UNIT 1-History of life on earth! Big picture biodiversity-major lineages, Prokaryotes, Eukaryotes-Evolution of Meiosis

Size: px
Start display at page:

Download "UNIT 1-History of life on earth! Big picture biodiversity-major lineages, Prokaryotes, Eukaryotes-Evolution of Meiosis"

Transcription

1 Where are we in this course??? UNIT 1-History of life on earth! Big picture biodiversity-major lineages, Prokaryotes, Eukaryotes-Evolution of Meiosis Today we will start with UNIT 2 A. Mendel and the Gene Idea (Ch11) B. Chromosomal Basis of Inheritance (Ch12) C. Molecular Basis of Inheritance (Ch13) D. Gene Expression from Gene to Protein (Ch 14)

2 Everyone was interested in inheritance during late 1800s

3 Why was Mendel able to deduce this particulate pattern while others were struggling? Imagine you are interested in inheritance. What measurements could you make on the people in this class?

4 What is blending inheritance?? Imagine balls are individuals filled with paint and you mimic mating by randomly pulling them out of a bucket two by two.

5 Fig. 1. Difference between the outcomes from blending and from particulate inheritance. In post-mendelian terms, we assume a single diallelic locus, and hence three diploid genotypes (AA, blue; Aa, green; aa, yellow). Under particulate inheritance, the population's variability is preserved from generation to generation. In contrast, the conventional wisdom of Darwin's day saw offspring inherit a blend of parents' characteristics, here represented as the average of the two parental shadings. The result is that the variability diminishes in successive generations (the variance is halved each generation if mating is at random) SCIENCE MAGAZINE B. MAY

6 He was successful because he chose. flower color is purple or white flower position is axil or terminal stem length is long or short seed shape is round or wrinkled seed color is yellow or green pod shape is inflated or constricted pod color is yellow or green He did not choose traits like number of seeds per pod pod length pod width seeds per plant seed weight

7 Mendel chose to track only characters that varied in an either-or rather than a more or less manner.. his plants had either purple or white flowers, there was nothing intermediate between these two varieties. Had Mendel focused instead on characters that vary in a continuum among individuals-seed weight for example-he would not have discovered the particulate nature of inheritance..campbell

8 Considering all that can occur in the pathway from genotype to phenotype it is indeed impressive that Mendel could simplify the complexities to reveal the fundamental principles governing transmission of individual genes from parents to offspring.. Campbell 1865 Mendel publishes his PARTICULATE VIEW of Inheritance Almost completely ignored!

9 Figure What is particulate inheritance? 3 2 Parental generation (P) 4 Why are peas so great to work with? 5 First filial generation offspring (F 1 )

10 Review of terms What is a locus? What are alleles? Homozygous? Heterozygous?

11 Figure 11.4 Allele for purple flowers Locus for flower-color gene Pair of homologous chromosomes Allele for white flowers Is this individual with these chromosomes in their cells homozygous or heterozygous? What is the genotype? If purple flower allele is dominant, what is the phenotype?

12 P P X Homozygous Purple Homozygous White Imagine meiosis has occurred and that you are left with 4 gametes. What will gametes look like? (What will their genotype be?)

13 P P X What will gametes look like? Remember do not pay attention to colors of these chromosomes! I stole them from text.

14 All heterozygotes! They are called the F1 generation (results of first cross) What color will they be if P is dominant?

15 Pp x Pp X These Pp plants will make gametes with what genotypes? ½ are P and ½ are p ½ are P and ½ are p

16 Lets let these gametes randomly fertilize one another! What are chances of pulling a P gamete out? Another P gamete? etc CAN you ANSWER THIS IN FORM OF PUNNET SQUARE?

17 A more organized way to respond to this question of what are the genotypes going to be in the next generation is to use a Punnet Square.. Pp x Pp cross P p P p What are genotypes and phenotypes of offspring?

18 Figure 11.9 Rr Rr Segregation of alleles into eggs Segregation of alleles into sperm ½ R ½ r R R ½ R R r r r ½ r R r

19 Figure Experiment P Generation (true-breeding parents) Purple flowers White flowers F 1 Generation So all F1 are Pp (hybrids) All plants had purple flowers Self- or cross-pollination What F 2 Generation 705 purple-flowered plants 224 white-flowered plants

20 Figure P Generation Appearance: Genetic makeup: Gametes: Purple flowers PP P White flowers pp p F 1 Generation Appearance: Genetic makeup: Gametes: ½ Purple flowers Pp P ½ p F 2 Generation 3 : 1

21 Figure 11.6 Phenotype Genotype Purple PP (homozygous) 1 3 Purple Pp (heterozygous) 2 Purple Pp (heterozygous) 1 White pp (homozygous) 1 Ratio 3:1 Ratio 1:2:1

22 Figure Experiment P Generation (true-breeding parents) Purple flowers White flowers F 1 Generation (hybrids) All plants had purple flowers Self- or cross-pollination F 2 Generation 705 purple-flowered plants 224 white-flowered plants

23

24 Figure 11.8 Experiment P Generation Y Y F 1 Generation R R YR Gametes yr y y r r Predictions Predicted offspring in F 2 generation Two traits are Hypothesis of dependent assortment Seed color ½ (Y=yellow, y=green) ½ ¾ Seed texture (R=round, r=wrinkly) ½ ½ YR yr or Phenotypic ratio 3:1 Hypothesis of independent assortment Yr yr YR Yr Yr yr YyRR Yr YYrr Yr YyRR yyrr Yr yyrr yyrr yr Results Phenotypic ratio 9:3:3:1 Phenotypic ratio approximately 9:3:3:1

25 Figure 11.8 Experiment P Generation YR yr Gametes F 1 Generation Genotype of F1? Predictions Predicted offspring in F 2 generation Hypothesis of dependent assortment ½ ½ ½ ½ ¾ YR yr or Phenotypic ratio 3:1 Hypothesis of independent assortment Yr yr YR Yr Yr yr YyRR Yr YYrr Yr YyRR yyrr Yr yyrr yyrr yr Results Phenotypic ratio 9:3:3:1 Phenotypic ratio approximately 9:3:3:1

