Sodium and chlorine transport

Size: px
Start display at page:

Download "Sodium and chlorine transport"

Transcription

1 Kidney physiology 2

2 Sodium and chlorine transport The kidneys help to maintain the body's extracellular fluid (ECF) volume by regulating the amount of Na+ in the urine. Sodium salts (predominantly NaCl) are the most important contributor to the osmolality of the ECF; hence, where Na+ goes, water follows. Na+ and Cl reabsorption decreases from proximal tubules to Henle's loops to classic distal tubules to collecting tubules and ducts

3 The proximal tubule reabsorbs the largest fraction of filtered Na+ (~67%). Because [Na+] in tubule fluid (or TFNa) remains almost the same as that in plasma (i.e., TF Na /P Na = 1.0) throughout the length of the proximal tubule, it follows that the [Na + ] in the reabsorbate is virtually the same as that in plasma. Because Na + salts are the dominant osmotically active solutes in the filtrate, reabsorption must be a nearly isosmotic process.

4 The tubule can reabsorb Na+ and Cl via both transcellular and paracellular pathways. In the transcellular pathway, Na+ and Cl sequentially traverse the apical and basolateral membranes before entering the blood. In the paracellular pathway, these ions move entirely by an extracellular route, through the tight junctions between cells. In the transcellular pathway, transport rates depend on the electrochemical gradients, ion channels, and transporters at the apical and basolateral membranes. However, in the paracellular pathway, transepithelial electrochemical driving forces and permeability properties of the tight junctions govern ion movements.

5 Transcellular and paracellular mechanisms of Na+ and Cl reabsorption. The example in B illustrates the electrochemical driving forces for Na+ in the early proximal tubule. The equivalent circuit demonstrates that the flow of positive charge across the apical membrane slightly depolarizes the apical membrane ( 67 mv) relative to the basolateral membrane ( 70 mv).

6 Transcellular Na+ Reabsorption The basic mechanism of transcellular Na+ reabsorption is similar in all nephron segments and is a variation on the classic two-membrane model of epithelial transport. The first step is the passive entry of Na+ into the cell across the apical membrane. -Because the intracellular Na+ concentration ([Na+]i) is low and the cell voltage is negative with respect to the lumen, the electrochemical gradient is favorable for passive Na+ entry across the apical membrane. -However, different tubule segments use different mechanisms of passive Na+ entry across the apical membrane. The proximal tubule, the TAL, and the DCT all use a combination of Na+coupled cotransporters and exchangers to move Na+ across the apical membrane; however, in the cortical and medullary collecting ducts, Na+ enters the cell through epithelial Na+ channels (ENaCs). The second step of transcellular Na+ reabsorption is the active extrusion of Na+ out of the cell across the basolateral membrane. -This Na+ extrusion is mediated by the Na-K pump, which keeps [Na+]i low (~15 mm) and [K+]i high (~120 mm). Because the basolateral membrane is primarily permeable to K+, it develops a voltage of ~70 mv, with the cell interior negative with respect to the interstitial space. Across the apical membrane, the cell is negative with respect to the lumen. The magnitude of the apical membrane voltage may be either lower or higher than that of the basolateral membrane, depending on the nephron segment and its transport activity.

7 Paracellular Na+ Reabsorption The basic mechanism of paracellular Na+ transport is similar among nephron segments: the transepithelial electrochemical gradient for Na+ drives transport. However, both the transepithelial voltage (Vte) and luminal [Na+] vary along the nephron.as a result, the net driving force for Na+ is positive favoring passive Na+ reabsorption only in the S2 and S3 segments of the proximal tubule and in the TAL. In the other segments, the net driving force is negative favoring passive Na+ diffusion from blood to lumen ( backleak ). In addition to undergoing purely passive, paracellular reabsorption in the S2 and S3 segments and TAL, Na+ can move uphill from lumen to blood via solvent drag across the tight junctions. In this case, the movement of H2O from the lumen to the lateral intercellular space energized by the active transport of Na+ into the lateral intercellular space also sweeps Na+ and Cl in the same direction. Nephron segments also vary in their leakiness to Na+ ions. This leakiness is largely a function of the varying ionic conductance of the paracellular pathway between cells across the tight junction, due to the expression of different claudins. In general, the leakiness of the paracellular pathway decreases along the nephron from the proximal tubule (the most leaky) to the papillary collecting ducts.

8 An important consequence of a highly leaky paracellular pathway is that it provides a mechanism by which the basolateral membrane voltage can generate a current that flows through the tight junctions and charges up the apical membrane, and vice versa. For example, hyperpolarization of the basolateral membrane leads to a hyperpolarization of the apical membrane. A consequence of this paracellular electrical coupling is that the apical membrane of a leaky epithelium, such as the proximal tubule, has a membrane voltage that is negative ( 67 mv) and close to that of the basolateral membrane ( 70 mv), whereas one would expect that, based on the complement of channels and ion gradients at the apical membrane, the apical membrane would have a far less negative voltage. A practical benefit of this crosstalk is that it helps couple the activity of the basolateral electrogenic Na-K pump to the passive entry of Na+ across the apical membrane. If the Na-K pump rate increases, not only does [Na+]i decrease, enhancing the chemical Na+ gradient across the apical membrane, but also the basolateral membrane hyperpolarizes (i.e., the cell becomes more negative with respect to the blood). Electrical coupling translates this basolateral hyperpolarization to a concomitant apical hyperpolarization, thus also enhancing the electrical gradient favoring apical Na+ entry.

9 Na+ and Cl, and Water Transport at the Cellular and Molecular Level

10 Na+ and Cl, and Water Transport at the Cellular and Molecular Level Proximal Tubule Along the first half of the tubule, a variety of cotransporters in the apical membrane couples the downhill uptake of Na+ to the uphill uptake of solutes such as glucose, amino acids, phosphate, sulfate, lactate, and citrate. Both cotransporters and exchangers exploit the downhill Na+ gradient across the apical cell membrane that is established by the Na-K pump in the basolateral membrane. The Na-K pump and, to a lesser extent, the electrogenic Na/HCO3 cotransporter 1 (NBCe1) are also responsible for the second step in Na+ reabsorption, moving Na+ from cell to blood. The presence of K+ channels in the basolateral membrane is important for two reasons. 1- these channels establish the negative voltage across the basolateral membrane and establish a similar negative voltage across the apical membrane via paracellular electrical coupling. 2- these channels permit the recycling of K+ that had been transported into the cell by the Na-K pump. Because of a lumen-negative Vte in the early proximal tubule, as well as a paracellular pathway that is permeable to Na+, approximately one third of the Na+ that is transported from lumen to blood by the transcellular pathway diffuses back to the lumen by the paracellular pathway ( backleak ).

