4/20/2009. From: Ham, AW & Cormack, DH Ham s Histology. Lippincott, Philadelphia.

Size: px
Start display at page:

Download "4/20/2009. From: Ham, AW & Cormack, DH Ham s Histology. Lippincott, Philadelphia."

Transcription

1 Bone: regulation of development and growth Bone Modeling From: Ham, AW & Cormack, DH Ham s Histology. Lippincott, Philadelphia. 1

2 Bone Remodeling Removal of damaged/aged bone by osteoclasts t (microdamage) Replacement with new bone by osteoblasts (that become osteocytes) Process is linked: resorption followed by deposition (keeps bone strong) Cell responsible for resorption: Osteoclast From: Gerrard, DE & Grant, AL Principles of Animal Growth & Development. Kendall/Hunt Pub. Co., Dubuque, IA 2

3 From: Gerrard, DE & Grant, AL Principles of Animal Growth & Development. Kendall/Hunt Pub. Co., Dubuque, IA An osteoclast in action Osteoclasts act to degrade bone. Here an osteoclasts is eroding bone. The hollow formed by such action is called a Howship's lacunae (H). Similar to the cell of the gut, osteoclasts have a ruffled border which increases the surface area for bone resorption. (Image adapted from Color Atlas of Basic Histology, Ed. I. Berman, Appleton & Lange, 1993) 3

4 Intramembranous bone formation Occurs without a cartilage model (i.e., within a membrane only); Under high po 2, relatively undifferentiated mesenchymal cells become osteoblasts, and surround themselves with osteoid, which is then calcified (sound familiar?); Bone growth occurs by apposition. Examples: Flat bones Skull Chin Digits From: Gerrard, DE & Grant, A Co., Dubuque, IA evelopment. Kendall/Hunt Pub. AL Principles of Animal Growth & De 4

5 Intramembranous bone formation 1. In intramembranous bone formation, mesenchymal cells migrate to the site of eventual bone formation 2. Cells condense, align and secrete an organic framework of extracellular matrix (ECM), i.e. the osteoid (or ground substance) 3. Cells continue to proliferate during the entire osteogenic process 4. The osteoid is laid down in long strands 5. Osteoblasts (differentiated mesenchymal cells) line the osteoid and begin to deposit calcium salts, (i.e., mineralization phase) forming bony trabeculae 6. Consecutive growth rings added to the trabecula to increase thickness: lamellae are added by cycles of osteoid secretion and mineralization (appositional growth) Intramembranous bone formation. Note: no cartilage cores CM=condensed mesenchyme M=mesenchyme O=osteoblasts BL= trabeculae of bone V=blood vessels BL=bone-lining cells OB=osteoblasts CL=cement line (boundary line) O=osteocytes V=blood vessels (Images adapted from Color Atlas of Basic Histology, Ed. I. Berman, Appleton & Lange, 1993) 5

6 Wt or length, % of bir rth 100 Length Weight Trimester Bone is an earlymaturing tissue, and is relatively resistant to nutritional or other restriction, therefore, body length (crownrump) is often used as an indicator of fetal age. Physical factors affecting bone Tissue interactions fetal development of bone, muscle, tendons, etc. simultaneous; Tendons insert into developing cartilage model; Bone protuberances guided by insertions, forces acting upon bone; e.g., tenotomy: muscle atrophies, bone continues to grow; cartilage removal: muscles & tendons disappear 6

7 Effects of tension 1. The periosteum is attached to the bone (firmly) at the epiphyses and (loosely) at the diaphysis; 2. As the bone elongates, the periosteum is stretched, t creating tension on the periosteum; Effects of tension 3. The periosteum responds to the increased tension by ing its rate of cell proliferation; 4. This proceeds until it overshoots bone length, decreasing the tension on the bone; 5. The growth plate responds to the reduced tension by ing its rate of proliferation and ossification, which elongates the bone and starts the entire cycle over again. 7

8 Effects of tension There is an optimal tension for bone growth and maintenance; this is related to the presence of an electrical current (e.g., fracture repair, electric blankets, high-voltage power lines) If periosteal attachments are severed, growth plate proliferation is very rapid; Similarly, if one GP is damaged or closes prematurely, the other GP may compensate by more rapid proliferation. Post-natal growth Growth plate closure puts a stop to linear growth (depends upon age, species, breed, anatomical location); Crocodiles & alligators: GPs never close; No general rule (proximal vs.distal); No single event (GP closures occur over several years); Therefore, there are local regulators at each GP, although these are likely influenced by systemic factors and events (e.g. puberty). 8

9 Post-natal growth First major regulator identified: growth hormone (1920 s-30 s) Hypophysectomy (hypox) removal of anterior pituitary No further bone elongation Narrower GPs no proliferative & hypertrophic zones GH replacement GP widens, growth is near-normal GH stimulates bone growth, BUT: chondrocytes in vitro did not respond to GH somatomedin hypothesis: Anterior pituitary GH Liver IGF-I Growth plate 9

10 Evidence against the somatomedin hypothesis Infusion of GH into the growth plate of hypox rats increases GP width compared to the contralateral GP, the GH effect is also local Infusion of IGF-I is also effective GH is ineffective if IGF-I is blocked by a specific antibody Almost all tissues express mrna for IGF-I (including chondrocytes) Dual Effector Theory Circulating GH primes the growth plate to respond to IGF-I Circulating GH also stimulates proliferative zone chondrocytes to produce IGF-I Locally produced (paracrine) IGF-I stimulates chondrocyte proliferation and hypertrophy From: Davis, SL Recent concepts in the regulation of growth by GH and IGF. Journal of Animal Science 66 (Suppl. 3):