26 Figure 11.8 Experiment P Generation YR yr Gametes F 1 Generation Predictions Hypothesis of dependent assortment Hypothesis of independent assortment Now what will the gametes of these individuals be? Predicted or offspring in Yr yr F 2 generation ½ ½ YR Yr YyRR ½ Self or cross-pollinate YR within the F1 using a Punnett Yr Yr YYrr Yr square to get F2 ½ yr yr YyRR yyrr yyrr ¾ Phenotypic ratio 3:1 Yr yyrr yr Results Phenotypic ratio 9:3:3:1 Phenotypic ratio approximately 9:3:3:1

27 Figure 11.8 Experiment P Generation YR yr Gametes F 1 Generation Predictions Hypothesis of dependent assortment Predicted offspring in F 2 generation ½ ½ ½ ½ ¾ YR yr or Phenotypic ratio 3:1 Yr yr YR Yr Yr yr YyRR Yr YYrr Yr YyRR yyrr Yr yyrr yyrr yr Results Phenotypic ratio 9:3:3:1 Phenotypic ratio approximately 9:3:3:1

28 Figure 11.8 Experiment P Generation YR yr Gametes F 1 Generation Predictions Hypothesis of dependent assortment Predicted offspring in F 2 generation But what if.. ½ ½ ½ ½ ¾ YR yr or Phenotypic ratio 3:1 Yr yr YR Yr Yr yr YyRR Yr YYrr Yr YyRR yyrr Yr yyrr yyrr yr Results Phenotypic ratio 9:3:3:1 Phenotypic ratio approximately 9:3:3:1

29 Figure 11.8 Experiment P Generation Y Y R F 1 Generation R Predictions What Predicted have I done? offspring in Gametes F 2 generation would be? Gametes will be YR Gametes Hypothesis of dependent assortment ½ ½ Results Phenotypic ratio 9:3:3:1 Is this F1 same or different than R previously? r R r Phenotypic ratio approximately 9:3:3:1 or yr ½ YR Yr and only! ½ yr What would F1 genotype be? yr ¾ Y Phenotypic ratio 3:1 all Hypothesis of independent assortment y r YR Yr Yr yr YyRR Yr YYrr Yr YyRR y y r yyrr Y Yr yyrr x yyrr yr y

30 Figure 11.8 Experiment P Generation Y Y R F 1 Generation R Predictions What Predicted have I done? offspring in Gametes F 2 generation would be? Gametes will be YR Gametes Hypothesis of dependent assortment ½ ½ Results Phenotypic ratio 9:3:3:1 Is this F1 same or different than R previously? r R r Phenotypic ratio approximately 9:3:3:1 or yr ½ YR Yr and only ½ yr What would F1 genotype be? yr ¾ Y Phenotypic ratio 3:1 all Hypothesis of independent assortment y r YR Yr Yr yr YyRR Yr YYrr Yr YyRR y Y R y r yyrr Y Yr yyrr x y r yyrr yr y

31 Figure 11.8 Experiment Y Y R P Generation F 1 Generation R Predictions Predicted offspring in F 2 generation YR Gametes Hypothesis of dependent assortment ½ ½ YR yr ¾ Do x cross. Phenotypic ratio 3:1 ½ ½ or yr Hypothesis of independent assortment Y Yr yr YR Yr Yr yr YyRR Yr YYrr Yr YyRR y y r y r yyrr Y Yr yyrr yyrr yr y What gametes will be produced? Results R r x Phenotypic ratio 9:3:3:1 R Phenotypic ratio approximately 9:3:3:1 r

32 Figure 11.8 Experiment x? Gametes gametes F 1 Generation and only! Predictions Predicted or offspring in Yr yr F 2 generation ½ ½ YR Yr YyRR Next generation ½ (combine gametes randomly)? YR Yr Yr YYrr Yr ½ yr yr Gamete plus gamete = YyRR yyrr yyrr ¾ Gamete plus gamete = Phenotypic ratio 3:1 Yr yyrr yr Hypothesis of dependent assortment Gamete plus gamete = Y R Hypothesis of independent assortment Results Phenotypic ratio 9:3:3:1 YR yr Phenotypic How ratio many approximately genotypes? 9:3:3:1 y r x Y R y r

33 Figure 11.8 Experiment P Generation YR yr Gametes F 1 Generation Predictions Predicted offspring in F 2 generation Hypothesis of dependent assortment ½ ½ ½ ½ ¾ YR yr or Phenotypic ratio 3:1 Hypothesis of independent assortment Yr yr YR Yr Yr yr YyRR Yr YYrr Yr YyRR yyrr Yr yyrr yyrr yr Results Phenotypic ratio 9:3:3:1 Phenotypic ratio approximately 9:3:3:1

34 Figure 11.8 Experiment P Generation YR yr Gametes F 1 Generation Predictions Predicted offspring in F 2 generation Hypothesis of dependent assortment ½ ½ ½ ½ ¾ YR yr or Phenotypic ratio 3:1 Hypothesis of independent assortment Yr yr YR Yr Yr yr YyRR Yr YYrr Yr YyRR yyrr Yr yyrr yyrr yr Results Phenotypic ratio 9:3:3:1 Phenotypic ratio approximately 9:3:3:1

35 Getting more real.. 1. Most real loci have many alleles! 2. Most genes affect multiple traits! Pleiotropy! (Ex Cystic fibrosis p 217)

36 Figure P Generation Red C R C R White C W C W Gametes C R C W F 1 Generation Pink C R C W Gametes ½ C R ½ C W Today..What is this called? 3. Incomplete dominance! Is this blending inheritance???

