Effect of reduced oxygen on the antifungal susceptibility of clinically relevant

Size: px
Start display at page:

Download "Effect of reduced oxygen on the antifungal susceptibility of clinically relevant"

Transcription

1 AAC Accepts, published online ahead of print on 29 December 2014 Antimicrob. Agents Chemother. doi: /aac Copyright 2014, American Society for Microbiology. All Rights Reserved. 1 2 Effect of reduced oxygen on the antifungal susceptibility of clinically relevant Aspergilli 3 4 Running titel: Hypoxia influences susceptibility of Aspergilli Ulrike Binder 1#*, Elisabeth Maurer 1*, Michaela Lackner 1 and Cornelia Lass-Flörl 1 1 Division of Hygiene and Medical Microbiology, Medical University Innsbruck, Austria * authors contributed equally # Corresponding author: Ulrike Binder, Department of Hygiene, Microbiology and Social Medicine, Division of Hygiene and Medical Microbiology, Medical University Innsbruck, Schöpfstrasse 41, A-6020 Innsbruck, Tirol, Austria. Tel.: ; fax: ulrike.binder@imed.ac.at Key words: hypoxia, Aspergillus spp., susceptibility testing Word count abstract: 75 Word count text: 999 1

2 The influence of hypoxia on the in vitro activity of amphotericin B, azoles and echinocandins against Aspergilli was evaluated by comparing minimal inhibitory concentrations (MICs), minimal fungicidal concentrations (MFCs) and epidemiological cut offs (ECOFFs). Changes of MIC distributions due to hypoxia largely depend on the method, the species and the growth ability in hypoxia. The activity of antifungals was not significantly altered in hypoxia, except for A. terreus, where activity changed from fungicidal to fungistatic. At sites of infection, microenvironmental factors influence the growth of fungal pathogens and most likely also the efficacy of antifungal drugs (1). Hypoxia is one microenvironmental stress occurring during pulmonary fungal infections in vivo (2), and has a significant impact on antifungal targets such as ergosterol biosynthesis or β-glucan in A. fumigatus (3, 4). Simulating host environment in in vitro susceptibility testing will contribute to a better understanding of how these conditions might influence antifungal activity. In this study the in vitro activity of amphotericin B, triazoles and echinocandins against Aspergillus spp. in hypoxia was evaluated by Etest (Biomerieux, France) and microbroth dilution method according to EUCAST guidelines 9.2 (5). Epidemiological cut-off values (ECOFFs) were established and set two dilution steps higher than the modal MIC (6). Both methods were chosen to verify the different impact of oxygen on surface (exposure to 1%) or liquid cultures, where oxygen concentration might vary also in normoxic cultures. Putative changes from fungicidal to fungistatic activity were determined by MFCs (7), defined as lowest drug concentration resulting in 99.9% killing. All clinical isolates tested (n=49) were identified by ITS sequencing, according to White et al. (8). The strain set comprised: A. fumigatus (n=25), including five azole- 2

3 resistant isolates with a mutation in cyp51a (9), A. terreus (n=16), and A. flavus (n=8). Hypoxic conditions were set to 1% O 2, 5% CO 2, 94% N 2 (Biospherix C- Chamber & Pro-Ox, Pro-CO2 controller USA) and all experiments were done in parallel in normoxia (~21% O 2 ). To check for normal distribution, the D'Agostino & Pearson omnibus normality test was performed. The Kruskal-Wallis test was applied, since data were not normally distributed. P values of 0.05 were regarded as statistically significant. For supplemented media, ergosterol or cholesterol (25µM) were mixed with Coenzym Q 10 (5µM) and added to RPMI agar. Additionally, Etests were conducted on blood agar (25% v/v). To compare fungal growth at both oxygen conditions, radial growth assays were performed according to (10). With Etest, influence of hypoxia on susceptibility profile occurred in a species- and drug-dependent manner (Fig. 1/Table 1). Among all Aspergilli tested, A. fumigatus isolates exhibited lowest oxygen dependent changes in MICs to all antifungals tested. A significant reduction of the MIC distribution was observed for amphotericin B, while no alterations in MICs for azoles and echinocandins were detected. A. fumigatus strains carrying a mutation in the cyp51a gene did not show differences in azole-susceptibility. Aspergillus terreus isolates, intrinsically resistant against amphotericin B (11, 12), exhibited susceptibility in hypoxia with a significant decrease in MIC distribution (twelve log2-dilutions). Lower MICs were mainly due to the missing mycelium sterilium zone (Fig. 1). For the azoles, a significant reduction in MIC distribution was observed in hypoxia, while, as for A. fumigatus, no alteration was detected for echinocandins. Same was shown for A. flavus. MIC changes in hypoxia correlated with impaired growth in hypoxia, indicating that in vitro susceptibility of fungi being less sensitive to low oxygen concentrations was less affected (Fig. 3). Reduction in MICs in hypoxia could be abrogated by addition of ergosterol, cholesterol, or whole blood to the medium (Fig. 2). 3

4 In microbroth dilution assays, MICs of voriconazole and posaconazole were not altered in hypoxia for all Aspergilli tested (Table 2). Only for amphotericin B, a stepwise decrease in MICs ( two log2-dilutions) in hypoxia was prominent for A. terreus and A. flavus strains, while no difference was detected for A. fumigatus strains. MECs for caspofungin were not significantly influenced by hypoxia. MFCs demonstrated no alteration between hypoxia and normoxia for A. fumigatus and A. flavus strains (Table 2), which is correlating with already published data (7). For A. terreus strains, either increased or no MFCs were detected for azoles in hypoxia. Similarly, significantly more colonies were able to recover from cultures treated with amphotericin B in hypoxia, although no MFCs could be determined at both oxygen conditions. So far, only few studies investigated the effect of hypoxia on antifungal susceptibility of Aspergillus spp., focusing either on some antifungal agents (13) or on one standard in vitro test method (7). Similar to what was shown for anidulafungin (13), MIC/MEC reading was much easier in hypoxia, as typical trailing (microcolonies within the inhibition zone (14)) was less pronounced for echinocandins. The observed reductions in the MICs, being more pronounced on agar-based method than in liquid assays, matches results obtained by Warn et al. (7), and might be due to oxygen depletion in microtiter plates even at normoxia. Increased susceptibility to antifungals that target ergosterol itself or its biosynthesis (oxygen-dependent pathway (3)), indicates that the fungus has to cope with two stressors antifungal pressure and maintenance of membrane stability despite lacking oxygen as co-factor for ergosterol biosynthetic enzymes. Additionally, MICs in hypoxia rise to the levels of those in normoxia when membrane compounds are available. Xiong et al. (15) demonstrated that cholesterol is integrated into fungal membranes to compensate for ergosterol 4

5 depletion during azole treatment. Further, cholesterol can be used as a putative carbon source in filamentous fungi (16) and thereby enhance growth. Except for A. terreus, MFCs were less influenced by oxygen than MICs of surface cultures. This may even better reflect the actual situation in the host as Rex et al. (17) already suggested that MFCs are more relevant to predict the clinical outcome. For A. terreus, no MFCs were detectable, suggesting a shift to fungistatic activity under low oxygen conditions. Slesonia et al. (18) showed that A. terreus is able to persist and survive without germination within acidified phagolysosomes due to the resistance against microbicide enzymes. Also, conidia are more resistant to environmental conditions than hyphae (19). Therefore, a delayed germination, especially after diluting the antifungal agent by plating on agar, could contribute to enhanced resistance against antifungal drugs in hypoxia. In conclusion, hypoxia influenced in vitro antifungal susceptibility of Aspergillus spp. marginally, and observed differences where mostly pronounced with Etest. Importantly, changes in antifungal activity against A. terreus strains in hypoxia might partially explain the high failure of antifungal therapy in vivo (12, 20). 5