11 Abnormalities of GH function Giants: excess GH prior to growth plate closure wider proliferative zone delayed GP closure Acromegaly: excess GH after growth plate closure growth by apposition only affects mainly the cranium, digits, feet (disproportionate) Dwarfism: several types, including hypopituitary (low GH) Laron (high [GH] but low IGF-I) pygmies (normal GH and IGF-I, but tissues unresponsive) hypothyroid Single IGF1 Allele Is a Major Determinant of Small Size in Dogs (Science 6 April 2007) The domestic dog exhibits greater diversity in body size than any other terrestrial vertebrate We used a strategy that vertebrate. exploits the breed structure of dogs to investigate the genetic basis of size. First, through a genome-wide scan, we identified a major quantitative trait locus (QTL) on chromosome 15 influencing size variation within a single breed. Second, we examined genetic variation in the 15- megabase interval surrounding the QTL in small and giant breeds and found marked evidence for a selective sweep spanning a single gene (IGF1), encoding insulin-like growth factor 1. A single IGF1 single- nucleotide polymorphism haplotype is common to all small breeds and nearly absent from giant breeds, suggesting that the same causal sequence variant is a major contributor to body size in all small dogs. 11

12 Thyroid hormone Marked growth reduction in all hypothyroid animals Little data on direct effects in bone Increases width of growth plate ( recruitment of resting chondrocytes) From: Ganong, WF Review of Medical Physiology. Lange Medical Publications, Los Altos, CA. 12

13 Glucocorticoids Direct effects: chondrogenesis Indirect effects: GH secretion by pituitary, GP mrna for GHR, GHBP, IGF-I, IGF-IR Sex steroids Pubertal growth spurt accounts for ~20% of adult height (growth spurt lasts ~ 22 months) Pubertal growth spurt due mainly to estrogen and testosterone (testosterone converted to estrogen) 13

14 From: van der Eeerden et al., Endocrine Reviews 24: 872. Sex steroids Effect the GH/IGF-I axis: at puberty sex steroids, primarily estrogen, increase GH pulsatility (rate & amt per pulse) and thereby increases IGF-I Female estrogen GH at younger ages than male testosterone does Estrogen alters growth plate activity chondrocytes have genomic and non genomic receptors Lack of estrogen is involved in the post-menopausal onset of osteoporosis; excess bone loss 14

15 Testosterone Stimulates GP cell proliferation (low doses) Enhances maturation of GP, accelerates e ates closure (high doses) GH is required for its actions Acts mainly through conversion to estrogen Male ER(αR) deficient mutant: no GP fusion, severe osteoporosis; not responsive to E therapy Male CYP10 gene mutants: lack aromatase P450; similar effects, but are responsive to E Estrogen ERα and ERβ both present in GP Inhibit cartilage growth and enhance maturation of fthe GP; Low levels stimulate chondrocytes & osteoblasts indirectly (via IGF-I) High levels (e.g., at puberty) inhibit growth: cartilage growth; proliferative zone activity maturation of the GP Inhibit bone resorption by osteoclasts (thereby bone density) 15

16 Growth factor Osteoblast Osteoclast DNA Collagen resorption Insulin-like growth factor-i (IGF-I) IGF-II + + Prostaglandins Epidermal growth factor (EGF) Transforming growth factor-α (TGFα) + TGF-β Platelet-derived growth factor (PDGF) Fibroblast growth factor (FGF α, β) ++ - Interleukin-1 (IL-1 α, β) Tumor necrosis factor (TNF) - Interferon-γ Bone morphogenetic protein (BMP) + + Regulation of calcium and phosphorus All tissues/cells require precise concentrations of Ca 2+ for proper function Circulating Ca 2+ exchanges with tissue pools and the storage pool in bone 99% of body calcium (ca. 1 kg) is in the mineralized bone 16

17 Parathyroid hormone (PTH) Principal role = maintenance of plasma calcium concentration Released by the parathyroid gland in response to low plasma [Ca 2+ ]; undergoes further processing in the liver Raises plasma Ca 2+ by stimulation of: bone resorption by osteoclasts renal tubule reabsorption of calcium 1-25-(OH) 2 D3 production increased intestinal Ca 2+ absorption, bone resorption Lowers plasma P by stimulation of renal excretion, thus preventing harmful CaPO 4 precipitates in tissues PTH may be anabolic or catabolic, depending upon its interactions with other hormones and health/disease state Vitamin D (calcitriol) Nutrient and hormone Helps to maintain normal plasma calcium resorption of bone by osteoclasts intestinal absorption of Ca and P renal retention of PO 4 Direct effects on osteoblasts collagen synthesis osteocalcin synthesis IGF-I synthesis? osteoblast proliferation 17

18 Calcitonin Produced in the C cells of the thyroid gland Decreases bone resorption (direct effects on osteoclasts) 18

The Skeletal System:Bone Tissue

The Skeletal System:Bone Tissue The Skeletal System:Bone Tissue Dynamic and ever-changing throughout life Skeleton composed of many different tissues cartilage, bone tissue, epithelium, nerve, blood forming tissue, adipose, and dense

More information

Functions of the Skeletal System. Chapter 6: Osseous Tissue and Bone Structure. Classification of Bones. Bone Shapes

Functions of the Skeletal System. Chapter 6: Osseous Tissue and Bone Structure. Classification of Bones. Bone Shapes Chapter 6: Osseous Tissue and Bone Structure Functions of the Skeletal System 1. Support 2. Storage of minerals (calcium) 3. Storage of lipids (yellow marrow) 4. Blood cell production (red marrow) 5. Protection

More information

The Skeletal System:Bone Tissue

The Skeletal System:Bone Tissue The Skeletal System:Bone Tissue Dynamic and ever-changing throughout life Skeleton composed of many different tissues cartilage, bone tissue, epithelium, nerve, blood forming tissue, adipose, and dense

More information

Chapter 6: Skeletal System: Bones and Bone Tissue

Chapter 6: Skeletal System: Bones and Bone Tissue Chapter 6: Skeletal System: Bones and Bone Tissue I. Functions A. List and describe the five major functions of the skeletal system: 1. 2. 3.. 4. 5.. II. Cartilage A. What do chondroblasts do? B. When

More information

CHAPTER 6 LECTURE OUTLINE

CHAPTER 6 LECTURE OUTLINE CHAPTER 6 LECTURE OUTLINE I. INTRODUCTION A. Bone is made up of several different tissues working together: bone, cartilage, dense connective tissue, epithelium, various blood forming tissues, adipose

More information

Chapter 6: SKELETAL SYSTEM

Chapter 6: SKELETAL SYSTEM Chapter 6: SKELETAL SYSTEM I. FUNCTIONS A. Support B. Protection C. Movement D. Mineral storage E. Lipid storage (Fig. 6.8b) F. Blood cell production (Fig. 6.4) II. COMPONENTS A. Cartilage 1. Hyaline 2.

