Experiment: Iodometric Titration Analysis of Ascorbic Acid Chem251 modified 09/2018

Size: px
Start display at page:

Download "Experiment: Iodometric Titration Analysis of Ascorbic Acid Chem251 modified 09/2018"

Transcription

1 Experiment: Iodometric Titration Analysis of Ascorbic Acid Chem251 modified 09/2018 Experiment. Iodometric Titration of Ascorbic Acid. Objective: The goal of this lab is to determine the concentration of vitamin C in an unknown solid. The analysis will be carried out using redox reaction of triiodide with ascorbic acid via iodometric titrimetry using starch indicator. Equipment Chemicals 400mL Beaker 600-mL Beaker 3M Sulfuric Acid, H 2 SO 4 Potassium iodate, KIO 3 50-mL graduated cylinder 500-mL Volumetric flask Potassium iodine, KI Vitamin-C Unknown 250mL Volumetric flask 500-mL graduated cylinder 1% Starch solution 50-mL Buret 50-mL Volumetric pipet 125mL Erlenmeyer flask 3" x 5" index card Safety and Waste Disposal Wear safety goggles and be cautions when working with concentrated acid. Background Information: Although most mammals can synthesize vitamin C, or ascorbic acid (C 6 H 8 O 6 ), from sugars, man must ingest considerable quantities of this substance. The National Academy of Sciences recommends the consumption of 60 mg of ascorbic acid per day. Vitamin C deficiency, which typically causes abnormalities in bones and teeth, was first characterized in sailors in the eighteenth century. Compelling sailors to eat limes, a source of vitamin-c, eliminated these abnormalities. Many vegetables also contain large quantities of vitamin C, but many cooking processes commonly destroy ascorbic acid, and hence citrus fruits are regarded as the most reliable source of vitamin C. Vitamin C can be determined in food by use of an oxidation-reduction reaction. The redox reaction is preferable to an acidbase titration because a number of other species in juice can act as acids, but relatively few interfere with the oxidation of ascorbic acid by iodine. The solubility of iodine is increased by complexation with iodide to form triiodide: I 2 (aq) + I! I 3 (1) Triiodide then oxidizes vitamin C to dehydroascorbic acid (not balanced): C 6 H 8 O 6 + I 3 VitaminC C 6 H 6 O 6 + I dehydroa scorbic acid (2) As long as vitamin C is present in the solution, the triiodide is converted to the iodide ion very quickly. However, when the all the vitamin C is oxidized, the triiodide excess will be present, which react with starch to form a blue-black complex. I starch g iodine-starch complex (blackish-blue color) (3) Iodine solution is used to test for starch; a dark blue color indicates the presence of starch. The details of this reaction are not yet fully - - known, but it is thought that the iodine (I 3 and I 5 ions) fit inside the coils of amylose, the charge transfers between the iodine and the starch, and the energy level differences in the resulting complex correspond to the absorption spectrum in the visible region. The strength of the resulting blue color depends on the amount of amylose present. Waxy starches with little or no amylose present will color red. Starch indicator is biodegradable and so fresh starch indicator must be prepared after a week of storage. Ask the instructor or lab tech, when the indicator was prepared before use. Furthermore, although vitamin C is very stable when dry, it is readily oxidized by oxygen when in solution. Therefore, a solution of vitamin C should not be exposed to air for an extended period of time. Remember that the molar mass of vitamin-c is g/mol.

2 Procedure Preparation of iodine solution. 1. Dissolve ~5.00 g potassium iodide (KI) and ~0.268 g potassium iodate (KIO 3 ) in 200 ml of distilled water in a 400 ml beaker. 2. Add 30 ml of 3 M sulfuric acid. Then pour the solution into a 500-mL graduated cylinder, and dilute to a final volume of 500 ml with distilled water. Mix thoroughly and transfer to a 600-mL beaker. Do not put this solution in a volumetric flask!!!! Please note: Iodine is very weakly soluble in the water, and can be easily lost from the solution due to its volatility. However, in the presence of excess iodides, iodine creates I 3 - ions. This lowers free iodine concentration and such solutions are stable enough to be used in lab as a titrant. Still, we should remember that their shelf life is relatively short (they should be kept tightly closed in dark brown bottles, and standardized every few weeks). If you take more than two weeks from when you prepared this solution to the analysis of your unknown, standardize the iodine solution with ascorbic acid again as discussed in the next procedure. Preparation of vitamin-c standard solution. For best accuracy, prepare this solution on the day you are to standardize your iodine solution. Vitamin-C will oxidize in air, so to reduce errors and improve the accuracy of your iodine standardization, you will need to limit the exposure of air to the Vitamin-C solution. 3. Weigh g (to.1mg) vitamin C using an analytical balance and place in 100 ml water. Dilute to volume in a 250-mL volumetric flask. 4. In your result page, calculate the formality of vitamin-c. Standardization of the iodine solution with the vitamin C standard solution. 5. Add ml of vitamin C solution into a 125 ml Erlenmeyer flask. Add 10 drops of 1 % starch solution. 6. Rinse your buret twice with 5-10 ml of iodine solution, and then fill it. Record your initial buret volume. 7. Titrate the solution until the endpoint is reached (the first sign of blue color that remains after at least 20 s of swirling). 8. Record the final volume. Repeat this titration at least four times. Results should agree to 0.1 ml. If you do more than four trials, be sure to label the four trials you will use for your calculations. 9. In your result page, calculate (see calculation section): i) the molarity of iodine solution for each trial. ii) the average molarity, the standard deviation, RSD, and 95% CL for the standard iodine solution. iii) turn in the molarity of your iodine solution to your instructor via an index card. Preparation of unknown solution. Again, remember that Vitamin-C is easily oxidized in air. Take the same precaution in preparing your unknown as you did in preparing the Vitamin-C solution in step 3 above. 10. You will be assigned a solid sample that contains ascorbic acid (record your unknown number in your notebook). 11. Take your entire unknown and weigh to the closes 0.1 mg using the analytical balance and report the mass in your lab notebook. turn in the total mass of your unknown via an index card. 12. Deoxygenate the deionized solution in which you will be diluting your Vitamin-C. Dilute to 500-mL using a 500-mL vol flask. Analysis of Unknown. 13. Using a ml volumetric pipet, add 20.00mL of your unknown solution into a 125 ml Erlenmeyer flask. Minimize exposure to air by using parafilm wax paper to cover your flask. Add about 10 drops of starch indicator to the sample. 14. Titrate the solution until the endpoint is reached (the first sign of blue color that remains after at least 20 s of swirling). 15. Record the final volume. Repeat this titration at least four times. Results should agree to 0.1 ml. If you do more than four trials, be sure to label the four trials you will use for your calculations. 16. Use the Grubbs and Q-test (95% confidence level) to check for bad data. 17. In your result page, calculate (see calculation section) i) the mass of vitamin-c used for each trial ii) the initial volume of the iodine used each trial iii) the final volume of the iodine used for each trial. iv) the total volume of iodine used for each trial v) the moles of vitamin-c in each trial of the unknown vi) the mass of vitamin-c in the 250mL unknown solution prepared per trial calculated vii) the % m:m vitamin-c in your unknown for each trial of your unknown viii) the average % m:m vitamin-c in the unknown ix) the standard deviation, x) the RSD xi) the 95% CL for your unknown analysis. vii) Report your final result in the form x + s (n = ), see chapter 4 Turn in the Excel spreadsheet