37 This chicken is heterozygous at a single locus (BW), erminette. What is going on here? What is this called? 4. Codominance

38 Plus many genes interact with one another.

39 Figure BbEe BbEe BE be Be be BE BBEE BbEE BBEe BbEe be BbEE bbee BbEe bbee Be BBEe BbEe BBee Bbee be BbEe bbee Bbee bbee 9 : 3 : 4

40 Figure BbEe BbEe BE be Be be BE BBEE BbEE BBEe BbEe be BbEE bbee BbEe bbee Be BBEe BbEe BBee Bbee be BbEe bbee Bbee bbee 9 : 3 : 4

41 Figure BbEe BbEe BE be Be be BE BBEE BbEE BBEe BbEe be BbEE bbee BbEe bbee Be BBEe BbEe BBee Bbee be BbEe bbee Bbee bbee 9 : 3 : 4

42 Figure What is going on???? BbEe BbEe BE be Be be BE BBEE BbEE BBEe BbEe be BbEE bbee BbEe bbee Be BBEe BbEe BBee Bbee be BbEe bbee Bbee bbee 9 : 3 : 4

43 Figure BbEe BbEe BE be Be be BE BBEE BbEE BBEe BbEe be BbEE bbee BbEe bbee Be BBEe BbEe BBee Bbee be BbEe bbee Bbee bbee What is this called? 5. Epistasis 9 : 3 : 4

44 6. Traits are usually determined by many more than one or even two loci!

45 Figure With 2 loci what is maximum number of different gametes you could have? (Go back to your 1 example) different gametes. 8 AaBbCc AaBbCc Skin color Polygenic (quantitative 1 trait or multilocus trait 8 Imagine 3 loci! Phenotypes: Number of dark-skin alleles: How many genetically different gametes are

46 Figure AaBbCc AaBbCc Phenotypes: Number of dark-skin alleles:

47 Figure AaBbCc AaBbCc Phenotypes: Number of dark-skin alleles:

48 Figure Do you think 3 loci is realistic for skin color? AaBbCc AaBbCc Phenotypes: Number of dark-skin alleles:

49 Human skin color is a polygenic trait, meaning multiple gene loci are involved in its expression. At last count, the International Federation of Pigment Cell Societies has determined that there are a total of 378 genetic loci involved in determining skin color in humans and mice.

50 7. Multifactorial traits are the norm. When a disease is said to have a multifactorial basis, it means that it is caused by a gene with a large number of alleles. it affects a large number of people. it has many different symptoms. both genetic and environmental factors contribute to the disease. it tends to skip a generation. Come up with an example of a multifactorial disease!

Gregor Mendel. What is Genetics? the study of heredity

Gregor Mendel. What is Genetics? the study of heredity Gregor Mendel What is Genetics? the study of heredity Gregor Mendel s Peas Pollen: plant s sperm Egg Cells: plants reproductive cells Fertilization: joining of pollen + egg cells develops into embryo in

More information

Genetics & The Work of Mendel. AP Biology

Genetics & The Work of Mendel. AP Biology Genetics & The Work of Mendel Gregor Mendel Modern genetics began in the mid-1800s in an abbey garden, where a monk named Gregor Mendel documented inheritance in peas u used experimental method u used

More information

Genetics & The Work of Mendel

Genetics & The Work of Mendel Genetics & The Work of Mendel 2006-2007 Gregor Mendel Modern genetics began in the mid-1800s in an abbey garden, where a monk named Gregor Mendel documented inheritance in peas used experimental method

More information

Biology. Chapter 13. Observing Patterns in Inherited Traits. Concepts and Applications 9e Starr Evers Starr. Cengage Learning 2015

Biology. Chapter 13. Observing Patterns in Inherited Traits. Concepts and Applications 9e Starr Evers Starr. Cengage Learning 2015 Biology Concepts and Applications 9e Starr Evers Starr Chapter 13 Observing Patterns in Inherited Traits Cengage Learning 2015 Cengage Learning 2015 After completing today s activities, students should

More information

Genetics & The Work of Mendel

Genetics & The Work of Mendel Genetics & The Work of Mendel 2006-2007 Gregor Mendel Modern genetics began in the mid-1800s in an abbey garden, where a monk named Gregor Mendel documented inheritance in peas used experimental method

More information

TECHNIQUE. Parental generation (P) Stamens Carpel 3. RESULTS First filial. offspring (F 1 )

TECHNIQUE. Parental generation (P) Stamens Carpel 3. RESULTS First filial. offspring (F 1 ) TECHNIQUE 2 Parental generation (P) Stamens Carpel 3 4 RESULTS First filial generation offspring (F ) 5 2 EXPERIMENT P Generation (true-breeding parents) Purple flowers White flowers F Generation (hybrids)

More information

11.1 The Work of Mendel

11.1 The Work of Mendel 11.1 The Work of Mendel Originally prepared by Kim B. Foglia Revised and adapted by Nhan A. Pham Objectives Describe Mendel s classic garden pea experiment. Summarize Mendel s conclusion about inheritance.

More information

Chapter 10 Notes Patterns of Inheritance, Part 1

Chapter 10 Notes Patterns of Inheritance, Part 1 Chapter 10 Notes Patterns of Inheritance, Part 1 I. Gregor Mendel (1822-1884) a. Austrian monk with a scientific background b. Conducted numerous hybridization experiments with the garden pea, Pisum sativum,

More information

Introduction to Genetics and Heredity

Introduction to Genetics and Heredity Introduction to Genetics and Heredity Although these dogs have similar characteristics they are each unique! I. Early Ideas About Heredity A. The Theory of Blending Inheritance Each parent contributes

More information

11-1: Introduction to Genetics

11-1: Introduction to Genetics 11-1: Introduction to Genetics The Work of Gregor Mendel Copyright Pearson Prentice Hall Genetics Vocabulary Genetics The study of heredity. Heredity The passing of physical characteristics from parents

More information

Unit 7 Section 2 and 3

Unit 7 Section 2 and 3 Unit 7 Section 2 and 3 Evidence 12: Do you think food preferences are passed down from Parents to children, or does the environment play a role? Explain your answer. One of the most important outcomes

More information

Genetics PPT Part 1 Biology-Mrs. Flannery

Genetics PPT Part 1 Biology-Mrs. Flannery Genetics PPT Part Biology-Mrs. Flannery In an Abbey Garden Mendel studied garden peas because they were easy to grow, came in many readily distinguishable varieties, had easily visible traits are easily