More information

Skeletal Tissues. Skeletal tissues. Frame; muscles, organs and CT attach. Brain, spinal cord, thoracic organs; heart and lungs.

Skeletal Tissues. Skeletal tissues. Frame; muscles, organs and CT attach. Brain, spinal cord, thoracic organs; heart and lungs. Skeletal Tissues Functions 1) support 2) protection 3) movement Skeletal tissues Frame; muscles, organs and CT attach. Brain, spinal cord, thoracic organs; heart and lungs. Aids muscle contraction; generate

More information

For more information about how to cite these materials visit

For more information about how to cite these materials visit Author(s): University of Michigan Medical School, Department of Cell and Developmental Biology License: Unless otherwise noted, the content of this course material is licensed under a Creative Commons

More information

KEY CONCEPTS Unit 6 THE SKELETAL SYSTEM

KEY CONCEPTS Unit 6 THE SKELETAL SYSTEM ANATOMY & PHYSIOLOGY 1 (101-805 - AB) PAUL ANDERSON 2011 KEY CONCEPTS Unit 6 THE SKELETAL SYSTEM A Overview of The Skeletal System 1. Definition: Anatomically the SKELETAL SYSTEM consists of bones, cartilages,

More information

BIOH111. o Cell Module o Tissue Module o Integumentary system o Skeletal system o Muscle system o Nervous system o Endocrine system

BIOH111. o Cell Module o Tissue Module o Integumentary system o Skeletal system o Muscle system o Nervous system o Endocrine system BIOH111 o Cell Module o Tissue Module o Integumentary system o Skeletal system o Muscle system o Nervous system o Endocrine system Endeavour College of Natural Health endeavour.edu.au 1 TEXTBOOK AND REQUIRED/RECOMMENDED

More information

Ossification and Bone Remodeling

Ossification and Bone Remodeling Ossification and Bone Remodeling Pre-natal Ossification Embryonic skeleton: fashioned from fibrous membranes or cartilage to accommodate mitosis. 2 types of pre-natal ossification (bone formation) 1.

More information

OSSEOUS TISSUE & BONE STRUCTURE PART I: OVERVIEW & COMPONENTS

OSSEOUS TISSUE & BONE STRUCTURE PART I: OVERVIEW & COMPONENTS OSSEOUS TISSUE & BONE STRUCTURE PART I: OVERVIEW & COMPONENTS The Skeletal System Skeletal system includes: bones of the skeleton, cartilages, ligaments, and connective tissues What are the functions of

More information

Regulation of the skeletal mass through the life span

Regulation of the skeletal mass through the life span Regulation of the skeletal mass through the life span Functions of the skeletal system Mechanical protection skull Movement leverage for muscles Mineral metabolism calcium store Erythropoiesis red blood

More information

An Introduction to the Skeletal System Skeletal system includes Bones of the skeleton Cartilages, ligaments, and connective tissues

An Introduction to the Skeletal System Skeletal system includes Bones of the skeleton Cartilages, ligaments, and connective tissues An Introduction to the Skeletal System Skeletal system includes Bones of the skeleton Cartilages, ligaments, and connective tissues Functions of the Skeletal System Support Storage of minerals (calcium)

More information

BONE TISSUE. Dr. Heba Kalbouneh Associate Professor of Anatomy and Histology

BONE TISSUE. Dr. Heba Kalbouneh Associate Professor of Anatomy and Histology BONE TISSUE Dr. Heba Kalbouneh Associate Professor of Anatomy and Histology BONE FUNCTION Support Protection (protect internal organs) Movement (provide leverage system for skeletal muscles, tendons, ligaments

More information

Chapter 6 Skeletal System

Chapter 6 Skeletal System Chapter 6 Skeletal System Functions of the skeletal system/bone 1. Support skeletal system is the internal framework of the body 2. Protection protects internal organs 3. Movement muscles & bones work

More information

Fig Articular cartilage. Epiphysis. Red bone marrow Epiphyseal line. Marrow cavity. Yellow bone marrow. Periosteum. Nutrient foramen Diaphysis

Fig Articular cartilage. Epiphysis. Red bone marrow Epiphyseal line. Marrow cavity. Yellow bone marrow. Periosteum. Nutrient foramen Diaphysis Fig. 7.1 Articular cartilage Epiphysis Red bone marrow Epiphyseal line Marrow cavity Yellow bone marrow Nutrient foramen Diaphysis Site of endosteum Compact bone Spongy bone Epiphyseal line Epiphysis Articular

More information

Osseous Tissue and Bone Structure

Osseous Tissue and Bone Structure C h a p t e r 6 Osseous Tissue and Bone Structure PowerPoint Lecture Slides prepared by Jason LaPres Lone Star College - North Harris Copyright 2009 Pearson Education, Inc., publishing as Pearson Benjamin

More information

SKELETAL SYSTEM I NOTE: LAB ASSIGNMENTS for this topic will run over 3 Weeks. A SEPARATE WORKSHEET WILL BE PROVIDED.