11 Thin Limbs of Henle's Loop Na+ transport by the thin descending and thin ascending limbs of Henle's loop is almost entirely passive and paracellular. Thick Ascending Limb Two major pathways contribute to Na+ reabsorption in the TAL: transcellular and paracellular. The transcellular pathway includes two major mechanisms for taking up Na+ across the apical membrane: -Na/K/Cl cotransporter 2 (NKCC2) couples the inward movement of 1 Na+, 1 K+, and 2 Cl ions in an electroneutral process driven by the downhill concentration gradients of Na+ and Cl. -The second entry pathway for Na+ is an NHE3. As in the proximal tubule, the basolateral Na-K pump keeps [Na+]i low and moves Na+ to the blood.

12 Distal Convoluted Tubule Na+ reabsorption in the DCT occurs almost exclusively by the transcellular route. The apical step of Na+ uptake is mediated by an electroneutral Na/Cl cotransporter that belongs to the same family as NKCC2 in the TAL. Initial and Cortical Collecting Tubules Na+ reabsorption in the connecting tubule, initial collecting tubule (ICT), and CCT is transcellular and mediated by the majority cell type, the principal cell. The neighbouring β-intercalated cells are important for reabsorbing Cl, as discussed below. Na+ crosses the apical membrane of the principal cell via the epithelial Na+ channel (ENaC), which is distinct from the voltage-gated Na+ channels expressed by excitable tissues. Medullary Collecting Duct The inner and outer medullary collecting ducts reabsorb only a minute amount of Na+, ~3% of the filtered load. It is likely that ENaC mediates the apical entry of Na+ in these segments and that the Na-K pump extrudes Na+ from the cell across the basolateral membrane

13

14 Proximal Tubule The proximal tubule reabsorbs Cl by both the transcellular and the paracellular routes, with the paracellular believed to be the dominant one in the early proximal tubule Thick Ascending Limb Cl reabsorption in the TAL takes place largely by Na/K/Cl cotransport across the apical membrane Distal Convoluted Tubule Cl reabsorption by the DCT occurs by a mechanism that is somewhat similar to that in the TAL. Collecting Ducts The ICT and the CCT reabsorb Cl by two mechanisms. First, the principal cell generates a Vte (~40 mv, lumen negative) that is favorable for paracellular diffusion of Cl. Second, the β-type intercalated cells reabsorb Cl via a transcellular process in which pendrin (SLC26A4) mediates Cl uptake across the apical membrane in exchange for HCO3-, and Cl exits via channels in the basolateral membrane Water reabsorption is passive and secondary to solute transport

15 The body regulates Na+ excretion by three major mechanisms: 1. Changes in renal hemodynamics alter the Na+ load presented to the kidney and regulate Na+ reabsorption in the proximal tubule and distal nephron. 2. Three factors that respond to decreases in effective circulating volume the renin-angiotensin-aldosterone axis, renal sympathetic nerve activity, and AVP - do so in part by increasing Na+ reabsorption in various nephron segments. 3. Several factors that respond to increases in effective circulating volume including atrial natriuretic peptide and dopamine do so in part by reducing Na+ reabsorption in various segments of the nephron. That is, they produce a natriuresis.

16 Transport of Urea, Glucose, Phosphate, Calcium, Magnesium, and Organic Solutes The kidney plays a central role in controlling the plasma levels of a wide range of solutes that are present at low concentrations in the body. The renal excretion of a solute depends on three processes: -filtration -reabsorption -secretion

17 Urea The kidney filters, reabsorbs, and secretes urea The liver generates urea from, the primary nitrogenous end product of amino-acid catabolism. The primary route for urea excretion is the urine, although some urea exits the body through the stool and sweat. The normal plasma concentration of urea is 2.5 to 6 mm. Clinical laboratories report plasma urea levels as blood urea nitrogen (BUN) in the units (mg of elemental nitrogen)/(dl plasma); normal values are 7 to 18 mg/dl. For a 70-kg human ingesting a typical Western diet and producing 1.5 to 2 L/day of urine, the urinary excretion of urea is ~450 mmol/day. The kidney freely filters urea at the glomerulus, and then it both reabsorbs and secretes it. Because the tubules reabsorb more urea than they secrete, the amount of urea excreted in the urine is less than the quantity filtered. In the example shown in Figure 36-1A (i.e., average urine flow), the kidneys excrete ~40% of the filtered urea. The primary sites for urea reabsorption are the proximal tubule and the medullary collecting duct, whereas the primary sites for secretion are the thin limbs of the loop of Henle.

18 Urea handling by the kidney: In A, we assume a normal urine flow and thus a urea excretion of 40% of the filtered load. The numbered yellow boxes indicate the fraction of the filtered load that various nephron segments reabsorb. The talh and the tip of the tdlh in juxtamedullary nephrons secrete urea. In superficial nephrons, the entire tdlh may secrete urea. The red box indicates the fraction of the filtered load jointly secreted by both nephron types. The green boxes indicate the fraction of the filtered load that remains in the lumen at various sites. The values in the boxes are approximations. PCT, proximal convoluted tubule; PST, proximal straight tubule.

19 Glucose The proximal tubule reabsorbs glucose via apical, electrogenic Na/glucose cotransport and basolateral facilitated diffusion The fasting plasma glucose concentration is normally 4 to 5 mm (70 to 100 mg/dl) and is regulated by insulin and other hormones. The kidneys freely filter glucose at the glomerulus and then reabsorb it, so that only trace amounts normally appear in the urine. The proximal tubule reabsorbs nearly all the filtered load of glucose, mostly along the first third of this segment. More distal segments reabsorb almost all of the remainder. In the proximal tubule, luminal [glucose] is initially equal to plasma [glucose]. As the early proximal tubule reabsorbs glucose, luminal [glucose] drops sharply, falling to levels far lower than those in the interstitium. Accordingly, glucose reabsorption occurs against a concentration gradient and must, therefore, be active. Glucose reabsorption is transcellular; glucose moves from the lumen to the proximal tubule cell via Na/glucose cotransport, and from cytoplasm to blood via facilitated diffusion Glucose excretion in the urine occurs only when the plasma concentration exceeds a threshold

20 Glucose handling by the kidney. The yellow box indicates the fraction of the filtered load that the proximal tubule reabsorbs. The green boxes indicate the fraction of the filtered load that remains in the lumen at various sites. The values in the boxes are approximations. PCT, proximal convoluted tubule; PST, proximal straight tubule.

21 Other organic solutes The proximal tubule reabsorbs amino acids using a wide variety of apical and basolateral transporters. The total concentration of amino acids in the blood is ~2.4 mm. These L-amino acids are largely those absorbed by the gastrointestinal tract, although they also may be the products of protein catabolism or of the de novo synthesis of nonessential amino acids. The glomeruli freely filter amino acids. Because amino acids are important nutrients, it is advantageous to retrieve them from the filtrate. The proximal tubule reabsorbs >98% of these amino acids via a transcellular route, using a wide variety of amino-acid transporters, some of which have overlapping substrate specificity. At the apical membrane, amino acids enter the cell via Na+-driven or H+-driven transporters as well as amino-acid exchangers. At the basolateral membrane, amino acids exit the cell via amino-acid exchangers some of which are Na+ dependent and also by facilitated diffusion. Particularly in the late proximal tubule and postproximal nephron segments, where the availability of luminal amino acids is low, SLC38A3 mediates the Na+-dependent uptake of amino acids across the basolateral membrane. This process is important for cellular nutrition or for metabolism.