More information

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 6 Patterns of Inheritance

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 6 Patterns of Inheritance Chapter 6 Patterns of Inheritance Genetics Explains and Predicts Inheritance Patterns Genetics can explain how these poodles look different. Section 10.1 Genetics Explains and Predicts Inheritance Patterns

More information

Genetics and Heredity Notes

Genetics and Heredity Notes Genetics and Heredity Notes I. Introduction A. It was known for 1000s of years that traits were inherited but scientists were unsure about the laws that governed this inheritance. B. Gregor Mendel (1822-1884)

More information

Patterns of Inheritance

Patterns of Inheritance 1 Patterns of Inheritance Bio 103 Lecture Dr. Largen 2 Topics Mendel s Principles Variations on Mendel s Principles Chromosomal Basis of Inheritance Sex Chromosomes and Sex-Linked Genes 3 Experimental

More information

Mendelian Genetics. You are who you are due to the interaction of HEREDITY and ENVIRONMENT. ENVIRONMENT: all outside forces that act on an organism.

Mendelian Genetics. You are who you are due to the interaction of HEREDITY and ENVIRONMENT. ENVIRONMENT: all outside forces that act on an organism. Heredity Chapter 3 3:1 Genetics Mendelian Genetics You are who you are due to the interaction of HEREDITY and ENVIRONMENT. ENVIRONMENT: all outside forces that act on an organism. HEREDITY: traits that

More information

Labrador Coat Color Similar to coat color in mice: Black lab is BxEx Yellow lab is xxee Chocolate lab is bbex Probable pathway:

Labrador Coat Color Similar to coat color in mice: Black lab is BxEx Yellow lab is xxee Chocolate lab is bbex Probable pathway: Honors Genetics 1. Gregor Mendel (1822-1884) German monk at the Augustine Abbey of St. Thomas in Brno (today in the Czech Republic). He was a gardener, teacher and priest. Mendel conducted experiments

More information

Biology. Slide 1 of 31. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 31. End Show. Copyright Pearson Prentice Hall Biology 1 of 31 11 3 Exploring Mendelian 11-3 Exploring Mendelian Genetics Genetics 2 of 31 Independent Assortment Independent Assortment To determine if the segregation of one pair of alleles affects

More information

Mendel and Heredity. Chapter 12

Mendel and Heredity. Chapter 12 Mendel and Heredity Chapter 12 12.1 Objectives: 1.) summarize the importance of Mendel s experiments 2.)Differentiate between genes and alleles. 3.) Explain that alleles determine what physical traits

More information

Biology. Slide 1 of 31. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 31. End Show. Copyright Pearson Prentice Hall Biology 1 of 31 11 3 Exploring Mendelian 11-3 Exploring Mendelian Genetics Genetics 2 of 31 Independent Assortment What is the principle of independent assortment? 3 of 31 Independent Assortment Independent

More information

Name Period. Keystone Vocabulary: genetics fertilization trait hybrid gene allele Principle of dominance segregation gamete probability

Name Period. Keystone Vocabulary: genetics fertilization trait hybrid gene allele Principle of dominance segregation gamete probability Name Period BIO B2 GENETICS (Chapter 11) You should be able to: 1. Describe and/or predict observed patterns of inheritance (dominant, recessive, co- dominant, incomplete dominance, sex- linked, polygenic

More information

Chapter 11 Introduction to Genetics

Chapter 11 Introduction to Genetics Chapter 11 Introduction to Genetics 11.1 Gregor Mendel Genetics is the scientific study of heredity How traits are passed from one generation to the next Mendel Austrian monk (1822) Used Pea Plants (crossed

More information

Genetics & Heredity 11/16/2017

Genetics & Heredity 11/16/2017 Genetics & Heredity Biology I Turner College & Career High School 2017 Fertilization is the fusion of an egg and a sperm. Purebred (True breeding plants) are plants that were allowed to selfpollinate and

More information

Fundamentals of Genetics

Fundamentals of Genetics Fundamentals of Genetics For thousands of years people have known that living things somehow pass on some type of information to their offspring. This was very clear in things that humans selected to breed

More information

8.1 Genes Are Particulate and Are Inherited According to Mendel s Laws 8.2 Alleles and Genes Interact to Produce Phenotypes 8.3 Genes Are Carried on

8.1 Genes Are Particulate and Are Inherited According to Mendel s Laws 8.2 Alleles and Genes Interact to Produce Phenotypes 8.3 Genes Are Carried on Chapter 8 8.1 Genes Are Particulate and Are Inherited According to Mendel s Laws 8.2 Alleles and Genes Interact to Produce Phenotypes 8.3 Genes Are Carried on Chromosomes 8.4 Prokaryotes Can Exchange Genetic

More information

Keywords. Punnett Square forked line. gene allele dominant recessive character trait phenotype genotype

Keywords. Punnett Square forked line. gene allele dominant recessive character trait phenotype genotype Genetics Core Concepts Mendel s Law of Segregation states that there are two alleles for every gene determining a specific characteristic, and these alleles are segregated into separate gametes during

More information

Mendel and Heredity. Chapter 12

Mendel and Heredity. Chapter 12 Mendel and Heredity Chapter 12 Objectives: 1.) Differentiate between genotype and phenotype 2.)Differentiate between genes and alleles. 3.) Differentiate between dominant and recessive alleles. 4.) Explain

More information

Mendel. The pea plant was ideal to work with and Mendel s results were so accurate because: 1) Many. Purple versus flowers, yellow versus seeds, etc.

