Problem-solving Test: The Mechanism of Protein Synthesis

Size: px
Start display at page:

Download "Problem-solving Test: The Mechanism of Protein Synthesis"

Transcription

1 Q 2009 by The International Union of Biochemistry and Molecular Biology BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION Vol. 37, No. 1, pp , 2009 Problem-based Learning Problem-solving Test: The Mechanism of Protein Synthesis Received for publication, August 25, 2008, and in revised form, September 9, 2008 József Szeberényi* From the Department of Medical Biology, Medical School, University of Pécs, H-7624 Pécs, Hungary Terms to be familiar with before you start to solve the test: protein synthesis, ribosomes, amino acids, peptides, peptide bond, polypeptide chain, N- and C-terminus, hemoglobin, a- and b-globin chains, radioactive labeling, [ 3 H] and [ 14 C]leucine, cytosol, differential centrifugation, density gradient centrifugation, trypsin, electrophoresis, chromatography THE EXPERIMENT One of the most important studies of early molecular biology was performed by Howard Dintzis to analyze the mechanism of protein synthesis [1]. At that time very little was known of how proteins were manufactured: ribosomes had already been identified as sites of protein synthesis, but neither the template (mrna), nor the adapter function of trna molecules had been discovered yet. (A reflective article by the scientist about his discovery was recently published in BAMBED [2], from which we could learn, among many other things, that the term ribosome was actually introduced by him into the terminology of molecular biology.) The elegant experiments of Dintzis were designed to study the basic mechanism of polypeptide chain growth. Theoretically, several distinct mechanisms could have been imagined, the most plausible possibilities are shown in Fig. 1: (a) the amino acids line up along a putative template molecule and an enzyme catalyzes simultaneous peptide bond formation between them; (b) short oligopeptides are synthesized on the template and then ligated to form the polypeptide chain; (c) the polypeptide is synthesized by sequential addition of amino acids to the C-terminus of the growing chain; (d) continuous synthesis in the opposite direction. The work of Dintzis addressed this problem using immature rabbit red blood cells called reticulocytes. In these cells, 90% of proteins synthesized is hemoglobin. Newly synthesized globin chains are readily labeled in cultured reticulocytes using radioactive amino acids. The best choice for labeling hemoglobin turned out to be radioactive leucine. There are several important reasons for that. First, leucine is the most abundant amino acid in globin chains. 1. What is the advantage of this fact? A. Newly synthesized globin chains can be labeled to a high specific activity. B. Various regions of globin chains can be labeled. C. No other proteins will become radioactive. D. A and B. E. A, B and C. The second advantage of leucine is that it is an essential amino acid. 2. Why does this fact have an impact on protein labeling? A. Radioactive leucine is not diluted out by nonradioactive leucine molecules produced by the cell from other compounds. B. Radioactive leucine is not diluted out by nonradioactive leucine molecules stored in the cell. C. Radioactive leucine is rapidly incorporated into proteins before being converted into other molecules. D. A and C. E. A, B and C. In this study, reticulocyte cultures were labeled with [ 3 H]leucine for various periods of time. At the same time, other reticulocyte populations received a prolonged labeling with [ 14 C]leucine. The two cultures of cells were mixed and ribosomal and cytosolic fractions were prepared from them. * To whom correspondence should be addressed. Tel.: ; Fax: jozsef.szeberenyi@aok.pte.hu. DOI /bmb This paper is available on line at

2 59 FIG. 1. Hypothetical models of protein chain growth. (a) Simultaneous peptide bond formation between all adjacent amino acids, (b) synthesis and subsequent ligation of short peptides, unidirectional chain growth by serial addition of amino acids to the (c) C-terminus, or (d) N-terminus of the elongating polypeptide chain. (The N- and C-terminus of the polypeptide chain are indicated; small boxes correspond to individual amino acids). 3. What is the best way to isolate ribosomes and cytosol? A. Ultracentrifugation of homogenates. B. Ultracentrifugation of the postnuclear supernatant. C. Ultracentrifugation of the postmitochondrial supernatant. D. Cesium chloride gradient centrifugation of the homogenate. E. Sucrose gradient centrifugation of the homogenate. FIG. 2.Two-dimensional separation ( fingerprint analysis ) of tryptic digests of rabbit a-globin chains labeled with radioactive leucine. The fingerprint shows radioactively labeled oligopeptides only (for details see the text). a- and b-globin chains were isolated and purified from the ribosomal and cytosolic fractions and subjected to fingerprint analysis : proteins were digested with trypsin (a proteolytic enzyme cutting peptide bonds next to arginine and lysine) generating a set of peptides that were subsequently fractionated using a two-dimensional separation technique of electrophoresis and chromatography. Figure 2 shows such a peptide map of tryptic digests of radioactively labeled a-globin (peptides containing radioactive leucine are only shown). Fingerprint analysis of labeled soluble (cytosolic) a-globin molecules were performed after different durations of labeling (4, 7, and 60 minutes), the 3 H and 14 C radioactivities of the spots shown in Fig. 2 were determined, 3 H/ 14 C ratios were calculated for each spot and the peptides were ordered in increasing 3 H/ 14 C ratios (see Fig. 3a). A similar analysis was performed on ribosome-bound globin chains (Fig. 3b). FIG. 3.Distribution of [ 3 H]leucine among tryptic peptides of soluble (a) and ribosome-bound (b) rabbit a-globin chains (for experimental detail see the text). (Note: Analysis of newly synthesized, ribosome-bound proteins is a technically difficult task. Diagram B shows, for didactic reasons, an idealized interpretation of the results. For the actual data, please refer to the original paper [1].)