SKELETAL SYSTEM I NOTE: LAB ASSIGNMENTS for this topic will run over 3 Weeks. A SEPARATE WORKSHEET WILL BE PROVIDED. BIO 211; Anatomy and Physiology I REFERENCE: CHAPTER 07 1 Dr. Lawrence Altman Naugatuck Valley Community College LECTURE TOPICS OUTLINE SKELETAL SYSTEM I NOTE: LAB ASSIGNMENTS for this topic will run over

More information

Peggers Super Summaries Basic Sciences Bone

Peggers Super Summaries Basic Sciences Bone Bone Overview & Turnover BONES Function o Support o Protection o Assisting movement o Storage of minerals o Production of red blood cells from marrow Types o Cancellous o Compact with Haversian systems

More information

Chapter 6 Bones and Bone Tissue Chapter Outline

Chapter 6 Bones and Bone Tissue Chapter Outline Chapter 6 Bones and Bone Tissue Chapter Outline Module 6.1: Introduction to Bones as Organs (Figures 6.1, 6.2, 6.3, 6.4) A. The skeletal system includes the bones, joints, and their associated supporting

More information

Types of Bones. 5 basic types of bones: Sutural bones - in joint between skull bones

Types of Bones. 5 basic types of bones: Sutural bones - in joint between skull bones The Skeletal System The Skeletal System Bone and their cartilage, ligaments & tendons. Dynamic and ever changing throughout life Skeleton contains all 4 tissue types; Epithelial, connective, muscle and

More information

Chapter 6: Osseous Tissue and Bone Structure

Chapter 6: Osseous Tissue and Bone Structure Chapter 6: Osseous Tissue and Bone Structure I. An Introduction to the Skeletal System, p. 180 Objective: Describe the functions of the skeletal system The skeletal system includes: - bones of the skeleton

More information

b. Adult bones produce 2.5 million RBCs each second.

b. Adult bones produce 2.5 million RBCs each second. Ch 6 Skeletal System I. Functions of the Skeletal System A. The skeletal system consists of: 1. bones, cartilage, tendons and ligaments B. Living bone is not Gr. dried up 1. It is dynamic and adaptable

More information

2 PROCESSES OF BONE OSSIFICATION

2 PROCESSES OF BONE OSSIFICATION 2 PROCESSES OF BONE OSSIFICATION ENDOCHONDRAL OSSIFICATION 6 STEPS 1. CARTILAGE ENLARGES, BY APPOSITIONAL GROWTH; CHONDROCYTES AT CENTER OF CARTILAGE GROW IN SIZE; MATRIX REDUCES IN SIZE & SPICULES CALCIFY;

More information

Skeletal System. The skeletal System... Components

Skeletal System. The skeletal System... Components Skeletal System The skeletal System... What are the general components of the skeletal system? What does the skeletal system do for you & how does it achieve these functions? Components The skeletal system

More information

Chapter 7. Skeletal System

Chapter 7. Skeletal System Chapter 7 Skeletal System 1 Introduction: A. Bones are very active, living tissues B. Each bone is made up of several types of tissues and so is an organ. C. Bone functions include: muscle attachment,

More information

ANATOMY & PHYSIOLOGY - CLUTCH CH. 8 - BONE AND CARTILAGE.

ANATOMY & PHYSIOLOGY - CLUTCH CH. 8 - BONE AND CARTILAGE. !! www.clutchprep.com CONCEPT: BONE CLASSIFICATIONS There are four classifications of bones based on their 1. Long bones are greater in length than in width - Found in the upper and lower limbs (ex: arm,

More information

Bone Development. Two Types of OssificaDon 10/18/14. Osteogenesis ( ) bone Dssue formadon Stages. Bones and Skeletal Tissues: Part B

Bone Development. Two Types of OssificaDon 10/18/14. Osteogenesis ( ) bone Dssue formadon Stages. Bones and Skeletal Tissues: Part B Bone Development 6 Bones and Skeletal Tissues: Part B Osteogenesis ( ) bone Dssue formadon Stages Bone formadon begins in the 2nd month of development Postnatal bone growth undl early adulthood Bone remodeling

More information

Principles of Anatomy and Physiology

Principles of Anatomy and Physiology Principles of Anatomy and Physiology 14 th Edition CHAPTER 6 The Skeletal System: Bone Tissue Introduction The skeletal system has 6 important functions: Provides support Protects the internal organs (brain,

More information

Bone Tissue- Chapter 5 5-1

Bone Tissue- Chapter 5 5-1 Bone Tissue- Chapter 5 5-1 Bone Functions Support Protection Assistance in movement Mineral storage and release Blood cell production Triglyceride storage 5-2 Bone Chemistry Water (25%) Organic Constituent

More information

Chapter 6 Part B Bones and Skeletal Tissue

Chapter 6 Part B Bones and Skeletal Tissue Chapter 6 Part B Bones and Skeletal Tissue 6.5 Bone Development Ossification (osteogenesis) is the process of bone tissue formation Formation of bony skeleton begins in month 2 of development Postnatal

More information

Anatomy & Physiology

Anatomy & Physiology Anatomy & Physiology 101-805 Unit 6 The Skeletal System Paul Anderson 2011 Skeletal System: Components Bones major organs of system, have all functions of system. Cartilages connect & protect bones at

More information

Bone Remodeling & Repair Pathologies

Bone Remodeling & Repair Pathologies Bone Remodeling & Repair Pathologies Skeletal system remodels itself to maintain homeostasis Remodeling Maintainence replaces mineral reserves (osteocytes) of the matrix Remodelling recycles (osteoclasts)

More information

Skeletal Tissue Study Slides. Chapter 6

Skeletal Tissue Study Slides. Chapter 6 Skeletal Tissue Study Slides Chapter 6 Functions of the skeletal system include all of the following, except A. support. B. storage. C. protection. D. blood cell production. E. movement. ANSWER Functions

More information

Outline. Skeletal System. Functions of Bone. Bio 105: Skeletal System 3/17/2016. The material from this lecture packet will be on the lecture exam

Outline. Skeletal System. Functions of Bone. Bio 105: Skeletal System 3/17/2016. The material from this lecture packet will be on the lecture exam Bio 105: Skeletal System Lecture 8 Chapter 5 The material from this lecture packet will be on the lecture exam The identification that you do after this lecture will be on the lab exam Outline I. Overview

More information

Bone Formation, Growth, and Remodeling

Bone Formation, Growth, and Remodeling Bone Formation, Growth, and Remodeling Pre-natal Ossification Embryonic skeleton: fashioned from fibrous membranes or cartilage to accommodate mitosis. 2 types of pre-natal ossification (bone formation)

More information

Osseous Tissue and Bone Structure

Osseous Tissue and Bone Structure 6 Osseous Tissue and Bone Structure PowerPoint Lecture Presentations prepared by Jason LaPres Lone Star College North Harris An Introduction to the Skeletal System Learning Outcomes 6-1 Describe the primary

More information

Skeletal System. Bio 105

Skeletal System. Bio 105 Skeletal System Bio 105 Outline I. Overview of the skeletal system II. Function of bones III. Bone structure IV. Bone cells V. Cartilage VI. Tendons and Ligaments VII. Joints VIII. Bone development IX.