Mendel. The pea plant was ideal to work with and Mendel s results were so accurate because: 1) Many. Purple versus flowers, yellow versus seeds, etc. Mendel A. Mendel: Before Mendel, people believed in the hypothesis. This is analogous to how blue and yellow paints blend to make. Mendel introduced the hypothesis. This deals with discrete units called

More information

Biology Unit 7 Genetics 7:1 Genetics

Biology Unit 7 Genetics 7:1 Genetics Biology Unit 7 Genetics 7:1 Genetics Gregor Mendel: Austrian monk Studied the inheritance of traits in pea plants His work was not recognized until the 20 th century Between 1856 and 1863, Mendel cultivated

More information

Mendelian Genetics. Biology 3201 Unit 3

Mendelian Genetics. Biology 3201 Unit 3 Mendelian Genetics Biology 3201 Unit 3 Recall: Terms Genetics is a branch of biology dealing with the principles of variation and inheritance in animals and plants. Heredity the passing of traits from

More information

Gregor Mendel father of heredity

Gregor Mendel father of heredity MENDEL AND MEIOSIS Gregor Mendel father of heredity MENDEL S LAWS OF HEREDITY Heredity branch of genetics dealing with the passing on of traits from parents to offspring Pea Plants Easy maintenance & large

More information

I. Classical Genetics. 1. What makes these parakeets so varied in color?

I. Classical Genetics. 1. What makes these parakeets so varied in color? 1. Classical Genetics a. Mendel i. Mendel s Laws ii. Advanced Genetic Principles b. Modern Genetics i. Scientists ii. Nucleic Acids DNA/RNA Function iii.replication iv.protein Synthesis v. Mutations (gene

More information

GENETIC VARIATION AND PATTERNS OF INHERITANCE. SOURCES OF GENETIC VARIATION How siblings / families can be so different

GENETIC VARIATION AND PATTERNS OF INHERITANCE. SOURCES OF GENETIC VARIATION How siblings / families can be so different 9/22/205 GENETIC VARIATION AND PATTERNS OF INHERITANCE SOURCES OF GENETIC VARIATION How siblings / families can be so different Independent orientation of chromosomes (metaphase I of meiosis) Random fertilization

More information

Welcome Back! 2/6/18. A. GGSS B. ggss C. ggss D. GgSs E. Ggss. 1. A species of mice can have gray or black fur

Welcome Back! 2/6/18. A. GGSS B. ggss C. ggss D. GgSs E. Ggss. 1. A species of mice can have gray or black fur Welcome Back! 2/6/18 1. A species of mice can have gray or black fur and long or short tails. A cross between blackfurred, long-tailed mice and gray-furred, shorttailed mice produce all black-furred, long-tailed

More information

Genetics and heredity. For a long time, general ideas of inheritance were known + =

Genetics and heredity. For a long time, general ideas of inheritance were known + = Mendelian Genetics Genetics and heredity For a long time, general ideas of inheritance were known + = + = What was really lacking was a quantitative understanding of how particular traits were passed down

More information

Genetics. F 1 results. Shape of the seed round/wrinkled all round 5474 round, 1850 wrinkled 2.96 : 1

Genetics. F 1 results. Shape of the seed round/wrinkled all round 5474 round, 1850 wrinkled 2.96 : 1 Genetics Genetics is the study of heredity and variations. Its expression influences the functions of individuals at all levels. Evidently, this branch of biology involves the study of molecules, cells,

More information

Mendel explained how a dominant allele can mask the presence of a recessive allele.

Mendel explained how a dominant allele can mask the presence of a recessive allele. Section 2: Mendel explained how a dominant allele can mask the presence of a recessive allele. K What I Know W What I Want to Find Out L What I Learned Essential Questions What is the significance of Mendel

More information

Genes and Inheritance (11-12)

Genes and Inheritance (11-12) Genes and Inheritance (11-12) You are a unique combination of your two parents We all have two copies of each gene (one maternal and one paternal) Gametes produced via meiosis contain only one copy of

More information

Chapter 11. Introduction to Genetics

Chapter 11. Introduction to Genetics Chapter 11 Introduction to Genetics A Brief History In the past, people did not understand how traits were inherited, but there were many guesses based on things that could be observed. Two theories emerged.

More information

Lecture 13: May 24, 2004

Lecture 13: May 24, 2004 Lecture 13: May 24, 2004 CH14: Mendel and the gene idea *particulate inheritance parents pass on discrete heritable units *gene- unit of inheritance which occupies a specific chromosomal location (locus)

More information

Genes and Inheritance

Genes and Inheritance Genes and Inheritance Variation Causes of Variation Variation No two people are exactly the same The differences between people is called VARIATION. This variation comes from two sources: Genetic cause

More information

Chapter 6 Heredity The Big Idea Heredity is the passing of the instructions for traits from one generation to the next.

Chapter 6 Heredity The Big Idea Heredity is the passing of the instructions for traits from one generation to the next. Chapter 6 Heredity The Big Idea Heredity is the passing of the instructions for traits from one generation to the next. Section 1 Mendel and His Peas Key Concept The work of Gregor Mendel explains the

More information

Objectives. ! Describe the contributions of Gregor Mendel to the science of genetics. ! Explain the Law of Segregation.

Objectives. ! Describe the contributions of Gregor Mendel to the science of genetics. ! Explain the Law of Segregation. Objectives! Describe the contributions of Gregor Mendel to the science of genetics.! Explain the Law of Segregation.! Explain the Law of Independent Assortment.! Explain the concept of dominance.! Define

More information

GENETICS PREDICTING HEREDITY

GENETICS PREDICTING HEREDITY GENETICS PREDICTING HEREDITY INTRODUCTION TO GENETICS Genetics is the scientific study of heredity Heredity is essentially the study of how traits are passed from parents to their offspring. GREGOR MENDEL

More information

Unit 6.2: Mendelian Inheritance

Unit 6.2: Mendelian Inheritance Unit 6.2: Mendelian Inheritance Lesson Objectives Define probability. Explain how probability is related to inheritance. Describe how to use a Punnett square. Explain how Mendel interpreted the results

More information

Gregor Mendel and Genetics Worksheets

Gregor Mendel and Genetics Worksheets Gregor Mendel and Genetics Worksheets Douglas Wilkin, Ph.D. (DWilkin) Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book,

More information

Patterns of Inheritance. Game Plan. Gregor Mendel ( ) Overview of patterns of inheritance Determine how some genetic disorders are inherited

Patterns of Inheritance. Game Plan. Gregor Mendel ( ) Overview of patterns of inheritance Determine how some genetic disorders are inherited Patterns of Inheritance Game Plan Overview of patterns of inheritance Determine how some genetic disorders are inherited Gregor Mendel (8-88) Austrian monk responsible for developing the modern idea of

More information

MENDELIAN GENETICS. Punnet Squares and Pea Plants

MENDELIAN GENETICS. Punnet Squares and Pea Plants MENDELIAN GENETICS Punnet Squares and Pea Plants Introduction Mendelian laws of inheritance are statements about the way certain characteristics are transmitted from one generation to another in an organism.