3 60 BAMBED, Vol. 37, No. 1, pp , What was the aim of the double-labeling? A. To identify newly synthesized regions in [ 3 H]leucine pulse-labeled globin chains. B. To obtain uniformly labeled [ 14 C] globin chains. C. To use 14 C-radioactivity for each peptide as a measure of leucine content. D. To use 3 H/ 14 C ratios for each spot as a measure of relative 3 H labeling. E. All four statements are true. The hypothetical mechanisms shown in Fig. 1 would give different kinetics of 3 H globin labeling in the experiments described earlier. Let s try to predict these patterns! FIVE-CHOICE ASSOCIATION (This type of question consists of a list of lettered headings followed by a list of numbered words or phrases. For each numbered word or phrase, select the one heading which is most closely related to it.) A. Uniform or nearly uniform labeling of all leucine-containing B. Randomly uneven labeling of all leucine-containing C. Preferential labeling of C-terminal leucine-containing D. Preferential labeling of N-terminal leucine-containing E. None of the above patterns can be expected. 5. Mechanism A would give this pattern of labeling of ribosome-bound a-chains after brief exposure 6. Mechanism A would give this pattern of labeling of ribosome-bound a-chains after long exposure 7. Mechanism A would give this pattern of labeling of cytosolic a-chains after brief exposure 8. Mechanism A would give this pattern of labeling of cytosolic a-chains after long exposure 9. Mechanism B would give this pattern of labeling of ribosome-bound a-chains after brief exposure 10. Mechanism B would give this pattern of exposure 11. Mechanism B would give this pattern of 12. Mechanism B would give this pattern of labeling of cytosolic a-chains after long exposure 13. Mechanism C would give this pattern of labeling of ribosome-bound a-chains after brief exposure 14. Mechanism C would give this pattern of exposure 15. Mechanism C would give this pattern of 16. Mechanism C would give this pattern of labeling of cytosolic a-chains after long exposure 17. Mechanism D would give this pattern of labeling of ribosome-bound a-chains after brief exposure 18. Mechanism D would give this pattern of exposure 19. Mechanism D would give this pattern of 20. Mechanism D would give this pattern of labeling of cytosolic a-chains after long exposure If you answered the above set of questions correctly and you analyzed the curves of Fig. 3 carefully, you already know that a single question is left to be answered to decide which of the four mechanisms is true for globin synthesis. 21. What can be this question? A. Which labeled peptide contains the most leucine residues? B. Which labeled peptides contain only one leucine residue? C. Which labeled peptide is closest to one end of a-globin? D. Which labeled peptide has the strongest charge? E. Which labeled peptide has the highest molecular weight? To answer this question, a-globin uniformly labeled with [ 14 C]leucine was briefly digested with carboxypeptidase, an enzyme that removes amino acids from the C-terminus of proteins. The digested a-globin was then mixed with intact, uniformly [ 3 H]leucine-labeled a-chains and the mixture was subjected to tryptic fingerprinting. 3 H- and 14 C- radioactivities were measured in each peptide spot. Table I shows the 3 H/ 14 C ratios for all labeled TABLE I 3 H/ 14 C ratios in the tryptic peptides of untreated [ 3 H]leucine-labeled and carboxypeptidase-digested [ 14 C]-labeled rabbit (-globin chains (for details see the text) Peptide number 3 H/ 14 C ratio

4 61 FIG. 4. Model of sequential chain growth. Horizontal lines represent unlabeled polypeptide regions, horizontal boxes indicate [ 3 H]leucine-labeled sections. Horizontal arrows indicate the release of finished polypeptide chains from the ribosomes to the cytosol. Further details are described in the text. 22. What conclusion can be drawn from the carboxypeptidase experiment? A. The N-terminal amino acid of rabbit a-globin is arginine or lysine. B. The C-terminal amino acid of rabbit a-globin is arginine or lysine. C. Peptide 16 gives the C-terminus of rabbit a- globin. D. Peptide 16 gives the N-terminus of rabbit a- globin. E. Peptide 16 is closest to the C-terminus among the radioactively labeled tryptic 23. We can now describe the exact mechanism of protein synthesis. a-globin chains are synthesized. A. By simultaneous enzymatic ligation of adjacent amino acids. B. By simultaneous enzymatic ligation of preformed short C. By adding amino acids one at a time to the growing polypeptide chain in N- to C-terminal direction. D. By adding amino acids one at a time to the growing polypeptide chain in C- to N-terminal direction. E. By a mechanism different from the above described mechanisms. CORRECT ANSWERS 1. D 2. D 3. C 4. E 5. A 6. A 7. A 8. A 9. A 10. A 11. A 12. A 13. A 14. D 15. C 16. A 17. A 18. C 19. D 20. A 21. C 22. E 23. C EXPLANATIONS The experiment presented in this test was designed to analyze the sequential nature and direction of protein synthesis. Pulse-labeling with an abundant amino acid, leucine, provided the possibility to identify different regions of the protein and to determine the order of their labeling during protein synthesis (MCQ 1: D; MCQ 2: D). 1 The double-labeling protocol gave a chance to determine the fraction of newly synthesized (i.e. [ 3 H]leucine pulse-labeled) peptides in each tryptic fingerprint spot (MCQ 4: E). Simultaneous joining of amino acids (mechanism (a) in Fig. 1) or preformed peptides (mechanism (b)) would have given uniform labeling of nascent (ribosome-bound) or finished (cytosolic) globin chains, no matter what the duration of labeling was (MCQ 5 to 12: A). Sequential, unidirectional synthesis would radioactively label the elongating end of the polypeptide chain first. Fig. 4 helps to interpret the results. 1 The abbreviation used is: MCQ, multiple-choice question.

5 62 BAMBED, Vol. 37, No. 1, pp , 2009 At the time of adding [ 3 H]leucine to the cells (0 minutes in Fig. 4) ribosomes carry nascent globin chains of various length. Brief labeling gives short radioactive sections to the growing end of each globin chain that will give a uniform labeling to all peptides (MCQ 13: A; MCQ 17: A). Completed chains are released to the cytosol and, after very short exposure to [ 3 H]leucine, their recently finished ends are only labeled (MCQ 15: C; MCQ 19: D). After long labeling more and more uniformly labeled globin chains are released from the ribosomes, the gradient of labeling between the two ends decreases and finally disappears (MCQ 16: A; MCQ 20: A). In contrast, a gradient of radioactivity is formed after long-term labeling on ribosome-bound, nascent protein chains from the initial to the final peptide (see Fig. 4, MCQ 14: D; MCQ 18: C). Since the carboxypeptidase experiment proved that peptide 16 was closest to the C-terminus (MCQ 21: C; MCQ 22: E), the data presented in this test strongly supports the hypothesis that translation continuously proceeds from the N- to the C-terminus of the polypeptide chain (MCQ 23: C). The best way to isolate ribosomal and cytosolic fractions is differential centrifugation of cell homogenates (MCQ 3: C). REFERENCES [1] H. M. Dintzis (1961) Assembly of the peptide chains of hemoglobin, Proc. Natl. Acad. Sci. USA 47, [2] H. M. Dintzis (2006) The wandering pathway to determining N to C synthesis of proteins. Some recollections concerning protein structure and biosynthesis, Biochem. Mol. Biol. Educ. 34,