6 117 Acknowledgements. We thank Caroline Hörtnagl for technical assistance Funding. This work is supported by the Austrian Science Foundation (FWF), in the frame of ERA-net PathoGenoMics (ZFI006610) to CLF Transparency declaration. In the past 5 years, CLF has received grant support from Austrian Science Fund (FWF), Astellas Pharma, Gilead Sciences, Pfizer, Schering Plough and Merck Sharp and Dohme. She has been an advisor/consultant to Gilead Sciences, Merck Sharp and Dohme, Pfizer and Schering Plough. She has been received honoraria for talks and travel consts from Gilead Sciences, Merck Sharp and Dohme, Pfizer, Astellas Pharma and Schering Plough. All other authors have no conflicts of interest to declare. 6

7 130 References Bartizal C, Odds FC Influences of methodological variables on susceptibility testing of caspofungin against Candida species and Aspergillus fumigatus. Antimicrob Agents Chemother 47: Grahl N, Puttikamonkul S, Macdonald JM, Gamcsik MP, Ngo LY, Hohl TM, Cramer RA In vivo hypoxia and a fungal alcohol dehydrogenase influence the pathogenesis of invasive pulmonary aspergillosis. PLoS Pathog 7:e Barker BM, Kroll K, Vodisch M, Mazurie A, Kniemeyer O, Cramer RA Transcriptomic and proteomic analyses of the Aspergillus fumigatus hypoxia response using an oxygencontrolled fermenter. BMC Genomics 13: Shepardson KM, Ngo LY, Aimanianda V, Latge JP, Barker BM, Blosser SJ, Iwakura Y, Hohl TM, Cramer RA Hypoxia enhances innate immune activation to Aspergillus fumigatus through cell wall modulation. Microbes Infect 15: Arendrup M. C. C-EM, Lass-Flörl C., Hope W., Howard S.J. and the Subcommittee on Antifungal Susceptibility Testing (AFST) of the ESCMID European Committeefor Antimicrobial Susceptibility Testing (EUCAST) EUCAST DEFINITIVE DOCUMENT EDef 9.2: Method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for conidia forming moulds. 6. Rodriguez-Tudela J. L. HW, Cuenca-Estrella M., Donnelly J. P., Lass-Flörl C. and Arendrup Maiken C Can We Achieve Clinical Breakpoints for the Triazoles in Aspergillosis? Curr Fungal Infect Rep 5: Warn PA, Sharp A, Guinea J, Denning DW Effect of hypoxic conditions on in vitro susceptibility testing of amphotericin B, itraconazole and micafungin against Aspergillus and Candida. J Antimicrob Chemother 53: White TJ, Bruns, T., Lee, S. and Taylor J.W Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. In I. Academic Press, New York (ed.), PCR Protocols: A Guide to Methods and Applications. ed. Immis, New York. 9. Van der Linden J Prospective international surveillance of azole resistance (AR) in Aspergillus fumigatus (Af) (SCARE-Network). Abstract M-490, Fifty-first Interscience Conference on Antimicrobial Agents and Chemotherapy, American Society for Microbiology Chicago, IL. Washington, DC, USA. 10. Binder U, Oberparleiter C, Meyer V, Marx F The antifungal protein PAF interferes with PKC/MPK and camp/pka signalling of Aspergillus nidulans. Mol Microbiol 75: Hara KS, Ryu JH, Lie JT, Roberts GD Disseminated Aspergillus terreus infection in immunocompromised hosts. Mayo Clin Proc 64: Steinbach WJ, Benjamin DK, Jr., Kontoyiannis DP, Perfect JR, Lutsar I, Marr KA, Lionakis MS, Torres HA, Jafri H, Walsh TJ Infections due to Aspergillus terreus: a multicenter retrospective analysis of 83 cases. Clin Infect Dis 39: Perkhofer S, Jost D, Dierich MP, Lass-Florl C Susceptibility testing of anidulafungin and voriconazole alone and in combination against conidia and hyphae of Aspergillus spp. under hypoxic conditions. Antimicrob Agents Chemother 52: Morace G, Borghi E, Iatta R, Montagna MT Anidulafungin, a new echinocandin: in vitro activity. Drugs 69 Suppl 1: Xiong Q, Hassan SA, Wilson WK, Han XY, May GS, Tarrand JJ, Matsuda SP Cholesterol import by Aspergillus fumigatus and its influence on antifungal potency of sterol biosynthesis inhibitors. Antimicrob Agents Chemother 49: al Musallam AA, Radwan SS Wool-colonizing micro-organisms capable of utilizing wool-lipids and fatty acids as sole sources of carbon and energy. J Appl Bacteriol 69:

8 Rex JH, Pfaller MA, Walsh TJ, Chaturvedi V, Espinel-Ingroff A, Ghannoum MA, Gosey LL, Odds FC, Rinaldi MG, Sheehan DJ, Warnock DW Antifungal susceptibility testing: practical aspects and current challenges. Clin Microbiol Rev 14: , table of contents. 18. Slesiona S, Gressler M, Mihlan M, Zaehle C, Schaller M, Barz D, Hube B, Jacobsen ID, Brock M Persistence versus escape: Aspergillus terreus and Aspergillus fumigatus employ different strategies during interactions with macrophages. PLoS One 7:e Diamond RD Fungal surfaces: effects of interactions with phagocytic cells. Rev Infect Dis 10 Suppl 2:S Lass-Florl C, Griff K, Mayr A, Petzer A, Gastl G, Bonatti H, Freund M, Kropshofer G, Dierich MP, Nachbaur D Epidemiology and outcome of infections due to Aspergillus terreus: 10-year single centre experience. Br J Haematol 131: Downloaded from on October 20, 2018 by guest 8

9 agent TABLE 1: In vitro susceptibility to AMB, azoles and echinocandins of Aspergillus species determined by Etest. MICs (µg/ml) were determined after 48 h at 37 C under normal oxygen conditions and hypoxic growth conditions. A.fumigatus (n=26) A. terreus 9 (n=14) normoxia hypoxia normoxia hypoxia normoxia hypoxia range MIC50 ECOFF range MIC50 ECOFF range MIC50 ECOFF range MIC50 ECOFF range MIC50 ECOFF range MIC50 ECOFF AMB >32 >32 > >32 32 >32 1-> VRC POS ITR CAS AND MYC MIC50 inhibition of 50% of all isolates; ECOFF epidemiological cutoff value A.flavus (n=8)