22 Phosphate The metabolism of inorganic phosphate (Pi) depends on bone, the gastrointestinal tract, and the kidneys. About half of total plasma phosphate is in an ionized form, and the rest is either complexed to small solutes (~40%) or bound to protein (10% to 15%). The plasma concentration of total Pi varies rather widely, between 0.8 and 1.5 mm (2.5 to 4.5 mg/dl of elemental phosphorus). Thus, the filterable phosphate (i.e., both the ionized and complexed) varies between ~0.7 and 1.3 mm. At a normal blood ph of 7.4, 80% of the ionized plasma phosphate is HPO4 2- and the rest is HPO4-. Assuming that the total plasma phosphate concentration is 4.2 mg/dl, that only the free and complexed phosphate is filterable, and that the GFR is 180 L/day, each day the kidneys filter ~7000 mg of phosphate. Because this amount is more than an order of magnitude greater than the total extracellular pool of phosphate, it is clear that the kidney must reabsorb most of the phosphate filtered in the glomerulus.

23 Calcium Binding to plasma proteins and formation of Ca2+-anion complexes influence the filtration and reabsorption of Ca2+ The filterable portion, ~60% of total plasma calcium, consists of two moieties. The first, ~15% of the total, complexes with small anions such as carbonate, citrate, phosphate, and sulphate. The second, ~45% of total calcium, is the ionized calcium (Ca2+) that one may measure with Ca2+sensitive electrodes or dyes. It is the concentration of this free, ionized calcium that the body tightly regulates; plasma [Ca2+] normally is 1.0 to 1.3 mm (4.0 to 5.2 mg/dl). The most important regulator of renal Ca2+ reabsorption is PTH, which stimulates Ca2+ reabsorption in the DCT and the connecting tubule. Regarding TRPV5, PTH increases transcription and open probability, and inhibits endocytosis, thereby stimulating Ca2+ reabsorption. In addition to its effects to stimulate apical Ca2+ entry, PTH also upregulates expression of calbindin and NCX1. Acting on gene transcription, vitamin D increases Ca2+ reabsorption in the distal nephron; this renal reabsorption complements the major Ca2+-retaining action of vitamin D, Ca2+ absorption in the gastrointestinal tract In renal tubule cells, vitamin D upregulates TRPV5 Ca2+-binding proteins, which contribute to enhanced Ca2+ reabsorption by keeping [Ca2+]i low during increased Ca2+ traffic through the cell.

24

25 Magnesium Most of magnesium reabsorbtion takes place along the TAL Approximately 99% of the total body stores of magnesium reside either within bone (~54%) or within the intracellular compartment (~45%), mostly muscle. Renal magnesium excretion plays an important role in maintaining physiological plasma magnesium levels. The body maintains the total magnesium concentration in blood plasma within narrow limits, 0.8 to 1.0 mm (1.8 to 2.2 mg/dl).

26 Transport of potassium 98% of the total-body K+ content (~50 mmol/kg body weight) is inside cells; only 2% is in the extracellular fluid (ECF). The body tightly maintains the plasma [K+] at 3.5 to 5.0 mm.

27 Distribution and balance of K+ throughout the body. Intracellular K+ concentrations are similar in all tissues in the four purple boxes. The values in the boxes are approximations. RBC, red blood cell.

28 The proximal tubule reabsorbs most of the filtered K+, whereas the distal nephron reabsorbs or secretes K+, depending on K+ intake

29 Passive K+ reabsorption along the proximal tubule follows Na+ and fluid movements K+ reabsorption along the TAL occurs predominantly via a transcellular route that exploits secondary active Na/K/Cl cotransport K+ secretion by principal and intercalated cells of the ICT and CCT involves active K+ uptake across the basolateral membrane K+ reabsorption by intercalated cells involves apical uptake via an H-K pump K+ reabsorption along the MCD is both passive and active

30

31 References for kidney physiology lectures, from Boron 3 rd Edition Lecture 1 Chapter 33: p Chapter 34: p Lecture 2 Chapter 35: p Chapter 36: p , e1 Chapter 37: p

11/05/1431. Urine Formation by the Kidneys Tubular Processing of the Glomerular Filtrate

11/05/1431. Urine Formation by the Kidneys Tubular Processing of the Glomerular Filtrate Urine Formation by the Kidneys Tubular Processing of the Glomerular Filtrate Chapter 27 pages 327 347 1 OBJECTIVES At the end of this lecture you should be able to describe: Absorptive Characteristics

More information

RENAL SYSTEM 2 TRANSPORT PROPERTIES OF NEPHRON SEGMENTS Emma Jakoi, Ph.D.

RENAL SYSTEM 2 TRANSPORT PROPERTIES OF NEPHRON SEGMENTS Emma Jakoi, Ph.D. RENAL SYSTEM 2 TRANSPORT PROPERTIES OF NEPHRON SEGMENTS Emma Jakoi, Ph.D. Learning Objectives 1. Identify the region of the renal tubule in which reabsorption and secretion occur. 2. Describe the cellular

More information

Renal Physiology - Lectures

Renal Physiology - Lectures Renal Physiology - Lectures Physiology of Body Fluids PROBLEM SET, RESEARCH ARTICLE Structure & Function of the Kidneys Renal Clearance & Glomerular Filtration PROBLEM SET Regulation of Renal Blood Flow

More information

RENAL PHYSIOLOGY, HOMEOSTASIS OF FLUID COMPARTMENTS

RENAL PHYSIOLOGY, HOMEOSTASIS OF FLUID COMPARTMENTS RENAL PHYSIOLOGY, HOMEOSTASIS OF FLUID COMPARTMENTS (2) Dr. Attila Nagy 2017 TUBULAR FUNCTIONS (Learning objectives 54-57) 1 Tubular Transport About 99% of filtrated water and more than 90% of the filtrated

More information

Functions of Proximal Convoluted Tubules

Functions of Proximal Convoluted Tubules 1. Proximal tubule Solute reabsorption in the proximal tubule is isosmotic (water follows solute osmotically and tubular fluid osmolality remains similar to that of plasma) 60-70% of water and solute reabsorption

More information

Chapter 19 The Urinary System Fluid and Electrolyte Balance

Chapter 19 The Urinary System Fluid and Electrolyte Balance Chapter 19 The Urinary System Fluid and Electrolyte Balance Chapter Outline The Concept of Balance Water Balance Sodium Balance Potassium Balance Calcium Balance Interactions between Fluid and Electrolyte

More information

Na + Transport 1 and 2 Linda Costanzo, Ph.D.