3 Calculations- 1. What is the reaction to produce iodine from iodate and iodide? Draw the structures of the organic compounds given in Equation (2). 2. (a) Prepare tables of all your titration data with the following information. Unknown Information- Unknown #: Mass Unknown: Vitamin-C Preparation Mass KI (g) Mass KIO 3 (g) Mass Ascorbic Acid (g) Volume aliquot (ml) Vol initial (ml) Vol final (ml) Unknown Titration (4 Trials) Mass Unknown: Volume aliquot (ml) Vol initial (ml) Vol final (ml) Iodine Standardization (4 Trials) 2. (b) Preparation of vitamin C standard solution. i) Calculate the molarity of vitamin-c standard solution. 2. (c) Standardization of the iodine solution with the vitamin C standard solution. i) Calculate the molarity of iodine solution for each trial, the average molarity, standard deviation and the rsd. 2. (d) Analysis of Unknown. Calculate the followingi) the moles of the vitamin-c for each trial for your unknown and the average moles. ii) the mass of the vitamin-c for each trial for your unknown and the average mass. iii) the % vitamin-c in your unknown for each trial of your unknown and the average. iv) the standard deviation, RSD, CV and 95% CL for your unknown analysis. Statistic Analysis i) Report the average, standard deviation (s) and relative deviation (RSD, sr) and the coefficient of variation (CV) and the 95% CL for your result of the vitamin C content in the samples you analyzed. ii) Apply a Grubbs and Q-test (95% confidence level) for any suspected result. Discussion- The main goal of this experiment is to determine the amount of vitamin-c in an unknown solid. Discuss your results (for the vitamin-c in your unknown) and any source of error that may cause your result to deviate. Discuss the standard deviation of the result and how the error analysis. Prelab Questions (Not required for lab prelab but know how to solve for midterm) - 1. A standard iodine solution was standardized against a g primary standard As 4 O 6 by dissolving the As 4 O 6 in a small amount of acidic solution and adjusting the ph, see equation (i). If the resulting H 3 AsO 3 solution required ml triiodine to reach the end point, what is the concentration of the triiodine solution? Reaction - (i) As 4 O 6 (s) + H 2 O g H 3 AsO 3 (ii) H 3 AsO 3 + I H 2 O g H 3 AsO 4 + I- + H+ 2. The purity of a hydrazine (N 2 H 4 ) sample can be determined by titration with triiodide. A g of the oily liquid sample is dissolved in water and diluted to 100 ml in a volumetric flask. A ml aliquot is titrated against the standard triiodine solution in question 1 (previous problem) requiring ml to reach the end point. What is the percent purity by weight of the hydrazine? Reaction - (iii) N 2 H 4 + I 3 g N 2 + I- 3. A g sample containing copper is analyzed iodometrically. The titration analysis is prepared by taking copper(ii) ion and reducing it to copper(i) by iodide ions according to the following reaction: (iv) Cu2+ + I- g CuI (s) + I 2 If the liberated I 2 from this reaction is titrated against 20.0 ml of M sodium thiosulfate (Na 2 S 2 O 3 ), what is the percent copper in the sample? The reaction for the titration is- (v) I 2 + S 2 O 3 2- g I- + S 4 O Triiodide ions are generated in solution by the following reaction: IO I- g I 3 - If a ml sample of M KIO 3 is added to excess of KI and the product, triiodide, requires ml of Na 2 S 2 O 3 to reach the equivalent point, what is the molarity of the Na 2 S 2 O 3? Use the equation: I S 2 O 3 2- D I- + S 4 O 6 2-

4 Turn in the following information to you instructor: Analysis of Vitamin-C by Iodometric Titration Name: Mass Unknown Unk # Vitamin-C Preparation Mass KI, g Mass, KIO3, M Mass Vit-C, g, Standardization reagent Molarity 250mL Stock Vit-C Standard Standardization of Iodine Titration of Vit-C Standards Trial1 Trial2 Trial3 Trial4 Vol Iodine (final) ml Vol of Iodine, initial (ml) Vol Iodine, Final (ml) Vol of Iodine, ml Concentration Iodine solution (M) Average concentration iodine solution (M) Titration of Unknown Vitamin-C Titration of Unknown Trial1 Trial2 Trial3 Trial4 Mass Vitamin-C Unknown (g) Vol Iodine (initial) ml Vol Iodine (final) ml Vol Iodine, ml Mol Vit-C Unknown Mass Vit C in 250ml Unk % Conc. Vit C Unknown Avg. % Vit-C Unknown standard deviation Relative Standard Deviation (RSD) or CV 95% CL +/- (Avg. +/- CL) Final Results in form of x + s ( n = ) % Error Analysis: No not fill g of Vit C g of Total Mix % Vit C % error #1 Instructor Calculations Student Calculations