10 TABLE 2: In vitro susceptibility of Aspergillus spp. determined by EUCAST method. MIC/MEC, MFC and ECOFF values of AMB, VRC, POS and CAS were determined under normal oxygen conditions and hypoxic conditions. normoxia (µg/ml) hypoxia (µg/ml) species agent MIC range A. fumigatus (n=25) A. terreus (n=16) A. flavus (n=8) MIC 50 MIC 90 ECOFF MFC range MFC MIC range MIC 50 MIC 90 ECOFF MFC range AMB VRC POS CAS* > >16 AMB > >16 VRC >16 POS >16 CAS* > >16 AMB VRC POS CAS* > >16 MFC * indicates MEC values MIC 50/MIC 90. MIC causing inhibition of 50% or 90% of isolates ECOFF, epidemiological cut off value MFC, median of the minimum fungicidal concentration

11 Fig. 1: MIC distribution for AMB, POS, and CAS for A. fumigatus (left column), A. terreus (middle column) and A. flavus (right column) strains under normoxic (grey) and hypoxic (white) growth conditions. Antifungal susceptibility testing was performed by Etest method, MIC was determined at both oxygen conditions after 48 h at 37 C, and ECOFFs were established for both conditions. Pictures present one representative strain of the species-group. Downloaded from on October 20, 2018 by guest 11

12 Fig. 2: Supplementation of ergosterol/q 10, cholesterol/q 10, and blood enhances the antifungal susceptibility to AMB, VRC and POS of Aspergillus spp. in hypoxia

13 Fig. 3: Hypoxia influences the growth of Aspergillus species. Conidia were dotted on RPMI 1640 plates and incubated for 48 h at 37 C under normal oxygen and hypoxic growth conditions. Percentage of growth under hypoxia was normalized to growth in normoxia

14

15

16

EUCAST-AFST Available breakpoints 2012

EUCAST-AFST Available breakpoints 2012 EUCAST-AFST Available breakpoints th NSMM meeting Göteborg, Sweden October th EUCAST-AFST documents Reference Methods Yeast E.DEF. () TN- E.DEF. (CMI epub July) E.DEF. () TN- E.DEF. () Breakpoints Compound

More information

Update zu EUCAST 2012 Cornelia Lass-Flörl

Update zu EUCAST 2012 Cornelia Lass-Flörl Update zu EUCAST 2012 Cornelia Lass-Flörl Frühjahrstagung 2012 Paul-Ehrlich-Gesellschaft Sektion Antimykotische Chemotherapie Bonn, 4./5. Mai 2012 Agenda 1. Breakpoints 2. Rationale documents and technical

More information

Voriconazole. Voriconazole VRCZ ITCZ

Voriconazole. Voriconazole VRCZ ITCZ 7 7 8 7 8 fluconazole itraconazole in vitro in vivo Candida spp. C. glabrata C. krusei Cryptococcus neoformans in vitro Aspergillus spp. in vitro in vivo Aspergillus fumigatus Candida albicans C. krusei

More information

Received 18 December 2008/Returned for modification 9 February 2009/Accepted 9 April 2009

Received 18 December 2008/Returned for modification 9 February 2009/Accepted 9 April 2009 JOURNAL OF CLINICAL MICROBIOLOGY, June 2009, p. 1942 1946 Vol. 47, No. 6 0095-1137/09/$08.00 0 doi:10.1128/jcm.02434-08 Copyright 2009, American Society for Microbiology. All Rights Reserved. Activity

More information

Antifungal susceptibility testing: Which method and when?

Antifungal susceptibility testing: Which method and when? Antifungal susceptibility testing: Which method and when? Maiken Cavling Arendrup mad@ssi.dk SSI & Juan Luis Rodriguez Tudela jlrtudela@isciii.es ISCIII Agenda Summary of current standards and selected

More information

Antifungal drug resistance mechanisms in pathogenic fungi: from bench to bedside

Antifungal drug resistance mechanisms in pathogenic fungi: from bench to bedside REVIEW 10.1111/1469-0691.12495 Antifungal drug resistance mechanisms in pathogenic fungi: from bench to bedside M. Cuenca-Estrella National Center for Microbiology, Instituto de Salud Carlos III, Madrid,

More information

In Vitro Interactions of Antifungal agents and Tacrolimus against Aspergillus Biofilms

In Vitro Interactions of Antifungal agents and Tacrolimus against Aspergillus Biofilms AAC Accepted Manuscript Posted Online 24 August 2015 Antimicrob. Agents Chemother. doi:10.1128/aac.01510-15 Copyright 2015, American Society for Microbiology. All Rights Reserved. 1 In Vitro Interactions

More information

Antifungal Pharmacodynamics A Strategy to Optimize Efficacy

Antifungal Pharmacodynamics A Strategy to Optimize Efficacy Antifungal Pharmacodynamics A Strategy to Optimize Efficacy David Andes, MD Associate Professor, Department of Medicine Division of Infectious Diseases Medical Microbiology and Immunology University of

More information

Antifungal Pharmacotherapy

Antifungal Pharmacotherapy Interpreting Antifungal Susceptibility Testing: Science or Smoke and Mirrors A. W. F O T H E R G I L L, M A, M B A U N I V E R S I T Y O F T E X A S H E A L T H S C I E N C E C E N T E R S A N A N T O

More information

AAC Accepts, published online ahead of print on 21 March 2011 Antimicrob. Agents Chemother. doi: /aac

AAC Accepts, published online ahead of print on 21 March 2011 Antimicrob. Agents Chemother. doi: /aac AAC Accepts, published online ahead of print on 1 March 0 Antimicrob. Agents Chemother. doi:./aac.010- Copyright 0, American Society for Microbiology and/or the Listed Authors/Institutions. All Rights

More information

In vitro cross-resistance between azoles in Aspergillus fumigatus: a reason for concern in the clinic?

In vitro cross-resistance between azoles in Aspergillus fumigatus: a reason for concern in the clinic? 4 th Congress on Trends in Medical Mycology (TIMM) In vitro cross-resistance between azoles in Aspergillus fumigatus: a reason for concern in the clinic? Emilia Mellado Mycolgy Reference Laboratory Centro

More information

Division of Infectious Diseases, Department of Medicine, Wayne State University, Detroit, MI, USA

Division of Infectious Diseases, Department of Medicine, Wayne State University, Detroit, MI, USA ORIGINAL ARTICLE 10.1111/j.1469-0691.2004.00996.x In-vitro activity of nikkomycin Z alone and in combination with polyenes, triazoles or echinocandins against Aspergillus fumigatus L. T. Ganesan, E. K.

More information

Table 1. Antifungal Breakpoints for Candida. 2,3. Agent S SDD or I R. Fluconazole < 8.0 mg/ml mg/ml. > 64 mg/ml.