Na + Transport 1 and 2 Linda Costanzo, Ph.D. Na + Transport 1 and 2 Linda Costanzo, Ph.D. OBJECTIVES: After studying this lecture, the student should understand: 1. The terminology applied to single nephron function, including the meaning of TF/P

More information

014 Chapter 14 Created: 9:25:14 PM CST

014 Chapter 14 Created: 9:25:14 PM CST 014 Chapter 14 Created: 9:25:14 PM CST Student: 1. Functions of the kidneys include A. the regulation of body salt and water balance. B. hydrogen ion homeostasis. C. the regulation of blood glucose concentration.

More information

BLOCK REVIEW Renal Physiology. May 9, 2011 Koeppen & Stanton. EXAM May 12, Tubular Epithelium

BLOCK REVIEW Renal Physiology. May 9, 2011 Koeppen & Stanton. EXAM May 12, Tubular Epithelium BLOCK REVIEW Renal Physiology Lisa M. HarrisonBernard, Ph.D. May 9, 2011 Koeppen & Stanton EXAM May 12, 2011 Tubular Epithelium Reabsorption Secretion 1 1. 20, 40, 60 rule for body fluid volumes 2. ECF

More information

NORMAL POTASSIUM DISTRIBUTION AND BALANCE

NORMAL POTASSIUM DISTRIBUTION AND BALANCE NORMAL POTASSIUM DISTRIBUTION AND BALANCE 98% of body potassium is contained within cells, principally muscle cells, and is readily exchangeable. Only 2% is in ECF. Daily intake exceeds the amount in ECF.

More information

Renal System Dr. Naim Kittana Department of Biomedical Sciences Faculty of Medicine & Health Sciences An-Najah National University

Renal System Dr. Naim Kittana Department of Biomedical Sciences Faculty of Medicine & Health Sciences An-Najah National University Renal System Dr. Naim Kittana Department of Biomedical Sciences Faculty of Medicine & Health Sciences An-Najah National University Declaration The content and the figures of this seminar were directly

More information

MS1 Physiology Review of Na+, K+, H + /HCO 3. /Acid-base, Ca+² and PO 4 physiology

MS1 Physiology Review of Na+, K+, H + /HCO 3. /Acid-base, Ca+² and PO 4 physiology MS1 Physiology Review of,, / /Acidbase, Ca+² and PO 4 physiology I. David Weiner, M.D. Professor of Medicine and Physiology University of Florida College of Medicine Basic principles Proximal tubule Majority

More information

BIOLOGY - CLUTCH CH.44 - OSMOREGULATION AND EXCRETION.

BIOLOGY - CLUTCH CH.44 - OSMOREGULATION AND EXCRETION. !! www.clutchprep.com Osmoregulation regulation of solute balance and water loss to maintain homeostasis of water content Excretion process of eliminating waste from the body, like nitrogenous waste Kidney

More information

BCH 450 Biochemistry of Specialized Tissues

BCH 450 Biochemistry of Specialized Tissues BCH 450 Biochemistry of Specialized Tissues VII. Renal Structure, Function & Regulation Kidney Function 1. Regulate Extracellular fluid (ECF) (plasma and interstitial fluid) through formation of urine.

More information

The principal functions of the kidneys

The principal functions of the kidneys Renal physiology The principal functions of the kidneys Formation and excretion of urine Excretion of waste products, drugs, and toxins Regulation of body water and mineral content of the body Maintenance

More information

Collin College. BIOL Anatomy & Physiology. Urinary System. Summary of Glomerular Filtrate

Collin College. BIOL Anatomy & Physiology. Urinary System. Summary of Glomerular Filtrate Collin College BIOL. 2402 Anatomy & Physiology Urinary System 1 Summary of Glomerular Filtrate Glomerular filtration produces fluid similar to plasma without proteins GFR ~ 125 ml per min If nothing else

More information

Physio 12 -Summer 02 - Renal Physiology - Page 1

Physio 12 -Summer 02 - Renal Physiology - Page 1 Physiology 12 Kidney and Fluid regulation Guyton Ch 20, 21,22,23 Roles of the Kidney Regulation of body fluid osmolarity and electrolytes Regulation of acid-base balance (ph) Excretion of natural wastes

More information

Renal Physiology II Tubular functions

Renal Physiology II Tubular functions Renal Physiology II Tubular functions LO. 42, 43 Dr. Kékesi Gabriella Basic points of renal physiology 1. Glomerular filtration (GF) a) Ultrafiltration 2. Tubular functions active and passive a) Reabsorption

More information

BIOL 2402 Fluid/Electrolyte Regulation

BIOL 2402 Fluid/Electrolyte Regulation Dr. Chris Doumen Collin County Community College BIOL 2402 Fluid/Electrolyte Regulation 1 Body Water Content On average, we are 50-60 % water For a 70 kg male = 40 liters water This water is divided into

More information

BIOH122 Human Biological Science 2

BIOH122 Human Biological Science 2 BIOH122 Human Biological Science 2 Session 18 Urinary System 3 Tubular Reabsorption and Secretion Bioscience Department Endeavour College of Natural Health endeavour.edu.au Session Plan o Principles of

More information

Other Factors Affecting GFR. Chapter 25. After Filtration. Reabsorption and Secretion. 5 Functions of the PCT

Other Factors Affecting GFR. Chapter 25. After Filtration. Reabsorption and Secretion. 5 Functions of the PCT Other Factors Affecting GFR Chapter 25 Part 2. Renal Physiology Nitric oxide vasodilator produced by the vascular endothelium Adenosine vasoconstrictor of renal vasculature Endothelin a powerful vasoconstrictor

More information

Potassium regulation. -Kidney is a major regulator for potassium Homeostasis.

