decrease of [NaCl] w alone induced a metabolic acidosis that was compensated by metabolic means, whereas in premoult it was compensated by ventilatory adjustments. It is concluded that when water breathers are facing experimentally induced or spontaneous ionoregulatory problems, compensation for superimposed ABB disturbances can be made by ventilatory adjustments instead of by metabolic means. Introduction In water breathers, regulation of extracellular ph has been thought to be performed only by metabolic means, i.e. mainly through ionic exchanges between extracellular medium and water (see Reeves & Rahn, 1979; Heisler, 1984; Truchot, 1987). However, this has been reconsidered in the freshwater crayfish Astacus leptodactylus. In this animal a ventilatory CO 2 drive has been described (Massabuau et al. 1984) and the presence of peripheral CO 2 chemoreceptors located in the branchial cavities has been reported (Massabuau & Burtin, 1985). j[b analyse the role of this chemosensitivity one must first differentiate between Key words: acid-base balance, crayfish, ventilation, respiration, ionoregulation, acidosis.

2 412 B. BURTIN AND J.-C. MASSABUAU reports in the literature showing the CO 2 partial pressure (PcoO m tne blood as a dependent variable and those showing it as an independent variable by which acid-base regulation can be achieved. Indeed, it has been shown that at constant temperature and metabolic rate the blood P CO2 can vary passively - as a dependent variable - following changes of water P CO2 (Dejours & Armand, 1980), water titration alkalinity (Dejours & Armand, 1980; Truchot, 1984; Thomas & Poupin, 1985) and any ventilatory modifications such as those due to changes of inspired O 2 partial pressure (Dejours, 1973) or stressful conditions (see Heisler, 1984). But the capacity of ventilation for active control of P CO2 in the blood - as an independent variable - has only been observed in three situations in A. leptodactylus. First, during the circadian rhythm there is a continuous regulation of ABB achieved through an adjustment of blood P co, (Sakakibara et al. 1987). Second, during a temperature decrease from 13 to 6 C the ABB changes can be explained only in terms of ventilatory compensation (Gaillard & Malan, 1985). Third, during a decrease of water titration alkalinity (which induces a hypercapnic acidosis, Dejours & Armand, 1980) associated with a decrease of water NaCl concentration ([NaCl] w ) the regulation of ph is performed by a ventilatory adjustment (Burtin et al. 1986). In this last study, we proposed that the decrease of [NaCl] w could disturb ionoregulation so that the mechanisms for metabolic acid-base compensation would be impaired. The aim of the present work was to gain insight into the preceding hypothesis. We present two situations, both associated with an increased load on the ionoregulatory mechanisms, in which A. leptodactylus switches from metabolic to ventilatory compensation of extracellular ph. These situations were: a hypercapnic acidosis associated with a decrease of [NaCl] w in intermoult crayfish and a metabolic acidosis in premoult animals. In the latter, crayfish spontaneously face endogenous problems of ionoregulation which are linked with the future shedding of the calcified exoskeleton (see reviews by Mantel & Farmer, 1983; Truchot, 1987). Materials and methods Animals and ambient conditions Male crayfish Astacus leptodactylus, weighing g, were acclimated in the laboratory for at least 1 month before experiments. They were fed weekly with carrots and fish and maintained under natural light conditions. Crayfish were kept in tanks filled with Strasbourg tap water, TWr, at 13 C [see Table 1; other ions (mmoir 1 + ): NH 4 <0-001, NO 2 ~ = 0-002, NO 3 ~ = 0-058]. Experiments were performed either on intermoult or on premoult crayfish (stage C 4 or D 2 and D 3 from Drach, 1939). Prior to experiments, animals were transferred from TWr into 8- to 15-1 tanks filled with a reference or test artificial water, AWr or AWt (throughout the text AWr and AWt are followed by two numbers, the first of which stands for the titration alkalinity, TAw in mequivt 1, and the second for [NaCl] in mmoll" 1 : see Table 1). They were acclimated for at least 14 days in this w and then exposed to a change in water composition. The water renewal rate,

3 Regulation of ph in crayfish 413 Table 1. Ionic concentrations (in mmolt 1 ) TA Na + Ca 2+ TWr AWr4/0-5 AWt 4/0-15 AWt2/5 AWt 2/ cr K of the different waters used Mg SO 4 2 " [I TA, titration alkalinity, mequivl *; fx, ionic strength, mmoll 1 ; O, osmolarity, mosmoll '. TWr, reference tap water; AWt, artificial test water; the two numbers following the abbreviations are TAw and [NaCl] w, respectively (example: AWt2/5 denotes a test artificial water with a TA value of 2mequivl~ 1 and a [NaCl] w value of 5mmoll" 1 ) lh l, was adjusted to keep the actual values of ion concentrations close to the nominal values (±4% range). Ionic strength was kept constant by replacing NaCl with MgSO 4 since the activity of each ion, as well as pk values, are dependent on the ionic strength (Stumm & Morgan, 1981). The ABB in the water was adjusted by a ph-co 2 stat (Dejours & Armand, 1980). The value of CO 2 partial pressure in the water (Pw co,) was maintained at 0-1 ± 0-01 kpa for normocapnic conditions (for TAw = 4mequivl" 1, ph = 8-32 and for TAw = 2mequivl~ 1, ph = 8-03) and at 0-2kPa for hypercapnic conditions (TAw = 4mequivl~ l and ph = 8-03). Experimental temperature was 13 C and Pw o, was 19-5 ± 0-6 kpa. Animals were fasted for at least 1 week before experiments. Haemolymph was sampled only once between 09.00h and 16.00h. Determination of haemolymph acid-base balance Mixed venous haemolymph samples were collected by puncturing the infrabranchial sinus. Venous haemolymph ph (phv) was immediately measured with a Radiometer 6299A capillary electrode and total CO 2 concentration with a modified Cameron chamber (Cameron, 1971). Bicarbonate plus carbonate concentrations and Pv C o 2 were calculated using a CO 2 solubility of 0-427mmoll" 1 kpa" 1, pk{ = 6-12 and pk 2 ' = (Gaillard & Malan, 1985; throughout the text [HCO 3 ~]v corresponds to [HCO 3 "]- V + 2[CO 2 3 "];). Values of pk' were not corrected for changes of haemolymph ionic strength. Na + concentration in the venous haemolymph ([Na + ];) was determined by atomic absorption spectrophotometry at 589 nm and Cl~ concentration ([Cl~]v) by coulometry (Cotlove's method). The water content of the haemolymph and whole animal were determined by measuring differences between wet and dry mass after dehydration at 70 C for 24 and 72 h, respectively. Determination of oxygen consumption and ventilatory flow rate Oxygen consumption (M O2 ) was determined as described by Massabuau et al. J1984) and ventilatory flow rate (Vw) was calculated from M o, and the simultaneous measurement of the value of O 2 partial pressure in the expired water

4 414 B. BURTIN AND J.-C. MASSABUAU (Saunders, 1962). Crayfish were placed in a respirometer at about 13.00h and measurements were performed the following day between 10.00h and 13.00h. Since for technical reasons only one animal could be examined each day, the measurements ran over 10 days. No significant difference between the beginning and the end of this period was noticeable. Data are reported as mean values ±1 standard error, S.E. Differences were evaluated using a two-tailed Student's r-test. P<0-05 was taken as the fiducial limit of significance. Acid-base balance states were considered to be distinct when two parameters out of three (ph, [HCO 3 ~]v and Pv CO2 ) were different. Results The time course of the ionoregulatory disturbance that occurred when [NaCl] w was decreased from 0-5 to O-lSmmolT 1 is presented in Fig. 1. In the first 24h, both [Na + ]- and [Cl~]v decreased. After 7 days, [Na + ]- v recovered to its reference value. A transient metabolic acidosis was evident after 2h but it was corrected by metabolic means after 24 h. Fig. 2 shows that when a hypercapnic acidosis induced by an increase of Pw CO2 was superimposed on this ionoregulatory disturbance, there was no change in ABB after 24 h. This means that the compensation is achieved by a ventilatory adjustment of blood Pco 2 - A control experiment, h B Pv CO2 (kpa), T L 9 XAWr 4/0-5 A AWt 4/0-15 /. J 24 h Reference? f? OU p 150 Z X Time (days) phv 7-9 Fig. 1. (A) Time course of changes in sodium and chloride concentration in the venous haemolymph, [Na + ]v and [Cl~]v, of intermoult crayfish following transfer from artificial reference water, AWr 4/0-5 (TAw = 4 mequiv 1~' and [NaCl] w = 0-5mmoir 1 ) into artificial test water AWt 4/0-15 (TAw = 4 mequiv I" 1 and [NaCl] w = 0-15mmoir l ). Both [Na + ]; and [C\~]- v decrease during the first 24h and only [Na + ]v recovers after 7 days. (B) Time course of changes in acid-base balance in the venous haemolymph of the same animals. There is a slight metabolic acidosis. During the metabolic compensation, points at 2 and 24h are significantly different. March 1985; means ± 1 S.E.; * values are significantly different from reference values; N= 14 crayfish per point.