5 Iodometric Titration of Vitamin-C Experiment Lab Report Write-up Criteria Analytical Chemistry 251 # CRITERIA % pts pts 1 Introduction and Procedures A. Introduction Objective of Expt. Background information. Math relationship used in study. B. Procedures Outline of procedures in Expt. Flow chart pictorial of procedures. Procedural changes. Information (data) to be recorded during expt. (to be presented in Table form.) Safety and disposal information. This portion of the report should be turned in before the start of lab class (pre-lab discussion). 2 Data, Observe., Results and Calc. C. Data and Observation Data in table form. & detailed observation written in the table. All data entry should contain the proper number of significant figures and units. Data should always be recorded in an organize fashion. Balance chemical equations; all chemical reaction which occurred during an experiment should be written in this section. Then it should also be written in the discussion portion of the report. This portion of the report should be turned in before you leave the laboratory. Calculations & Results D. Calculations Sample calculation shown Statistical analysis of data and result (if applicable) E. Results (Complete analysis with Excel spreadsheet) Result(s) in table form. Statistical analysis In this section accuracy of results is very important as well as detailed calculation showing how the result was obtain. "Unknown" will also be included in this section. 3 Discussion / Conclusions and Post-Lab Questions F. Discussion A complete discussion should be written in this section. Topics to be discuss can be found at the end of each experimental procedure from the lab manual. Each discussion should include the significance of the result(s) and the meaning of the result of the experiment. All chemical reactions that occurred during the experiment should also be included here. G. Conclusion Summary of the goal of the experiment and how that goal was achieved in the experiment. This portion (Calculation and Discussion) is turned in at the beginning of class of the due-date 4 Overall Presentation (of lab notebook) Lab technique during experiment; example are: class preparation, safety glasses precautions and leaving the laboratory clean. Report presentation: examples are the headings of each report that includes name, title, lab partner, date and section #. Legibility of report. Is the report easy to read or is important information jotted down by small print in the corners of the lab report. The overall impression is important. Lab Technique Safety: wear goggles, handle chemicals with caution, proper handling of lab equipment Leave lab clean and tidy Time management 20% 10% 10% Total (This total may be adjusted depending on lab technique and student conduct in the experiment) Unknown # ; % Mass Vitamin-C Unknown % Vitamin-C

6

Chemistry Iodometric Determination of Vitamin C

Chemistry Iodometric Determination of Vitamin C Chemistry 3200 Triiodide, I 3, is a mild oxidizing agent that is widely used in oxidation/reduction titrations. Triiodide is prepared by combining potassium iodide, KI, and potassium iodate, KI 3, in acidic

More information

EXPERIMENT 2: ACID/BASE TITRATION. Each person will do this laboratory individually. Individual written reports are required.

EXPERIMENT 2: ACID/BASE TITRATION. Each person will do this laboratory individually. Individual written reports are required. EXPERIMENT 2: ACID/BASE TITRATION Each person will do this laboratory individually. Individual written reports are required. OVERVIEW. Acid/base titration, relying on a color change of the indicator, is

More information

SAC 17 Queen Mary University of London

SAC 17 Queen Mary University of London East Anglia Region of the RSC Analytical Division National Schools Analyst Competition Regional Heat Queen Mary University of London, Friday 24 th February 2017 School of Biological and Chemical Sciences,

More information

Determining the Molecular Mass of an Unknown Acid by Titration

Determining the Molecular Mass of an Unknown Acid by Titration Determining the Molecular Mass of an Unknown Acid by Titration Objectives: To perform an analytical titration. To standardize a basic solution. To determine the equivalent mass of an unknown acid. Background:

More information

FIGURE 1. The structure of glucose and ascorbic acid (vitamin C). FIGURE 2. Reduced and oxidized forms of ascorbic acid.

FIGURE 1. The structure of glucose and ascorbic acid (vitamin C). FIGURE 2. Reduced and oxidized forms of ascorbic acid. Chemistry Counts! Spring 2016 Lab 7: Copper from Malachite 2.0 and Titration of Vitamin C Adapted from Dr. Rebecca Sunderman and Dr. Peter Pessiki, TESC Purpose: Experiment 1: We will do the second roast

More information

EXPT 8. Iodimetric Titration of Vitamin C

EXPT 8. Iodimetric Titration of Vitamin C EXPT 8. Iodimetric Titration of Vitamin C [Key Contents] - redox titration, iodimetry - vitamin C as a biological reducing agent [References] Principles of Modern Chemistry, 6th Ed. (Oxtoby et al.) Ch.

More information

Sulfite. Iodate-Iodide Method 1 Method mg/l as SO 3. (or 0 to more than 500 mg/l) Buret Titration. Test preparation.

Sulfite. Iodate-Iodide Method 1 Method mg/l as SO 3. (or 0 to more than 500 mg/l) Buret Titration. Test preparation. Sulfite DOC316.53.01162 Iodate-Iodide Method 1 Method 8071 0 500 mg/l as SO 3 2 (or 0 to more than 500 mg/l) Buret Titration Scope and application: For boiler water. 1 Adapted from Standard Methods for

More information

Strength of Vinegar by Acid-Base Titration

Strength of Vinegar by Acid-Base Titration Strength of Vinegar by Acid-Base Titration Test Exercise 100 points 1? QUESTIONS? How are acid/base titrations conducted? What is standardization? How do you standardize a solution of a base? How, and

More information

Determination of Vitamin C in Fruit Juices

Determination of Vitamin C in Fruit Juices Microscale Determination of Vitamin C in Fruit Juices Vitamin C is an important nutrient in the human diet. It is essential for preventing the disease called scurvy and for maintaining good health. Vitamin

More information

Standardization of a Base, Mass Percent of an Acid

Standardization of a Base, Mass Percent of an Acid Experiment 7 Standardization of a Base, Mass Percent of an Acid Pre-Lab Assignment Before coming to lab: Read the lab thoroughly. Answer the pre-lab questions that appear at the end of this lab exercise.

More information

EXPERIMENT 4 TITRATION OF AN UNKNOWN ACID

EXPERIMENT 4 TITRATION OF AN UNKNOWN ACID EXPERIMENT 4 TITRATION OF AN UNKNOWN ACID The reaction of an acid and a base to form a salt and water is known as neutralization. In this experiment you will titrate an known amount of KHP with an unknown

More information

3 To gain experience monitoring a titration with a ph electrode and determining the equivalence point.

3 To gain experience monitoring a titration with a ph electrode and determining the equivalence point. Titrations PURPOSE To determine the concentration of acetic acid in vinegar. GOALS 1 To perform an acid-base titration. 2 To gain experience titrating carefully to a visible endpoint. 3 To gain experience

More information

Titration of Synthesized Aspirin A continuation of the aspirin synthesis lab

Titration of Synthesized Aspirin A continuation of the aspirin synthesis lab Titration of Synthesized Aspirin A continuation of the aspirin synthesis lab In this lab, you will determine the percent purity of your product from the aspirin synthesis using an acid-base titration.