More information

Semester 2- Unit 2: Inheritance

Semester 2- Unit 2: Inheritance Semester 2- Unit 2: Inheritance heredity -characteristics passed from parent to offspring genetics -the scientific study of heredity trait - a specific characteristic of an individual genes -factors passed

More information

MENDELIAN GENETICS. Law of Dominance: Law of Segregation: GAMETE FORMATION Parents and Possible Gametes: Gregory Mendel:

MENDELIAN GENETICS. Law of Dominance: Law of Segregation: GAMETE FORMATION Parents and Possible Gametes: Gregory Mendel: MENDELIAN GENETICS Gregory Mendel: Heredity: Cross: X P1 Generation: F1 Generation: F2 Generation: Gametes: Dominant: Recessive: Genotype: Phenotype: Law of Dominance: Genes: Alleles: Law of Segregation:

More information

UNIT 6 GENETICS 12/30/16

UNIT 6 GENETICS 12/30/16 12/30/16 UNIT 6 GENETICS III. Mendel and Heredity (6.3) A. Mendel laid the groundwork for genetics 1. Traits are distinguishing characteristics that are inherited. 2. Genetics is the study of biological

More information

Genetics and Heredity

Genetics and Heredity Genetics and Heredity History Genetics is the study of genes. Inheritance is how traits, or characteristics, are passed on from generation to generation. Chromosomes are made up of genes, which are made

More information

Patterns of Inheritance

Patterns of Inheritance Patterns of Inheritance Mendel the monk studied inheritance keys to his success: he picked pea plants he focused on easily categorized traits he used true-breeding populations parents always produced offspring

More information

draw and interpret pedigree charts from data on human single allele and multiple allele inheritance patterns; e.g., hemophilia, blood types

draw and interpret pedigree charts from data on human single allele and multiple allele inheritance patterns; e.g., hemophilia, blood types Specific Outcomes for Knowledge Students will: 30 C2.1k describe the evidence for dominance, segregation and the independent assortment of genes on different chromosomes, as investigated by Mendel 30 C2.2k

More information

Mendelian Genetics. Activity. Part I: Introduction. Instructions

Mendelian Genetics. Activity. Part I: Introduction. Instructions Activity Part I: Introduction Some of your traits are inherited and cannot be changed, while others can be influenced by the environment around you. There has been ongoing research in the causes of cancer.

More information

Chapter 9. Patterns of Inheritance. Lectures by Chris C. Romero, updated by Edward J. Zalisko

Chapter 9. Patterns of Inheritance. Lectures by Chris C. Romero, updated by Edward J. Zalisko Chapter 9 Patterns of Inheritance Lectures by Chris C. Romero, updated by Edward J. Zalisko 2010 Pearson Education, Inc. PowerPoint Lectures for Campbell Essential Biology, Fourth Edition Eric Simon, Jane

More information

Biology 12. Mendelian Genetics

Biology 12. Mendelian Genetics Mendelian Genetics Genetics: the science (study) of heredity that involves the structure and function of genes and the way genes are passed from one generation to the next. Heredity: the passing on of

More information

Mendelian Genetics. Gregor Mendel. Father of modern genetics

Mendelian Genetics. Gregor Mendel. Father of modern genetics Mendelian Genetics Gregor Mendel Father of modern genetics Objectives I can compare and contrast mitosis & meiosis. I can properly use the genetic vocabulary presented. I can differentiate and gather data

More information

You are who you are because of a combination of HEREDITY and ENVIRONMENT. ENVIRONMENT: all outside forces that act on an organism.

You are who you are because of a combination of HEREDITY and ENVIRONMENT. ENVIRONMENT: all outside forces that act on an organism. Unit 6 Genetics 6.1 Genetics You are who you are because of a combination of HEREDITY and ENVIRONMENT. ENVIRONMENT: all outside forces that act on an organism. HEREDITY: traits that are passed from parents

More information

NOTES: Exceptions to Mendelian Genetics!

NOTES: Exceptions to Mendelian Genetics! NOTES: 11.3 Exceptions to Mendelian Genetics! Beyond Dominant and Recessive Alleles Some alleles are neither dominant nor recessive, and many traits are controlled by multiple alleles OR multiple genes.

More information

Genetics. The study of heredity. Father of Genetics: Gregor Mendel (mid 1800 s) Developed set of laws that explain how heredity works

Genetics. The study of heredity. Father of Genetics: Gregor Mendel (mid 1800 s) Developed set of laws that explain how heredity works Genetics The study of heredity Father of Genetics: Gregor Mendel (mid 1800 s) Developed set of laws that explain how heredity works Father of Genetics: Gregor Mendel original pea plant (input) offspring

More information

BIO 202 : GENETICS AND EVOLUTION

BIO 202 : GENETICS AND EVOLUTION BIO 202 : GENETICS AND EVOLUTION INTRODUCTION Genetics is the study of hereditary and expression of such traits or heredity. Genetics is the branch of biology that deals with heredity and expression of

More information

Mendelian Genetics and Beyond Chapter 4 Study Prompts

Mendelian Genetics and Beyond Chapter 4 Study Prompts Mendelian Genetics and Beyond Chapter 4 Study Prompts 1. What is a mode of inheritance? 2. Can you define the following? a. Autosomal dominant b. Autosomal recessive 3. Who was Gregor Mendel? 4. What did

More information

1/9/2014. Introduction to Genetics. The Work of Gregor Mendel THE WORK OF GREGOR MENDEL. Some Definitions:

1/9/2014. Introduction to Genetics. The Work of Gregor Mendel THE WORK OF GREGOR MENDEL. Some Definitions: Introduction to Genetics Chapter 11 Chapter 11 Section 1 THE WORK OF GREGOR MENDEL The Work of Gregor Mendel Some Definitions: Genetics the study of biological inheritance and variation Chromosomes hereditary

More information

Genetics. Genetics. True or False. Genetics Vocabulary. Chapter 5. Objectives. Heredity

Genetics. Genetics. True or False. Genetics Vocabulary. Chapter 5. Objectives. Heredity Genetics True or False Genes are things you wear on your legs. A priest raising peas in his garden was one of the first to discover how genetics works. Plants can be purebred just like dogs. Dominate alleles

More information

HEREDITY = The passing of traits from parents to offspring. Transmitted by means of information stored in molecules of DNA.