5 Regulation of ph in crayfish Pw C o 2 (kpa) X AWr 4/ AWr 4/ OAWt4/ h Pv CO2 (kpa) o u X phv Fig. 2. Acid-base balance in the venous haemolymph of intermoult crayfish exposed to a 24-h hypercapnia (Pw cc, 2 = 0-2 kpa). Animals were either kept in artificial water, AWr 4/0-5 (TAw = 4 mequiv 1~ l and [NaCl] w = 0-5mmoir 1 ) or exposed to a decrease of [NaCl] w in passing from AWr4/0-5 to AWt 4/0-15 (TAw = 4 mequiv r 1 and [NaCl] w = 0-15mmoll~ l ). When the hypercapnic acidosis was associated with a decrease of [NaCl] w, ph was compensated by ventilation instead of metabolic means. February 1987; means ± 1 S.E.; * value is statistically different from the reference value although ph is not different in the three situations; reference, N= 14 crayfish; other points, N = 20. Dashed line, buffer line for Astacus leptodactylus (Dejours & Beekenkamp, 1978). without simultaneous decrease of [NaCl] w, shows the metabolic pathway of compensation as both Pv CO2 and [HCO 3 ~]v increased (Fig. 2). Fig. 3 (control experiment in intermoult) and Fig. 4 (during premoult stage) show how a metabolic acidosis induced by decreasing [NaCl] w from 5 to O-lSmmoll" 1 was compensated when ionic exchanges between extracellular medium and water were modified to prepare for moulting. In intermoult, a highly significant metabolic acidosis developed as both [Na + ]v and [Cl~]v decreased, and there was a partial metabolic compensation between 7 and 14 days. Water content of the haemolymph (95-1 ±0-9%) and whole body (78-1 ±1-1%) remained constant throughout the experiment (N = 5). In premoult stages the mechanism of compensation was different; 14 days after the decrease of [NaCl] w both Pv CO2 and [HCO 3 ~]v were decreased and phv did not differ from the reference value. Table 2 confirms that in this situation the ventilatory requirement significantly increased. When crayfish were transferred back into the water in which [NaCl] w was 5 mmol 1~ ] Pv C o an 2 d [HCC>3~]v tended to recover to reference values (Fig. 4). She metabolic alkalosis observed at that time corresponds to what was reported in le same species during the late premoult stage by Dejours & Beekenkamp (1978).

6 416 B. BURTIN AND J.-C. MASSABUAU Pv CO2 (kpa) "T7 O u X Time (days) phv 7-9 Fig. 3. (A) Time course of changes in sodium and chloride concentrations in the venous haemolymph, [Na + ]; and [CP]v, of intermoult crayfish following the transfer from artificial test water, AWt2/5 (TAw = 2 mequiv 1~' and [NaCl] w = SmmolP 1 ) into AWt2/0-15 (TAw = 2 mequiv P 1 and [NaCl] w = O-lSmmolP 1 ). Both [Na + ]; and [Cl~]v decreased in the first 7 days. Between 7 and 14 days [CP]v did not change significantly and [Na + ]v increased. (B) Time course of changes in acid-base balance in the venous haemolymph of the same animals. There is a large metabolic acidosis which developed in 7 days. It is partially compensated by metabolic means after 14 days. October 1984; means ± 1 S.E.; * values significantly different from reference; iy=14 crayfish per point. AWt 2/5 O AWt 2/0-15 Pv CO2 (kpa) 0-5 s Reference #-i 24 h*^^" T 7 days phv 7-9 Fig. 4. Acid-base balance in the venous haemolymph of premoult crayfish following transfer from artificial test water, AWt 2/5 (TAw = 2 mequiv P 1 and [NaCl] w = 5mmolP') into AWt2/0-15 (TAw = 2mequivP 1 and [NaCl] w = 0-15mmolP') and recovery. The metabolic acidosis is compensated by ventilatory adjustment. Following recovery in AWt 2/5, there is a metabolic alkalosis partially compensated by a decrease of ventilation as Pv CO2 returned to its reference value. September 1985; means ± 1 S.E. ; * value significantly different from reference; N= 10 crayfish per point.

7 Regulation of ph in crayfish All Table 2. Ventilatory changes in crayfish transferred from AWt2/5 into AWt2/0-15 during the premoult stage Pio 2 PE O2 E MO.B- 1 VwB-' VwM o ;' Water (kpa) (kpa) (%) (^molmin" 1 kg" 1 ) (mlmin" J kg" 1 ) (mljumoi~ J ) AWt2/5 AWt 2/ From left to right: oxygen partial pressure in the inspired and expired water, Pio 2, and PEQ 2 ; oxygen extraction coefficient, E; oxygen consumption per unit of body mass, M O,B~'; ventilatory flow rate per unit of body mass, VwB" 1 and ventilatory requirement, VwM O2 ~' in two groups of 10 crayfish acclimated for at least 14 days in both waters (see Table 1). In AWt 2/0-15, VwMo 2 ~ l was double the value in AWt2/5 (P<0-05). The values for animals in AWt 2/5 are from Burtin et al. (1986); mean ± 1 S.E. Discussion Present experiments show that when Astacus leptodactylus faces increased ionoregulatory demand, compensation for superimposed ABB disturbances can be made by ventilatory adjustments. This was demonstrated in two types of experiments: during decreases of [Na + ]; and [Cl~]v brought on by decreasing [NaCl] w, and during the premoult period where iono- and osmoregulatory problems were spontaneously present. When no such ionoregulatory problems existed, the compensation was always achieved by metabolic means (Figs 1-3). It seems that these problems governed the functioning of the ionic exchange system and precluded its role in metabolic compensation of extracellular ph. A consequence of this proposal is that the ionic exchange system should be able to perform metabolic compensation once these ionoregulatory problems are solved. Burtin et al. (1987) recently demonstrated this in A. leptodactylus kept in similar experimental conditions. Animals were exposed to a 24-h hypercapnic period 4 weeks after transfer from Twr to AWt 2/0-05 (in which TA = 2mequivl~ 1 and [NaCl] w = 0-05mmoll~ 1 ) and indeed compensation was metabolic. Moreover, evidence for a key role of [NaCl] w was reinforced as it was also shown that the efficiency of the compensation increased at higher [NaCl] w values. When [NaCl] w was decreased from 5 to O-lSmmoll" 1, [Na + ]- v and [Cl~]v decreased and there was a large metabolic acidosis. The acidosis persisted for 7 days (Fig. 3). Surprisingly, there was no ventilatory compensation, although this is quite feasible in view of the way that compensation was made for the same disturbance in premoult (Fig. 4). It is possible that this lack of compensation, instead of being only passive, could be causally related to a change required to optimize the ionoregulatory mechanisms. For example, one can hypothesize that ihe acidosis could stimulate either directly or indirectly (through a neurohormonal ecretion, see Mantel, 1985) the activity or synthesis of Na + /K + -ATPase. In this view, the 1-week delay required for ph and [Na + ]; to start to recover (Fig. 3)

8 418 B. BURTIN AND J.-C. MASSABUAU would be consistent with an enzymatic adaptation, although chronology of the latter remains controversial in the literature about crustaceans (Pequeux & Gilles, 1988). The idea of an enzymatic adaptation would be also consistent with our observation that the delay of recovery was shortened when [NaCl] w was decreased from 0-5 instead of Smmoll" 1. Indeed, this could be due to an already present higher level of Na + /K + -ATPase activity at [NaCl] w = 0-5 mmol T 1. A relationship between steady-state values of Na + /K + -ATPase activity and acclimation level of [NaCl] w has been reported in Eriocheir sinensis and Carcinus maenas (Pequeux & Chapelle, 1982) and Uca pugnax (Holliday, 1985). The present results further confirm the importance of water ionic composition, especially in the freshwater range, as stressed by Dejours et al. (1982) in determining extracellular ABB. But, in addition, the past history of the water breather with respect to environmental ionic composition can also play a major role. Fig. 5 is a composite figure drawn from fig. 2 in Burtin et al. (1986) and Fig. 3. It illustrates that crayfish in AWt2/0-15 can exhibit different ventilatory flow rates and ABB states depending on the composition of the reference water in which they had previously been acclimated (either AWr4/0-5 or AWt2/5). Indeed, in the first situation, animals must face a decrease of [NaCl] w accompanied by a hypercapnic acidosis (due to a decrease of TAw), whereas in the second situation they have only to deal with a decrease of [NaCl] w. In conclusion, Krogh (1938) proposed that in freshwater animals, Na + and Cl~ co 2 X AWr 4/0-5 AWt2/5 O AWt 2/0-15 PH Fig. 5. Composite figure drawn from fig. 2 in Burtin et al. (1986) and Fig. 3 in the present paper. It illustrates that in a given water composition (AWt 2/0-15) crayfish can exhibit two acid-base states and ventilatory flow rates depending on the composition of their previous environment (either AWr4/0-5 or AWt2/5). In one situation, animals were transferred directly from AWr 4/0-5 into AWt2/0-15 but in the other an exposure to AWt 2/5 was interposed. When animals were transferred from AWr 4/0-5 into AWt 2/5, the hypercapnic acidosis due to the decrease of TAw is compensated by metabolic means whereas it is compensated by a ventilatory adjustment in passing from AWr4/0-5 to AWt2/0-15. Transferring crayfish from AWt2/5 into AWt2/0-15 corresponds to a decrease of [NaCl] w alone; the metabolic acidosis is partially compensated by metabolic means.