More information

IODOMETRIC TITRATION

IODOMETRIC TITRATION IODOMETRIC TITRATION Oxidizing agents In most iodometric titrations, when an excess of iodide ion is present, the tri-iodide ion is formed: I + I - I 3 - Since iodine is readily soluble in a solution of

More information

Table 1. Data for standardization of the sodium thiosulfate solution. Trial Number (if needed)

Table 1. Data for standardization of the sodium thiosulfate solution. Trial Number (if needed) Lab 4 Report Sheet Name Vitamin C Analysis Team No. Date Section Experimental Results Table 1. Data for standardization of the sodium thiosulfate solution Final Volume Initial Volume 1 2 3 4 (if needed)

More information

Vitamin-C Analysis. This is a redox titration. The two relevant half reactions for reaction (2) above are: CH OH

Vitamin-C Analysis. This is a redox titration. The two relevant half reactions for reaction (2) above are: CH OH Vitamin-C Analysis Note: You will need to bring a powdered or liquid drink, health product, fruit samples, or other commercial sample to lab for vitamin-c analysis. You will need enough to make 500 ml

More information

Experiment 6: STANDARDIZATION OF A BASE; MASS PERCENT OF AN ACID

Experiment 6: STANDARDIZATION OF A BASE; MASS PERCENT OF AN ACID Experiment 6: STANDARDIZATION OF A BASE; MASS PERCENT OF AN ACID Introduction The reaction of an acid and a base to form a salt and water is known as neutralization. In this experiment; potassium acid

More information

Lab 05 Introduction Reactions Pre Lab Problems (answer on separate paper)

Lab 05 Introduction Reactions Pre Lab Problems (answer on separate paper) Lab 05 Introduction Among the many types of quantitative chemistry techniques, volumetric analysis is a timehonored classical method. The characteristic feature of volumetric analysis is measuring the

More information

Activity Sheet 1 Testing for Vitamin C- Part One

Activity Sheet 1 Testing for Vitamin C- Part One Activity Sheet 1 Testing for - Part One Student Name: Purpose: To test the level of vitamin C in a variety of fruit juices. Procedure: Part 1 Testing Solution 1. Use the vitamin C solution for this experiment.

More information

Chemistry 212. Experiment 3 ANALYSIS OF A SOLID MIXTURE LEARNING OBJECTIVES. - learn to analyze a solid unknown with volumetric techniques.

Chemistry 212. Experiment 3 ANALYSIS OF A SOLID MIXTURE LEARNING OBJECTIVES. - learn to analyze a solid unknown with volumetric techniques. Experiment 3 The objectives of this experiment are to LEARNING OBJECTIVES - learn to analyze a solid unknown with volumetric techniques. - use stoichiometry to determine the percentage of KHP in a solid

More information

Black-Magic RT-S20/25 Replenisher Product Code: Revised Date: 01/11/2013

Black-Magic RT-S20/25 Replenisher Product Code: Revised Date: 01/11/2013 Black-Magic RT-S20/25 Replenisher Room Temperature Blackening Solution For Iron And Steel Black-Magic RT-S20/25 Replenisher liquid concentrate is used for replenishment and maintenance of both Black-Magic

More information

TRATION: ANALYSIS OF SODIUM HYDROXIDE

TRATION: ANALYSIS OF SODIUM HYDROXIDE Experiment 10 Name: 22 Ti TRATION: ANALYSIS OF SODIUM HYDROXIDE In this experiment, you will learn the concept and technique of titration. You will use a standard (potassium hydrogen phthalate) to determine

More information

Experiment 3. Potentiometric Titration Using a ph Electrode. information necessary for both purposes by monitoring the ph of the solution as the

Experiment 3. Potentiometric Titration Using a ph Electrode. information necessary for both purposes by monitoring the ph of the solution as the Experiment 3 Potentiometric Titration Using a Electrode Introduction Titrations are most commonly performed either to find out how much analyte is present or to measure equilibrium constants of the analyte.

More information

EXPERIMENT. Titration of the Weak Acid Potassium Hydrogen Phthalate (KHP)

EXPERIMENT. Titration of the Weak Acid Potassium Hydrogen Phthalate (KHP) INTRODUCTION EXPERIMENT Titration of the Weak Acid Potassium Hydrogen Phthalate (KHP) Materials generally considered to possess acidic and/or basic properties are widely distributed in nature and range

More information

Experiment 7, Analysis of KHP by titration with NaOH Wright College, Department of Physical Science and Engineering

Experiment 7, Analysis of KHP by titration with NaOH Wright College, Department of Physical Science and Engineering Name Date Experiment 7, Analysis of KHP by titration with NaOH Wright College, Department of Physical Science and Engineering In this experiment, you will determine the amount (percent) of potassium hydrogen

More information

TRATION: ANALYSIS OF SODIUM HYDROXIDE

TRATION: ANALYSIS OF SODIUM HYDROXIDE Experiment 8 Name: 22 Ti TRATION: ANALYSIS OF SODIUM HYDROXIDE In this experiment, you will learn the concept and technique of titration. You will use a chemical standard (potassium hydrogen phthalate)

More information

Experiment 10 Acid-base Titrations: Part A Analysis of vinegar and Part B Analysis of a Carbonate/Bicarbonate mixture

Experiment 10 Acid-base Titrations: Part A Analysis of vinegar and Part B Analysis of a Carbonate/Bicarbonate mixture Chemistry 112 Section 201 Dates of Experiment: March 8 and March 22 Noah McNally Acid-base Titrations: Part A Analysis of vinegar and Part B Analysis of a Carbonate/Bicarbonate mixture Unknown Number:

More information

Method (6 to 1000 µg/l Chlorine as Cl 2 ) Digital Titrator

Method (6 to 1000 µg/l Chlorine as Cl 2 ) Digital Titrator , ABT, DT, 10025 Amperometric Back Titration 1 Scope and Application: For drinking water and wastewater; USEPA accepted for reporting 1 Procedure is equivalent to Standard Method (18th ed.) 4500-Cl C for

More information

Foreword. Steven Shongwe Executive Secretary ECSA Health Community

Foreword. Steven Shongwe Executive Secretary ECSA Health Community Foreword Over the last five years, the East, Central and Southern African Health Community (ECSA-HC) has continued to undertake advocacy and technical assistance to assist member countries to embrace and

More information

AP BIOLOGY Enzyme Catalysis

AP BIOLOGY Enzyme Catalysis AP BIOLOGY Enzyme Catalysis Introduction In general, enzymes are proteins produced by living cells; they act as catalysts in biochemical reactions. A catalyst affects the rate of a chemical reaction. One

More information

Lab #3 Potentiometric Titration of Soda Ash (after Christian, p , p ) (phenolphthalein)

Lab #3 Potentiometric Titration of Soda Ash (after Christian, p , p ) (phenolphthalein) Lab #3 Potentiometric Titration of Soda Ash (after Christian, p.692-694, p.718-720) I: INTRODUCTION In this lab, an unknown sample of soda ash (a crude mixture of sodium carbonate) will be titrated with