Potassium regulation. -Kidney is a major regulator for potassium Homeostasis. Potassium regulation. -Kidney is a major regulator for potassium Homeostasis. Normal potassium intake, distribution, and output from the body. Effects of severe hyperkalemia Partial depolarization of cell

More information

Diuretics having the quality of exciting excessive excretion of urine. OED. Inhibitors of Sodium Reabsorption Saluretics not Aquaretics

Diuretics having the quality of exciting excessive excretion of urine. OED. Inhibitors of Sodium Reabsorption Saluretics not Aquaretics Diuretics having the quality of exciting excessive excretion of urine. OED Inhibitors of Sodium Reabsorption Saluretics not Aquaretics 1 Sodium Absorption Na Entry into the Cell down an electrochemical

More information

Identify and describe. mechanism involved in Glucose reabsorption

Identify and describe. mechanism involved in Glucose reabsorption Define tubular reabsorption, tubular secretion, transcellular and paracellular transport. Identify and describe mechanism involved in Glucose reabsorption Describe tubular secretion with PAH transport

More information

Body fluid volume is small (~5L (blood + serum)) Composition can change rapidly e.g. due to increase in metabolic rate

Body fluid volume is small (~5L (blood + serum)) Composition can change rapidly e.g. due to increase in metabolic rate Renal physiology The kidneys Allow us to live on dry land. Body fluid volume is small (~5L (blood + serum)) Composition can change rapidly e.g. due to increase in metabolic rate Kidneys maintain composition

More information

Nephron Structure inside Kidney:

Nephron Structure inside Kidney: In-Depth on Kidney Nephron Structure inside Kidney: - Each nephron has two capillary regions in close proximity to the nephron tubule, the first capillary bed for fluid exchange is called the glomerulus,

More information

Renal physiology D.HAMMOUDI.MD

Renal physiology D.HAMMOUDI.MD Renal physiology D.HAMMOUDI.MD Functions Regulating blood ionic composition Regulating blood ph Regulating blood volume Regulating blood pressure Produce calcitrol and erythropoietin Regulating blood glucose

More information

Fluid and electrolyte balance, imbalance

Fluid and electrolyte balance, imbalance Fluid and electrolyte balance, imbalance Body fluid The fluids are distributed throughout the body in various compartments. Body fluid is composed primarily of water Water is the solvent in which all solutes

More information

Urinary Physiology. Chapter 17 Outline. Kidney Function. Chapter 17

Urinary Physiology. Chapter 17 Outline. Kidney Function. Chapter 17 Urinary Physiology Chapter 17 Chapter 17 Outline Structure and Function of the Kidney Glomerular Filtration Reabsorption of Salt and Water Renal Plasma Clearance Renal Control of Electrolyte and Acid-Base

More information

Faculty version with model answers

Faculty version with model answers Faculty version with model answers Urinary Dilution & Concentration Bruce M. Koeppen, M.D., Ph.D. University of Connecticut Health Center 1. Increased urine output (polyuria) can result in a number of

More information

Urinary System Organization. Urinary System Organization. The Kidneys. The Components of the Urinary System

Urinary System Organization. Urinary System Organization. The Kidneys. The Components of the Urinary System Urinary System Organization The Golden Rule: The Job of The Urinary System is to Maintain the Composition and Volume of ECF remember this & all else will fall in place! Functions of the Urinary System

More information

Osmotic Regulation and the Urinary System. Chapter 50

Osmotic Regulation and the Urinary System. Chapter 50 Osmotic Regulation and the Urinary System Chapter 50 Challenge Questions Indicate the areas of the nephron that the following hormones target, and describe when and how the hormones elicit their actions.

More information

RENAL PHYSIOLOGY. Physiology Unit 4

RENAL PHYSIOLOGY. Physiology Unit 4 RENAL PHYSIOLOGY Physiology Unit 4 Renal Functions Primary Function is to regulate the chemistry of plasma through urine formation Additional Functions Regulate concentration of waste products Regulate

More information

Kidney and urine formation

Kidney and urine formation Kidney and urine formation Renal structure & function Urine formation Urinary y concentration and dilution Regulation of urine formation 1 Kidney and urine formation 1.Renal structure & function 1)General

More information

Early Filtrate Processing Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.

Early Filtrate Processing Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc. Early Filtrate Processing Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.com) Page 1. Introduction Once the filtrate is formed, the early

More information

Renal Quiz - June 22, 21001

Renal Quiz - June 22, 21001 Renal Quiz - June 22, 21001 1. The molecular weight of calcium is 40 and chloride is 36. How many milligrams of CaCl 2 is required to give 2 meq of calcium? a) 40 b) 72 c) 112 d) 224 2. The extracellular

More information

Potassium secretion. E k = -61 log ([k] inside / [k] outside).

Potassium secretion. E k = -61 log ([k] inside / [k] outside). 1 Potassium secretion In this sheet, we will continue talking about ultrafiltration in kidney but with different substance which is K+. Here are some informations that you should know about potassium;

More information

Vertebrates possess kidneys: internal organs which are vital to ion and water balance and excretion.

Vertebrates possess kidneys: internal organs which are vital to ion and water balance and excretion. The Kidney Vertebrates possess kidneys: internal organs which are vital to ion and water balance and excretion. The kidney has 6 roles in the maintenance of homeostasis. 6 Main Functions 1. Ion Balance

More information

BIPN100 F15 Human Physiology (Kristan) Problem Set #8 Solutions p. 1

BIPN100 F15 Human Physiology (Kristan) Problem Set #8 Solutions p. 1 BIPN100 F15 Human Physiology (Kristan) Problem Set #8 Solutions p. 1 1. a. Proximal tubule. b. Proximal tubule. c. Glomerular endothelial fenestrae, filtration slits between podocytes of Bowman's capsule.

More information

Urine Formation. Urinary Physiology Urinary Section pages Urine Formation. Glomerular Filtration 4/24/2016

Urine Formation. Urinary Physiology Urinary Section pages Urine Formation. Glomerular Filtration 4/24/2016 Urine Formation Urinary Physiology Urinary Section pages 9-17 Filtrate Blood plasma minus most proteins Urine

More information

RENAL PHYSIOLOGY WESTMEAD PRIMARY EXAM

RENAL PHYSIOLOGY WESTMEAD PRIMARY EXAM RENAL PHYSIOLOGY WESTMEAD PRIMARY EXAM RENAL PHYSIOLOGY - ANATOMY Glomerulus + renal tubule Each kidney has 1.3 million nephrons Cortical nephrons (85%) have shorter Loop of Henle than Juxtamedullary nephrons

More information

Normal Renal Function

Normal Renal Function Normal Renal Function Functions of the Kidney: balances solute and water transport excretes metabolic waste products conserves nutrient regulates acid-base balance secretes hormones that help regulate

More information

Collin County Community College RENAL PHYSIOLOGY

Collin County Community College RENAL PHYSIOLOGY Collin County Community College BIOL. 2402 Anatomy & Physiology WEEK 12 Urinary System 1 RENAL PHYSIOLOGY Glomerular Filtration Filtration process that occurs in Bowman s Capsule Blood is filtered and

More information

Urinary System. Dr. ZHANG Xiong. Dept. of Physiology. ZJU School of Medicine. QUESTION 6

Urinary System. Dr. ZHANG Xiong. Dept. of Physiology. ZJU School of Medicine.  QUESTION 6 Urinary System Dr. ZHANG Xiong Dept. of Physiology ZJU School of Medicine http://10.71.121.158 Copyright@ Xiong Zhang QUESTION 6 How is the filtrate reabsorbed in tubular system? Copyright@ Xiong Zhang

More information

Water, Electrolytes, and Acid-Base Balance

Water, Electrolytes, and Acid-Base Balance Chapter 27 Water, Electrolytes, and Acid-Base Balance 1 Body Fluids Intracellular fluid compartment All fluids inside cells of body About 40% of total body weight Extracellular fluid compartment All fluids