9 Regulation of ph in crayfish 419 are taken from the ambient medium and exchanged against the end-products of metabolism, NH 4 + and HCO 3 ~. This was the basic idea of the coupling between respiration, i.e. acid-base regulation, and ionoregulation in water breathers (Maetz, 1971). Our results demonstrate the existence of another relationship between these two functions: the CO 2 exchange system can participate in ph regulation when the mechanisms of ionic exchanges involved in the metabolic compensation of extracellular ABB are already engaged in separate ionoregulatory problems. The authors thank Dr D. C. Jackson for help in preparing the English manuscript. BB was supported by the Ministere de la Recherche et de la Technologic References BURTIN, B., MASSABUAU, J. C. & DEJOURS, P. (1986). Ventilatory regulation of extracellular ph in crayfish exposed to changes in water titration alkalinity and NaCl concentration. Respir. Physiol. 65, BURTIN, B., MASSABUAU, J. C. & DEJOURS, P. (1987). Influence de la concentration de NaCl dans l'eau sur l'efficacite de la compensation metabolique d'une acidose hypercapnique chez l'ecrevisse. C.r. hebd. Seanc. Acad. ScL, Paris 305, CAMERON, J. N. (1971). Rapid method for determination of total carbon dioxide in small blood samples. /. appl. Physiol. 31, DEJOURS, P. (1973). Problems of control of breathing in fishes. In Comparative Physiology (ed. L. Bolis, K. Schmidt-Nielsen & S. H. P. Maddrell), pp Amsterdam: North- Holland. DEJQURS, P. & ARMAND, J. (1980). Hemolymph acid-base balance of the crayfish Astacus leptodactylus as a function of the oxygenation and the acid-base balance of the ambient water. Respir. Physiol. 41, DEJOURS, P., ARMAND, J. & BEEKENKAMP, H. (1982). The effect of ambient chloride concentration changes on branchial chloride-bicarbonate exchanges and hemolymph acid-base balance of crayfish. Respir. Physiol. 48, DEJOURS, P. & BEEKENKAMP, H. (1978). L'equilibre acide-base de Phemolymphe au cours de la mue chez l'ecrevisse. C.r. hebd. Seanc. Acad. Sci., Paris 286, DRACH, P. (1939). Mue et cycle d'intermue chez les crustaces decapodes. Annls Inst. Oceanogr. 19, GAILLARD, S. & MALAN, A. (1985). Intracellular ph-temperature relationships in a water breather, the crayfish. Molec. Physiol. 7, HEISLER, N. (1984). Acid-base regulation infishes.in Fish Physiology, vol. XA (ed. W. S. Hoar & D. J. Randall), pp London: Academic Press. HOLLIDAY, C. W. (1985). Salinity-induced changes in gill Na,K-ATPase activity in the mud fiddler crab, Uca pugnax. J. exp. Zool. 233, KROGH, A. (1938). The active absorption of ions in some freshwater animals. Z. vergl. Physiol. 25, MAETZ, J. (1971). Fish gills: mechanisms of salt transfer in fresh water and sea water. Phil. Trans. R. Soc. Ser. B 262, MANTEL, L. H. (1985). Neurohormonal integration of osmotic and ionic regulation. Am. Zool. 25, MANTEL, L. H. & FARMER, L. L. (1983). Osmotic and ionic regulation. In The Biology of Crustacea, vol. 5 (ed. L. H. Mantel), pp New York: Academic Press. MASSABUAU, J. C. & BURTIN, B. (1985). Ventilatory CO 2 reflex response in hypoxic crayfish k Astacus leptodactylus acclimated to 20 C. /. comp. Physiol. 156B, MASSABUAU, J. C, DEJOURS, P. & SAKAKIBARA, Y. (1984). Ventilatory CO 2 drive in the crayfish: influence of oxygen consumption level and water oxygenation. /. comp. Physiol. 154B,

10 420 B. BURTIN AND J.-C. MASSABUAU PEQUEUX, A. & CHAPELLE, S. (1982). (Na + + K + )-ATPase activity and phospholipids in two euryhaline crabs as related to changes in the environmental salinity. Mar. Biol. Letts 3, P QUEUX, A. & GILLES, R. (1988). NaCl transport in gills and related structures. Part I: Invertebrates. In Advances in Environmental and Comparative Physiology "NaCl Transport in Epithelia" (ed. R. Greger). Berlin, Heidelberg: Springer-Verlag (in press). REEVES, R. B. & RAHN, H. (1979). Patterns in vertebrate acid-base regulation. In Evolution of Respiratory Processes. A Comparative Approach (ed. S. C. Wood & C. Lenfant), pp New York: M. Dekker. SAKAKIBARA, Y., BURTIN, B. & MASSABUAU, J. C. (1987). Orcadian rhythm of extracellular ph in crayfish at different levels of oxygenation. Respir. Physiol. 69, SAUNDERS, R. L. (1962). The irrigation of the gill in fishes. II. Efficiency of oxygen uptake in relation to respiratory flow activity and concentrations of oxygen and carbon dioxide. Can. J. Zool. 40, STUMM, W. & MORGAN, J. J. (1981). Aquatic Chemistry. 780pp. New York: Wiley-Interscience. THOMAS, S. & POUPIN, J. (1985). A study of the effects of water carbonate alkalinity on some parameters of blood acid-base status in rainbow trout (Salmo gairdneri R.). /. comp. Physiol. 156, TRUCHOT, J. P. (1984). Water carbonate alkalinity as a determinant of hemolymph acid-base balance in the shore crab Carcinus maenas: a study at two different ambient Pco 2 and PQ 2 levels. J. comp. Physiol. 154B, TRUCHOT, J. P. (1987). Comparative Aspects of Extracellular Acid-Base Balance. Berlin, Heidelberg: Springer-Verlag. 248pp.

THE ROLE OF CaCO 3 DISSOLUTION AS A SOURCE OF HCO3- FOR THE BUFFERING OF HYPERCAPNIC ACIDOSIS IN AQUATIC AND TERRESTRIAL DECAPOD CRUSTACEANS

THE ROLE OF CaCO 3 DISSOLUTION AS A SOURCE OF HCO3- FOR THE BUFFERING OF HYPERCAPNIC ACIDOSIS IN AQUATIC AND TERRESTRIAL DECAPOD CRUSTACEANS J. exp. Biol. (1981), 94, 269-274 269 With 1 figure f'rinted in Great Britain THE ROLE OF CaCO 3 DISSOLUTION AS A SOURCE OF HCO3- FOR THE BUFFERING OF HYPERCAPNIC ACIDOSIS IN AQUATIC AND TERRESTRIAL DECAPOD

More information

SHORT COMMUNICATION URATE DOES NOT ACCUMULATE IN THE HAEMOLYMPH OF EXERCISED BLUE CRABS, CALUNECTES SAPIDUS

SHORT COMMUNICATION URATE DOES NOT ACCUMULATE IN THE HAEMOLYMPH OF EXERCISED BLUE CRABS, CALUNECTES SAPIDUS J. exp. Biol. 154, 581-585 (1990) 581 Printed in Great Britain The Company of Biologists Limited 1990 SHORT COMMUNICATION URATE DOES NOT ACCUMULATE IN THE HAEMOLYMPH OF EXERCISED BLUE CRABS, CALUNECTES

More information

BRONWYN A. ELLIS AND STEPHEN MORRIS School of Biological Sciences (A08), University of Sydney, Sydney, New South Wales 2006, Australia

BRONWYN A. ELLIS AND STEPHEN MORRIS School of Biological Sciences (A08), University of Sydney, Sydney, New South Wales 2006, Australia The Journal of Experimental Biology 198, 395 407 (1995) Printed in Great Britain The Company of Biologists Limited 1995 395 EFFECTS OF EXTREME ph ON THE PHYSIOLOGY OF THE AUSTRALIAN YABBY CHERAX DESTRUCTOR:

More information

CALCIUM BALANCE AT THE PREMOULT STAGE OF THE FRESHWATER CRAYFISH AUSTROPOTAMOBIUS PALLIPES (LEREBOULLET)

CALCIUM BALANCE AT THE PREMOULT STAGE OF THE FRESHWATER CRAYFISH AUSTROPOTAMOBIUS PALLIPES (LEREBOULLET) J. Exp. Biol. (1974). 61, 7-4 7 ^ t/r figures Vrmted in Great Britain CALCIUM BALANCE AT THE PREMOULT STAGE OF THE FRESHWATER CRAYFISH AUSTROPOTAMOBIUS PALLIPES (LEREBOULLET) BY PETER GREENAWAY* Department

More information

INFLUENCE OF MILD HYPERCAPNIA ON THE EFFECTS OF ENVIRONMENTAL ACIDIFICATION ON RAINBOW TROUT (SALMO GAIRDNERI)

INFLUENCE OF MILD HYPERCAPNIA ON THE EFFECTS OF ENVIRONMENTAL ACIDIFICATION ON RAINBOW TROUT (SALMO GAIRDNERI) J. exp. Bid. (1979). 83. 345-349 With 1 figure Printed in Great Britain INFLUENCE OF MILD HYPERCAPNIA ON THE EFFECTS OF ENVIRONMENTAL ACIDIFICATION ON RAINBOW TROUT (SALMO GAIRDNERI) BY C. M. NEVILLE Department

More information

CONTRACTILITY AND 4s Ca FLUXES IN HEART MUSCLE OF FLOUNDER AT A LOWERED EXTRACELLULAR NaCl CONCENTRATION

CONTRACTILITY AND 4s Ca FLUXES IN HEART MUSCLE OF FLOUNDER AT A LOWERED EXTRACELLULAR NaCl CONCENTRATION y. exp. Bio/. 9, 2-27 (984) 2 Printed in Great Britain The Company of Biologists Limited 984 CONTRACTILITY AND 4s Ca FLUXES IN HEART MUSCLE OF FLOUNDER AT A LOWERED EXTRACELLULAR NaCl CONCENTRATION BY