More information

Carbohydrates. Objectives. Background. Experiment 6

Carbohydrates. Objectives. Background. Experiment 6 1 of 6 3/15/2011 7:27 PM Experiment 6 Carbohydrates Objectives During this experiment you will look at some of the physical and chemical properties of carbohydrates. Many of the carbohydrates, especially

More information

Official Journal of the European Union REGULATIONS

Official Journal of the European Union REGULATIONS 8.10.2016 L 273/5 REGULATIONS COMMISSION IMPLEMTING REGULATION (EU) 2016/1784 of 30 September 2016 amending Regulation (EEC) No 2568/91 on the characteristics of olive oil and olive-residue oil and on

More information

Ceric Acid Titration Method Method mg/l as NaNO 2 Digital Titrator

Ceric Acid Titration Method Method mg/l as NaNO 2 Digital Titrator Nitrite DOC316.53.01178 Ceric Acid Titration Method Method 8351 100 2500 mg/l as NaNO 2 Digital Titrator Scope and application: For cooling tower waters. Test preparation Before starting The optional TitraStir

More information

Chemistry 201 Laboratory Fall 2006 page 1 of 4

Chemistry 201 Laboratory Fall 2006 page 1 of 4 Chemistry 201 Laboratory Fall 2006 page 1 of 4 Experiment: Determination of Iron in a Ferrous Ammonium Sulfate Sample (Fe) This experiment involves the determination of the percentage of ferrous iron in

More information

Thiols (mercaptans) in Fuels (ASTM D )

Thiols (mercaptans) in Fuels (ASTM D ) Thiols (mercaptans) in Fuels (ASTM D3227-13) DOC316.52.93109 Potentiometric titration Applications: gasolines, kerosenes, aviation turbine fuels, distillate fuels 1. Introduction This test method covers

More information

Benedict s Quantitative Reagent Powder A Quantitative Test for Reducing Sugars

Benedict s Quantitative Reagent Powder A Quantitative Test for Reducing Sugars Benedict s Quantitative Reagent Powder A Quantitative Test for Reducing Sugars SIENTIFI Introduction Benedict s Quantitative Solution (prepared from Benedict s Quantitative Reagent Powder) is a test reagent

More information

Pharmaceutical Analytical Chemistry PHCM223 Lecture 12 Applications on different types of equilibria. Dr. Nesrine El Gohary 12 th lecture

Pharmaceutical Analytical Chemistry PHCM223 Lecture 12 Applications on different types of equilibria. Dr. Nesrine El Gohary 12 th lecture Pharmaceutical Analytical Chemistry PHCM223 Lecture 12 Applications on different types of equilibria Dr. Nesrine El Gohary 12 th lecture Revision lecture next week Next Saturday (21-5-2016) in the 1 st

More information

CHEM104 Exp. 9 Phytochemical Antioxidants with Potential Benefits in Foods Part I. 1

CHEM104 Exp. 9 Phytochemical Antioxidants with Potential Benefits in Foods Part I. 1 EM104 Exp. 9 Phytochemical Antioxidants with Potential Benefits in Foods Part I. 1 ame People have known and believed for a long time that eating certain foods is good for their health. owever, it is difficult

More information

Lab Ch 6 Mole Buffet Lab Activity

Lab Ch 6 Mole Buffet Lab Activity Lab Partners: Prelab must be complete before entering lab!!! (no prelab = you receive zero points lab) Show the calculations for molar mass for the following chemicals: (Show all work, units, and correct

More information

Take an initial volume reading and record it in your. 11/17/2014 ChemLab - Techniques - Titration

Take an initial volume reading and record it in your. 11/17/2014 ChemLab - Techniques - Titration Glassware Burets Flasks, Beakers, & Graduated Cylinders Pipets Repipets Volumetric Flasks Instruments Analytical Balance ph Meter: Analog ph Meter: Digital Spectrometer: Analog Spectrometer: Digital Spectrometer:

More information

Method 7.6 Raw sugar: reducing sugars by the Luff Schoorl method

Method 7.6 Raw sugar: reducing sugars by the Luff Schoorl method Section 7: Raw sugar p 1/5 Method 7.6 Raw sugar: reducing sugars by the Luff Schoorl method 1. Rationale The method is applicable to all raw sugars and is used to determine the amount of reducing sugars

More information

Kirkcaldy High School - Chemistry Higher Assignment Pupil Guide. Antioxidants

Kirkcaldy High School - Chemistry Higher Assignment Pupil Guide. Antioxidants Kirkcaldy High School - Chemistry Higher Assignment Pupil Guide Name: Class: Antioxidants This assignment is worth 20% of the overall marks for the Higher course assessment. The course is graded A-D. In

More information

Hardness, Total, Sequential

Hardness, Total, Sequential Hardness, Total, Sequential DOC316.53.01159 Titration Method with EDTA 1,2 Method 8338 0 25,000 mg/l as CaCO 3 Buret Titration Scope and application: For water, wastewater and seawater. 1 USEPA accepted

More information

Testing Protocol. Iodine Estimation of Salt

Testing Protocol. Iodine Estimation of Salt Testing Protocol Iodine Estimation of Salt 1 Laboratory Procedure for Iodine Estimation of Salt Background material: Iodine is one of the first minerals recognized as essential for human health. Iodine

More information

Pt-electrode with temperature sensor, Intellical MTC695

Pt-electrode with temperature sensor, Intellical MTC695 Sulfite DOC316.52.93090 Based on 4500-SO3 2 B in Standard Methods for the Examination of Water and Wastewater Amperometric Back Titration 0.00 20.00 mg/l as SO3 2-1. Introduction The scope of this application

More information

Titrimetric Determination of Hypo Index, Thiosulfate, and Sulfite in EASTMAN Color Films, Process ECN-2 Fixer

Titrimetric Determination of Hypo Index, Thiosulfate, and Sulfite in EASTMAN Color Films, Process ECN-2 Fixer Titrimetric Determination of Hypo Index, Thiosulfate, and Sulfite in EASTMAN Color Films, Process ECN-2 Fixer ECN-0002/1 Process ECN-2 ECP-2D VNF-1/LC RVNP Formulas F-34a/F-34aR INTRODUCTION This method

More information

Titration Lab 3/10/15. By Maya Parks. Partner: Colin Welch. Abstract:

Titration Lab 3/10/15. By Maya Parks. Partner: Colin Welch. Abstract: Titration Lab 3/10/15 By Maya Parks Partner: Colin Welch Abstract: In this lab, we used the technique of titration to determine the molarity of an acid. This was a concept learned in class, and this lab