READ THIS FIRST. Your Name

READ THIS FIRST. Your Name Introduction to Biochemistry Final Examination - Individual (Part I) Monday, 24 May 2010 7:00 8:45 PM H. B. White Instructor 120 Points Your Name "Ability is what you're capable of doing. Motivation determines

More information

CHEM-342 Introduction to Biochemistry Your Name Final Examination - Individual (Part I) Friday, 26 May :30 12:15 PM H. B. White - Instructor

CHEM-342 Introduction to Biochemistry Your Name Final Examination - Individual (Part I) Friday, 26 May :30 12:15 PM H. B. White - Instructor HEM-342 Introduction to Biochemistry Final Examination - Individual (Part I) Friday, 26 May 2006 10:30 12:15 PM H. B. White - Instructor Range 28-72(2) out of 85, Average 53.5 Important - Please read this

More information

Objectives: Prof.Dr. H.D.El-Yassin

Objectives: Prof.Dr. H.D.El-Yassin Protein Synthesis and drugs that inhibit protein synthesis Objectives: 1. To understand the steps involved in the translation process that leads to protein synthesis 2. To understand and know about all

More information

Single Essential Amino Acids (valine/histidine/methiotiine/high-temperature inhibition)

Single Essential Amino Acids (valine/histidine/methiotiine/high-temperature inhibition) Proc. Nat. Acad. Sci. USA Vol. 68, No. 9, pp. 2057-2061, September 1971 Regulation of Protein Synthesis Initiation in HeLa Cells Deprived of Single ssential Amino Acids (valine/histidine/methiotiine/high-temperature

More information

Genetic information flows from mrna to protein through the process of translation

Genetic information flows from mrna to protein through the process of translation Genetic information flows from mrn to protein through the process of translation TYPES OF RN (RIBONUCLEIC CID) RN s job - protein synthesis (assembly of amino acids into proteins) Three main types: 1.

More information

BCH Graduate Survey of Biochemistry

BCH Graduate Survey of Biochemistry BCH 5045 Graduate Survey of Biochemistry Instructor: Charles Guy Producer: Ron Thomas Director: Glen Graham Lecture 7 Slide sets available at: http://hort.ifas.ufl.edu/teach/guyweb/bch5045/index.html David

More information

Explain that each trna molecule is recognised by a trna-activating enzyme that binds a specific amino acid to the trna, using ATP for energy

Explain that each trna molecule is recognised by a trna-activating enzyme that binds a specific amino acid to the trna, using ATP for energy 7.4 - Translation 7.4.1 - Explain that each trna molecule is recognised by a trna-activating enzyme that binds a specific amino acid to the trna, using ATP for energy Each amino acid has a specific trna-activating

More information

Insects lack red blood cells. Instead, an oxygen carrier/protein very similar to hemoglobin is secreted directly into insect blood...

Insects lack red blood cells. Instead, an oxygen carrier/protein very similar to hemoglobin is secreted directly into insect blood... STF - 1- Synthesis, Targeting and Sorting 1. Insects lack red blood cells. Instead, an oxygen carrier/protein very similar to hemoglobin is secreted directly into insect blood. Briefly hypothesize how

More information

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

PDF hosted at the Radboud Repository of the Radboud University Nijmegen PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/142604

More information

Biomolecular Mass Spectrometry

Biomolecular Mass Spectrometry Lipids ot different than other organic small molecules Carbohydrates Polymers of monosaccharides linked via glycosidic bonds (acetals/ ketals) many different combinationsvery interesting no time ucleic

More information

2. Which of the following amino acids is most likely to be found on the outer surface of a properly folded protein?

2. Which of the following amino acids is most likely to be found on the outer surface of a properly folded protein? Name: WHITE Student Number: Answer the following questions on the computer scoring sheet. 1 mark each 1. Which of the following amino acids would have the highest relative mobility R f in normal thin layer

More information

1 By Drs. Ingrid Waldron and. Jennifer Doherty, Department of Biology, University of Pennsylvania, These Teacher

1 By Drs. Ingrid Waldron and. Jennifer Doherty, Department of Biology, University of Pennsylvania, These Teacher Teacher Preparation Notes for "From Gene to Protein via Transcription and Translation" 1 In this analysis and discussion activity, students learn (1) how genes provide the instructions for making a protein

More information

Translation Activity Guide

Translation Activity Guide Translation Activity Guide Student Handout β-globin Translation Translation occurs in the cytoplasm of the cell and is defined as the synthesis of a protein (polypeptide) using information encoded in an

More information

HOMEWORK II and Swiss-PDB Viewer Tutorial DUE 9/26/03 62 points total. The ph at which a peptide has no net charge is its isoelectric point.

HOMEWORK II and Swiss-PDB Viewer Tutorial DUE 9/26/03 62 points total. The ph at which a peptide has no net charge is its isoelectric point. BIOCHEMISTRY I HOMEWORK II and Swiss-PDB Viewer Tutorial DUE 9/26/03 62 points total 1). 8 points total T or F (2 points each; if false, briefly state why it is false) The ph at which a peptide has no

More information

AA s are the building blocks of proteins

AA s are the building blocks of proteins Chamras Chemistry 106 Lecture otes Chapter 24: Amino Acids, Peptides, and Proteins General Formula: () n (') α-amino Acids: (n = 1) Example: Amino Acids and Proteins: Glycine Alanine Valine AA s are the

More information

Fundamentals of Organic Chemistry CHEM 109 For Students of Health Colleges

Fundamentals of Organic Chemistry CHEM 109 For Students of Health Colleges Fundamentals of Organic Chemistry CHEM 109 For Students of Health Colleges Credit hrs.: (2+1) King Saud University College of Science, Chemistry Department CHEM 109 CHAPTER 9. AMINO ACIDS, PEPTIDES AND

More information

Biology 2E- Zimmer Protein structure- amino acid kit

Biology 2E- Zimmer Protein structure- amino acid kit Biology 2E- Zimmer Protein structure- amino acid kit Name: This activity will use a physical model to investigate protein shape and develop key concepts that govern how proteins fold into their final three-dimensional

More information

Protein Synthesis

Protein Synthesis Protein Synthesis 10.6-10.16 Objectives - To explain the central dogma - To understand the steps of transcription and translation in order to explain how our genes create proteins necessary for survival.