Table 1. Antifungal Breakpoints for Candida. 2,3. Agent S SDD or I R. Fluconazole < 8.0 mg/ml mg/ml. > 64 mg/ml. AUSTRALIAN ANTIFUNGAL SUSCEPTIBILITY DATA 2008-2011 Part 1: The Yeasts In this article, an update of recent changes to the CLSI antifungal standards for susceptibility testing of yeasts is presented. We

More information

your lab focus susceptibility testing of yeasts and moulds as well as the clinical implications of in vitro antifungal testing.

your lab focus susceptibility testing of yeasts and moulds as well as the clinical implications of in vitro antifungal testing. 626 CE update [microbiology and virology] Antifungal Susceptibility Methods and Their Potential Clinical Relevance Ana Espinel-Ingroff, PhD Medical College of Virginia, Virginia Commonwealth University,

More information

Antifungal Susceptibility Testing

Antifungal Susceptibility Testing Infect Dis Clin N Am 20 (2006) 699 709 Antifungal Susceptibility Testing Annette W. Fothergill, MA, MBA, MT(ASCP), CLS(NCA) a, Michael G. Rinaldi, PhD a,b, Deanna A. Sutton, PhD, MT, SM(ASCP), SM, RM(NRM)

More information

Newer Combination Therapies

Newer Combination Therapies Newer Combination Therapies William J. Steinbach, MD Associate Professor of Pediatrics, Molecular Genetics & Microbiology Pediatric Infectious Diseases Duke University Medical Center Combination Therapy

More information

Received 1 December 2009/Accepted 26 January 2010

Received 1 December 2009/Accepted 26 January 2010 ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Apr. 2010, p. 1541 1546 Vol. 54, No. 4 0066-4804/10/$12.00 doi:10.1128/aac.01688-09 Copyright 2010, American Society for Microbiology. All Rights Reserved. Evaluation

More information

TOP PAPERS in MEDICAL MYCOLOGY Laboratory Diagnosis Manuel Cuenca-Estrella Abril 2018

TOP PAPERS in MEDICAL MYCOLOGY Laboratory Diagnosis Manuel Cuenca-Estrella Abril 2018 TOP PAPERS in MEDICAL MYCOLOGY Laboratory Diagnosis Manuel Cuenca-Estrella Abril 2018 MCE01 Conflict of interest disclosure In the past 5 years, M.C.E. has received grant support from Astellas Pharma,

More information

Micafungin and Candida spp. Rationale for the EUCAST clinical breakpoints. Version February 2013

Micafungin and Candida spp. Rationale for the EUCAST clinical breakpoints. Version February 2013 Micafungin and Candida spp. Rationale for the EUCAST clinical breakpoints. Version 1.0 5 February 2013 Foreword EUCAST The European Committee on Antimicrobial Susceptibility Testing (EUCAST) is organised

More information

Received 7 March 2002/Returned for modification 16 April 2002/Accepted 13 June 2002

Received 7 March 2002/Returned for modification 16 April 2002/Accepted 13 June 2002 JOURNAL OF CLINICAL MICROBIOLOGY, Sept. 2002, p. 3204 3208 Vol. 40, No. 9 0095-1137/02/$04.00 0 DOI: 10.1128/JCM.40.9.3204 3208.2002 Copyright 2002, American Society for Microbiology. All Rights Reserved.

More information

Received 22 November 2007/Returned for modification 29 December 2007/Accepted 12 January 2008

Received 22 November 2007/Returned for modification 29 December 2007/Accepted 12 January 2008 ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Apr. 2008, p. 1396 1400 Vol. 52, No. 4 0066-4804/08/$08.00 0 doi:10.1128/aac.01512-07 Copyright 2008, American Society for Microbiology. All Rights Reserved. In Vitro

More information

The incidence of invasive fungal infections

The incidence of invasive fungal infections AN EPIDEMIOLOGIC UPDATE ON INVASIVE FUNGAL INFECTIONS * Michael A. Pfaller, MD ABSTRACT *Based on a presentation given by Dr Pfaller at a symposium held in conjunction with the 43rd Interscience Conference

More information

Sensitivity of Candida albicans isolates to caspofungin comparison of microdilution method and E-test procedure

Sensitivity of Candida albicans isolates to caspofungin comparison of microdilution method and E-test procedure Basic research Sensitivity of Candida albicans isolates to caspofungin comparison of microdilution method and E-test procedure Anna Serefko, Anna Malm Department of Pharmaceutical Microbiology, Medical

More information

Resistance epidemiology

Resistance epidemiology ECMM/EFISG symposium: Multidrug resistance in fungi? A formidable foe Resistance epidemiology Ana Alastruey Izquierdo Mycology Reference Lab Spain Instituto de Salud Carlos III Disclousure I have received

More information

No Evidence As Yet. Georg Maschmeyer. Dept. of Hematology, Oncology & Palliative Care Klinikum Ernst von Bergmann Potsdam, Germany

No Evidence As Yet. Georg Maschmeyer. Dept. of Hematology, Oncology & Palliative Care Klinikum Ernst von Bergmann Potsdam, Germany Is Combined Antifungal Therapy More Efficient than Single Agent Therapy? No Evidence As Yet www.ichs.org Georg Maschmeyer Dept. of Hematology, Oncology & Palliative Care Klinikum Ernst von Bergmann Potsdam,

More information

AUSTRALIAN ANTIFUNGAL SUSCEPTIBILITY DATA : PART 2 THE MOULDS ASPERGILLUS, SCEDOSPORIUM AND FUSARIUM.

AUSTRALIAN ANTIFUNGAL SUSCEPTIBILITY DATA : PART 2 THE MOULDS ASPERGILLUS, SCEDOSPORIUM AND FUSARIUM. AUSTRALIAN ANTIFUNGAL SUSCEPTIBILITY DATA 00-0: PART THE MOULDS ASPERGILLUS, SCEDOSPORIUM AND FUSARIUM. AUSTRALIAN Sarah Kidd, Rose Handke and ANTIFUNGAL David Ellis SUSCEPTIBILITY DATA 00-00 David SA

More information

Nijmegen Institute for Infection, Inflammation and Immunity (N4i) 2, Nijmegen, the. and Hematology 4, University Medical Center

Nijmegen Institute for Infection, Inflammation and Immunity (N4i) 2, Nijmegen, the. and Hematology 4, University Medical Center JCM Accepts, published online ahead of print on January 0 J. Clin. Microbiol. doi:./jcm.01-0 Copyright 0, American Society for Microbiology and/or the Listed Authors/Institutions. All Rights Reserved.

More information

Received 31 March 2009/Returned for modification 26 May 2009/Accepted 22 June 2009

Received 31 March 2009/Returned for modification 26 May 2009/Accepted 22 June 2009 JOURNAL OF CLINICAL MICROBIOLOGY, Sept. 2009, p. 2766 2771 Vol. 47, No. 9 0095-1137/09/$08.00 0 doi:10.1128/jcm.00654-09 Copyright 2009, American Society for Microbiology. All Rights Reserved. Comparison

More information

on November 3, 2018 by guest

on November 3, 2018 by guest JOURNAL OF CLINICAL MICROBIOLOGY, June 2007, p. 1811 1820 Vol. 45, No. 6 0095-1137/07/$08.00 0 doi:10.1128/jcm.00134-07 Copyright 2007, American Society for Microbiology. All Rights Reserved. Multicenter

More information

Antifungal Activity of Voriconazole on Local Isolates: an In-vitro Study

Antifungal Activity of Voriconazole on Local Isolates: an In-vitro Study Original Article Philippine Journal of OPHTHALMOLOGY Antifungal Activity of Voriconazole on Local Isolates: an In-vitro Study Karina Q. De Sagun-Bella, MD, 1 Archimedes Lee D. Agahan, MD, 1 Leo DP. Cubillan,

More information

on December 9, 2018 by guest

on December 9, 2018 by guest JCM Accepts, published online ahead of print on 27 June 2012 J. Clin. Microbiol. doi:10.1128/jcm.00937-12 Copyright 2012, American Society for Microbiology. All Rights Reserved. 1 2 Progress in Antifungal