More information

Outline. Skeletal System. Tendons link the skeletal and the muscular systems.

Outline. Skeletal System. Tendons link the skeletal and the muscular systems. Outline Skeletal System Bio 105 I. Overview of the skeletal system II. Function of bones III. Bone structure IV. Bone cells V. Cartilage VI. Tendons and Ligaments VII. Joints VIII. Bone development IX.

More information

SKELETAL SYSTEM CHAPTER 07. Bone Function BIO 211: ANATOMY & PHYSIOLOGY I. Body Movement interacts with muscles bones act as rigid bar of a lever

SKELETAL SYSTEM CHAPTER 07. Bone Function BIO 211: ANATOMY & PHYSIOLOGY I. Body Movement interacts with muscles bones act as rigid bar of a lever Page 1 BIO 211: ANATOMY & PHYSIOLOGY I 1 CHAPTER 07 SKELETAL SYSTEM Dr. Lawrence G. G. Altman www.lawrencegaltman.com Some illustrations are courtesy of McGraw-Hill. Some illustrations are courtesy of

More information

SKELETAL SYSTEM CHAPTER 07 BIO 211: ANATOMY & PHYSIOLOGY I

SKELETAL SYSTEM CHAPTER 07 BIO 211: ANATOMY & PHYSIOLOGY I BIO 211: ANATOMY & PHYSIOLOGY I 1 CHAPTER 07 SKELETAL SYSTEM Dr. Lawrence G. G. Altman www.lawrencegaltman.com Some illustrations are courtesy of McGraw-Hill. Some illustrations are courtesy of McGraw-Hill.

More information

BONE REMODELLING. Tim Arnett. University College London. Department of Anatomy and Developmental Biology

BONE REMODELLING. Tim Arnett. University College London. Department of Anatomy and Developmental Biology BONE REMODELLING Tim Arnett Department of Anatomy and Developmental Biology University College London The skeleton, out of sight and often out of mind, is a formidable mass of tissue occupying about 9%

More information

Skeletal System worksheet

Skeletal System worksheet Skeletal System worksheet Name Section A: Intro to Skeletal System The skeletal system performs vital functions that enable us to move through our daily lives. Support - The skeleton provides support and

More information

The Skeletal System Vertebral column Sacrum. Osseous tissue For the body and soft organs. Magnesium, sodium, fluoride Levers for muscle action

The Skeletal System Vertebral column Sacrum. Osseous tissue For the body and soft organs. Magnesium, sodium, fluoride Levers for muscle action 10/1/2016 Cranium Facial s Skull Clavicle Scapula Sternum Rib Humerus Vertebra Radius Ulna Carpals Thoracic cage (ribs and sternum) The Skeletal System Vertebral column Sacrum Phalanges Metacarpals Femur

More information

FORMATION OF BONE. Intramembranous Ossification. Bone-Lec-10-Prof.Dr.Adnan Albideri

FORMATION OF BONE. Intramembranous Ossification. Bone-Lec-10-Prof.Dr.Adnan Albideri FORMATION OF BONE All bones are of mesodermal origin. The process of bone formation is called ossification. We have seen that formation of most bones is preceded by the formation of a cartilaginous model,

More information

Do Now: 1. Where, specifically, is blood created? Which part of the long bone? 2. Which structures are primarily associated with growth? 3.

Do Now: 1. Where, specifically, is blood created? Which part of the long bone? 2. Which structures are primarily associated with growth? 3. Do Now: 1. Where, specifically, is blood created? Which part of the long bone? 2. Which structures are primarily associated with growth? 3. How could damage to these areas impact bone growth? WRITE AND

More information

Lecture 2: Skeletogenesis

Lecture 2: Skeletogenesis Jilin University School of Stomatology Skeletogenesis Lecture 2: Skeletogenesis Aug. 18, 2015 Yuji Mishina, Ph.D. mishina@umich.edu Student will describe Development of Bone - the general anatomy of bone

More information

Ossification = Osteogenesis

Ossification = Osteogenesis Ossification = Osteogenesis Ossification = Osteogenesis Parts of the fetal skeleton form during the first few weeks after conception By the end of the 8 th week, the skeletal pattern is formed : cartilage

More information

ANATOMY & PHYSIOLOGY 1 ( ) For Intensive Nursing PAUL ANDERSON SAMPLE TEST

ANATOMY & PHYSIOLOGY 1 ( ) For Intensive Nursing PAUL ANDERSON SAMPLE TEST ANATOMY & PHYSIOLOGY 1 (101-805) For Intensive Nursing PAUL ANDERSON SAMPLE TEST 3 2011 1. If calcium levels in the extracellular fluid are too low, parathyroid hormone secretion would and osteoclast activity

More information

SKELETAL TISSUES CHAPTER 7 INTRODUCTION TO THE SKELETAL SYSTEM TYPES OF BONES

SKELETAL TISSUES CHAPTER 7 INTRODUCTION TO THE SKELETAL SYSTEM TYPES OF BONES SKELETAL TISSUES CHAPTER 7 By John McGill Supplement Outlines: Beth Wyatt Original PowerPoint: Jack Bagwell INTRODUCTION TO THE SKELETAL SYSTEM STRUCTURE Organs: Bones Related Tissues: Cartilage and Ligaments

More information

Dr. Heba Kalbouneh. Saba Alfayoumi. Heba Kalbouneh

Dr. Heba Kalbouneh. Saba Alfayoumi. Heba Kalbouneh 11 Dr. Heba Kalbouneh Saba Alfayoumi Heba Kalbouneh 2- Bone Bone tissue is also classified into primary bone and secondary bone. In the beginning, the first bone that is deposited by the osteoblasts is

More information

-the emphasis on this section is the structure and function of bone tissue and on the dynamics of its formation and remodeling throughout life.