More information

Mutations and Disease Mutations in the Myosin Gene

Mutations and Disease Mutations in the Myosin Gene Biological Sciences Initiative HHMI Mutations and Disease Mutations in the Myosin Gene Goals Explore how mutations can lead to disease using the myosin gene as a model system. Explore how changes in the

More information

Organic Chemistry - Problem Drill 23: Amino Acids, Peptides, and Proteins

Organic Chemistry - Problem Drill 23: Amino Acids, Peptides, and Proteins rganic Chemistry - Problem Drill 23: Amino Acids, Peptides, and Proteins No. 1 of 10 1. Which amino acid does not contain a chiral center? (A) Serine (B) Proline (C) Alanine (D) Phenylalanine (E) Glycine

More information

Lecture 3. Tandem MS & Protein Sequencing

Lecture 3. Tandem MS & Protein Sequencing Lecture 3 Tandem MS & Protein Sequencing Nancy Allbritton, M.D., Ph.D. Department of Physiology & Biophysics 824-9137 (office) nlallbri@uci.edu Office- Rm D349 Medical Science D Bldg. Tandem MS Steps:

More information

1) DNA unzips - hydrogen bonds between base pairs are broken by special enzymes.

1) DNA unzips - hydrogen bonds between base pairs are broken by special enzymes. Biology 12 Cell Cycle To divide, a cell must complete several important tasks: it must grow, during which it performs protein synthesis (G1 phase) replicate its genetic material /DNA (S phase), and physically

More information

Student Number: THE UNIVERSITY OF MANITOBA April 10, 2006, 1:30 AM - 4:30 PM Page 1 (of 4) Biochemistry II Laboratory Section Final Examination

Student Number: THE UNIVERSITY OF MANITOBA April 10, 2006, 1:30 AM - 4:30 PM Page 1 (of 4) Biochemistry II Laboratory Section Final Examination Name: Student Number: April 10, 2006, 1:30 AM - 4:30 PM Page 1 (of 4) Biochemistry II Laboratory Section Final Examination Examiner: Dr. A. Scoot 1. Answer ALL questions in the space provided. 2. The back

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Still having trouble understanding the material? Check

More information

Complete Student Notes for BIOL2202

Complete Student Notes for BIOL2202 Complete Student Notes for BIOL2202 Revisiting Translation & the Genetic Code Overview How trna molecules interpret a degenerate genetic code and select the correct amino acid trna structure: modified

More information

SYNOPSIS STUDIES ON THE PREPARATION AND CHARACTERISATION OF PROTEIN HYDROLYSATES FROM GROUNDNUT AND SOYBEAN ISOLATES

SYNOPSIS STUDIES ON THE PREPARATION AND CHARACTERISATION OF PROTEIN HYDROLYSATES FROM GROUNDNUT AND SOYBEAN ISOLATES 1 SYNOPSIS STUDIES ON THE PREPARATION AND CHARACTERISATION OF PROTEIN HYDROLYSATES FROM GROUNDNUT AND SOYBEAN ISOLATES Proteins are important in food processing and food product development, as they are

More information

Terminology-Amino Acids

Terminology-Amino Acids Enzymes 1 2 Terminology-Amino Acids Primary Structure: is a polypeptide (large number of aminoacid residues bonded together in a chain) chain of amino acids linked with peptide bonds. Secondary Structure-

More information

Different types of proteins. The structure and properties of amino acids. Formation of peptide bonds.

Different types of proteins. The structure and properties of amino acids. Formation of peptide bonds. Introduction to proteins and amino acids Different types of proteins. The structure and properties of amino acids. Formation of peptide bonds. Introduction We tend to think of protein as a mass noun: a

More information

AMINO ACIDS NON-ESSENTIAL ESSENTIAL

AMINO ACIDS NON-ESSENTIAL ESSENTIAL Edith Frederika Introduction A major component of food is PROTEIN The protein ingested as part of our diet are not the same protein required by the body Only 40 to 50 gr of protein is required by a normal

More information

Levels of Protein Structure:

Levels of Protein Structure: Levels of Protein Structure: PRIMARY STRUCTURE (1 ) - Defined, non-random sequence of amino acids along the peptide backbone o Described in two ways: Amino acid composition Amino acid sequence M-L-D-G-C-G

More information

Materials and Methods , The two-hybrid principle.

Materials and Methods , The two-hybrid principle. The enzymatic activity of an unknown protein which cleaves the phosphodiester bond between the tyrosine residue of a viral protein and the 5 terminus of the picornavirus RNA Introduction Every day there

More information

AMINO ACIDS STRUCTURE, CLASSIFICATION, PROPERTIES. PRIMARY STRUCTURE OF PROTEINS

AMINO ACIDS STRUCTURE, CLASSIFICATION, PROPERTIES. PRIMARY STRUCTURE OF PROTEINS AMINO ACIDS STRUCTURE, CLASSIFICATION, PROPERTIES. PRIMARY STRUCTURE OF PROTEINS Elena Rivneac PhD, Associate Professor Department of Biochemistry and Clinical Biochemistry State University of Medicine

More information

Problem Set 5, 7.06, Spring of 13

Problem Set 5, 7.06, Spring of 13 Problem Set 5, 7.06, Spring 2003 1 of 13 1. In order to please your demanding thesis advisor, you've completed an extensive fractionation and biochemical purification of proteins localized to the mitochondria,

More information

Cell-Free Hemoglobin Synthesis in Beta-Thalassemia

Cell-Free Hemoglobin Synthesis in Beta-Thalassemia Proceedings of the National Academy of Sciences Vol. 67, No. 4, pp. 1854-1861, December 1970 Cell-Free Hemoglobin Synthesis in Beta-Thalassemia J. M. Gilbert, A. G. Thornton, A. W. Nienhuis, and W. F.