More information

ANALYSIS OF HAEMOLYMPH AND MUSCLE ACID-BASE STATUS DURING AERIAL EXPOSURE IN THE CRAYFISH AUSTROPOTAMOBIUS PALLIPES

ANALYSIS OF HAEMOLYMPH AND MUSCLE ACID-BASE STATUS DURING AERIAL EXPOSURE IN THE CRAYFISH AUSTROPOTAMOBIUS PALLIPES J. exp. Biol. 134, 409-422 (1988) 409 Printed in Great Britain The Company of Biologists Limited 1988 ANALYSIS OF HAEMOLYMPH AND MUSCLE ACID-BASE STATUS DURING AERIAL EXPOSURE IN THE CRAYFISH AUSTROPOTAMOBIUS

More information

RESPIRATION IN RELATION TO ION UPTAKE IN THE CRAYFISH AUSTROPOTAMOBIUS PALLIPES (LEREBOULLET)

RESPIRATION IN RELATION TO ION UPTAKE IN THE CRAYFISH AUSTROPOTAMOBIUS PALLIPES (LEREBOULLET) . Biol. (1975), 63. 689-699 689 ted in Great Britain RESPIRATION IN RELATION TO ION UPTAKE IN THE CRAYFISH AUSTROPOTAMOBIUS PALLIPES (LEREBOULLET) BY D. W. SUTCLIFFE AND T. R. CARRICK Freshwater Biological

More information

Department of Biology, University of Calgary, Calgary Alberta Canada T2N. (Received 14 May 1981) SUMMARY

Department of Biology, University of Calgary, Calgary Alberta Canada T2N. (Received 14 May 1981) SUMMARY f. exp. Biol. (1982), 97, 241-252 241 With 3 figures Printed in Great Britain ACID TOLERANCE AND EFFECTS OF SUBLETHAL ACID EXPOSURE ON IONO-REGULATION AND ACID-BASE STATUS IN TWO CRAYFISH PROCAMBARUS CLARKI

More information

BY B. PADMANABHANAIDU AND R. RAMAMURTHY Department of Zoology, Sri Venkateswara University, Tirupati, India. {Received 23 May i960)

BY B. PADMANABHANAIDU AND R. RAMAMURTHY Department of Zoology, Sri Venkateswara University, Tirupati, India. {Received 23 May i960) J. Exp. Biol. (1961), 38, 35-41 25 With 3 text-figures Printed in Great Britain THE INFLUENCE OF SEX AND SIZE ON THE OSMOTIC PRESSURE, THE CHLORIDE AND THE FREE AMINO ACIDS OF THE BLOOD OF THE FRESHWATER

More information

THE PHYSIOLOGY OF THE ANTENNAL GLAND OF CARCINUS MAENAS (L.)

THE PHYSIOLOGY OF THE ANTENNAL GLAND OF CARCINUS MAENAS (L.) J. Exp. Biol. (1969), 51, 41-45 Printed in Great Britain THE PHYSIOLOGY OF THE ANTENNAL GLAND OF CARCINUS MAENAS (L.) V. SOME NITROGENOUS CONSTITUENTS IN THE BLOOD AND URINE BY R. BINNS Dept. of Zoology,

More information

REGULATION OF WATER AND SOME IONS IN GAMMARIDS (AMPHIPODA)

REGULATION OF WATER AND SOME IONS IN GAMMARIDS (AMPHIPODA) J. Exp. Biol. (i97i)> 55> 345-355 345 With 4 text-figures Printed in Great Britain REGULATION OF WATER AND SOME IONS IN GAMMARIDS (AMPHIPODA) II. GAMMARUS PULEX (L.) BY D. W. SUTCLIFFE Freshwater Biological

More information

LACTATE SEQUESTRATION IN THE CARAPACE OF THE CRAYFISH AUSTROPOTAMOBIUS PALLIPES DURING EXPOSURE IN AIR

LACTATE SEQUESTRATION IN THE CARAPACE OF THE CRAYFISH AUSTROPOTAMOBIUS PALLIPES DURING EXPOSURE IN AIR The Journal of Experimental Biology 24, 941 946 (21) Printed in Great Britain The Company of Biologists Limited 21 JEB298 941 LACTATE SEQUESTRATION IN THE CARAPACE OF THE CRAYFISH AUSTROPOTAMOBIUS PALLIPES

More information

Managing Acid Base and Electrolyte Disturbances with RRT

Managing Acid Base and Electrolyte Disturbances with RRT Managing Acid Base and Electrolyte Disturbances with RRT John R Prowle MA MSc MD MRCP FFICM Consultant in Intensive Care & Renal Medicine RRT for Regulation of Acid-base and Electrolyte Acid base load

More information

There are number of parameters which are measured: ph Oxygen (O 2 ) Carbon Dioxide (CO 2 ) Bicarbonate (HCO 3 -) AaDO 2 O 2 Content O 2 Saturation

There are number of parameters which are measured: ph Oxygen (O 2 ) Carbon Dioxide (CO 2 ) Bicarbonate (HCO 3 -) AaDO 2 O 2 Content O 2 Saturation Arterial Blood Gases (ABG) A blood gas is exactly that...it measures the dissolved gases in your bloodstream. This provides one of the best measurements of what is known as the acid-base balance. The body

More information

AMMONIA AND ACID-BASE BALANCE DURING HIGH AMMONIA EXPOSURE IN A MARINE TELEOST (MYOXOCEPHALUS OCTODECIMSPINOSUS)

AMMONIA AND ACID-BASE BALANCE DURING HIGH AMMONIA EXPOSURE IN A MARINE TELEOST (MYOXOCEPHALUS OCTODECIMSPINOSUS) J. exp. Biol. 140, 89-105 (1988) 89 Printed in Great Britain The Company of Biologists Limited 1988 AMMONIA AND ACID-BASE BALANCE DURING HIGH AMMONIA EXPOSURE IN A MARINE TELEOST (MYOXOCEPHALUS OCTODECIMSPINOSUS)

More information

BY J. B. CLAIBORNE* AND N. HEISLER Abteilung Physiologie, Max-Planck-Institut fur experimentelle Medizin, D-3400 Gottingen, FRG. Accepted 5 June 1986

BY J. B. CLAIBORNE* AND N. HEISLER Abteilung Physiologie, Max-Planck-Institut fur experimentelle Medizin, D-3400 Gottingen, FRG. Accepted 5 June 1986 J. exp. Biol. 126, 41-61 (1986) 41 Printed in Great Britain The Company ofbiobgists Limited 1986 ACID-BASE REGULATION AND ION TRANSFERS IN THE CARP (CYPRINUS CARPIO): PH COMPENSATION DURING GRADED LONG-

More information

Jyotsna Shrivastava (Jo) University of Antwerp Belgium, Europe

Jyotsna Shrivastava (Jo) University of Antwerp Belgium, Europe Effect of ocean acidification on deep sea spotted ratfish Hydrolagus colliei: physiological consequences on acid-base balance, ion-regulation and nitrogenous waste dynamics Jyotsna Shrivastava (Jo) University

More information

3. Which of the following would be inconsistent with respiratory alkalosis? A. ph = 7.57 B. PaCO = 30 mm Hg C. ph = 7.63 D.

3. Which of the following would be inconsistent with respiratory alkalosis? A. ph = 7.57 B. PaCO = 30 mm Hg C. ph = 7.63 D. Pilbeam: Mechanical Ventilation, 4 th Edition Test Bank Chapter 1: Oxygenation and Acid-Base Evaluation MULTIPLE CHOICE 1. The diffusion of carbon dioxide across the alveolar capillary membrane is. A.

More information

EVIDENCE FOR THE PRESENCE OF AN ELECTROGEN1C PROTON PUMP ON THE TROUT GILL EPITHELIUM

EVIDENCE FOR THE PRESENCE OF AN ELECTROGEN1C PROTON PUMP ON THE TROUT GILL EPITHELIUM J. exp. Biol. 161, 119-134 (1991) 119 Printed in Great Britain The Company of Biologists Limited 1991 EVIDENCE FOR THE PRESENCE OF AN ELECTROGEN1C PROTON PUMP ON THE TROUT GILL EPITHELIUM BY HONG LIN AND

More information

ACTIVE CHLORIDE TRANSPORT BY THE GILLS OF RAINBOW TROUT (SALMO GAIRDNERI)

ACTIVE CHLORIDE TRANSPORT BY THE GILLS OF RAINBOW TROUT (SALMO GAIRDNERI) . (1972), 56,263-272 263 ith 4 text-figures Printed in Great Britain ACTIVE CHLORIDE TRANSPORT BY THE GILLS OF RAINBOW TROUT (SALMO GAIRDNERI) BY THEODORE H. KERSTETTER* AND LEONARD B. KIRSCHNER Department

More information

ADAPTATIONS TO A TERRESTRIAL EXISTENCE BY THE ROBBER CRAB BIRGUS LATRO

ADAPTATIONS TO A TERRESTRIAL EXISTENCE BY THE ROBBER CRAB BIRGUS LATRO J. exp. Biol. 140, 477-491 (1988) 477 Primed in Great Britain The Company of Biologists Limited 1988 ADAPTATIONS TO A TERRESTRIAL EXISTENCE BY THE ROBBER CRAB BIRGUS LATRO I. AN IN VITRO INVESTIGATION