-the emphasis on this section is the structure and function of bone tissue and on the dynamics of its formation and remodeling throughout life. Biology 325 Fall 2004 BONES AND SKELETAL TISSUES Introduction -skeleton contains cartilage and bones -the emphasis on this section is the structure and function of bone tissue and on the dynamics of its

More information

Bones. The division of bones anatomically is : long, short, irregular, flat and sesamoid.

Bones. The division of bones anatomically is : long, short, irregular, flat and sesamoid. Bones Osteocytes : Are responsible for maintenance of bones Present in lacunae, and send processes. Unable to divide. The division of bones anatomically is : long, short, irregular, flat and sesamoid.

More information

BONE LABORATORY DEMONSTRATIONS. These demonstrations are found on the bulletin boards outside the MCO Bookstore.

BONE LABORATORY DEMONSTRATIONS. These demonstrations are found on the bulletin boards outside the MCO Bookstore. BONE LABORATORY DEMONSTRATIONS These demonstrations are found on the bulletin boards outside the MCO Bookstore. COMPACT & TRABECULAR BONE - LM When viewed under the polarizing light microscope, the layering

More information

Biology. Dr. Khalida Ibrahim

Biology. Dr. Khalida Ibrahim Biology Dr. Khalida Ibrahim BONE TISSUE Bone tissue is a specialized form of connective tissue and is the main element of the skeletal tissues. It is composed of cells and an extracellular matrix in which

More information

Chapter 5 The Skeletal System:Bone Tissue. Functions of Bone. Bones

Chapter 5 The Skeletal System:Bone Tissue. Functions of Bone. Bones Chapter 5 The Skeletal System:Bone Tissue Dynamic and ever-changing throughout life Skeleton composed of many different tissues cartilage, bone tissue, epithelium, nerve, blood forming tissue, adipose,

More information

SKELETAL SYSTEM. Introduction Notes (pt 1)

SKELETAL SYSTEM. Introduction Notes (pt 1) SKELETAL SYSTEM Introduction Notes (pt 1) I. INTRODUCTION 1. Bones include active, living tissues: bone tissue, cartilage, dense connective tissue, blood, and nervous tissue. 2. Bones: support and protect

More information

The neuroendocrine growth hormone clock and body mass. Are we programmed to grow to a certain size, to stop growing and to decay?

The neuroendocrine growth hormone clock and body mass. Are we programmed to grow to a certain size, to stop growing and to decay? The neuroendocrine growth hormone clock and body mass Are we programmed to grow to a certain size, to stop growing and to decay? What is growth? Growth is the process through which the nutrient energy

More information

Notes to/6 4- ( ea/2

Notes to/6 4- ( ea/2 Notes to/6 4- ( 0 1 -. ea/2 PART Two FACTORS AFFECTING BONE DEVELOPMENT & GROWTH Nutrition There must be adequate intake of certain nutrients, such as: 1. Calcium 2. Vitamin C : Necessary for collagen

More information

Module 2:! Functional Musculoskeletal Anatomy A! Semester 1! !!! !!!! Hard Tissues, Distal Upper Limb & Neurovascular Supply of Upper Limb!

Module 2:! Functional Musculoskeletal Anatomy A! Semester 1! !!! !!!! Hard Tissues, Distal Upper Limb & Neurovascular Supply of Upper Limb! Functional Musculoskeletal Anatomy A Module 2: Hard Tissues, Distal Upper Limb & Neurovascular Supply of Upper Limb Semester 1 1 18. Bone Tissue & Growth of Bones 18.1 Describe the structure of bone tissue

More information

Skeletal System worksheet

Skeletal System worksheet Skeletal System worksheet Name Section A: Intro to Skeletal System The skeletal system performs vital functions that enable us to move through our daily lives. Support - The skeleton provides support and

More information

Endocrine secretion cells secrete substances into the extracellular fluid

Endocrine secretion cells secrete substances into the extracellular fluid Animal Hormones Concept 30.1 Hormones Are Chemical Messengers Endocrine secretion cells secrete substances into the extracellular fluid Exocrine secretion cells secrete substances into a duct or a body

More information

Bone (2) Chapter 8. The bone is surrounded by the periosteum, the periosteum consists of two layers: a fibrous outer layer and an innercellular layer.

Bone (2) Chapter 8. The bone is surrounded by the periosteum, the periosteum consists of two layers: a fibrous outer layer and an innercellular layer. Bone (2) Chapter 8 The bone is surrounded by the periosteum, the periosteum consists of two layers: a fibrous outer layer and an innercellular layer. The innercellular layer contains osteoprogenitor cells,

More information

Sheets 16&17. Dr. Heba Kalbouneh. Dr. Heba Kalbouneh. Dr. Heba Kalbouneh

Sheets 16&17. Dr. Heba Kalbouneh. Dr. Heba Kalbouneh. Dr. Heba Kalbouneh Sheets 16&17 Dr. Heba Kalbouneh Dr. Heba Kalbouneh Dr. Heba Kalbouneh Ossification (formation of bone) - Osteoblasts are responsible for producing the extracellular matrix of the bone and these osteoblasts

More information

BIOL 2457 CHAPTER 6 SI 1. irregular ectopic: sutural (Wormian) The is between the shaft and end. It contains cartilage that is

BIOL 2457 CHAPTER 6 SI 1. irregular ectopic: sutural (Wormian) The is between the shaft and end. It contains cartilage that is BIOL 2457 CHAPTER 6 SI 1 1. List 5 functions of bones: 2. Classify bones according to shape: give descriptions and examples: long short flat irregular ectopic: sutural (Wormian) ectopic: sesamoid 3. The

More information

Endocrine Regulation of Calcium and Phosphate Metabolism

Endocrine Regulation of Calcium and Phosphate Metabolism Endocrine Regulation of Calcium and Phosphate Metabolism Huiping Wang ( 王会平 ), PhD Department of Physiology Rm C516, Block C, Research Building, School of Medicine Tel: 88208252 Email: wanghuiping@zju.edu.cn

More information

Osteology. Dr. Carmen E. Rexach Anatomy 35 Mt San Antonio College

Osteology. Dr. Carmen E. Rexach Anatomy 35 Mt San Antonio College Osteology Dr. Carmen E. Rexach Anatomy 35 Mt San Antonio College Functions of the Skeletal System: Support Movement Protection Hemopoiesis Electrolyte balance (Ca ++ /PO -3 4 ) Acid-base balance Storage