More information

Human Urogenital System 26-1

Human Urogenital System 26-1 Human Urogenital System 26-1 Urogenital System Functions Filtering of blood, Removal of wastes and metabolites Regulation of blood volume and composition concentration of blood solutes ph of extracellular

More information

Renal Regulation of Sodium and Volume. Dr. Dave Johnson Associate Professor Dept. Physiology UNECOM

Renal Regulation of Sodium and Volume. Dr. Dave Johnson Associate Professor Dept. Physiology UNECOM Renal Regulation of Sodium and Volume Dr. Dave Johnson Associate Professor Dept. Physiology UNECOM Maintaining Volume Plasma water and sodium (Na + ) are regulated independently - you are already familiar

More information

Glomerular Capillary Blood Pressure

Glomerular Capillary Blood Pressure Glomerular Capillary Blood Pressure Fluid pressure exerted by blood within glomerular capillaries Depends on Contraction of the heart Resistance to blood flow offered by afferent and efferent arterioles

More information

Renal System and Excretion

Renal System and Excretion Renal System and Excretion Biology 105 Lecture 19 Chapter 16 Outline Renal System I. Functions II. Organs of the renal system III. Kidneys 1. Structure 2. Function IV. Nephron 1. Structure 2. Function

More information

After studying this lecture, you should be able to...

After studying this lecture, you should be able to... Reabsorption of Salt and Water After studying this lecture, you should be able to... 1. Define the obligatory water loss. 2. Describe the mechanism of Na ++ reabsorption in the distal tubule and explain

More information

Hill et al. 2004, Fig. 27.6

Hill et al. 2004, Fig. 27.6 Lecture 25, 15 November 2005 Osmoregulation (Chapters 25-28) Vertebrate Physiology ECOL 437 (aka MCB 437, VetSci 437) University of Arizona Fall 2005 1. Osmoregulation 2. Kidney Function Text: Chapters

More information

Outline Urinary System

Outline Urinary System Urinary System and Excretion Bio105 Lecture Packet 20 Chapter 16 Outline Urinary System I. Function II. Organs of the urinary system A. Kidneys 1. Function 2. Structure B. Urine formation 1. Hormonal regulation

More information

Nephron Anatomy Nephron Anatomy

Nephron Anatomy Nephron Anatomy Kidney Functions: (Eckert 14-17) Mammalian Kidney -Paired -1% body mass -20% blood flow (Eckert 14-17) -Osmoregulation -Blood volume regulation -Maintain proper ion concentrations -Dispose of metabolic

More information

Renal Physiology Part II. Bio 219 Napa Valley College Dr. Adam Ross

Renal Physiology Part II. Bio 219 Napa Valley College Dr. Adam Ross Renal Physiology Part II Bio 219 Napa Valley College Dr. Adam Ross Fluid and Electrolyte balance As we know from our previous studies: Water and ions need to be balanced in order to maintain proper homeostatic

More information

Chapter 26 Fluid, Electrolyte, and Acid- Base Balance

Chapter 26 Fluid, Electrolyte, and Acid- Base Balance Chapter 26 Fluid, Electrolyte, and Acid- Base Balance 1 Body Water Content Infants: 73% or more water (low body fat, low bone mass) Adult males: ~60% water Adult females: ~50% water (higher fat content,

More information

One Minute Movies: Molecular Action at the Nephron Joy Killough / Westwood High School / Austin,TX

One Minute Movies: Molecular Action at the Nephron Joy Killough / Westwood High School / Austin,TX One Minute Movies: Molecular Action at the Nephron Joy Killough / Westwood High School / Austin,TX To prepare your nephron model: ( A nephron is a tubule and the glomerulus. There are about a million of

More information

Na concentration in the extracellular compartment is 140

Na concentration in the extracellular compartment is 140 هللامسب Na regulation: Na concentration in the extracellular compartment is 140 meq\l. Na is important because: -It determines the volume of extracellular fluid : the more Na intake will expand extracellular

More information

Renal Physiology. April, J. Mohan, PhD. Lecturer, Physiology Unit, Faculty of Medical Sciences, U.W.I., St Augustine.

Renal Physiology. April, J. Mohan, PhD. Lecturer, Physiology Unit, Faculty of Medical Sciences, U.W.I., St Augustine. Renal Physiology April, 2011 J. Mohan, PhD. Lecturer, Physiology Unit, Faculty of Medical Sciences, U.W.I., St Augustine. Office : Room 105, Physiology Unit. References: Koeppen B.E. & Stanton B.A. (2010).

More information

osmoregulation mechanisms in gills, salt glands, and kidneys

osmoregulation mechanisms in gills, salt glands, and kidneys Ionic & Osmotic Homeostasis osmoregulation mechanisms in gills, salt glands, and kidneys extracellular intracellular 22 23 Salt Secretion: recycle Figure in Box 26.2 Hill et al. 2004 active Down electrochemical

More information

Physiology (6) 2/4/2018. Rahmeh Alsukkar

Physiology (6) 2/4/2018. Rahmeh Alsukkar Physiology (6) 2/4/2018 Rahmeh Alsukkar **unfortunately the sheet does not involve the slides. ** the doctor repeat a lot of things from the previous lecture so this sheet will begin from slide 139 to

More information

Urinary System and Excretion. Bio105 Lecture 20 Chapter 16

Urinary System and Excretion. Bio105 Lecture 20 Chapter 16 Urinary System and Excretion Bio105 Lecture 20 Chapter 16 1 Outline Urinary System I. Function II. Organs of the urinary system A. Kidneys 1. Function 2. Structure III. Disorders of the urinary system

More information

Salt and Water Balance and Nitrogen Excretion

Salt and Water Balance and Nitrogen Excretion Announcements Exam is in class on WEDNESDAY. Bring a #2 pencil and your UFID. You must come to your registered class section (except those with DRC accommodations). Office hours Mon 1-3 pm. Teaching evals:

More information

Outline Urinary System. Urinary System and Excretion. Urine. Urinary System. I. Function II. Organs of the urinary system

Outline Urinary System. Urinary System and Excretion. Urine. Urinary System. I. Function II. Organs of the urinary system Outline Urinary System Urinary System and Excretion Bio105 Chapter 16 Renal will be on the Final only. I. Function II. Organs of the urinary system A. Kidneys 1. Function 2. Structure III. Disorders of

More information

Excretion Chapter 29. The Mammalian Excretory System consists of. The Kidney. The Nephron: the basic unit of the kidney.