More information

Authors: D.W. Baker*, B.A. Sardella, J.L. Rummer, M. Sackville and C.J. Brauner

Authors: D.W. Baker*, B.A. Sardella, J.L. Rummer, M. Sackville and C.J. Brauner 1 Title: Hagfish: Champions of CO 2 tolerance question the origins of vertebrate gill function 2 Authors: D.W. Baker*, B.A. Sardella, J.L. Rummer, M. Sackville and C.J. Brauner 3 4 5 Supplementary Information:

More information

POSTMOULT UPTAKE OF CALCIUM BY THE BLUE CRAB (CALLINECTES SAPIDUS) IN WATER OF LOW SALINITY

POSTMOULT UPTAKE OF CALCIUM BY THE BLUE CRAB (CALLINECTES SAPIDUS) IN WATER OF LOW SALINITY J. exp. Biol. 171, 283-299 (1992) 283 Printed in Great Britain The Company of Biologists Limited 1992 POSTMOULT UPTAKE OF CALCIUM BY THE BLUE CRAB (CALLINECTES SAPIDUS) IN WATER OF LOW SALINITY BY DOUGLAS

More information

Acid - base equilibrium

Acid - base equilibrium Acid base equilibrium ph concept ph = log [H + ] ph [H+] 1 100 mmol/l D = 90 mmol/l 2 10 mmol/l D = 9 mmol/l 3 1 mmol/l 2 ph = log [H + ] 3 ph ph = log [H + ] ph of capillary blood norm: 7,35 7,45 Sorensen

More information

COMPENSATION OF PROGRESSIVE HYPERCAPNIA IN CHANNEL CATFISH AND BLUE CRABS

COMPENSATION OF PROGRESSIVE HYPERCAPNIA IN CHANNEL CATFISH AND BLUE CRABS J. exp. Biol. 133, 183-197 (1987) 183 Printed m Great Britain The Company of Biologists Limited 1987 COMPENSATION OF PROGRESSIVE HYPERCAPNIA IN CHANNEL CATFISH AND BLUE CRABS BY JAMES N. CAMERON AND GEORGE

More information

SHORT COMMUNICATION USE OF FILTRATION METHODS IN EVALUATION OF THE CONDITION OF FISH RED BLOOD CELLS

SHORT COMMUNICATION USE OF FILTRATION METHODS IN EVALUATION OF THE CONDITION OF FISH RED BLOOD CELLS J. exp. Biol. 138, 523-527 (1988) 523 Primed in Great Britain The Company of Biologists Limited 1988 SHORT COMMUNICATION USE OF FILTRATION METHODS IN EVALUATION OF THE CONDITION OF FISH RED BLOOD CELLS

More information

ISOSMOTIC REGULATION IN VARIOUS TISSUES OF THE DIAMONDBACK TERRAPIN MALACLEMYS CENTRATA CENTRATA (LATREILLE)*

ISOSMOTIC REGULATION IN VARIOUS TISSUES OF THE DIAMONDBACK TERRAPIN MALACLEMYS CENTRATA CENTRATA (LATREILLE)* J. Exp. Biol. (1973), 59, 39-43 29 Printed in Great Britain ISOSMOTIC REGULATION IN VARIOUS TISSUES OF THE DIAMONDBACK TERRAPIN MALACLEMYS CENTRATA CENTRATA (LATREILLE)* BY M. GILLES-BAILLIENf Laboratory

More information

SHORT COMMUNICATION HAEMOLYMPH BUFFERING IN THE LOCUST SCHISTOCERCA GREGARIA

SHORT COMMUNICATION HAEMOLYMPH BUFFERING IN THE LOCUST SCHISTOCERCA GREGARIA J. exp. Biol. 154, 573-579 (1990) 573 Printed in Great Britain The Company of Biologists Limited 1990 SHORT COMMUNICATION HAEMOLYMPH BUFFERING IN THE LOCUST SCHISTOCERCA GREGARIA BY JON F. HARRISON, CALVIN

More information

Carbon Dioxide Transport. Carbon Dioxide. Carbon Dioxide Transport. Carbon Dioxide Transport - Plasma. Hydrolysis of Water

Carbon Dioxide Transport. Carbon Dioxide. Carbon Dioxide Transport. Carbon Dioxide Transport - Plasma. Hydrolysis of Water Module H: Carbon Dioxide Transport Beachey Ch 9 & 10 Egan pp. 244-246, 281-284 Carbon Dioxide Transport At the end of today s session you will be able to : Describe the relationship free hydrogen ions

More information

Respiratory Pathophysiology Cases Linda Costanzo Ph.D.

Respiratory Pathophysiology Cases Linda Costanzo Ph.D. Respiratory Pathophysiology Cases Linda Costanzo Ph.D. I. Case of Pulmonary Fibrosis Susan was diagnosed 3 years ago with diffuse interstitial pulmonary fibrosis. She tries to continue normal activities,

More information

Acid and Base Balance

Acid and Base Balance Acid and Base Balance 1 2 The Body and ph Homeostasis of ph is tightly controlled Extracellular fluid = 7.4 Blood = 7.35 7.45 < 7.35: Acidosis (acidemia) > 7.45: Alkalosis (alkalemia) < 6.8 or > 8.0: death

More information

EFFECT OF BURST SWIMMING AND ADRENALINE INFUSION ON O 2 CONSUMPTION AND CO 2 EXCRETION IN RAINBOW TROUT, SALMO GAJRDXERI

EFFECT OF BURST SWIMMING AND ADRENALINE INFUSION ON O 2 CONSUMPTION AND CO 2 EXCRETION IN RAINBOW TROUT, SALMO GAJRDXERI . exp Biol. 131, 427-434 (1987) 427 ^ i d Great Britain The Company of Biologists Limited 1987 EFFECT OF BURST SWIMMING AND ADRENALINE INFUSION ON O 2 COUMPTION AND CO 2 EXCRETION IN RAINBOW TROUT, SALMO

More information

Respiratory Physiology Part II. Bio 219 Napa Valley College Dr. Adam Ross

Respiratory Physiology Part II. Bio 219 Napa Valley College Dr. Adam Ross Respiratory Physiology Part II Bio 219 Napa Valley College Dr. Adam Ross Gas exchange Gas exchange in the lungs (to capillaries) occurs by diffusion across respiratory membrane due to differences in partial

More information

Lecture 19, 04 Nov 2003 Chapter 13, Respiration, Gas Exchange, Acid-Base Balance. Vertebrate Physiology ECOL 437 University of Arizona Fall 2003

Lecture 19, 04 Nov 2003 Chapter 13, Respiration, Gas Exchange, Acid-Base Balance. Vertebrate Physiology ECOL 437 University of Arizona Fall 2003 1 Lecture 19, 04 Nov 003 Chapter 13, Respiration, Gas Exchange, Acid-Base Balance Vertebrate Physiology ECOL 437 University of Arizona Fall 003 instr: Kevin Bonine t.a.: Bret Pasch Vertebrate Physiology

More information

THE EFFECT OF INCREASED AMBIENT CO 2 ON ARTERIAL CO 2 TENSION, CO 2 CONTENT AND ph IN RAINBOW TROUT

THE EFFECT OF INCREASED AMBIENT CO 2 ON ARTERIAL CO 2 TENSION, CO 2 CONTENT AND ph IN RAINBOW TROUT J. Exp. Biol. (197a), 57. 673680 673 'With 4 textfigures rrmted in Great Britain THE EFFECT OF INCREASED AMBIENT CO 2 ON ARTERIAL CO 2 TENSION, CO 2 CONTENT AND ph IN RAINBOW TROUT BY JAMES N. CAMERON

More information

THE EFFECTS OF REDUCING WATER ph AND TOTAL CO 2 ON A TELEOST FISH ADAPTED TO AN EXTREMELY ALKALINE ENVIRONMENT

THE EFFECTS OF REDUCING WATER ph AND TOTAL CO 2 ON A TELEOST FISH ADAPTED TO AN EXTREMELY ALKALINE ENVIRONMENT J. exp. Biol. 151, 361-369 (1990) 361 Printed in Great Britain The Company of Biologists Limited 1990 THE EFFECTS OF REDUCING WATER ph AND TOTAL CO 2 ON A TELEOST FISH ADAPTED TO AN EXTREMELY ALKALINE

More information

RESPIRATION AND ACID-BASE PHYSIOLOGY OF THE SPOTTED GAR, A BIMODAL BREATHER

RESPIRATION AND ACID-BASE PHYSIOLOGY OF THE SPOTTED GAR, A BIMODAL BREATHER J. exp. Biol. (1982), 96, 181-293 28l With 5 figures Printed in Great Britain RESPIRATION AND ACID-BASE PHYSIOLOGY OF THE SPOTTED GAR, A BIMODAL BREATHER II. RESPONSES TO TEMPERATURE CHANGE AND HYPERCAPNIA

More information

Acids and Bases their definitions and meanings

Acids and Bases their definitions and meanings Acids and Bases their definitions and meanings Molecules containing hydrogen atoms that can release hydrogen ions in solutions are referred to as acids. (HCl H + Cl ) (H 2 CO 3 H + HCO 3 ) A base is an

More information

Acid Base Balance. Professor Dr. Raid M. H. Al-Salih. Clinical Chemistry Professor Dr. Raid M. H. Al-Salih

Acid Base Balance. Professor Dr. Raid M. H. Al-Salih. Clinical Chemistry Professor Dr. Raid M. H. Al-Salih Acid Base Balance 1 HYDROGEN ION CONCENTRATION and CONCEPT OF ph Blood hydrogen ion concentration (abbreviated [H + ]) is maintained within tight limits in health, with the normal concentration being between

More information

Chapter 15 Fluid and Acid-Base Balance

Chapter 15 Fluid and Acid-Base Balance Chapter 15 Fluid and Acid-Base Balance by Dr. Jay M. Templin Brooks/Cole - Thomson Learning Fluid Balance Water constitutes ~60% of body weight. All cells and tissues are surrounded by an aqueous environment.