More information

Rama Nada. - Mousa Al-Abbadi. 1 P a g e

Rama Nada. - Mousa Al-Abbadi. 1 P a g e - 1 - Rama Nada - - Mousa Al-Abbadi 1 P a g e Bones, Joints and Soft tissue tumors Before we start: the first 8 minutes was recalling to Dr.Mousa s duties, go over them in the slides. Wherever you see

More information

Osseous Tissue and Bone Structure

Osseous Tissue and Bone Structure 6 Osseous Tissue and Bone Structure PowerPoint Lecture Presentations prepared by Jason LaPres Lone Star College North Harris An Introduction to the Skeletal System Learning Outcomes 6-1 Describe the primary

More information

OpenStax-CNX module: m Bone Structure * Ildar Yakhin. Based on Bone Structure by OpenStax. Abstract

OpenStax-CNX module: m Bone Structure * Ildar Yakhin. Based on Bone Structure by OpenStax. Abstract OpenStax-CNX module: m63474 1 Bone Structure * Ildar Yakhin Based on Bone Structure by OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 By

More information

Anatomy & Physiology Skeletal System

Anatomy & Physiology Skeletal System I. Functions of the Skeletal System A. the body Anatomy & Physiology Skeletal System B. of vital organs C. Provide for movement D. storage (calcium & phosphate) E. cell formation II. Bone Structure A.

More information

Skeletal Tissues Dr. Ali Ebneshahidi

Skeletal Tissues Dr. Ali Ebneshahidi Skeletal Tissues Dr. Ali Ebneshahidi Functions of Bones 1. Support and protection: Bones give shape to body structure. Bones provide support to body weight. Certain bones protect vital internal organs

More information

Car$lage and Bone. Kris$ne Kra0s, M.D.

Car$lage and Bone. Kris$ne Kra0s, M.D. Car$lage and Bone Kris$ne Kra0s, M.D. Car$lage and Bone Lecture Objec$ves Describe the general func$ons of car$lage and bone. Compare the func$on and composi$on of the three types of car$lage. Describe

More information

Human Anatomy & Physiology

Human Anatomy & Physiology PowerPoint Lecture Slides prepared by Barbara Heard, Atlantic Cape Community College Ninth Edition Human Anatomy & Physiology C H A P T E R 6 Annie Leibovitz/Contact Press Images 2013 Pearson Education,

More information

Growth Hormone, Somatostatin, and Prolactin 1 & 2 Mohammed Y. Kalimi, Ph.D.

Growth Hormone, Somatostatin, and Prolactin 1 & 2 Mohammed Y. Kalimi, Ph.D. Growth Hormone, Somatostatin, and Prolactin 1 & 2 Mohammed Y. Kalimi, Ph.D. I. Growth Hormone (somatotropin): Growth hormone (GH) is a 191 amino acid single chain polypeptide (MW 22,000 daltons). Growth

More information

What are the parts of the skeletal system? Chapter 6- Part I Bones and Skeletal Tissues. Growth of Cartilage. Bones come in many shapes

What are the parts of the skeletal system? Chapter 6- Part I Bones and Skeletal Tissues. Growth of Cartilage. Bones come in many shapes Chapter 6- Part I Bones and Skeletal Tissues Components of the skeletal system Classification of Bone (bone shapes) Functions of bone Bone structure Microscopic structure of bone and bone cells What are

More information

Deposition of Bone by the Osteoblasts. Bone is continually being deposited by osteoblasts, and it is continually being resorbed where osteoclasts are

Deposition of Bone by the Osteoblasts. Bone is continually being deposited by osteoblasts, and it is continually being resorbed where osteoclasts are Bone remodeling Deposition of Bone by the Osteoblasts. Bone is continually being deposited by osteoblasts, and it is continually being resorbed where osteoclasts are active. This mechanism is always is

More information

Hypothalamus & pituitary gland. Growth. Hormones Affecting Growth. Growth hormone (GH) GH actions. Suwattanee Kooptiwut, MD., MSc., Ph.D.

Hypothalamus & pituitary gland. Growth. Hormones Affecting Growth. Growth hormone (GH) GH actions. Suwattanee Kooptiwut, MD., MSc., Ph.D. Hypothalamus & pituitary gland Suwattanee Kooptiwut, MD., MSc., Ph.D. 1 2 Growth Hormones Affecting Growth Orderly sequences of maturation changes with increased weight and height Factors Genetic Nutrition

More information

Chapter 6. Osseous Tissue and Bone Structure. Lecture Presentation by Lee Ann Frederick University of Texas at Arlington Pearson Education, Inc.

Chapter 6. Osseous Tissue and Bone Structure. Lecture Presentation by Lee Ann Frederick University of Texas at Arlington Pearson Education, Inc. Chapter 6 Osseous Tissue and Bone Structure Lecture Presentation by Lee Ann Frederick University of Texas at Arlington An Introduction to the Skeletal System The Skeletal System Includes: Bones of the

More information

Skeletal Tissues. Dr. Ali Ebneshahidi

Skeletal Tissues. Dr. Ali Ebneshahidi Skeletal Tissues Dr. Ali Ebneshahidi Functions of Bones 1. Support and protection : Bones give shape to body structure. Bones provide support to body weight. Certain bones protect vital internal organs

More information

Trebeculae. Step 4. compact bone. Diploë Pearson Education, Inc.