More information

Determination of the Diffusion Coefficient for Sucrose in Aqueous Solutions

Determination of the Diffusion Coefficient for Sucrose in Aqueous Solutions CHEM 332L Physical Chemistry Laboratory II Revision 1.1 Determination of the Diffusion Coefficient for Sucrose in Aqueous Solutions In this laboratory exercise we will measure the diffusion coefficient

More information

MODULE TOPIC: Percent Composition of Elements using EDTA titration. LESSON PLAN 1: EDTA titration of Calcium in a Citracal Tablet

MODULE TOPIC: Percent Composition of Elements using EDTA titration. LESSON PLAN 1: EDTA titration of Calcium in a Citracal Tablet MODULE TOPIC: Percent Composition of Elements using EDTA titration LESSON PLAN 1: EDTA titration of Calcium in a Citracal Tablet LESSON PLAN 2: EDTA titration of Magnesium in a sample of Epsom Salt STANDARD

More information

Lab #4: Nutrition & Assays for Detecting Biological Molecules - Introduction

Lab #4: Nutrition & Assays for Detecting Biological Molecules - Introduction Lab #4: Nutrition & Assays for Detecting Biological Molecules - Introduction Most biological molecules fall into one of four varieties: proteins, carbohydrates, lipids and nucleic acids. These are sometimes

More information

2. is a set of principles intended to help sustain a habitable planet.

2. is a set of principles intended to help sustain a habitable planet. Chapter 2 Tools of the Trade 1 Multiple Choice 2-1 Safe, Ethical Handling of Chemicals and Waste 1. Which of the following statements are TRUE? I Organic solvents, concentrated acids, and concentrated

More information

Organic Molecule Composition of Milk: Lab Investigation

Organic Molecule Composition of Milk: Lab Investigation Name: Organic Molecule Composition of Milk: Lab Investigation Introduction & Background Milk & milk products have been a major food source from earliest recorded history. Milk is a natural, nutritionally

More information

IODINE AFFINITY. 3. Extraction Shells: Paper, 80 x 22 mm (Note 1)

IODINE AFFINITY. 3. Extraction Shells: Paper, 80 x 22 mm (Note 1) IODIN.01-1 IODINE AFFINITY PRINCIPLE SCOPE Iodine complexes preferentially with the amylose (linear fraction) in corn starch. After defatting by solvent extraction, and drying, the sample is dispersed

More information

Figure 2. Figure 1. Name: Bio AP Lab Organic Molecules

Figure 2. Figure 1. Name: Bio AP Lab Organic Molecules Name: Bio AP Lab Organic Molecules BACKGROUND: A cell is a living chemistry laboratory in which most functions take the form of interactions between organic molecules. Most organic molecules found in living

More information

The Analysis of Carbonate, Magnesium, and Copper by Three Separate Titrations: Weak Base, Metal-Ligand Complex, and Oxidation-Reduction Titrations

The Analysis of Carbonate, Magnesium, and Copper by Three Separate Titrations: Weak Base, Metal-Ligand Complex, and Oxidation-Reduction Titrations Proceedings of The National Conference On Undergraduate Research (NCUR) 2015 Eastern Washington University, Cheney, WA April 16-18, 2015 The Analysis of Carbonate, Magnesium, and Copper by Three Separate

More information

LAB: DIFFUSION ACROSS A SELECTIVELY PERMEABLE MEMBRANE

LAB: DIFFUSION ACROSS A SELECTIVELY PERMEABLE MEMBRANE LAB: DIFFUSION ACROSS A SELECTIVELY PERMEABLE MEMBRANE NAME: PERIOD: DATE: Building Background Knowledge: 1) SELECTIVELY PERMEABLE MEMBRANE: Every cell is surrounded by a selectively permeable membrane

More information

Schools Analyst Competition Dublin City University Heat 25 th April Quality control analysis of a new brand of fizzy drink - Orangerina

Schools Analyst Competition Dublin City University Heat 25 th April Quality control analysis of a new brand of fizzy drink - Orangerina Schools Analyst Competition 2017 Dublin City University Heat 25 th April 2017 Quality control analysis of a new brand of fizzy drink - Orangerina Laboratory Handbook Royal Society of Chemistry Analytical

More information

EXPT. 10 DETERMINATION OF ZINC BY PRECIPITATION WITH POTASSIUM FERROCYANIDE USING INTERNAL INDICATOR

EXPT. 10 DETERMINATION OF ZINC BY PRECIPITATION WITH POTASSIUM FERROCYANIDE USING INTERNAL INDICATOR EXPT. 10 DETERINATION OF ZINC BY PRECIPITATION WITH POTASSIU FERROCYANIDE USING INTERNAL INDICATOR Structure 10.1 Introduction Objectives 10. Principle 10.3 Requirements 10. Solutions Provided 10.5 Procedure

More information

Free and Total Sulfur Dioxide (SO 2. ) in wine (Ripper method) by automatic titration

Free and Total Sulfur Dioxide (SO 2. ) in wine (Ripper method) by automatic titration APPLICATION NOTE Free and Total Sulfur Dioxide (SO 2 ) in wine (Ripper method) by automatic titration No. T5 Water Analysis Instruments, Thermo Fisher Scientific Key words Sulfite, sulfurous acid, SO 2,

More information

EXPERIMENT 3 ENZYMATIC QUANTITATION OF GLUCOSE

EXPERIMENT 3 ENZYMATIC QUANTITATION OF GLUCOSE EXPERIMENT 3 ENZYMATIC QUANTITATION OF GLUCOSE This is a team experiment. Each team will prepare one set of reagents; each person will do an individual unknown and each team will submit a single report.

More information

LAB: DIFFUSION ACROSS A SELECTIVELY PERMEABLE MEMBRANE

LAB: DIFFUSION ACROSS A SELECTIVELY PERMEABLE MEMBRANE LAB: DIFFUSION ACROSS A SELECTIVELY PERMEABLE MEMBRANE NAME: PERIOD: DATE: Building Background Knowledge: 1) SELECTIVELY PERMEABLE MEMBRANE: Every cell is surrounded by a selectively permeable membrane

More information

EXERCISE 3 Carbon Compounds

EXERCISE 3 Carbon Compounds LEARNING OBJECTIVES EXERCISE 3 Carbon Compounds Perform diagnostic tests to detect the presence of reducing sugars (Benedict s), starch (Lugol s), protein (Biuret), lipid (SudanIV) and sodium chloride

More information

Amylase: a sample enzyme

Amylase: a sample enzyme Amylase: a sample enzyme Objectives: After completion of this laboratory exercise you will be able to: 1. Explain the importance of enzymes in biology. 2. Explain the basic properties of an enzyme as a