More information

Blood Gases For beginners

Blood Gases For beginners Blood Gases For beginners Lynsey ward th February 2008 4 th Aims To have a basic understanding of Blood Gas analysis. Objectives To state what acid and alkaline in the value of PH When analysing a blood

More information

Renal Physiology. April, J. Mohan, PhD. Lecturer, Physiology Unit, Faculty of Medical Sciences, U.W.I., St Augustine.

Renal Physiology. April, J. Mohan, PhD. Lecturer, Physiology Unit, Faculty of Medical Sciences, U.W.I., St Augustine. Renal Physiology April, 2011 J. Mohan, PhD. Lecturer, Physiology Unit, Faculty of Medical Sciences, U.W.I., St Augustine. Office : Room 105, Physiology Unit. References: Koeppen B.E. & Stanton B.A. (2010).

More information

Blood Gases, ph, Acid- Base Balance

Blood Gases, ph, Acid- Base Balance Blood Gases, ph, Acid- Base Balance Blood Gases Acid-Base Physiology Clinical Acid-Base Disturbances Blood Gases Respiratory Gas Exchange Chemical Control of Respiration Dyshemoglobins Oxygen Transport

More information

Keywords (reading p ) Ammonia toxicity Urea Uric acid Osmoconformer Osmoregulator Passive transport Facilitated diffusion Active transport

Keywords (reading p ) Ammonia toxicity Urea Uric acid Osmoconformer Osmoregulator Passive transport Facilitated diffusion Active transport Controlling the Internal Environment II: Salt and water balance Keywords (reading p. 936-949) Ammonia toxicity Urea Uric acid Osmoconformer Osmoregulator Passive transport Facilitated diffusion Active

More information

The kidney. (Pseudo) Practical questions. The kidneys are all about keeping the body s homeostasis. for questions Ella

The kidney. (Pseudo) Practical questions. The kidneys are all about keeping the body s homeostasis. for questions Ella The kidney (Pseudo) Practical questions for questions Ella (striemit@gmail.com) The kidneys are all about keeping the body s homeostasis Ingestion Product of metabolism H 2 O Ca ++ Cl - K + Na + H 2 O

More information

Control of Ventilation [2]

Control of Ventilation [2] Control of Ventilation [2] สรช ย ศร ส มะ พบ., Ph.D. ภาคว ชาสร รว ทยา คณะแพทยศาสตร ศ ร ราชพยาบาล มหาว ทยาล ยมห ดล Describe the effects of alterations in chemical stimuli, their mechanisms and response to

More information

Acid-Base Tutorial 2/10/2014. Overview. Physiology (2) Physiology (1)

Acid-Base Tutorial 2/10/2014. Overview. Physiology (2) Physiology (1) Overview Acid-Base Tutorial Nicola Barlow Physiology Buffering systems Control mechanisms Laboratory assessment of acid-base Disorders of H + ion homeostasis Respiratory acidosis Metabolic acidosis Respiratory

More information

Acid-base balance is one of the most important of the body s homeostatic mechanisms Acid-base balance refers to regulation of hydrogen ion (H + )

Acid-base balance is one of the most important of the body s homeostatic mechanisms Acid-base balance refers to regulation of hydrogen ion (H + ) Acid-base balance is one of the most important of the body s homeostatic mechanisms Acid-base balance refers to regulation of hydrogen ion (H + ) concentration in body fluids Precise regulation of ph at

More information

Awesome Osmosis and Osmoregulation. 2. Describe some of the methods of osmoregulation by freshwater and marine organisms.

Awesome Osmosis and Osmoregulation. 2. Describe some of the methods of osmoregulation by freshwater and marine organisms. Awesome Osmosis and Osmoregulation Purpose: By the end of this lab students should be able to: 1. Understand osmosis and be able explain the differences between isotonic, hypertonic, and hypotonic solutions.

More information

The equilibrium between basis and acid can be calculated and termed as the equilibrium constant = Ka. (sometimes referred as the dissociation constant

The equilibrium between basis and acid can be calculated and termed as the equilibrium constant = Ka. (sometimes referred as the dissociation constant Acid base balance Dobroslav Hájek dhajek@med.muni.cz May 2004 The equilibrium between basis and acid can be calculated and termed as the equilibrium constant = Ka. (sometimes referred as the dissociation

More information

THE EXCRETION OF MAGNESIUM BY CARCINUS MAENAS

THE EXCRETION OF MAGNESIUM BY CARCINUS MAENAS J. Exp. Biol. (1969). 51. 575-589 575 With 7 text-figures Printed in Great Britain THE EXCRETION OF MAGNESIUM BY CARCINUS MAENAS BY A. P. M. LOCKWOOD AND J. A. RIEGEL Department of Oceanography, University

More information

Renal physiology V. Regulation of acid-base balance. Dr Alida Koorts BMS

Renal physiology V. Regulation of acid-base balance. Dr Alida Koorts BMS Renal physiology V Regulation of acidbase balance Dr Alida Koorts BMS 712 012 319 2921 akoorts@medic.up.ac.za Hydrogen ions (H + ): Concentration and origin Concentration in arterial blood, resting: [H

More information

CO 2 transport and excretion in rainbow trout (Oncorhynchus mykiss) during graded sustained exercise

CO 2 transport and excretion in rainbow trout (Oncorhynchus mykiss) during graded sustained exercise Respiration Physiology 119 (2000) 69 82 www.elsevier.com/locate/resphysiol CO 2 transport and excretion in rainbow trout (Oncorhynchus mykiss) during graded sustained exercise C.J. Brauner a, *,1, H. Thorarensen

More information

BRANCHIAL AND RENAL ACID AND ION FLUXES IN THE RAINBOW TROUT, SALMO GAIRDNERI, AT LOW ENVIRONMENTAL ph

BRANCHIAL AND RENAL ACID AND ION FLUXES IN THE RAINBOW TROUT, SALMO GAIRDNERI, AT LOW ENVIRONMENTAL ph J. exp. Biol. (1981), 93, 101-118 IOI 'ith 6 figures mted in Great Britain BRANCHIAL AND RENAL ACID AND ION FLUXES IN THE RAINBOW TROUT, SALMO GAIRDNERI, AT LOW ENVIRONMENTAL ph BY D. G. MCDONALD AND C.

More information

Acid-Base Balance Dr. Gary Mumaugh

Acid-Base Balance Dr. Gary Mumaugh Acid-Base Balance Dr. Gary Mumaugh Introduction Acid-base balance is one of the most important of the body s homeostatic mechanisms Acid-base balance refers to regulation of hydrogen ion (H + ) concentration

More information

Principles of Anatomy and Physiology

Principles of Anatomy and Physiology Principles of Anatomy and Physiology 14 th Edition CHAPTER 27 Fluid, Electrolyte, and Acid Base Fluid Compartments and Fluid In adults, body fluids make up between 55% and 65% of total body mass. Body

More information

THERMAL ACCLIMATION OF A CENTRAL NEURONE OF HELIX ASPERSA

THERMAL ACCLIMATION OF A CENTRAL NEURONE OF HELIX ASPERSA J. exp. Bio!. (1979), 78, 181-186 l8l Printed in Great Britain THERMAL ACCLIMATION OF A CENTRAL NEURONE OF HELIX ASPERSA I. EFFECTS OF TEMPERATURE ON ELECTROLYTE LEVELS IN THE HAEMOLYMPH BY C. K. LANGLEY

More information

Osmoregulation and Osmotic Balance

Osmoregulation and Osmotic Balance OpenStax-CNX module: m44808 1 Osmoregulation and Osmotic Balance OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the end of this

More information

«' Biol. (i97s). 63,

«' Biol. (i97s). 63, «' Biol. (i97s). 63, 763-773 763 4 figures Printed in Great Britain NaCl ADAPTATION IN RAN A RIDIBUNDA AND A COMPARISON WITH THE EURYHALINE TOAD BUFO VIRIDIS BY U. KATZ Department of Zoology, The Hebrew

More information

ACTIVATION OF THE SODIUM UPTAKE SYSTEM AT HIGH BLOOD CONCENTRATIONS IN THE AMPHIPOD GAMMARUS DUEBENI

ACTIVATION OF THE SODIUM UPTAKE SYSTEM AT HIGH BLOOD CONCENTRATIONS IN THE AMPHIPOD GAMMARUS DUEBENI J. Exp. Biol. (1964), 41, 447-458 447 With 7 text-figures Printed in Great Britain ACTIVATION OF THE SODIUM UPTAKE SYSTEM AT HIGH BLOOD CONCENTRATIONS IN THE AMPHIPOD GAMMARUS DUEBENI BY A. P. M. LOCKWOOD

More information

ACID-BASE AND IONIC EXCHANGES AT GILLS AND KIDNEY AFTER EXHAUSTIVE EXERCISE IN THE RAINBOW TROUT BY CHRIS M. WOOD

ACID-BASE AND IONIC EXCHANGES AT GILLS AND KIDNEY AFTER EXHAUSTIVE EXERCISE IN THE RAINBOW TROUT BY CHRIS M. WOOD J. exp. Biol. 136, 461-481 (1988) 461 Printed in Great Britain The Company of Biologists Limited 1988 ACID-BASE AND IONIC EXCHANGES AT GILLS AND KIDNEY AFTER EXHAUSTIVE EXERCISE IN THE RAINBOW TROUT BY