More information

Echinocandin Susceptibility Testing of Candida Isolates Collected during a 1-Year Period in Sweden

Echinocandin Susceptibility Testing of Candida Isolates Collected during a 1-Year Period in Sweden JOURNAL OF CLINICAL MICROBIOLOGY, July 2011, p. 2516 2521 Vol. 49, No. 7 0095-1137/11/$12.00 doi:10.1128/jcm.00201-11 Copyright 2011, American Society for Microbiology. All Rights Reserved. Echinocandin

More information

Antifungal Resistance in Asia: Mechanisms, Epidemiology, and Consequences

Antifungal Resistance in Asia: Mechanisms, Epidemiology, and Consequences 5th MMTN Conference 5-6 November 2016 Bangkok, Thailand 10:20-10:45, 6 Nov, 2016 Antifungal Resistance in Asia: Mechanisms, Epidemiology, and Consequences Yee-Chun Chen, M.D., PhD. Department of Medicine,

More information

Received 6 October 2010/Returned for modification 26 December 2010/Accepted 7 January 2011

Received 6 October 2010/Returned for modification 26 December 2010/Accepted 7 January 2011 ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Apr. 2011, p. 1580 1587 Vol. 55, No. 4 0066-4804/11/$12.00 doi:10.1128/aac.01364-10 Copyright 2011, American Society for Microbiology. All Rights Reserved. Echinocandin

More information

Efficacy of amphotericin B at suboptimal dose combined with. voriconazole in a murine infection by Aspergillus fumigatus with poor in

Efficacy of amphotericin B at suboptimal dose combined with. voriconazole in a murine infection by Aspergillus fumigatus with poor in AAC Accepts, published online ahead of print on 24 June 2013 Antimicrob. Agents Chemother. doi:10.1128/aac.00563-13 Copyright 2013, American Society for Microbiology. All Rights Reserved. 1 2 3 4 5 6 7

More information

ACCEPTED DIFFERENTIAL FUNGICIDAL ACTIVITY OF AMPHOTERICIN B AND VORICONAZOLE AGAINST ASPERGILLUS SPECIES DETERMINED BY MICROBROTH METHODOLOGY

ACCEPTED DIFFERENTIAL FUNGICIDAL ACTIVITY OF AMPHOTERICIN B AND VORICONAZOLE AGAINST ASPERGILLUS SPECIES DETERMINED BY MICROBROTH METHODOLOGY AAC Accepts, published online ahead of print on 18 June 2007 Antimicrob. Agents Chemother. doi:10.1128/aac.00345-07 Copyright 2007, American Society for Microbiology and/or the Listed Authors/Institutions.

More information

Clinical relevance of resistance in Aspergillus. David W. Denning University Hospital of South Manchester [Wythenshawe Hospital]

Clinical relevance of resistance in Aspergillus. David W. Denning University Hospital of South Manchester [Wythenshawe Hospital] Clinical relevance of resistance in Aspergillus David W. Denning University Hospital of South Manchester [Wythenshawe Hospital] The University of Manchester Steps to establishing clinical validity of resistance/susceptibility

More information

Efficacy of a Novel Echinocandin, CD101, in a Mouse Model of Azole-Resistant Disseminated Candidiasis

Efficacy of a Novel Echinocandin, CD101, in a Mouse Model of Azole-Resistant Disseminated Candidiasis Efficacy of a Novel Echinocandin, CD0, in a Mouse Model of Azole-Resistant Disseminated Candidiasis L. Miesel, K-Y Lin, J. C. Chien, M. L. Hsieh, V. Ong, and K. Bartizal Eurofins Panlabs, Taipei, Taiwan

More information

Pattern of Antifungal Susceptibility in Pathogenic Molds by Microdilution Method at a Tertiary Care Hospital

Pattern of Antifungal Susceptibility in Pathogenic Molds by Microdilution Method at a Tertiary Care Hospital Original Article Pattern of Antifungal Susceptibility in Pathogenic Molds by Microdilution Method at a Tertiary Care Hospital Maria Khan*, Aamer Ikram, Gohar Zaman, Adeel Gardezi and Farida Khurram Lalani

More information

Antifungal Susceptibility of Aspergillus Isolates from the Respiratory Tract of Patients in Canadian Hospitals: Results of the CANWARD 2016 Study.

Antifungal Susceptibility of Aspergillus Isolates from the Respiratory Tract of Patients in Canadian Hospitals: Results of the CANWARD 2016 Study. 1 Antifungal Susceptibility of Aspergillus Isolates from the Respiratory Tract of Patients in Canadian Hospitals: Results of the CANWARD 2016 Study. J. FULLER 1,3, A. BULL 2, S. SHOKOPLES 2, T.C. DINGLE

More information

Monitorization, Separation and Quantification of Antifungals used for Invasive Aspergillosis Treatment by High Performance Thin Layer Chromatography

Monitorization, Separation and Quantification of Antifungals used for Invasive Aspergillosis Treatment by High Performance Thin Layer Chromatography Monitorization, Separation and Quantification of Antifungals used for Invasive Aspergillosis Treatment by High Performance Thin Layer Chromatography M. P. Domingo, M. Vidal, J. Pardo, A. Rezusta, L. Roc,

More information

Voriconazole Rationale for the EUCAST clinical breakpoints, version March 2010

Voriconazole Rationale for the EUCAST clinical breakpoints, version March 2010 Voriconazole Rationale for the EUCAST clinical breakpoints, version 2.0 20 March 2010 Foreword EUCAST The European Committee on Antimicrobial Susceptibility Testing (EUCAST) is organised by the European

More information

Georg Maschmeyer. Dept. of Hematology, Oncology & Palliative Care Klinikum Ernst von Bergmann Potsdam, Germany.

Georg Maschmeyer. Dept. of Hematology, Oncology & Palliative Care Klinikum Ernst von Bergmann Potsdam, Germany. www.ichs.org Georg Maschmeyer Dept. of Hematology, Oncology & Palliative Care Klinikum Ernst von Bergmann Potsdam, Germany gmaschmeyer@klinikumevb.de www.dghoinfektionen.de 519 A. fumigatus isolates: Itraconazole

More information

In vitro antifungal susceptibility of clinically relevant species belonging to Aspergillus

In vitro antifungal susceptibility of clinically relevant species belonging to Aspergillus AAC Accepts, published online ahead of print on 18 January 2013 Antimicrob. Agents Chemother. doi:10.1128/aac.01902-12 Copyright 2013, American Society for Microbiology. All Rights Reserved. 1 2 In vitro

More information

MANAGEMENT OF HOSPITAL-ACQUIRED FUNGAL INFECTIONS

MANAGEMENT OF HOSPITAL-ACQUIRED FUNGAL INFECTIONS MANAGEMENT OF HOSPITAL-ACQUIRED FUNGAL INFECTIONS Paul D. Holtom, MD Associate Professor of Medicine and Orthopaedics USC Keck School of Medicine Numbers of Cases of Sepsis in the United States, According

More information

Invasive aspergillosis (IA) has emerged as a major cause of morbidity. Aspergillus terreus

Invasive aspergillosis (IA) has emerged as a major cause of morbidity. Aspergillus terreus 1594 Aspergillus terreus An Emerging Amphotericin B Resistant Opportunistic Mold in Patients with Hematologic Malignancies Ray Y. Hachem, M.D. 1 Dimitrios P. Kontoyiannis, M.D., Sc.D. 1 Maha R. Boktour,

More information

About the Editor Gerri S. Hall, Ph.D.