HEREDITY = The passing of traits from parents to offspring. Transmitted by means of information stored in molecules of DNA. HEREDITY = The passing of traits from parents to offspring. Transmitted by means of information stored in molecules of DNA. GENEITCS =Scientific study of heredity Based on knowledge that traits are transmitted

More information

Mendel and the Gene Idea

Mendel and the Gene Idea LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 4 Mendel and the Gene Idea Lectures

More information

Ch 9 Assignment. 2. According to the blending theory of inheritance, a white rabbit crossed with a red rabbit would produce what kind of offspring?

Ch 9 Assignment. 2. According to the blending theory of inheritance, a white rabbit crossed with a red rabbit would produce what kind of offspring? Big idea: Mendel s Laws Answer the following questions as you read modules 9.1 9.10: 1. The study of genetics can be traced back to the Greek physician 2. According to the blending theory of inheritance,

More information

Laws of Inheritance. Bởi: OpenStaxCollege

Laws of Inheritance. Bởi: OpenStaxCollege Bởi: OpenStaxCollege The seven characteristics that Mendel evaluated in his pea plants were each expressed as one of two versions, or traits. Mendel deduced from his results that each individual had two

More information

Section 11 1 The Work of Gregor Mendel (pages )

Section 11 1 The Work of Gregor Mendel (pages ) Chapter 11 Introduction to Genetics Section 11 1 The Work of Gregor Mendel (pages 263 266) This section describes how Gregor Mendel studied the inheritance of traits in garden peas and what his conclusions

More information

Chapter 17 Genetics Crosses:

Chapter 17 Genetics Crosses: Chapter 17 Genetics Crosses: 2.5 Genetics Objectives 2.5.6 Genetic Inheritance 2.5.10.H Origin of the Science of genetics 2.5.11 H Law of segregation 2.5.12 H Law of independent assortment 2.5.13.H Dihybrid

More information

The Law of Segregation Introduction Today, we know that many of people's characteristics, from hair color to height to risk of diabetes, are

The Law of Segregation Introduction Today, we know that many of people's characteristics, from hair color to height to risk of diabetes, are The Law of Segregation Introduction Today, we know that many of people's characteristics, from hair color to height to risk of diabetes, are influenced by genes. We also know that genes are the way parents

More information

BIOLOGY. Mendel and the Gene Idea CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. Mendel and the Gene Idea CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 14 Mendel and the Gene Idea Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Drawing from the Deck of Genes What

More information

Name Hour. Section 11-1 The Work of Gregor Mendel (pages )

Name Hour. Section 11-1 The Work of Gregor Mendel (pages ) Name Hour Section 11-1 The Work of Gregor Mendel (pages 263-266) Introduction (page 263) 1. The scientific study of heredity is called. Gregor Mendel's Peas (pages 263-264) 2. Circle the letter of each

More information

Gregor Mendel Father of Genetics

Gregor Mendel Father of Genetics Genetics and Mendel Gregor Mendel Father of Genetics Gregor Mendel First person to trace characteristics of living things Augustinian Monk Lived and worked in an Austrian monastery in the mid-1800s Parents

More information

Mendelian Genetics: Patterns of Inheritance

Mendelian Genetics: Patterns of Inheritance Mendelian Genetics: Patterns of Inheritance A Bit on Gregor Mendel Born to a poor farming family in what is now part of Czech Republic Attended Augustinian monastery (1843) Became an excellent teacher

More information

The laws of Heredity. Allele: is the copy (or a version) of the gene that control the same characteristics.

The laws of Heredity. Allele: is the copy (or a version) of the gene that control the same characteristics. The laws of Heredity 1. Definition: Heredity: The passing of traits from parents to their offspring by means of the genes from the parents. Gene: Part or portion of a chromosome that carries genetic information

More information

Mendelian Genetics. KEY CONCEPT Mendel s research showed that traits are inherited as discrete units.

Mendelian Genetics. KEY CONCEPT Mendel s research showed that traits are inherited as discrete units. KEY CONCEPT Mendel s research showed that traits are inherited as discrete units. Mendel laid the groundwork for genetics. Traits are distinguishing characteristics that are inherited. Genetics is the

More information

Introduction to Genetics

Introduction to Genetics Introduction to Genetics Remember DNA RNA Protein Traits DNA contains the code for proteins (protein synthesis remember?) Proteins determine our traits Gregor Mendel 1822-1884 Father of Genetics Studied

More information

Meiotic Mistakes and Abnormalities Learning Outcomes

Meiotic Mistakes and Abnormalities Learning Outcomes Meiotic Mistakes and Abnormalities Learning Outcomes 5.6 Explain how nondisjunction can result in whole chromosomal abnormalities. (Module 5.10) 5.7 Describe the inheritance patterns for strict dominant

More information

Chapter 11 introduction to genetics 11.1 The work of Gregor mendel

Chapter 11 introduction to genetics 11.1 The work of Gregor mendel Chapter 11 introduction to genetics 11.1 The work of Gregor mendel What is inheritance? Two uses of the word inheritance Things that are passed down through generations Factors we get from our parents

More information

Agro/ANSC/Biol/Gene/Hort 305 Fall, 2017 MENDELIAN INHERITANCE Chapter 2, Genetics by Brooker (Lecture outline) #2

Agro/ANSC/Biol/Gene/Hort 305 Fall, 2017 MENDELIAN INHERITANCE Chapter 2, Genetics by Brooker (Lecture outline) #2 Agro/ANSC/Biol/Gene/Hort 305 Fall, 2017 MENDELIAN INHERITANCE Chapter 2, Genetics by Brooker (Lecture outline) #2 MENDEL S LAWS OF INHERITANCE Gregor Johann Mendel (1822-1884) is considered the father