Trebeculae. Step 4. compact bone. Diploë Pearson Education, Inc. Trebeculae compact bone Step 4 Diploë Abnormalities in bone growth Fibrodysplasia ossificans progressiva (FOP) autosomal dominant, Codon 206: Arg à Hist 1 : 2, 000, 000 endothelial cells à mesenchymal

More information

Due in Lab. Due next week in lab - Scientific America Article Select one article to read and complete article summary

Due in Lab. Due next week in lab - Scientific America Article Select one article to read and complete article summary Due in Lab 1. Skeletal System 33-34 2. Skeletal System 26 3. PreLab 6 Due next week in lab - Scientific America Article Select one article to read and complete article summary Cell Defenses and the Sunshine

More information

Chapter 07 Lecture Outline

Chapter 07 Lecture Outline Chapter 07 Lecture Outline See separate PowerPoint slides for all figures and tables preinserted into PowerPoint without notes. Copyright McGraw-Hill Education. Permission required for reproduction or

More information

The Skeletal System. The Axial Skeleton. The Appendicular Skeleton 2/6/ vertebral column. 1 hyoid (horseshoe shaped bone at base of chin)

The Skeletal System. The Axial Skeleton. The Appendicular Skeleton 2/6/ vertebral column. 1 hyoid (horseshoe shaped bone at base of chin) The Skeletal System PSK 4U Mr. S. Kelly North Grenville DHS The Axial Skeleton 26 vertebral column 1 hyoid (horseshoe shaped bone at base of chin) 22 skull 25 ribs and sternum = 74 bones The Appendicular

More information

Chapter 4. Cartilage and Bone. Li Shu-Lei instructor. Dept. Histology and Embryology, School of Basic Medical Sciences, Jilin University

Chapter 4. Cartilage and Bone. Li Shu-Lei instructor. Dept. Histology and Embryology, School of Basic Medical Sciences, Jilin University Chapter 4 Cartilage and Bone Li Shu-Lei instructor Dept. Histology and Embryology, School of Basic Medical Sciences, Jilin University I Cartilage a specialized connective tissue Characterizers: Cartilage

More information

The Skeletal Response to Aging: There s No Bones About It!

The Skeletal Response to Aging: There s No Bones About It! The Skeletal Response to Aging: There s No Bones About It! April 7, 2001 Joseph E. Zerwekh, Ph.D. Interrelationship of Intestinal, Skeletal, and Renal Systems to the Overall Maintenance of Normal Calcium

More information

Copyright 2004 Lippincott Williams & Wilkins. 2. Bone Structure. Copyright 2004 Lippincott Williams & Wilkins

Copyright 2004 Lippincott Williams & Wilkins. 2. Bone Structure. Copyright 2004 Lippincott Williams & Wilkins Chapter 7 The Skeleton: Bones and Joints The Skeleton Skeletal system is made up of bones and joints and supporting connective tissue. 1. Bone Functions 1. To store calcium salts 2. To protect delicate

More information

Skeletal System. Skeletal System 12/15/15. Bone Classification

Skeletal System. Skeletal System 12/15/15. Bone Classification Skeletal System Composed of the body s bones and associated ligaments, tendons, and cartilages. Functions: 1. Support The bones of the legs, pelvic girdle, and vertebral column support the weight of the

More information

Chapter 5. The Skeletal System. Osseous Tissue and Skeletal Structure. Lecture Presentation by Steven Bassett Southeast Community College

Chapter 5. The Skeletal System. Osseous Tissue and Skeletal Structure. Lecture Presentation by Steven Bassett Southeast Community College Chapter 5 The Skeletal System Osseous Tissue and Skeletal Structure Lecture Presentation by Steven Bassett Southeast Community College Introduction The skeletal system is made of: Skeletal bones Cartilage

More information

Practice TEST 3 Anatomy & Physiology

Practice TEST 3 Anatomy & Physiology Practice TEST 3 Anatomy & Physiology Tyler Junior College Tyler Campus FALL 2015 Chapters 7, 9, and 10 INSTRUCTIONS : Choose the BEST correct answer for each question. Chapter 7 1. Which of the following

More information

Bones and Bone Structure

Bones and Bone Structure 6 Bones and Bone Structure Lecture Presentation by Lori Garrett Section 1: Introduction to the Structure and Growth of Bones Learning Outcomes 6.1 Describe the two main divisions of the skeleton, and list

More information

SKELETAL SYSTEM. Bone Shapes Long longer than they are wide; have a shaft plus two ends Ex. bones of limbs except wrist and ankle

SKELETAL SYSTEM. Bone Shapes Long longer than they are wide; have a shaft plus two ends Ex. bones of limbs except wrist and ankle SKELETAL SYSTEM FUNCTIONS 1. Support Bones form the internal framework that supports and anchors all soft organs. 2. Protection Bones protect soft body organs. 3. Movement Skeletal muscles, which attach

More information

The bones of the legs, pelvic girdle, and vertebral column support the weight of the erect body. The mandible (jawbone) supports the teeth.

The bones of the legs, pelvic girdle, and vertebral column support the weight of the erect body. The mandible (jawbone) supports the teeth. Skeletal System Composed of the body s bones and associated ligaments, tendons, and cartilages. Functions: 1. Support EXAMPLES: The bones of the legs, pelvic girdle, and vertebral column support the weight

More information

The Skeletal System. PSK 4U Mr. S. Kelly North Grenville DHS

The Skeletal System. PSK 4U Mr. S. Kelly North Grenville DHS The Skeletal System PSK 4U Mr. S. Kelly North Grenville DHS The Axial Skeleton 26 vertebral column 1 hyoid (horseshoe shaped bone at base of chin) 22 skull 25 ribs and sternum = 74 bones The Appendicular

More information

Chapter 6. Bone Tissue

Chapter 6. Bone Tissue Chapter 6 Bone Tissue Functions of the Skeleton support hold the body up, supports muscles, mandible and maxilla support teeth protection brain, spinal cord, heart, lungs movement limb movements, breathing,

More information

Derived copy of Bone *

Derived copy of Bone * OpenStax-CNX module: m57739 1 Derived copy of Bone * Shannon McDermott Based on Bone by OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 By

More information

Unit 5 Skeletal System

Unit 5 Skeletal System Unit 5 Skeletal System Nov 21 10:24 PM I. Functions A. Support: > internal framework, structure, anchors & supports soft tissue organs B. Protection: > protects vital organs C. Movement: > provides attach

More information

Skeletal System Functions

Skeletal System Functions Chapter 6 Skeletal System: Bones and Bone Tissue 6-1 Skeletal System Functions Support. Bone is hard and rigid; cartilage is flexible yet strong. Cartilage in nose, external ear, thoracic cage and trachea.

More information