Excretion Chapter 29. The Mammalian Excretory System consists of. The Kidney. The Nephron: the basic unit of the kidney. Excretion Chapter 29 The Mammalian Excretory System consists of The Kidney 1. Vertebrate kidneys perform A. Ion balance B. Osmotic balance C. Blood pressure D. ph balance E. Excretion F. Hormone production

More information

DIURETICS-2. Dr. Shariq Syed. Shariq AIKC/TYB/2014

DIURETICS-2. Dr. Shariq Syed. Shariq AIKC/TYB/2014 DIURETICS-2 Dr. Syed Structure of Kidney Blood filtered by functional unit: Nephron Except for cells, proteins, other large molecules, rest gets filtered Structure of Kidney 3 major regions of nephron

More information

Principles of Anatomy and Physiology

Principles of Anatomy and Physiology Principles of Anatomy and Physiology 14 th Edition CHAPTER 27 Fluid, Electrolyte, and Acid Base Fluid Compartments and Fluid In adults, body fluids make up between 55% and 65% of total body mass. Body

More information

Diagram of the inner portions of the kidney

Diagram of the inner portions of the kidney Excretory and Endocrine functions of the kidney The kidneys are the main excretory organs which eliminate in the urine, most metabolites primarily those containing nitrogen such as ammonia, urea and creatinine.

More information

Dept. of Physiology. ZJU School of Medicine.

Dept. of Physiology. ZJU School of Medicine. Urinary System Dr. ZHANG Xiong Dept. of Physiology ZJU School of Medicine Http://10.10.10.151/Able.Acc2.Web/Template/View.aspx?action =view&coursetype=0&courseid=26519 QUESTION 6 How is the filtrate reabsorbed

More information

BIOL2030 Human A & P II -- Exam 6

BIOL2030 Human A & P II -- Exam 6 BIOL2030 Human A & P II -- Exam 6 Name: 1. The kidney functions in A. preventing blood loss. C. synthesis of vitamin E. E. making ADH. B. white blood cell production. D. excretion of metabolic wastes.

More information

PHGY210 Renal Physiology

PHGY210 Renal Physiology PHGY210 Renal Physiology Tomoko Takano, MD, PhD *Associate Professor of Medicine and Physiology McGill University *Nephrologist, McGill University Health Centre Lecture plan Lecture 1: Anatomy, basics

More information

Osmoregulation and the Excretory System

Osmoregulation and the Excretory System Honors Biology Study Guide Chapter 25.4 25.10 Name Osmoregulation and the Excretory System FUNCTIONS OF THE EXCRETORY SYSTEM OSMOREGULATION Freshwater: Marine: Land Animals: Sources of Nitrogenous Wastes?

More information

Chapter 25 The Urinary System

Chapter 25 The Urinary System Chapter 25 The Urinary System 10/30/2013 MDufilho 1 Kidney Functions Removal of toxins, metabolic wastes, and excess ions from the blood Regulation of blood volume, chemical composition, and ph Gluconeogenesis

More information

Copyright 2009 Pearson Education, Inc. Copyright 2009 Pearson Education, Inc. Figure 19-1c. Efferent arteriole. Juxtaglomerular apparatus

Copyright 2009 Pearson Education, Inc. Copyright 2009 Pearson Education, Inc. Figure 19-1c. Efferent arteriole. Juxtaglomerular apparatus /6/0 About this Chapter Functions of the Kidneys Anatomy of the urinary system Overview of kidney function Secretion Micturition Regulation of extracellular fluid volume and blood pressure Regulation of

More information

Renal physiology II. Basic renal processes. Dr Alida Koorts BMS

Renal physiology II. Basic renal processes. Dr Alida Koorts BMS Renal physiology II Basic renal processes Dr Alida Koorts BMS 7-12 012 319 2921 akoorts@medic.up.ac.za Basic renal processes 1. filtration 2. reabsorption 3. secretion Glomerular filtration The filtration

More information

Major intra and extracellular ions Lec: 1

Major intra and extracellular ions Lec: 1 Major intra and extracellular ions Lec: 1 The body fluids are solutions of inorganic and organic solutes. The concentration balance of the various components is maintained in order for the cell and tissue

More information

I. Metabolic Wastes Metabolic Waste:

I. Metabolic Wastes Metabolic Waste: I. Metabolic Wastes Metabolic Waste: a) Carbon Dioxide: by-product of cellular respiration. b) Water: by-product of cellular respiration & dehydration synthesis reactions. c) Inorganic Salts: by-product

More information

KD02 [Mar96] [Feb12] Which has the greatest renal clearance? A. PAH B. Glucose C. Urea D. Water E. Inulin

KD02 [Mar96] [Feb12] Which has the greatest renal clearance? A. PAH B. Glucose C. Urea D. Water E. Inulin Renal Physiology MCQ KD01 [Mar96] [Apr01] Renal blood flow is dependent on: A. Juxtaglomerular apparatus B. [Na+] at macula densa C. Afferent vasodilatation D. Arterial pressure (poorly worded/recalled

More information

Urinary bladder provides a temporary storage reservoir for urine

Urinary bladder provides a temporary storage reservoir for urine Urinary System Organs Kidney Filters blood, allowing toxins, metabolic wastes, and excess ions to leave the body in urine Urinary bladder provides a temporary storage reservoir for urine Paired ureters

More information

RENAL FUNCTION An Overview

RENAL FUNCTION An Overview RENAL FUNCTION An Overview UNIVERSITY OF PNG SCHOOL OF MEDICINE AND HEALTH SCIENCES DIVISION OF BASIC MEDICAL SCIENCES DISCIPLINE OF BIOCHEMISTRY & MOLECULAR BIOLOGY PBL MBBS II SEMINAR VJ. Temple 1 Kidneys

More information

BIPN100 F15 Human Physiology (Kristan) Lecture 18: Endocrine control of renal function. p. 1

BIPN100 F15 Human Physiology (Kristan) Lecture 18: Endocrine control of renal function. p. 1 BIPN100 F15 Human Physiology (Kristan) Lecture 18: Endocrine control of renal function. p. 1 Terms you should understand by the end of this section: diuresis, antidiuresis, osmoreceptors, atrial stretch

More information

QUIZ/TEST REVIEW NOTES SECTION 2 RENAL PHYSIOLOGY FILTRATION [THE KIDNEYS/URINARY SYSTEM] CHAPTER 19

QUIZ/TEST REVIEW NOTES SECTION 2 RENAL PHYSIOLOGY FILTRATION [THE KIDNEYS/URINARY SYSTEM] CHAPTER 19 1 QUIZ/TEST REVIEW NOTES SECTION 2 RENAL PHYSIOLOGY FILTRATION [THE KIDNEYS/URINARY SYSTEM] CHAPTER 19 Learning Objectives: Differentiate the following processes: filtration, reabsorption, secretion, excretion

More information

Nephron Function and Urine Formation. Ms. Kula December 1, 2014 Biology 30S

Nephron Function and Urine Formation. Ms. Kula December 1, 2014 Biology 30S Nephron Function and Urine Formation Ms. Kula December 1, 2014 Biology 30S The Role of the Nephron In order for the body to properly function and maintain homeostasis, the amount of dissolved substances