More information

PhysicsAndMathsTutor.com. Question Number. Answer Additional Guidance Mark. 1(a) 1. mutation changes the sequence of bases / eq ;

PhysicsAndMathsTutor.com. Question Number. Answer Additional Guidance Mark. 1(a) 1. mutation changes the sequence of bases / eq ; 1(a) 1. mutation changes the sequence of bases / eq ; 2. reference to stop code / idea of {insertion / deletion / eq} changes all triplets / frame shift / eq ; 3. {transcription / translation} does not

More information

Insulin mrna to Protein Kit

Insulin mrna to Protein Kit Insulin mrna to Protein Kit A 3DMD Paper BioInformatics and Mini-Toober Folding Activity Student Handout www.3dmoleculardesigns.com Insulin mrna to Protein Kit Contents Becoming Familiar with the Data...

More information

100 Points NAME: KEY Lab section:

100 Points NAME: KEY Lab section: ANSC 324 Spring, 2007 EXAM 1 100 Points NAME: KEY Lab section: Instructions: Make sure that you take time to carefully read each question, and then answer the question appropriately. Answers to essay questions

More information

The source of protein structures is the Protein Data Bank. The unit of classification of structure in SCOP is the protein domain.

The source of protein structures is the Protein Data Bank. The unit of classification of structure in SCOP is the protein domain. UNIT 14 PROTEINS DEFINITION A large molecule composed of one or more chains of amino acids in a specific order; the order is determined by the base sequence of nucleotides in the gene that codes for the

More information

Chapter 2 Transport Systems

Chapter 2 Transport Systems Chapter 2 Transport Systems The plasma membrane is a selectively permeable barrier between the cell and the extracellular environment. It permeability properties ensure that essential molecules such as

More information

Section 1 Proteins and Proteomics

Section 1 Proteins and Proteomics Section 1 Proteins and Proteomics Learning Objectives At the end of this assignment, you should be able to: 1. Draw the chemical structure of an amino acid and small peptide. 2. Describe the difference

More information

An Investigative Case Study Designed to Promote Critical Thinking Skills

An Investigative Case Study Designed to Promote Critical Thinking Skills 312 Volume 25: Mini Workshops An Investigative Case Study Designed to Promote Critical Thinking Skills Christie J. Howard and Meeghan E. Gray Department of Biology University of Nevada, Reno cjhoward@unr.edu

More information

10 mm KCl in a Ti-15 zonal rotor at 35,000 rpm for 16 hr at

10 mm KCl in a Ti-15 zonal rotor at 35,000 rpm for 16 hr at Proc. Nat. Acad. SCi. USA Vol. 68, No. 11, pp. 2752-2756, November 1971 Translation of Exogenous Messenger RNA for Hemoglobin on Reticulocyte and Liver Ribosomes (initiation factors/9s RNA/liver factors/reticulocyte

More information

Life Sciences 1A Midterm Exam 2. November 13, 2006

Life Sciences 1A Midterm Exam 2. November 13, 2006 Name: TF: Section Time Life Sciences 1A Midterm Exam 2 November 13, 2006 Please write legibly in the space provided below each question. You may not use calculators on this exam. We prefer that you use

More information

Chapter 23 Enzymes 1

Chapter 23 Enzymes 1 Chapter 23 Enzymes 1 Enzymes Ribbon diagram of cytochrome c oxidase, the enzyme that directly uses oxygen during respiration. 2 Enzyme Catalysis Enzyme: A biological catalyst. With the exception of some

More information

Bio 111 Study Guide Chapter 17 From Gene to Protein

Bio 111 Study Guide Chapter 17 From Gene to Protein Bio 111 Study Guide Chapter 17 From Gene to Protein BEFORE CLASS: Reading: Read the introduction on p. 333, skip the beginning of Concept 17.1 from p. 334 to the bottom of the first column on p. 336, and

More information

FIRST MIDTERM EXAMINATION

FIRST MIDTERM EXAMINATION FIRST MIDTERM EXAMINATION 1. True or false: because enzymes are produced by living organisms and because they allow chemical reactions to occur that would not otherwise occur, enzymes represent an exception

More information

Biochemistry 2000 Sample Question Transcription, Translation and Lipids. (1) Give brief definitions or unique descriptions of the following terms:

Biochemistry 2000 Sample Question Transcription, Translation and Lipids. (1) Give brief definitions or unique descriptions of the following terms: (1) Give brief definitions or unique descriptions of the following terms: (a) exon (b) holoenzyme (c) anticodon (d) trans fatty acid (e) poly A tail (f) open complex (g) Fluid Mosaic Model (h) embedded

More information

Day Date Title Instructor 5 th Ed 6 th Ed. Protein digestion and AA absorption

Day Date Title Instructor 5 th Ed 6 th Ed. Protein digestion and AA absorption Day Date Title Instructor 5 th Ed 6 th Ed 1 Tuesday 18 April 2017 Protein digestion and AA absorption D S Jairajpuri 250 256 250 256 2 Wednesday 19 April 2017 Removal of nitrogen and urea cycle D S Jairajpuri

More information

1. to understand how proteins find their destination in prokaryotic and eukaryotic cells 2. to know how proteins are bio-recycled

1. to understand how proteins find their destination in prokaryotic and eukaryotic cells 2. to know how proteins are bio-recycled Protein Targeting Objectives 1. to understand how proteins find their destination in prokaryotic and eukaryotic cells 2. to know how proteins are bio-recycled As a protein is being synthesized, decisions

More information

FIRST BIOCHEMISTRY EXAM Tuesday 25/10/ MCQs. Location : 102, 105, 106, 301, 302

FIRST BIOCHEMISTRY EXAM Tuesday 25/10/ MCQs. Location : 102, 105, 106, 301, 302 FIRST BIOCHEMISTRY EXAM Tuesday 25/10/2016 10-11 40 MCQs. Location : 102, 105, 106, 301, 302 The Behavior of Proteins: Enzymes, Mechanisms, and Control General theory of enzyme action, by Leonor Michaelis

More information

Practice Problems 3. a. What is the name of the bond formed between two amino acids? Are these bonds free to rotate?