About the Editor Gerri S. Hall, Ph.D. About the Editor Gerri S. Hall, Ph.D. Dr. Hall s professional career has been focused on clinical microbiology: direct clinical activities of various areas such as bacteriology, mycobacteria, STD testing,

More information

Europe PMC Funders Group Author Manuscript Int J Antimicrob Agents. Author manuscript; available in PMC 2010 November 15.

Europe PMC Funders Group Author Manuscript Int J Antimicrob Agents. Author manuscript; available in PMC 2010 November 15. Europe PMC Funders Group Author Manuscript Published in final edited form as: Int J Antimicrob Agents. 2005 October ; 26(4): 335 337. doi:10.1016/j.ijantimicag.2005.07.006. Interaction of serotonin with

More information

An Update in the Management of Candidiasis

An Update in the Management of Candidiasis An Update in the Management of Candidiasis Daniel B. Chastain, Pharm.D., AAHIVP Infectious Diseases Pharmacy Specialist Phoebe Putney Memorial Hospital Adjunct Clinical Assistant Professor UGA College

More information

Received 12 December 2010/Returned for modification 5 January 2011/Accepted 16 March 2011

Received 12 December 2010/Returned for modification 5 January 2011/Accepted 16 March 2011 JOURNAL OF CLINICAL MICROBIOLOGY, May 2011, p. 1765 1771 Vol. 49, No. 5 0095-1137/11/$12.00 doi:10.1128/jcm.02517-10 Copyright 2011, American Society for Microbiology. All Rights Reserved. Multicenter

More information

Optimizing antifungal dosing regimens. Joseph Meletiadis, PhD, FECMM Assistant Professor of Microbiology

Optimizing antifungal dosing regimens. Joseph Meletiadis, PhD, FECMM Assistant Professor of Microbiology ATHENA 2017 International Conference November 28 30, 2017 Optimizing antifungal dosing regimens Joseph Meletiadis, PhD, FECMM Assistant Professor of Microbiology Clinical Microbiology Laboratory, «Attikon»

More information

SCY-078 ECMM Symposium Cologne, Germany October 2017

SCY-078 ECMM Symposium Cologne, Germany October 2017 A New Path for Antifungal Treatments SCY-078 ECMM Symposium Cologne, Germany October 2017 David Angulo, M.D. Chief Medical Officer SCYNEXIS at a Glance Company created in 2000 Spin-off of Sanofi, initially

More information

Comparison of microdilution method and E-test procedure in susceptibility testing of caspofungin against Candida non-albicans species

Comparison of microdilution method and E-test procedure in susceptibility testing of caspofungin against Candida non-albicans species NEW MICROBIOLOGICA, 31, 257-262, 2008 Comparison of microdilution method and E-test procedure in susceptibility testing of caspofungin against Candida non-albicans species Anna Serefko, Renata Los, Anna

More information

Antifungal resistance in Aspergillus fumigatus

Antifungal resistance in Aspergillus fumigatus Antifungal resistance in Aspergillus fumigatus Dr Lily Novak Frazer and Dr Caroline Moore University of Manchester at the Manchester Academic Health & Science Centre and the Mycology Reference Centre,

More information

REsIstancE In clinical A. fumigatus

REsIstancE In clinical A. fumigatus april 28, 2011 Eu Ro PE an JouR nal of MEd I cal RE search 153 Eur J Med Res (2011) 16: 153-157 I. Holzapfel Publishers 2011 EPIdEMIology and antifungal REsIstancE In InvasIvE aspergillosis according to

More information

Isolates from a Phase 3 Clinical Trial. of Medicine and College of Public Health, Iowa City, Iowa 52242, Wayne, Pennsylvania ,

Isolates from a Phase 3 Clinical Trial. of Medicine and College of Public Health, Iowa City, Iowa 52242, Wayne, Pennsylvania , JCM Accepts, published online ahead of print on 26 May 2010 J. Clin. Microbiol. doi:10.1128/jcm.00806-10 Copyright 2010, American Society for Microbiology and/or the Listed Authors/Institutions. All Rights

More information

FKS Mutant Candida glabrata: Risk Factors and Outcomes in Patients With Candidemia

FKS Mutant Candida glabrata: Risk Factors and Outcomes in Patients With Candidemia Clinical Infectious Diseases Advance Access published July 9, 2014 MAJOR ARTICLE FKS Mutant Candida glabrata: Risk Factors and Outcomes in Patients With Candidemia Nicholas D. Beyda, 1 Julie John, 1 Abdullah

More information

Multilaboratory Testing of Two-Drug Combinations of Antifungals against Candida albicans, Candida glabrata, and Candida parapsilosis

Multilaboratory Testing of Two-Drug Combinations of Antifungals against Candida albicans, Candida glabrata, and Candida parapsilosis ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Apr. 2011, p. 1543 1548 Vol. 55, No. 4 0066-4804/11/$12.00 doi:10.1128/aac.01510-09 Copyright 2011, American Society for Microbiology. All Rights Reserved. Multilaboratory

More information

Stage-specific Innate Immune Recognition of Aspergillus fumigatus and Modulation by Echinocandin Drugs

Stage-specific Innate Immune Recognition of Aspergillus fumigatus and Modulation by Echinocandin Drugs Stage-specific Innate Immune Recognition of Aspergillus fumigatus and Modulation by Echinocandin Drugs Tobias M. Hohl, MD, PhD Memorial Sloan-Kettering Cancer Center hohlt@mskcc.org A. fumigatus Germination

More information

Fungal Infection in the ICU: Current Controversies

Fungal Infection in the ICU: Current Controversies Fungal Infection in the ICU: Current Controversies Andrew F. Shorr, MD, MPH, FCCP, FACP Washington Hospital Center Georgetown University, Washington, DC Disclosures I have served as a consultant to, researcher/investigator

More information

New Directions in Invasive Fungal Disease: Therapeutic Considerations

New Directions in Invasive Fungal Disease: Therapeutic Considerations New Directions in Invasive Fungal Disease: Therapeutic Considerations Coleman Rotstein, MD, FRCPC, FACP University of Toronto University Health Network Toronto, Ontario Disclosure Statement for Coleman

More information

Management Strategies For Invasive Mycoses: An MD Anderson Perspective

Management Strategies For Invasive Mycoses: An MD Anderson Perspective Management Strategies For Invasive Mycoses: An MD Anderson Perspective Dimitrios P. Kontoyiannis, MD, ScD, FACP, FIDSA Professor of Medicine Director of Mycology Research Program M. D. Anderson Cancer

More information

ESCMID Online Lecture Library. by author

ESCMID Online Lecture Library. by author What is the best antifungal strategy for severe intra-abdominal infections? Philippe Montravers MD, PhD Anaesthesia and Surgical ICU Bichat Claude Bernard Hospital Assistance Publique Hopitaux de Paris

More information

Interlaboratory Comparison of Results of Susceptibility Testing with Caspofungin against Candida and Aspergillus Species

Interlaboratory Comparison of Results of Susceptibility Testing with Caspofungin against Candida and Aspergillus Species JOURNAL OF CLINICAL MICROBIOLOGY, Aug. 2004, p. 3475 3482 Vol. 42, No. 8 0095-1137/04/$08.00 0 DOI: 10.1128/JCM.42.8.3475 3482.2004 Copyright 2004, American Society for Microbiology. All Rights Reserved.