More information

URINE CONCENTRATION AND REGULATION OF ECF OSMOLARITY

URINE CONCENTRATION AND REGULATION OF ECF OSMOLARITY URINE CONCENTRATION AND REGULATION OF ECF OSMOLARITY Dilute and concentrated urine 1-Dilute urine : Nephron function continuous reabsorption. Solutes while failing to reabsorbe water in distal tubule and

More information

Tubular Reabsorption & Secretion Lecture 5, 6. Objectives: Editing file. by the end of this lecture you will be able to:

Tubular Reabsorption & Secretion Lecture 5, 6. Objectives: Editing file. by the end of this lecture you will be able to: Index: Important Extra information Doctor s notes Only in female slides Only in male slides Tubular Reabsorption & Secretion Lecture 5, 6 Editing file Objectives: by the end of this lecture you will be

More information

Moayyad Al-Shafei. - Saad Hayek. - Yanal Shafaqoj. 1 P a g e

Moayyad Al-Shafei. - Saad Hayek. - Yanal Shafaqoj. 1 P a g e - 5 - Moayyad Al-Shafei - Saad Hayek - Yanal Shafaqoj 1 P a g e In this lecture we are going to study the tubular reabsorption of Na+. We know that the body must maintain its homeostasis by keeping its

More information

RENAL PHYSIOLOGY, HOMEOSTASIS OF FLUID COMPARTMENTS (1)

RENAL PHYSIOLOGY, HOMEOSTASIS OF FLUID COMPARTMENTS (1) RENAL PHYSIOLOGY, HOMEOSTASIS OF FLUID COMPARTMENTS (1) Dr. Attila Nagy 2017 Functional roles of the kidney 1.Homeostasis of fluid compartments (isosmia, isovolemia, isoionia, isohydria,) 2. Elimination

More information

CHAPTER 27 LECTURE OUTLINE

CHAPTER 27 LECTURE OUTLINE CHAPTER 27 LECTURE OUTLINE I. INTRODUCTION A. Body fluid refers to body water and its dissolved substances. B. Regulatory mechanisms insure homeostasis of body fluids since their malfunction may seriously

More information

November 30, 2016 & URINE FORMATION

November 30, 2016 & URINE FORMATION & URINE FORMATION REVIEW! Urinary/Renal System 200 litres of blood are filtered daily by the kidneys Usable material: reabsorbed back into blood Waste: drained into the bladder away from the heart to the

More information

organs of the urinary system

organs of the urinary system organs of the urinary system Kidneys (2) bean-shaped, fist-sized organ where urine is formed. Lie on either sides of the vertebral column, in a depression beneath peritoneum and protected by lower ribs

More information

Human Physiology - Problem Drill 17: The Kidneys and Nephronal Physiology

Human Physiology - Problem Drill 17: The Kidneys and Nephronal Physiology Human Physiology - Problem Drill 17: The Kidneys and Nephronal Physiology Question No. 1 of 10 Instructions: (1) Read the problem statement and answer choices carefully, (2) Work the problems on paper

More information

Diuretic Agents Part-2. Assistant Prof. Dr. Najlaa Saadi PhD Pharmacology Faculty of Pharmacy University of Philadelphia

Diuretic Agents Part-2. Assistant Prof. Dr. Najlaa Saadi PhD Pharmacology Faculty of Pharmacy University of Philadelphia Diuretic Agents Part-2 Assistant Prof. Dr. Najlaa Saadi PhD Pharmacology Faculty of Pharmacy University of Philadelphia Potassium-sparing diuretics The Ion transport pathways across the luminal and basolateral

More information

The kidneys are excretory and regulatory organs. By

The kidneys are excretory and regulatory organs. By exercise 9 Renal System Physiology Objectives 1. To define nephron, renal corpuscle, renal tubule, afferent arteriole, glomerular filtration, efferent arteriole, aldosterone, ADH, and reabsorption 2. To

More information

RENAL PHYSIOLOGY, HOMEOSTASIS OF FLUID COMPARTMENTS (4) Dr. Attila Nagy 2018

RENAL PHYSIOLOGY, HOMEOSTASIS OF FLUID COMPARTMENTS (4) Dr. Attila Nagy 2018 RENAL PHYSIOLOGY, HOMEOSTASIS OF FLUID COMPARTMENTS (4) Dr. Attila Nagy 2018 Intercalated cells Intercalated cells secrete either H + (Typ A) or HCO 3- (Typ B). In intercalated cells Typ A can be observed

More information

2) This is a Point and Click question. You must click on the required structure.

2) This is a Point and Click question. You must click on the required structure. Class: A&P2-1 Description: Test: Excretory Test Points: 144 Test Number: 28379 Printed: 31-March-10 12:03 1) This is a Point and Click question. You must click on the required structure. Click on the Bowman's

More information

Introduction. Acids, Bases and ph; a review

Introduction. Acids, Bases and ph; a review 0 P a g e Introduction In this sheet, we discuss acidbase balance in our body and the role of kidneys in its establishment. Arrangement of topics is different from that of the lecture, to assure consistency

More information

1. a)label the parts indicated above and give one function for structures Y and Z

1. a)label the parts indicated above and give one function for structures Y and Z Excretory System 1 1. Excretory System a)label the parts indicated above and give one function for structures Y and Z W- renal cortex - X- renal medulla Y- renal pelvis collecting center of urine and then

More information

mid ihsan (Physiology ) GFR is increased when A -Renal blood flow is increased B -Sym. Ganglion activity is reduced C-A and B **

mid ihsan (Physiology ) GFR is increased when A -Renal blood flow is increased B -Sym. Ganglion activity is reduced C-A and B ** (Physiology ) mid ihsan GFR is increased when A -Renal blood flow is increased B -Sym. Ganglion activity is reduced C-A and B ** Colloid pressure in the efferent arteriole is: A- More than that leaving

More information

Acid-Base Balance 11/18/2011. Regulation of Potassium Balance. Regulation of Potassium Balance. Regulatory Site: Cortical Collecting Ducts.

Acid-Base Balance 11/18/2011. Regulation of Potassium Balance. Regulation of Potassium Balance. Regulatory Site: Cortical Collecting Ducts. Influence of Other Hormones on Sodium Balance Acid-Base Balance Estrogens: Enhance NaCl reabsorption by renal tubules May cause water retention during menstrual cycles Are responsible for edema during

More information

For more information about how to cite these materials visit

For more information about how to cite these materials visit Author(s): Michael Heung, M.D., 2009 License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution Noncommercial Share Alike 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

More information

Renal Reabsorption & Secretion

Renal Reabsorption & Secretion Renal Reabsorption & Secretion Topics for today: Nephron processing of filtrate Control of glomerular filtration Reabsorption and secretion Examples of solute clearance rates Hormones affecting kidney

More information