Practice Problems 3. a. What is the name of the bond formed between two amino acids? Are these bonds free to rotate? Life Sciences 1a Practice Problems 3 1. Draw the oligopeptide for Ala-Phe-Gly-Thr-Asp. You do not need to indicate the stereochemistry of the sidechains. Denote with arrows the bonds formed between the

More information

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1 Supplementary Figure 1 Design of isolated protein and RNC constructs, and homogeneity of purified RNCs. (a) Schematic depicting the design and nomenclature used for all the isolated proteins and RNCs used

More information

130327SCH4U_biochem April 09, 2013

130327SCH4U_biochem April 09, 2013 Option B: B1.1 ENERGY Human Biochemistry If more energy is taken in from food than is used up, weight gain will follow. Similarly if more energy is used than we supply our body with, weight loss will occur.

More information

Chapter 3. Protein Structure and Function

Chapter 3. Protein Structure and Function Chapter 3 Protein Structure and Function Broad functional classes So Proteins have structure and function... Fine! -Why do we care to know more???? Understanding functional architechture gives us POWER

More information

Correlation Between Rates of Degradation of Bacterial Proteins In Vivo and Their Sensitivity to Proteases

Correlation Between Rates of Degradation of Bacterial Proteins In Vivo and Their Sensitivity to Proteases Proc. Nat. Acad. Sci. USA Vol. 69, No. 9, pp. 2640-2644, September 1972 Correlation Between Rates of Degradation of Bacterial Proteins In Vivo and Their Sensitivity to Proteases (protein conformation/abnormal

More information

The Nobel Prize in Chemistry 2004

The Nobel Prize in Chemistry 2004 The Nobel Prize in Chemistry 2004 Ubiquitous Quality Control of Life C S Karigar and K R Siddalinga Murthy The Nobel Prize in Chemistry for 2004 is shared by Aaron Ciechanover, Avram Hershko and Irwin

More information

TRANSPORT PROCESSES. 1b. moving proteins into membranes and organelles

TRANSPORT PROCESSES. 1b. moving proteins into membranes and organelles 1b. moving proteins into membranes and organelles SLIDE 1 A typical mammalian cell contains up to 10,000 different kinds of proteins. The vast majority of these proteins are synthesized by cytosolic ribosomes,

More information

BIO 311C Spring Lecture 15 Friday 26 Feb. 1

BIO 311C Spring Lecture 15 Friday 26 Feb. 1 BIO 311C Spring 2010 Lecture 15 Friday 26 Feb. 1 Illustration of a Polypeptide amino acids peptide bonds Review Polypeptide (chain) See textbook, Fig 5.21, p. 82 for a more clear illustration Folding and

More information

Summary of Endomembrane-system

Summary of Endomembrane-system Summary of Endomembrane-system 1. Endomembrane System: The structural and functional relationship organelles including ER,Golgi complex, lysosome, endosomes, secretory vesicles. 2. Membrane-bound structures

More information

Chem 135: First Midterm

Chem 135: First Midterm Chem 135: First Midterm September 28 th, 2007 Please provide all answers in the space provided. Extra paper is available if needed. You may not use calculators for this exam, but you are free to use (previously

More information

DNA codes for RNA, which guides protein synthesis.

DNA codes for RNA, which guides protein synthesis. Section 3: DNA codes for RNA, which guides protein synthesis. K What I Know W What I Want to Find Out L What I Learned Vocabulary Review synthesis New RNA messenger RNA ribosomal RNA transfer RNA transcription

More information

TRANSLATION. Translation is a process where proteins are made by the ribosomes on the mrna strand.

TRANSLATION. Translation is a process where proteins are made by the ribosomes on the mrna strand. TRANSLATION Dr. Mahesha H B, Yuvaraja s College, University of Mysore, Mysuru. Translation is a process where proteins are made by the ribosomes on the mrna strand. Or The process in the ribosomes of a

More information

AMINO ACIDS, POLYPEPTIDES AND PROTEINS

AMINO ACIDS, POLYPEPTIDES AND PROTEINS MINO CIDS, POLYPEPTIDES ND POTEINS mino cids and Coding If it were not for transfer N molecules, protein synthesis would not be possible and there would be no coding of amino acids for polypeptide synthesis.

More information

Q1: Circle the best correct answer: (15 marks)

Q1: Circle the best correct answer: (15 marks) Q1: Circle the best correct answer: (15 marks) 1. Which one of the following incorrectly pairs an amino acid with a valid chemical characteristic a. Glycine, is chiral b. Tyrosine and tryptophan; at neutral

More information

LAB#23: Biochemical Evidence of Evolution Name: Period Date :

LAB#23: Biochemical Evidence of Evolution Name: Period Date : LAB#23: Biochemical Evidence of Name: Period Date : Laboratory Experience #23 Bridge Worth 80 Lab Minutes If two organisms have similar portions of DNA (genes), these organisms will probably make similar

More information

CS612 - Algorithms in Bioinformatics

CS612 - Algorithms in Bioinformatics Spring 2016 Protein Structure February 7, 2016 Introduction to Protein Structure A protein is a linear chain of organic molecular building blocks called amino acids. Introduction to Protein Structure Amine

More information

2.5 Dehydration Synthesis and Hydrolysis Activity Name Date Block

2.5 Dehydration Synthesis and Hydrolysis Activity Name Date Block 2.5 Dehydration Synthesis and Hydrolysis Activity Name Date Block Instructions: Complete the printout of this activity sheet with your lab partner. Show your work to your instructor when completed. Switch

More information

Review of Biochemistry

Review of Biochemistry Review of Biochemistry Chemical bond Functional Groups Amino Acid Protein Structure and Function Proteins are polymers of amino acids. Each amino acids in a protein contains a amino group, - NH 2,

More information

The building blocks for this molecule are A) amino acids B) simple sugars C) fats D) molecular bases