More information

Complexometric Titration of Calcium in Antacids SUSB-017 Prepared by M. J. Akhtar and R. C. Kerber, SUNY at Stony Brook (Rev 1/13, RFS)

Complexometric Titration of Calcium in Antacids SUSB-017 Prepared by M. J. Akhtar and R. C. Kerber, SUNY at Stony Brook (Rev 1/13, RFS) 61 SUSB- 017 017 exercise Complexometric Titration of Calcium in Antacids SUSB-017 Prepared by M. J. Akhtar and R. C. Kerber, SUNY at Stony Brook (Rev 1/13, RFS) purpose To determine the amount of calcium

More information

Feedstuffs Analysis G-22-1 PROTEIN

Feedstuffs Analysis G-22-1 PROTEIN Feedstuffs Analysis G-22-1 PROTEIN PRINCIPLE SCOPE Many modifications of the Kjeldahl method have been accepted for the estimation of protein in organic materials. It comprises sample oxidation and conversion

More information

Total Acid Number in petroleum products by automatic titration

Total Acid Number in petroleum products by automatic titration APPLICATION NOTE Total Acid Number in petroleum products by automatic titration No. T3 Water Analysis Instruments, Thermo Fisher Scientific Key words TAN, ASTM D664, ISO 6619, oil, used oil, lubricant,

More information

Water Determination in Ethanol by Karl Fischer Titration

Water Determination in Ethanol by Karl Fischer Titration Water Determination in Ethanol by Karl Fischer Titration Background Water content is an important parameter for a wide range of processes (e.g. chemical reactions) and products (e.g. food products). Its

More information

Application Bulletin

Application Bulletin No. 119/2 e Application Bulletin Of interest to: General analytical laboratories, Water; Food A 1, 2, 7, 11 Potentiometric determination of trace bromide and iodide in chlorides Summary Bromide is removed

More information

Biodiesel Fundamentals for High School Chemistry Classes. Laboratory 3: Determination of the Acid Number of Vegetable Oils by Titration

Biodiesel Fundamentals for High School Chemistry Classes. Laboratory 3: Determination of the Acid Number of Vegetable Oils by Titration Laboratory 3: Determination of the Acid Number of Vegetable Oils by Titration Topics Covered ph vs. acid number Acidity and acid values in organic solutions Titration techniques How to obtain acid values

More information

Osmosis and Diffusion: How biological membranes are important This page is a lab preparation guide for instructors.

Osmosis and Diffusion: How biological membranes are important This page is a lab preparation guide for instructors. Osmosis and Diffusion: How biological membranes are important This page is a lab preparation guide for instructors. **All solutions and dialysis bags can easily be prepared prior to lab start to maximize

More information

Core practical 14: Investigate the effect of gibberellin on the production of amylase in germinating cereals using a starch agar assay

Core practical 14: Investigate the effect of gibberellin on the production of amylase in germinating cereals using a starch agar assay Core practical 14 Teacher sheet Core practical 14: Investigate the effect of gibberellin on the production of amylase in germinating cereals using a starch agar assay Objectives To investigate the effect

More information

Instruction Manual Updated 8/27/2013 Ver. 1.1

Instruction Manual Updated 8/27/2013 Ver. 1.1 Water Analysis Kit Part No. 144-95 Instruction Manual Updated 8/27/2013 Ver. 1.1 OFI Testing Equipment, Inc. 11302 Steeplecrest Dr. Houston, Texas 77065 U.S.A. Tele: 832.320.7300 Fax: 713.880.9886 www.ofite.com

More information

What Is the Relationship Between the Amount of Transmitted Light Through a Solution and Its Concentration?

What Is the Relationship Between the Amount of Transmitted Light Through a Solution and Its Concentration? What Is the Relationship Between the Amount of Transmitted Light Through a and Its Concentration? Blue Food Dye Treats Spine Injury in Rats HTTP://WWW.WIRED.COM/WIREDSCIENCE/2009/07/BLUERATS/ BY HADLEY

More information

(LM pages 91 98) Time Estimate for Entire Lab: 2.5 to 3.0 hours. Special Requirements

(LM pages 91 98) Time Estimate for Entire Lab: 2.5 to 3.0 hours. Special Requirements Laboratory 7 Chemical Aspects of Digestion (LM pages 91 98) Time Estimate for Entire Lab: 2.5 to 3.0 hours Special Requirements Incubation. Students should start these sections at the beginning of the

More information

Pre-lab Homework Lab 6: Photosynthesis & Cellular Respiration

Pre-lab Homework Lab 6: Photosynthesis & Cellular Respiration Lab Section: Name: Pre-lab Homework After reading over the lab and the topics of photosynthesis and cellular respiration from your textbook, answer these questions to be turned in at the beginning of the

More information

Standard Test Method for Carbon Black Iodine Adsorption Number 1

Standard Test Method for Carbon Black Iodine Adsorption Number 1 NOTICE: This standard has either been superseded and replaced by a new version or discontinued. Contact ASTM International (www.astm.org) for the latest information. Designation: D 1510 99 Standard Test

More information

Exp 03: Avogadro s Number

Exp 03: Avogadro s Number 0.1056 g/l (which can have variable properties, a mixture or pure substance?) Part 1: Calibration of the Pipet PURE HEXANE 1. Obtain a Pasteur pipet from your instructor 2. Obtain a 10 ml beaker from the

More information

BIOL 305L Spring 2019 Laboratory Six

BIOL 305L Spring 2019 Laboratory Six Please print Full name clearly: BIOL 305L Spring 2019 Laboratory Six Osmosis in potato and carrot samples Introduction Osmosis is the movement of water molecules through a selectively permeable membrane

More information

Vitamin C science. project

Vitamin C science. project project Vitamin C science Vitamin C is essential nutrient. A person needs at least 40mg vitamin C daily. The lack of vitamin C in the body can cause weak immunity, and even scurvy. It is important to know

More information

Enzyme Development Corporation (212) Penn Plaza, New York, NY

Enzyme Development Corporation (212) Penn Plaza, New York, NY Enzyme Development Corporation (212) 736-1580 21 Penn Plaza, New York, NY 10001 E-mail: info@enzymedevelopment.com Sandstedt, Kneen, and Blish (S.K.B) MODIFIED ANALYTICAL METHOD UNCONTROLLED COPY A. Principle:

More information

Instruction Number: 5681

Instruction Number: 5681 Instruction Number: 5681 Component Description > COMPONENT SHEET > K 1690 COMBINATION BOILER/COOLING SYSTEM Alkalinity P/T (HCl) 1 x 5229 Instruction *1 x 9198 Sample Tube, Graduated, 25 ml, plastic w/cap