More information

The Evolving Role of Antifungal Susceptibility Testing. Gregory A. Eschenauer and Peggy L. Carver

The Evolving Role of Antifungal Susceptibility Testing. Gregory A. Eschenauer and Peggy L. Carver S PECIAL A RTICLE The Evolving Role of Antifungal Susceptibility Testing Gregory A. Eschenauer and Peggy L. Carver Although increasing numbers of hospital microbiology laboratories are performing antifungal

More information

Treatment Guidelines for Invasive Aspergillosis

Treatment Guidelines for Invasive Aspergillosis Treatment Guidelines for Invasive Aspergillosis Thomas F. Patterson, MD Professor of Medicine Director, San Antonio Center for Medical Mycology The University of Texas Health Science Center at San Antonio

More information

Received 21 July 2008/Accepted 3 September 2008

Received 21 July 2008/Accepted 3 September 2008 JOURNAL OF CLINICAL MICROBIOLOGY, Nov. 2008, p. 3585 3590 Vol. 46, No. 11 0095-1137/08/$08.00 0 doi:10.1128/jcm.01391-08 Copyright 2008, American Society for Microbiology. All Rights Reserved. Validation

More information

Ana Espinel-Ingroff 1, Elizabeth Johnson 2, Hans Hockey 3 and Peter Troke 4 *

Ana Espinel-Ingroff 1, Elizabeth Johnson 2, Hans Hockey 3 and Peter Troke 4 * Journal of Antimicrobial Chemotherapy (2008) 61, 616 620 doi:10.1093/jac/dkm518 Advance Access publication 25 January 2008 Activities of voriconazole, itraconazole and amphotericin B in vitro against 590

More information

Nationwide survey of treatment for pediatric patients with invasive fungal infections in Japan

Nationwide survey of treatment for pediatric patients with invasive fungal infections in Japan J Infect Chemother (2013) 19:946 950 DOI 10.1007/s10156-013-0624-7 ORIGINAL ARTICLE Nationwide survey of treatment for pediatric patients with invasive fungal infections in Japan Masaaki Mori Received:

More information

Received 25 September 2006/Returned for modification 4 December 2006/Accepted 26 December 2006

Received 25 September 2006/Returned for modification 4 December 2006/Accepted 26 December 2006 JOURNAL OF CLINICAL MICROBIOLOGY, Mar. 2007, p. 796 802 Vol. 45, No. 3 0095-1137/07/$08.00 0 doi:10.1128/jcm.01986-06 Copyright 2007, American Society for Microbiology. All Rights Reserved. Multicenter

More information

Received 13 September 2006/Returned for modification 6 November 2006/Accepted 26 December 2006

Received 13 September 2006/Returned for modification 6 November 2006/Accepted 26 December 2006 JOURNAL OF CLINICAL MICROBIOLOGY, Mar. 2007, p. 858 864 Vol. 45, No. 3 0095-1137/07/$08.00 0 doi:10.1128/jcm.01900-06 Copyright 2007, American Society for Microbiology. All Rights Reserved. Correlation

More information

ANA ESPINEL-INGROFF* Division of Infectious Diseases, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia

ANA ESPINEL-INGROFF* Division of Infectious Diseases, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia JOURNAL OF CLINICAL MICROBIOLOGY, Jan. 1998, p. 198 202 Vol. 36, No. 1 0095-1137/98/$04.00 0 Copyright 1998, American Society for Microbiology In Vitro Activity of the New Triazole Voriconazole (UK-109,496)

More information

Antifungal Treatment in Neonates

Antifungal Treatment in Neonates Antifungal Treatment in Neonates Irja Lutsar University of Tartu, Estonia Lisbon, 12. October 2015 Prevalence of invasive fungal infections in NeoINN database 2005-2014 UK; 2012-2014 Estonia & Greece 1

More information

Anidulafungin for the treatment of candidaemia caused by Candida parapsilosis: Analysis of pooled data from six prospective clinical studies

Anidulafungin for the treatment of candidaemia caused by Candida parapsilosis: Analysis of pooled data from six prospective clinical studies Received: 1 February 2017 Revised: 11 May 2017 Accepted: 11 May 2017 DOI: 10.1111/myc.12641 ORIGINAL ARTICLE Anidulafungin for the treatment of candidaemia caused by Candida parapsilosis: Analysis of pooled

More information

ANTIMYCOTIC DRUGS Modes of Action

ANTIMYCOTIC DRUGS Modes of Action ANTIMYCOTIC DRUGS Modes of Action Prapasarakul Nuvee, D.V.M., Ph.D. Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University 1 What drugs act as antifungal agents?

More information

Antifungal resistance mechanisms in pathogenic fungi

Antifungal resistance mechanisms in pathogenic fungi Antifungal resistance mechanisms in pathogenic fungi Shivaprakash M Rudramurthy Additional Professor, Mycology Division Center of Advanced Research in Medical Mycology, National Culture Collection of Pathogenic

More information

Received 26 July 2006/Returned for modification 10 October 2006/Accepted 16 October 2006

Received 26 July 2006/Returned for modification 10 October 2006/Accepted 16 October 2006 JOURNAL OF CLINICAL MICROBIOLOGY, Jan. 2007, p. 70 75 Vol. 45, No. 1 0095-1137/07/$08.00 0 doi:10.1128/jcm.01551-06 Copyright 2007, American Society for Microbiology. All Rights Reserved. Use of Fluconazole

More information

Use of Antifungal Drugs in the Year 2006"

Use of Antifungal Drugs in the Year 2006 Use of Antifungal Drugs in the Year 2006" Jose G. Montoya, MD Associate Professor of Medicine Associate Chief for Clinical Affairs Division of Infectious Diseases Stanford University School of Medicine

More information

SUSCEPTIBILITY TEST FOR FUNGI: CLINICAL AND LABORATORIAL CORRELATIONS IN MEDICAL MYCOLOGY

SUSCEPTIBILITY TEST FOR FUNGI: CLINICAL AND LABORATORIAL CORRELATIONS IN MEDICAL MYCOLOGY Rev. Inst. Med. Trop. Sao Paulo 57(Suppl. 19):57-64, September, 2015 http://dx.doi.org/10.1590/s0036-46652015000700011 SUSCEPTIBILITY TEST FOR FUNGI: CLINICAL AND LABORATORIAL CORRELATIONS IN MEDICAL MYCOLOGY

More information

Solid organ transplant patients

Solid organ transplant patients M.6 Meet-the-expert sessions Solid organ transplant patients Martin Iversen, Denmark José M. Aguado, Spain Copenhagen, Sunday 13 October 2013 Conflict of interest disclosure In the past 5 years, J.M.A.