More information

Effects of changes in salinity and osmolality on the rate of uptake of zinc by three crabs of different ecologies

Effects of changes in salinity and osmolality on the rate of uptake of zinc by three crabs of different ecologies MARINE ECOLOGY PROGRESS SERIES Vol. 244: 205 217, 2002 Published November 29 Mar Ecol Prog Ser Effects of changes in salinity and osmolality on the rate of uptake of zinc by three crabs of different ecologies

More information

Dr. Suzana Voiculescu

Dr. Suzana Voiculescu Dr. Suzana Voiculescu AB balance parameters Extracellular ph (plasmatic ph)= 7.35-7.45 < 7.35= acidosis >7.45= alkalosis Kassirer-Bleich equation [H+] = 24 PCO2/ [HCO3-] predicts that the ratio of dissolved

More information

Fluid and Electrolytes P A R T 4

Fluid and Electrolytes P A R T 4 Fluid and Electrolytes P A R T 4 Mechanisms that control acid-base homeostasis Acids and bases continually enter and leave body Hydrogen ions also result from metabolic activity Acids Hydrogen ion donors

More information

CRAB GILL INTRA-EPITHELIAL CARBONIC ANHYDRASE PLAYS A MAJOR ROLE IN HAEMOLYMPH CO 2 AND CHLORIDE ION REGULATION

CRAB GILL INTRA-EPITHELIAL CARBONIC ANHYDRASE PLAYS A MAJOR ROLE IN HAEMOLYMPH CO 2 AND CHLORIDE ION REGULATION jf. exp. Biol. (1981), 93, 343-254 243 w ith 2 figures Tinted in Great Britain CRAB GILL INTRA-EPITHELIAL CARBONIC ANHYDRASE PLAYS A MAJOR ROLE IN HAEMOLYMPH CO 2 AND CHLORIDE ION REGULATION BY LOUIS E.

More information

The Role of Carbonic Anhydrase in Blood Ion and Acid-Base Regulation 1

The Role of Carbonic Anhydrase in Blood Ion and Acid-Base Regulation 1 AMER. ZOOL., 24:241-251 (1984) The Role of Carbonic Anhydrase in Blood Ion and Acid-Base Regulation 1 RAYMOND P. HENRY 2 Department of Physiology, G4, University of Pennsylvania, School of Medicine, Philadelphia,

More information

LONG-TERM ADAPTATIONS OF SABELLA GIANT AXONS TOHYPOSMOTIC STRESS

LONG-TERM ADAPTATIONS OF SABELLA GIANT AXONS TOHYPOSMOTIC STRESS J. exp. Biol. (1978), 75, 253-263 253 With 8 figures printed in Great Britain LONG-TERM ADAPTATIONS OF SABELLA GIANT AXONS TOHYPOSMOTIC STRESS BY J. E. TREHERNE* AND Y. PICHONf Station Biologique de Roscoff,

More information

THE ADRENERGIC RESPONSES OF CARP (CYPRINUS CARPIO) RED CELLS: EFFECTS OF P Ol AND ph

THE ADRENERGIC RESPONSES OF CARP (CYPRINUS CARPIO) RED CELLS: EFFECTS OF P Ol AND ph J. exp. Biol. 136, 405-416 (19) 405 Printed in Great Britain The Company of Biologists Limited 19 THE ADRENERGIC RESPONSES OF CARP (CYPRINUS CARPIO) RED CELLS: EFFECTS OF P Ol AND ph BY ANNIKA SALAMA AND

More information

CHRIS M. WOOD, MICHELE G. WHEATLY* and HELVE HOBE** Department of Biology, McMaster University, Hamilton, Ontario, Canada LBS 4KI

CHRIS M. WOOD, MICHELE G. WHEATLY* and HELVE HOBE** Department of Biology, McMaster University, Hamilton, Ontario, Canada LBS 4KI Respiration Physiology (1984) 55, 175-192 175 Elsevier THE MECHANISMS OF ACID-BASE AND IONOREGULATION IN THE FRESHWATER RAINBOW TROUT DURING ENVIRONMENTAL HYPEROXIA AND SUBSEQUENT NORMOXIA. III. BRANCHIAL

More information

UNIT 9 INVESTIGATION OF ACID-BASE DISTURBANCES

UNIT 9 INVESTIGATION OF ACID-BASE DISTURBANCES UNIT 9 INVESTIGATION OF ACIDBASE DISTURBANCES LEARNING OBJECTIVES At the end of this chapter, students must be able to: 1. Describe the main parametres that define the acidbase equilibrium 2. Identify

More information

ISSN Original Article

ISSN Original Article Available online at http://www.urpjournals.com International Journal of Research in Fisheries and Aquaculture Universal Research Publications. All rights reserved ISSN 2277-7729 Original Article Na + /K

More information

BUFFERING OF HYDROGEN LOAD

BUFFERING OF HYDROGEN LOAD BUFFERING OF HYDROGEN LOAD 1. Extracellular space minutes 2. Intracellular space minutes to hours 3. Respiratory compensation 6 to 12 hours 4. Renal compensation hours, up to 2-3 days RENAL HYDROGEN SECRETION

More information

MODULATION OF HAEMOCYANIN OXYGEN-AFFINITY BY L-LACTATE AND URATE IN THE PRAWN PENAEUS JAPONICUS

MODULATION OF HAEMOCYANIN OXYGEN-AFFINITY BY L-LACTATE AND URATE IN THE PRAWN PENAEUS JAPONICUS )cxp. Biol. 147, 133-146 (1989) 133 P tinted in Great Britain The Company of Biologists Limited 1989 MODULATION OF HAEMOCYANIN OXYGEN-AFFINITY BY L-LACTATE AND URATE IN THE PRAWN PENAEUS JAPONICUS BY F.

More information

PHYSIOLOGY OF LOW TEMPERATURE ACCLIMATION IN TROPICAL POIKILOTHERMS. BY KANDULA PAldPAPATHI RAO

PHYSIOLOGY OF LOW TEMPERATURE ACCLIMATION IN TROPICAL POIKILOTHERMS. BY KANDULA PAldPAPATHI RAO PHYSIOLOGY OF LOW TEMPERATURE ACCLIMATION IN TROPICAL POIKILOTHERMS I. Ionic Changes in the Blood of the Freshwater Mussel, Lamellfdens marginalis, and the Earthworm, LampRo mauritii BY KANDULA PAldPAPATHI

More information

Oxygen and CO 2 transport. Biochemistry II

Oxygen and CO 2 transport. Biochemistry II Oxygen and CO 2 transport 2 Acid- base balance Biochemistry II Lecture 9 2008 (J.S.) 1 Transport of O 2 and CO 2 O 2 INSPIRED AIR CO 2 EXPIRED AIR HCO 3 + HHb + Lungs HbO 2 + H + + HCO 3 HbO 2 + H 2 O

More information

FREE AND TOTAL CALCIUM CONCENTRATIONS IN THE BLOOD OF RAINBOW TROUT, SALMO GAIRDNERI, DURING 'STRESS' CONDITIONS BY PETER ANDREASEN

FREE AND TOTAL CALCIUM CONCENTRATIONS IN THE BLOOD OF RAINBOW TROUT, SALMO GAIRDNERI, DURING 'STRESS' CONDITIONS BY PETER ANDREASEN J. exp. Biol. 118, 111-120 (1985) 111 Printed in Great Britain The Company of Biologists Limited 1985 FREE AND TOTAL CALCIUM CONCENTRATIONS IN THE BLOOD OF RAINBOW TROUT, SALMO GAIRDNERI, DURING 'STRESS'

More information

EH1008 Biomolecules. Inorganic & Organic Chemistry. Water. Lecture 2: Inorganic and organic chemistry.

EH1008 Biomolecules. Inorganic & Organic Chemistry. Water. Lecture 2: Inorganic and organic chemistry. EH1008 Biomolecules Lecture 2: Inorganic and organic chemistry limian.zheng@ucc.ie 1 Inorganic & Organic Chemistry Inorganic Chemistry: generally, substances that do not contain carbon Inorganic molecules:

More information

CHAPTER 27 LECTURE OUTLINE

CHAPTER 27 LECTURE OUTLINE CHAPTER 27 LECTURE OUTLINE I. INTRODUCTION A. Body fluid refers to body water and its dissolved substances. B. Regulatory mechanisms insure homeostasis of body fluids since their malfunction may seriously

More information

Animal Form and Function. Exchange surfaces. Animal Form and Function

Animal Form and Function. Exchange surfaces. Animal Form and Function Animal Form and Function Surface:Volume ratio decreases with size Today s topics: Review for exam Physical Constraints affect the design of animals Homeostasis Sensors and effectors Exchange surfaces Design

More information

Dr. Suzana Voiculescu Discipline of Physiology and Fundamental Neurosciences Carol Davila Univ. of Medicine and Pharmacy

Dr. Suzana Voiculescu Discipline of Physiology and Fundamental Neurosciences Carol Davila Univ. of Medicine and Pharmacy Dr. Suzana Voiculescu Discipline of Physiology and Fundamental Neurosciences Carol Davila Univ. of Medicine and Pharmacy AB balance parameters Extracellular ph (plasmatic ph)= 7.35-7.45 < 7.35= acidosis

More information

Technical University of Mombasa Faculty of Applied and Health Sciences

Technical University of Mombasa Faculty of Applied and Health Sciences Technical University of Mombasa Faculty of Applied and Health Sciences DEPARTMENT OF MEDICAL SCIENCES UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF MEDICAL LABORATORY SCIENCES BMLS 12S -Regular

More information

CASE 27. What is the response of the kidney to metabolic acidosis? What is the response of the kidney to a respiratory alkalosis?