The building blocks for this molecule are A) amino acids B) simple sugars C) fats D) molecular bases 1. Base your answer to the following question on the diagram below and on your knowledge of biology. The diagram represents a portion of a starch molecule. The building blocks for this molecule are A)

More information

COVENANT UNIVERSITY ALPHA SEMESTER TUTORIAL KIT (VOL. 2) 200 LEVEL

COVENANT UNIVERSITY ALPHA SEMESTER TUTORIAL KIT (VOL. 2) 200 LEVEL COVENANT UNIVERSITY ALPHA SEMESTER TUTORIAL KIT (VOL. 2) P R O G R A M M E : B I O C H E M I S T R Y 200 LEVEL DISCLAIMER The contents of this document are intended for practice and learning purposes at

More information

Amino acids. Side chain. -Carbon atom. Carboxyl group. Amino group

Amino acids. Side chain. -Carbon atom. Carboxyl group. Amino group PROTEINS Amino acids Side chain -Carbon atom Amino group Carboxyl group Amino acids Primary structure Amino acid monomers Peptide bond Peptide bond Amino group Carboxyl group Peptide bond N-terminal (

More information

Student Number: THE UNIVERSITY OF MANITOBA April 16, 2007, 9:00 AM -12:00 PM Page 1 (of 4) Biochemistry II Laboratory Section Final Examination

Student Number: THE UNIVERSITY OF MANITOBA April 16, 2007, 9:00 AM -12:00 PM Page 1 (of 4) Biochemistry II Laboratory Section Final Examination Name: Student Number: THE UNIVERSITY OF MANITOBA April 16, 2007, 9:00 AM -12:00 PM Page 1 (of 4) Biochemistry II Laboratory Section Final Examination MBIO / CHEM.2370 Examiner: Dr. A. Scoot 1. Answer ALL

More information

The Structure and Function of Large Biological Molecules

The Structure and Function of Large Biological Molecules NAME DATE Chapter 5 - The Structure and Function of Large Biological Molecules Guided Reading Concept 5.1: Macromolecules are polymers, built from monomers 1. The large molecules of all living things fall

More information

Student Biochemistry I Homework III Due 10/13/04 64 points total (48 points based on text; 16 points for Swiss-PDB viewer exercise)

Student Biochemistry I Homework III Due 10/13/04 64 points total (48 points based on text; 16 points for Swiss-PDB viewer exercise) Biochemistry I Homework III Due 10/13/04 64 points total (48 points based on text; 16 points for Swiss-PDB viewer exercise) 1). 20 points total T or F; if false, provide a brief rationale as to why. Only

More information

Eukaryotic Gene Regulation

Eukaryotic Gene Regulation Eukaryotic Gene Regulation Chapter 19: Control of Eukaryotic Genome The BIG Questions How are genes turned on & off in eukaryotes? How do cells with the same genes differentiate to perform completely different,

More information

Lab 5: Proteins and the small molecules that love them (AKA Computer Modeling with PyMol #2)

Lab 5: Proteins and the small molecules that love them (AKA Computer Modeling with PyMol #2) Lab 5: Proteins and the small molecules that love them (AKA Computer Modeling with PyMol #2) Goals: The objective of this lab is to provide you with an understanding of: 1. Catalysis 2. Small molecule

More information

Problem Set #5 4/3/ Spring 02

Problem Set #5 4/3/ Spring 02 Question 1 Chloroplasts contain six compartments outer membrane, intermembrane space, inner membrane, stroma, thylakoid membrane, and thylakoid lumen each of which is populated by specific sets of proteins.

More information

RNA (Ribonucleic acid)

RNA (Ribonucleic acid) RNA (Ribonucleic acid) Structure: Similar to that of DNA except: 1- it is single stranded polunucleotide chain. 2- Sugar is ribose 3- Uracil is instead of thymine There are 3 types of RNA: 1- Ribosomal

More information

2013 John Wiley & Sons, Inc. All rights reserved. PROTEIN SORTING. Lecture 10 BIOL 266/ Biology Department Concordia University. Dr. S.

2013 John Wiley & Sons, Inc. All rights reserved. PROTEIN SORTING. Lecture 10 BIOL 266/ Biology Department Concordia University. Dr. S. PROTEIN SORTING Lecture 10 BIOL 266/4 2014-15 Dr. S. Azam Biology Department Concordia University Introduction Membranes divide the cytoplasm of eukaryotic cells into distinct compartments. The endomembrane

More information

Chapter 3 Guided Reading Notes Carbon and the Molecular Diversity of Life

Chapter 3 Guided Reading Notes Carbon and the Molecular Diversity of Life AP Biology Name: Block Chapter 3 Guided Reading Notes Carbon and the Molecular Diversity of Life Most of this chapter is new material. We will discuss it all in detail. Section 1 1. Make an electron distribution

More information

4th Multidimensional Chromatography Workshop Toronto (January, 2013) Herman C. Lam, Ph.D. Calibration & Validation Group

4th Multidimensional Chromatography Workshop Toronto (January, 2013) Herman C. Lam, Ph.D. Calibration & Validation Group 4th Multidimensional Chromatography Workshop Toronto (January, 2013) Herman C. Lam, Ph.D. Calibration & Validation Group MDLC for Shotgun Proteomics Introduction General concepts Advantages Challenges

More information

Amylase: a sample enzyme

Amylase: a sample enzyme Amylase: a sample enzyme Objectives: After completion of this laboratory exercise you will be able to: 1. Explain the importance of enzymes in biology. 2. Explain the basic properties of an enzyme as a

More information

Molecular Graphics Perspective of Protein Structure and Function

Molecular Graphics Perspective of Protein Structure and Function Molecular Graphics Perspective of Protein Structure and Function VMD Highlights > 20,000 registered Users Platforms: Unix (16 builds) Windows MacOS X Display of large biomolecules and simulation trajectories

More information

Molecular Cell Biology Problem Drill 16: Intracellular Compartment and Protein Sorting

Molecular Cell Biology Problem Drill 16: Intracellular Compartment and Protein Sorting Molecular Cell Biology Problem Drill 16: Intracellular Compartment and Protein Sorting Question No. 1 of 10 Question 1. Which of the following statements about the nucleus is correct? Question #01 A. The

More information

Chemical Formulas. Chemical Formula CH 3 COCHCHOCHClCHNH Lewis Dot Structure

Chemical Formulas. Chemical Formula CH 3 COCHCHOCHClCHNH Lewis Dot Structure Biochemistry . Chemical Formulas A chemical formula represents the chemical makeup of a compound. It shows the numbers and kinds of atoms present in a compound. It is a kind of shorthand that scientists

More information

This exam consists of two parts. Part I is multiple choice. Each of these 25 questions is worth 2 points.