More information

Echinocandin and triazole antifungal susceptibility profiles of opportunistic yeast and mould clinical

Echinocandin and triazole antifungal susceptibility profiles of opportunistic yeast and mould clinical JCM Accepts, published online ahead of print on 29 May 2013 J. Clin. Microbiol. doi:10.1128/jcm.00308-13 Copyright 2013, American Society for Microbiology. All Rights Reserved. 1 2 3 4 JCM00308-13 REVISION

More information

Activity of Posaconazole Combined with Amphotericin B against Aspergillus flavus Infection in Mice: Comparative Studies in Two Laboratories

Activity of Posaconazole Combined with Amphotericin B against Aspergillus flavus Infection in Mice: Comparative Studies in Two Laboratories ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Mar. 2004, p. 758 764 Vol. 48, No. 3 0066-4804/04/$08.00 0 DOI: 10.1128/AAC.48.3.758 764.2004 Copyright 2004, American Society for Microbiology. All Rights Reserved.

More information

Updated Guidelines for Management of Candidiasis. Vidya Sankar, DMD, MHS April 6, 2017

Updated Guidelines for Management of Candidiasis. Vidya Sankar, DMD, MHS April 6, 2017 Updated Guidelines for Management of Candidiasis Vidya Sankar, DMD, MHS April 6, 2017 Statement of Disclosure I have no actual or potential conflict of interest in relation to this presentation Outline

More information

METHODS: MINIMAL INHIBITORY AND FUNGICIDAL CONCENTRATION AND TIME-KILLING STUDIES. Gobernado b. Fe, Valencia 46009, Spain.

METHODS: MINIMAL INHIBITORY AND FUNGICIDAL CONCENTRATION AND TIME-KILLING STUDIES. Gobernado b. Fe, Valencia 46009, Spain. AAC Accepts, published online ahead of print on 20 April 2009 Antimicrob. Agents Chemother. doi:10.1128/aac.00160-09 Copyright 2009, American Society for Microbiology and/or the Listed Authors/Institutions.

More information

Interpretive Breakpoints for Fluconazole and Candida Revisited: a Blueprint for the Future of Antifungal Susceptibility Testing

Interpretive Breakpoints for Fluconazole and Candida Revisited: a Blueprint for the Future of Antifungal Susceptibility Testing CLINICAL MICROBIOLOGY REVIEWS, Apr. 2006, p. 435 447 Vol. 19, No. 2 0893-8512/06/$08.00 0 doi:10.1128/cmr.19.2.435 447.2006 Copyright 2006, American Society for Microbiology. All Rights Reserved. Interpretive

More information

Caspofungin Dose Escalation for Invasive Candidiasis Due to Resistant Candida albicans

Caspofungin Dose Escalation for Invasive Candidiasis Due to Resistant Candida albicans ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, July 2011, p. 3254 3260 Vol. 55, No. 7 0066-4804/11/$12.00 doi:10.1128/aac.01750-10 Copyright 2011, American Society for Microbiology. All Rights Reserved. Caspofungin

More information

Efficacy of isavuconazole, voriconazole and fluconazole in temporarily neutropenic murine models of disseminated Candida tropicalis and Candida krusei

Efficacy of isavuconazole, voriconazole and fluconazole in temporarily neutropenic murine models of disseminated Candida tropicalis and Candida krusei Journal of Antimicrobial Chemotherapy (2009) 63, 161 166 doi:10.1093/jac/dkn431 Advance Access publication 13 November 2008 Efficacy of isavuconazole, voriconazole and fluconazole in temporarily neutropenic

More information

Antifungal susceptibility profiles of Candida isolates from a prospective survey of invasive fungal infections in Italian intensive care units

Antifungal susceptibility profiles of Candida isolates from a prospective survey of invasive fungal infections in Italian intensive care units Journal of Medical Microbiology (2012), 61, 389 393 DOI 10.1099/jmm.0.037895-0 Antifungal susceptibility profiles of Candida isolates from a prospective survey of invasive fungal infections in Italian

More information

SYNERGISTIC ACTIVITIES OF TWO PROPOLIS WITH AMPHOTERICIN B AGAINST SOME AZOLE-RESISTANT CANDIDA STRAINS. PART II

SYNERGISTIC ACTIVITIES OF TWO PROPOLIS WITH AMPHOTERICIN B AGAINST SOME AZOLE-RESISTANT CANDIDA STRAINS. PART II SYNERGISTIC ACTIVITIES OF TWO PROPOLIS WITH AMPHOTERICIN B AGAINST SOME AZOLE-RESISTANT CANDIDA STRAINS. PART II DURAN NIZAMI 1, MUZ MUSTAFA 2, DURAN GULAY GULBOL 3, OZER BURCIN 1, ONLEN YUSUF 4 1 Mustafa

More information

Department of Animal Production, Faculty of Agriculture, Baghdad University, Baghdad, Iraq

Department of Animal Production, Faculty of Agriculture, Baghdad University, Baghdad, Iraq World Journal of Pharmaceutical Sciences ISSN (Print): 2321-3310; ISSN (Online): 2321-3086 Published by Atom and Cell Publishers All Rights Reserved Available online at: http://www.wjpsonline.org/ Original

More information

New triazoles and echinocandins: mode of action, in vitro activity and mechanisms of resistance

New triazoles and echinocandins: mode of action, in vitro activity and mechanisms of resistance For reprint orders, please contact reprints@expert-reviews.com New triazoles and echinocandins: mode of action, in vitro activity and mechanisms of resistance Expert Rev. Anti Infect. Ther. 7(8), 981 998

More information

ESCMID Online Lecture Library. by author

ESCMID Online Lecture Library. by author The antibacterial experience: indications for clinical use of antimicrobial combinations To prevent the emergence of resistant organisms (tuberculosis) To treat polymicrobial infections (abdominal complicated

More information

Invasive Aspergillosis in Steroid-Treated Patients

Invasive Aspergillosis in Steroid-Treated Patients Invasive Aspergillosis in Steroid-Treated Patients Dimitrios P. Kontoyiannis, MD, ScD Professor of Medicine Department of Infectious Diseases Infection Control and Employee Health PMN damaging Aspergillus

More information

Antifungal Drug Resistance: a Cause for Concern?

Antifungal Drug Resistance: a Cause for Concern? Antifungal Drug Resistance: a Cause for Concern? Sharon Chen Centre for Infectious Diseases and Microbiology CIDM-PH, CRE in Critical Infections, June 2014 Vis-à-vis bacteria - lesser scale and emotive

More information

1* 1. Vijaya S. Rajmane, Shivaji T. Mohite

1* 1. Vijaya S. Rajmane, Shivaji T. Mohite ISSN 2231-4261 ORIGINAL ARTICLE Comparison of the VITEK 2 Yeast Antifungal Susceptibility ing with CLSI Broth Microdilution Reference for ing Four Antifungal Drugs against Candida species Isolated from

More information

Therapeutic Drug Monitoring in Antifungal Therapy. Why, When and How

Therapeutic Drug Monitoring in Antifungal Therapy. Why, When and How Therapeutic Drug Monitoring in Antifungal Therapy Why, When and How Roger Brüggemann Radboud University Nijmegen Medical Centre and Nijmegen Institute for Infection, Inflammation and Immunology (N4i) Trends

More information

ESCMID Online Lecture Library. by author

ESCMID Online Lecture Library. by author How To Best Use Antifungal Agents Cornelia Lass-Flörl Division of Hygiene and Medical Microbiology Innsbruck Medical University ESCMID SUMMER SCHOOL 2012 Epidemiology Diagnosis Roadmap Antifungal drugs

More information