More information

SOUTH AFRICAN NATIONAL STANDARD

SOUTH AFRICAN NATIONAL STANDARD ISBN 978-0-626-31165-0 SOUTH AFRICAN NATIONAL STANDARD Water Sulfide content Published by SABS Standards Division 1 Dr Lategan Road Groenkloof Private Bag X191 Pretoria 0001 Tel: +27 12 428 7911 Fax: +27

More information

ESS Method 310.2: Phosphorus, Total, Low Level (Persulfate Digestion)

ESS Method 310.2: Phosphorus, Total, Low Level (Persulfate Digestion) ESS Method 310.2: Phosphorus, Total, Low Level (Persulfate Digestion) Environmental Sciences Section Inorganic Chemistry Unit Wisconsin State Lab of Hygiene 465 Henry Mall Madison, WI 53706 Revised October

More information

Biomolecule: Carbohydrate

Biomolecule: Carbohydrate Biomolecule: Carbohydrate This biomolecule is composed of three basic elements (carbon, hydrogen, and oxygen) in a 1:2:1 ratio. The most basic carbohydrates are simple sugars, or monosaccharides. Simple

More information

Determination of Total Hardness in Water by Automatic Titration

Determination of Total Hardness in Water by Automatic Titration TECHNICAL NOTE Determination of Total Hardness in Water by Automatic Titration No. 7 Introduction Total hardness due to calcium and magnesium in water is determined using the preprogrammed method, T7 Total

More information

EXERCISE 6 - Lab Procedures

EXERCISE 6 - Lab Procedures EXERCISE 6 - Lab Procedures I. Determine the effect of substrate concentration on enzyme activity. e sure you do not confuse the enzyme (glucose oxidase) with the substrate (glucose)! 1. Turn on the Spec-20

More information

COLE-PARMER LABORATORY SURFACTANT ION ELECTRODE INSTRUCTION MANUAL

COLE-PARMER LABORATORY SURFACTANT ION ELECTRODE INSTRUCTION MANUAL COLE-PARMER LABORATORY SURFACTANT ION ELECTRODE INSTRUCTION MANUAL Cole-Parmer Instrument Company (800)323-4340 Fax:(847)247-2929 625 East Bunker Court, Vernon Hills, Illinois 60061 http://www.coleparmer.com

More information

Determination of Calcium in Milk

Determination of Calcium in Milk Determination of Calcium in Milk Calcium an important mineral for the body Calcium is an important component of a healthy diet and a mineral necessary for life. Calcium is a mineral that people need to

More information

EXPERIMENT 4 DETERMINATION OF REDUCING SUGARS, TOTAL REDUCING SUGARS, SUCROSE AND STARCH

EXPERIMENT 4 DETERMINATION OF REDUCING SUGARS, TOTAL REDUCING SUGARS, SUCROSE AND STARCH Practical Manual Food Chemistry and Physiology EXPERIMENT 4 DETERMINATION OF REDUCING SUGARS, TOTAL REDUCING SUGARS, SUCROSE AND STARCH Structure 4.1 Introduction Objectives 4.2 Experiment 4a: Reducing

More information

Pre-Lab Exercises Lab 11: Drug Chemistry

Pre-Lab Exercises Lab 11: Drug Chemistry Pre-Lab Exercises Lab 11: Drug Chemistry Name Date Section 1. Describe how a non-steroidal anti-inflammatory drug (NSAID) reduces pain and inflammation. 2. The active ingredient in an aspirin tablet is

More information

Experimental Procedure

Experimental Procedure 1 of 7 9/12/2018, 2:19 PM https://www.sciencebuddies.org/science-fair-projects/project-ideas/humbio_p043/human-biology-health/iron-rich-foods (http://www.sciencebuddies.org/science-fair-projects /project-ideas/humbio_p043/human-biology-health/iron-rich-foods)

More information

Experiment The Thermodynamics of the Dissolution of Borax

Experiment The Thermodynamics of the Dissolution of Borax Experiment The Thermodynamics of the Dissolution of Borax Borax is a commonly added to (clothes) wash water to increase the ph for more effective cleansing. 0 B.J E C T I V E S = -RTln K R. X T K, standard

More information

PtPt-electrode with temperature sensor, Intellical MTC695

PtPt-electrode with temperature sensor, Intellical MTC695 Total Chlorine DOC316.52.93092 Based on 4500-Cl D in Standard Methods for the Examination of Water and Wastewater Amperometric Forward Titration 0.003 5.00 mg/l as Cl 2 1. Introduction This application

More information

To understand osmosis, we must focus on the behavior of the solvent, not the solute.

To understand osmosis, we must focus on the behavior of the solvent, not the solute. GCC CHM 130LL Osmosis and Dialysis Purpose: The purpose of this experiment is to observe the closely related phenomena of osmosis and diffusion as it relates to dialysis. It is hoped that you will be able

More information

Quotes from Next Generation Science Standards, available at

Quotes from Next Generation Science Standards, available at Teacher Preparation Notes for Diffusion across a Selectively Permeable Membrane Drs. Jennifer Doherty and Ingrid Waldron, Department of Biology, University of Pennsylvania, 2015 1 Students investigate

More information

Biology Movement across the Cell Membrane

Biology Movement across the Cell Membrane Biology 160 - Movement across the Cell Membrane Prelab Information Movement is one of the characteristics of life. The ability to control the movement of material across the cell membrane is an incredibly

More information

Sodium Chloride Content in Ketchup by Precipitation Titration

Sodium Chloride Content in Ketchup by Precipitation Titration Background Sodiu Chloride Content in Ketchup by Precipitation Titration Sodiu chloride is one of the ost coon substances found in nature. Knowing the salt content in food products is iportant not only

More information

Lab 3 MACROMOLECULES INTRODUCTION I. IDENTIFICATION OF MACROMOLECULES. A. Carbohydrates

Lab 3 MACROMOLECULES INTRODUCTION I. IDENTIFICATION OF MACROMOLECULES. A. Carbohydrates Lab 3 MACROMOLECULES OBJECTIVES Define macromolecule, vitamin, mineral, carbohydrate, monosaccharide, disaccharide, polysaccharide, lipid, protein, amino acid, calorie; Describe the basic structures of

More information

How would you prepare 455 grams of an aqueous solution that is 6.50% sodium sulfate by mass?

How would you prepare 455 grams of an aqueous solution that is 6.50% sodium sulfate by mass? 62 How would you prepare 455 grams of an aqueous solution that is 6.50% sodium sulfate by mass? Start a concentration calculation by writing the definition of the unit(s) you're using! We know everything

More information