More information

Sexual Reproduction and Genetics. Section 1. Meiosis

Sexual Reproduction and Genetics. Section 1. Meiosis Chromosomes and Chromosome Number! Human body cells have 46 chromosomes! Each parent contributes 23 chromosomes! Homologous chromosomes one of two paired chromosomes, one from each parent Chromosomes and

More information

PREDICTING INHERITED TRAITS & PUNNETT SQUARE ANALYSIS

PREDICTING INHERITED TRAITS & PUNNETT SQUARE ANALYSIS PREDICTING INHERITED TRAITS & PUNNETT SQUARE ANALYSIS GENETICS TERMS AND VOCABULARY DNA- Deoxyribonucleic acid. It is the molecule that codes for our traits. CHROMOSOME - A structure found in the nucleus

More information

Introduction to Genetics

Introduction to Genetics DAY 2 Introduction to Genetics Heredity Passing of traits from parents to their young The branch of biology that studies heredity is genetics. Trait Characteristic that is inherited Gregor Mendel Austrian

More information

Chapter 14 Mendel and the Gene Idea

Chapter 14 Mendel and the Gene Idea Chapter 4 Mendel and the Gene Idea AP Biology Overview: Drawing from the Deck of Genes The blending hypothesis was the most widely favored explanation of heredity in the 800s Idea that genetic material

More information

MENDELIAN GENETIC CH Review Activity

MENDELIAN GENETIC CH Review Activity MENDELIAN GENETIC CH. 6.3-6.5 Review Activity Question 1 Who is considered to be the father of genetics? Answer 1 Question 2 Gregor Mendel What part of DNA directs a cell to make a certain protein? 1 Answer

More information

Fundamentals of Genetics

Fundamentals of Genetics Fundamentals of Genetics Genetics- the science of heredity. Gregor Johann Mendel- Father of Genetics 5/19/14 mendelian genetics3 1 1. Heredity -the passing of traits from parents to offspring a. Gregor

More information

Notes: Mendelian Genetics

Notes: Mendelian Genetics Notes: Mendelian Genetics Heredity is passing characteristics from one generation to the next. Genetics is the study of heredity. Who was Gregor Mendel? Gregor Mendel is the Father of Modern Genetics.

More information

BIOLOGY. Mendelian Genetics. Global Edition. Campbell Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. Mendelian Genetics. Global Edition. Campbell Reece Urry Cain Wasserman Minorsky Jackson BIOLOGY TENTH EDITION Global Edition Campbell Reece Urry Cain Wasserman Minorsky Jackson 4 Mendelian Genetics Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Drawing from the Deck of

More information

Genetics- The field of biology that studies how characteristics are passed from one generation to another.

Genetics- The field of biology that studies how characteristics are passed from one generation to another. Genetics- The field of biology that studies how characteristics are passed from one generation to another. Heredity- The passage of traits from one generation to the next. Characteristics- a quality of

More information

Writing the Rules of Heredity. 23. Genetics I

Writing the Rules of Heredity. 23. Genetics I 1. 2. 3. 4. 5. 6. 7. Describe the general aspects of Mendel s experimental method, and explain why his work is considered so important. Define the following terms: gene, F 1 generation, F 2 generation,

More information

Unit 5 Review Name: Period:

Unit 5 Review Name: Period: Unit 5 Review Name: Period: 1 4 5 6 7 & give an example of the following. Be able to apply their meanings: Homozygous Heterozygous Dominant Recessive Genotype Phenotype Haploid Diploid Sex chromosomes

More information

What we mean more precisely is that this gene controls the difference in seed form between the round and wrinkled strains that Mendel worked with

What we mean more precisely is that this gene controls the difference in seed form between the round and wrinkled strains that Mendel worked with 9/23/05 Mendel Revisited In typical genetical parlance the hereditary factor that determines the round/wrinkled seed difference as referred to as the gene for round or wrinkled seeds What we mean more

More information

Genetics: field of biology that studies heredity, or the passing of traits from parents to offspring Trait: an inherited characteristic, such as eye

Genetics: field of biology that studies heredity, or the passing of traits from parents to offspring Trait: an inherited characteristic, such as eye Genetics: field of biology that studies heredity, or the passing of traits from parents to offspring Trait: an inherited characteristic, such as eye colour or hair colour Gregor Mendel discovered how traits

More information

Pre-AP Biology Unit 7 Genetics Review Outline

Pre-AP Biology Unit 7 Genetics Review Outline Unit 7 Genetics Review Outline Pre-AP Biology 2017-2018 LT 1 - I can explain the relationships among alleles, genes, chromosomes, genotypes, and phenotypes. This target covers application of the vocabulary

More information

Extra Review Practice Biology Test Genetics

Extra Review Practice Biology Test Genetics Mendel fill in the blanks: Extra Review Practice Biology Test Genetics Mendel was an Austrian monk who studied genetics primarily using plants. He started with plants that produced offspring with only

More information

Mendelian Genetics Chapter 11

Mendelian Genetics Chapter 11 Mendelian Genetics Chapter 11 Starts on page 308 Roots, Prefixes & Suffixes: homo = hetero = geno = pheno = zyg = co = poly = Section 11-1: Mendel & His Peas I. Vocabulary Words: A. Gene - a small section

More information

OCTOBER 21 Unit 5 Heredity 1. What is Heredity

OCTOBER 21 Unit 5 Heredity 1. What is Heredity OCTOBER 21 Unit 5 Heredity 1. What is Heredity the passing on of physical or mental characteristics genetically from one generation to another. Agenda 1. Warm-up 2. Mendlian Notes pg 5-6 3. Lets Practice

More information

He was a Chezch priest and math teacher.

He was a Chezch priest and math teacher. Genetics The Study of Heredity This field of Genetics began with the work of Mendel in the early 19 th century. He was a Chezch priest and math teacher. He observed that many plants were true breeding

More information