CASE 27. What is the response of the kidney to metabolic acidosis? What is the response of the kidney to a respiratory alkalosis? CASE 27 A 21-year-old man with insulin-dependent diabetes presents to the emergency center with mental status changes, nausea, vomiting, abdominal pain, and rapid respirations. On examination, the patient

More information

ION CONCENTRATION AND ACTIVITY IN THE HAEMOLYMPH OF AEDES AEGYPTI LARVAE

ION CONCENTRATION AND ACTIVITY IN THE HAEMOLYMPH OF AEDES AEGYPTI LARVAE J. exp. Biol. (1982), IOI, 143-151- ^ith & figures in Great Britain ION CONCENTRATION AND ACTIVITY IN THE HAEMOLYMPH OF AEDES AEGYPTI LARVAE BY H. A. EDWARDS Department of Zoology, South Parks Road, Oxford

More information

BLOOD RESPIRATORY PROPERTIES OF RAINBOW TROUT {SALMO GAIRDNERT) KEPT IN WATER OF HIGH CO 2 TENSION

BLOOD RESPIRATORY PROPERTIES OF RAINBOW TROUT {SALMO GAIRDNERT) KEPT IN WATER OF HIGH CO 2 TENSION 7. exp. Biol. (1977). 67. 37-47 With 5 figures Printed in Great Britain BLOOD RESPIRATORY PROPERTIES OF RAINBOW TROUT {SALMO GAIRDNERT) KEPT IN WATER OF HIGH CO 2 TENSION BY F. B. EDDY,* J. P. LOMHOLT,

More information

THE EFFECTS OF ACCLIMATION TEMPERATURE ON THE DYNAMICS OF CATECHOLAMINE RELEASE DURING ACUTE HYPOXIA IN THE RAINBOW TROUT ONCORHYNCHUS MYKISS

THE EFFECTS OF ACCLIMATION TEMPERATURE ON THE DYNAMICS OF CATECHOLAMINE RELEASE DURING ACUTE HYPOXIA IN THE RAINBOW TROUT ONCORHYNCHUS MYKISS J. exp. Biol. 186, 289 37 (1994) Printed in Great Britain The Company of Biologists Limited 1994 289 THE EFFECTS OF ACCLIMATION TEMPERATURE ON THE DYNAMICS OF CATECHOLAMINE RELEASE DURING ACUTE HYPOXIA

More information

Neaam Al-Bahadili. Rana J. Rahhal. Mamoun Ahram

Neaam Al-Bahadili. Rana J. Rahhal. Mamoun Ahram 5 Neaam Al-Bahadili Rana J. Rahhal Mamoun Ahram In this sheet we will continue taking about Titration curve and Buffers in human body. Let s begin Titration curve of phosphate buffer: 1. There are 3 buffering

More information

WHY IS THERE NO CARBONIC ANHYDRASE ACTIVITY AVAILABLE TO FISH PLASMA?

WHY IS THERE NO CARBONIC ANHYDRASE ACTIVITY AVAILABLE TO FISH PLASMA? The Journal of Experimental Biology 198, 31 38 (1995) Printed in Great Britain The Company of Biologists Limited 1995 31 WHY IS THERE NO CARBONIC ANHYDRASE ACTIVITY AVAILABLE TO FISH PLASMA? JOANNE LESSARD,

More information

Acids, Bases, and Salts

Acids, Bases, and Salts Acid / Base Balance Objectives Define an acid, a base, and the measure of ph. Discuss acid/base balance, the effects of acidosis or alkalosis on the body, and the mechanisms in place to maintain balance

More information

POSSIBLE INVOLVEMENT OF SOMATOLACTIN IN THE REGULATION OF PLASMA BICARBONATE FOR THE COMPENSATION OF ACIDOSIS IN RAINBOW TROUT

POSSIBLE INVOLVEMENT OF SOMATOLACTIN IN THE REGULATION OF PLASMA BICARBONATE FOR THE COMPENSATION OF ACIDOSIS IN RAINBOW TROUT The Journal of Experimental Biology, 67 683 (997) Printed in Great Britain The Company of Biologists Limited 997 JEB88 67 POSSIBLE INVOLVEMENT OF SOMATOLACTIN IN THE REGULATION OF PLASMA BICARBONATE FOR

More information

EXTRACELLULAR CARBONIC ANHYDRASE AND AN ACID BASE DISEQUILIBRIUM IN THE BLOOD OF THE DOGFISH SQUALUS ACANTHIAS

EXTRACELLULAR CARBONIC ANHYDRASE AND AN ACID BASE DISEQUILIBRIUM IN THE BLOOD OF THE DOGFISH SQUALUS ACANTHIAS The Journal of Experimental Biology 2, 173 183 (1997) Printed in Great Britain The Company of Biologists Limited 1997 JEB652 173 EXTRACELLULAR CARBONIC ANHYDRASE AND AN ACID BASE DISEQUILIBRIUM IN THE

More information

THE EFFECTS OF PROLONGED EPINEPHRINE INFUSION ON THE PHYSIOLOGY OF THE RAINBOW TROUT SALMO GAIRDNERI

THE EFFECTS OF PROLONGED EPINEPHRINE INFUSION ON THE PHYSIOLOGY OF THE RAINBOW TROUT SALMO GAIRDNERI J. exp. Biol. 28, 269-285 (987) 269 Printed in Great Britain The Company of Biologists Limited 987 THE EFFECTS OF PROLONGED EPINEPHRINE INFUSION ON THE PHYSIOLOGY OF THE RAINBOW TROUT SALMO GAIRDNERI III.

More information

Osmotic Balance. What Happens and Why?

Osmotic Balance. What Happens and Why? Osmotic Balance What Happens and Why? Definitions Osmolarity: moles of solute/liter of solvent Isosmotic: two solutions with the same concentration of particles Hypo-osmotic: solution that exerts less

More information

Osmoregulation regulates solute concentrations and balances the gain and loss of water

Osmoregulation regulates solute concentrations and balances the gain and loss of water Ch 44 Osmoregulation & Excretion Osmoregulation regulates solute concentrations and balances the gain and loss of water Freshwater animals show adaptations that reduce water uptake and conserve solutes

More information

Respiratory System 1. A function of the structure labelled X is to

Respiratory System 1. A function of the structure labelled X is to 1 Respiratory System 1. A function of the structure labelled X is to A. produce sound. B. exchange gases. C. carry air into and out of the lung. D. stimulate the breathing centre in the brain. 2. Identify

More information

DOWNSTREAM ph CHANGES IN WATER FLOWING OVER THE GILLS OF RAINBOW TROUT

DOWNSTREAM ph CHANGES IN WATER FLOWING OVER THE GILLS OF RAINBOW TROUT J. exp. Biol. 126, 499-512 (1986) 499 Printed in Great Britain The Company of Biologists Limited 1986 DOWNSTREAM ph CHANGES IN WATER FLOWING OVER THE GILLS OF RAINBOW TROUT BY PATRICIA WRIGHT, TOM HEMING*

More information

Arterial Blood Gases Interpretation Definition Values respiratory metabolic

Arterial Blood Gases Interpretation Definition Values respiratory metabolic Arterial Blood Gases Interpretation Definition A blood gas test measures the amount of oxygen and carbon dioxide in the blood. It is also useful in determining the ph level of the blood. The test is commonly

More information

RELATION BETWEEN NON-BICARBONATE BUFFER VALUE AND TOLERANCE TO CELLULAR ACIDOSIS: A COMPARATIVE STUDY OF MYOCARDIAL TISSUE

RELATION BETWEEN NON-BICARBONATE BUFFER VALUE AND TOLERANCE TO CELLULAR ACIDOSIS: A COMPARATIVE STUDY OF MYOCARDIAL TISSUE J. exp. Biol. (1980), 84, 161-167 l( il With 1 figure Printed in Great Britain RELATION BETWEEN NON-BICARBONATE BUFFER VALUE AND TOLERANCE TO CELLULAR ACIDOSIS: A COMPARATIVE STUDY OF MYOCARDIAL TISSUE

More information

Acid-Base Balance 11/18/2011. Regulation of Potassium Balance. Regulation of Potassium Balance. Regulatory Site: Cortical Collecting Ducts.

Acid-Base Balance 11/18/2011. Regulation of Potassium Balance. Regulation of Potassium Balance. Regulatory Site: Cortical Collecting Ducts. Influence of Other Hormones on Sodium Balance Acid-Base Balance Estrogens: Enhance NaCl reabsorption by renal tubules May cause water retention during menstrual cycles Are responsible for edema during

More information

Regulation of sodium in the shore crab Carcinus. changing salinities

Regulation of sodium in the shore crab Carcinus. changing salinities HELGOI~NDER MEERESUNTERSUCHUNGEN Helgol&nder Meeresunters. 36, 303-312 (1983) Regulation of sodium in the shore crab Carcinus maenas, adapted to environments of constant and changing salinities D. Siebers,

More information