This exam consists of two parts. Part I is multiple choice. Each of these 25 questions is worth 2 points. MBB 407/511 Molecular Biology and Biochemistry First Examination - October 1, 2002 Name Social Security Number This exam consists of two parts. Part I is multiple choice. Each of these 25 questions is

More information

CLASS SET. Modeling Life s Important Compounds. AP Biology

CLASS SET. Modeling Life s Important Compounds. AP Biology Modeling Life s Important Compounds AP Biology CLASS SET OBJECTIVES: Upon completion of this activity, you will be able to: Explain the connection between the sequence and the subcomponents of a biological

More information

Amino acids. Dr. Mamoun Ahram Summer semester,

Amino acids. Dr. Mamoun Ahram Summer semester, Amino acids Dr. Mamoun Ahram Summer semester, 2017-2018 Resources This lecture Campbell and Farrell s Biochemistry, Chapters 3 (pp.66-76) General structure (Chiral carbon) The amino acids that occur in

More information

PAPER No. : 16, Bioorganic and biophysical chemistry MODULE No. : 22, Mechanism of enzyme catalyst reaction (I) Chymotrypsin

PAPER No. : 16, Bioorganic and biophysical chemistry MODULE No. : 22, Mechanism of enzyme catalyst reaction (I) Chymotrypsin Subject Paper No and Title 16 Bio-organic and Biophysical Module No and Title 22 Mechanism of Enzyme Catalyzed reactions I Module Tag CHE_P16_M22 Chymotrypsin TABLE OF CONTENTS 1. Learning outcomes 2.

More information

Activity: Biologically Important Molecules

Activity: Biologically Important Molecules Activity: Biologically Important Molecules AP Biology Introduction We have already seen in our study of biochemistry that the molecules that comprise living things are carbon-based, and that they are thought

More information

Chapter 6. Antigen Presentation to T lymphocytes

Chapter 6. Antigen Presentation to T lymphocytes Chapter 6 Antigen Presentation to T lymphocytes Generation of T-cell Receptor Ligands T cells only recognize Ags displayed on cell surfaces These Ags may be derived from pathogens that replicate within

More information

Chapter 5: The Structure and Function of Large Biological Molecules

Chapter 5: The Structure and Function of Large Biological Molecules Name Period Concept 5.1 Macromolecules are polymers, built from monomers 1. The large molecules of all living things fall into just four main classes. Name them. 2. Circle the three classes that are called

More information

v o = V max [S] rate = kt[s] e V max = k cat E t ΔG = -RT lnk eq K m + [S]

v o = V max [S] rate = kt[s] e V max = k cat E t ΔG = -RT lnk eq K m + [S] Exam 3 Spring 2017 Dr. Stone 8:00 Name There are 100 possible points on this exam. -ΔG / RT v o = V max [S] rate = kt[s] e V max = k cat E t ΔG = -RT lnk eq K m + [S] h rate forward = k forward [reactants]

More information

Zool 3200: Cell Biology Exam 4 Part II 2/3/15

Zool 3200: Cell Biology Exam 4 Part II 2/3/15 Name:Key Trask Zool 3200: Cell Biology Exam 4 Part II 2/3/15 Answer each of the following questions in the space provided, explaining your answers when asked to do so; circle the correct answer or answers

More information

number Done by Corrected by Doctor Dr. Diala

number Done by Corrected by Doctor Dr. Diala number 30 Done by Dergam Al-Tarawneh Corrected by Zaid Emad Doctor Dr. Diala 1 After we ve finished talking about lipids metabolism pathways, today we will start talking about another pathway that takes

More information

Secondary Structure North 72nd Street, Wauwatosa, WI Phone: (414) Fax: (414) dmoleculardesigns.com

Secondary Structure North 72nd Street, Wauwatosa, WI Phone: (414) Fax: (414) dmoleculardesigns.com Secondary Structure In the previous protein folding activity, you created a generic or hypothetical 15-amino acid protein and learned that basic principles of chemistry determine how each protein spontaneously

More information

Proteins. Amino acids, structure and function. The Nobel Prize in Chemistry 2012 Robert J. Lefkowitz Brian K. Kobilka

Proteins. Amino acids, structure and function. The Nobel Prize in Chemistry 2012 Robert J. Lefkowitz Brian K. Kobilka Proteins Amino acids, structure and function The Nobel Prize in Chemistry 2012 Robert J. Lefkowitz Brian K. Kobilka O O HO N N HN OH Ser65-Tyr66-Gly67 The Nobel prize in chemistry 2008 Osamu Shimomura,

More information

Protein Trafficking in the Secretory and Endocytic Pathways

Protein Trafficking in the Secretory and Endocytic Pathways Protein Trafficking in the Secretory and Endocytic Pathways The compartmentalization of eukaryotic cells has considerable functional advantages for the cell, but requires elaborate mechanisms to ensure

More information

Chapter 8 Mitochondria and Cellular Respiration

Chapter 8 Mitochondria and Cellular Respiration Chapter 8 Mitochondria and Cellular Respiration Cellular respiration is the process of oxidizing food molecules, like glucose, to carbon dioxide and water. The energy released is trapped in the form of

More information

THE EQUILIBRIUM BETWEEN ACTIVE NATIVE TRYPSIN AND INACTIVE DENATURED TRYPSIN

THE EQUILIBRIUM BETWEEN ACTIVE NATIVE TRYPSIN AND INACTIVE DENATURED TRYPSIN Published Online: 20 January, 1934 Supp Info: http://doi.org/10.1085/jgp.17.3.393 Downloaded from jgp.rupress.org on November 8, 2018 THE EQUILIBRIUM BETWEEN ACTIVE NATIVE TRYPSIN AND INACTIVE DENATURED

More information