Models of visual neuron function. Quantitative Biology Course Lecture Dan Butts

Size: px
Start display at page:

Download "Models of visual neuron function. Quantitative Biology Course Lecture Dan Butts"

Transcription

1 Models of visual neuron function Quantitative Biology Course Lecture Dan Butts 1

2 What is the neural code"? neurons 1,000-10,000 inputs Electrical activity: nerve impulses 2

3 ? How does neural activity relate to brain function? Use visual system: Well characterized Intuitive function Lateral Geniculate Nucleus (LGN) Population input to the cortex 3

4 Starting point: recordings in the LGN Retina 1. Still relatively simple non-linear transforms on stimulus 2. Population input to the visual cortex The Visual Cortex Lateral Geniculate Nucleus (LGN) Extracellular recordings (Jose-Manuel Alonso Lab) 4

5 Visual stimulus Cat-cam movies from Peter Koenig s Lab (Kayser et al, 2004) 5

6 LGN neuron responses 500 ms 6

7 Understanding and Decoding Neural Signals 7

8 Outline 1. Introduction to receptive fields 2. Building a visual neuron model The LN (Linear-Non-linear) model 3. The problem of temporal precision and the need for new statistical methods Maximum-likelihood modeling 4. Research: Application of maximum-likelihood modeling to explain precise timing of neuronal responses 8

9 Coding like the muscle Little contraction Muscle picture with motoneuron Lots of contraction 9

10 The receptive field LGN + RF Stim Center Surr Retina Multiplication LGN responses related to how much the stimulus matches the receptive field Linear comparison: Spatial Spatial receptive stimulus field R = x K sp ( x) S( x) 10

11 The receptive field LGN + RF Stim Center Surr Retina Multiplication LGN responses related to how much the stimulus matches the receptive field Linear comparison: Spatial Spatial receptive stimulus field R = x K sp ( x) S( x) 11

12 The receptive field LGN + RF Stim Center Surr Retina Multiplication Spatial features of image matter in relation to RF Spatial Spatial receptive stimulus field Neuron is tuned for a given stimulus over a certain range. 12

13 Circuitry of the retina 13

14 ...but vision involves motion Motion in the visual scene/ self motion Eye movements saccades, microsac. ocular drift 14

15 LGN response during movie Raster plot PSTH: peri-stimulus time histogram Firing Rate (Hz) Time (sec) 15

16 What does neural activity look like during a time-varying stimulus? Raster Plot Time (sec) 16

17 Visual neuron function: the spatiotemporal receptive field What stimuli are represented by a neuron s response? Spike-Triggered Average (STA) stimulus: receptive field -200 ms

18 Visual neuron function: the spatiotemporal receptive field What stimuli are represented by a neuron s response? Spike-Triggered Average (STA) stimulus: receptive field -200 ms

19 Implicit Problems with Modeling > Too many parameters ! ! ! ! ! !0.2!0.3! ! ! ! !0.1!0.15!0.2! !0.01!0.02! !0.3 30!

20 The temporal receptive field Spatiotemporal Stimuli -100 Average temporal stim Time (ms) Full-field stimuli -100 Average temporal stim Time (ms) 20

21 Outline 1. Introduction to receptive fields 2. Building a visual neuron model The LN (Linear-Non-linear) model 3. The problem of temporal precision and the need for new statistical methods Maximum-likelihood modeling 4. Research: Application of maximum-likelihood modeling to explain precise timing of neuronal responses 21

22 The temporal receptive field Full-field stimuli -100 Average temporal stim Time (ms) 22

23 How measure the receptive field? The spike-triggered average Full-field stimuli -100 Average temporal stim Stimulus-response cross-correlation k(τ) dt r(t) s(t τ) Time (ms) 23

24 Linear model predictions ms Temporal Stimulus (full-field) x Temporal Receptive Field = Filtered stimulus r est (t) =r 0 + dτ k(τ) s(t τ) 24

25 Mathematical result (take functional derivative of MSE) Layman s summary: In the presence of Gaussian noise (uncorrelated) stimuli, the best linear model for the neuron is proportional to the spike triggered average. r est (t) =r 0 + dτ k(τ) s(t τ) Mean Squared Error (MSE) MSE = t [r(t) r est (t)] 2 Stimulus-response cross-correlation k(τ) dt r(t) s(t τ) 25

26 Linear model predictions ms Temporal Stimulus (full-field) x Temporal Receptive Field = Filtered stimulus Firing Rate 500 Hz Observed firing rate ms 26

27 How map linear function to firing rate? LN (Linear-Non-Linear) model of encoding L inear Kernel K(τ) g(t) N on-linearity ν(g) Firing Rate λ(t) Stimulus s(t) Firing Rate 500 Hz Observed firing rate ms 27

28 Measuring reliability of RF model : the non-linearity ms 3 2 Pr{g spike} 1 g Pr{g} -3 28

29 Measuring reliability of RF model : the non-linearity Pr{g spike} Pr{g} LN Model of Encoding Firing Rate (Hz) ν 0 (g) Pr{spike g} α θ Generating Function g L inear Kernel K(τ) g(t) N on-linearity ν(g) Firing Rate λ(t) Stimulus s(t) 29

30 Bussgang s Theorem Layman s summary: In the context of simple non-linearities, the optimal receptive field is STIL given by the spike-triggered average in the context of Gaussian white noise *** 30

31 Receptive field predictions ms Temporal Stimulus (full-field) x Temporal Receptive Field = Filtered stimulus Firing Rate 500 Hz LN Model Observed firing rate ms 31

32 How quantify quality of model fit? Matlab Interlude 32

33 Problems with visual neuron modeling 1. Looking at higher time resolution reveals that the LN model is insufficient 2. Non-linearities force the use of Bussgang s theorem -> only use STA, and need noise stimuli 3. r2 is not the best measure for evaluating a nonlinear system (also, it requires multiple repeats to estimate a good firing rate) 33

34 Outline 1. Introduction to receptive fields 2. Building a visual neuron model The LN (Linear-Non-linear) model 3. The problem of temporal precision and the need for new statistical methods Maximum-likelihood modeling 4. Research: Application of maximum-likelihood modeling to explain precise timing of neuronal responses 34

35 Maximum Likelihood Approach Stimulus Likelihood: probability that model explains data Linear Kernel k Find the maximum likelihood : The probability that the spikes were generated by a model with a certain choice of parameters N on-linearity LL = t spk log Pr{spk t spk } t Pr{spk t} f P oisson process 500 Hz Firing rate when there is an observed spike Firing rate when there is no observed spike Response (Spike Train) Probability of spike 0 35

36 Problem: complicated function to Stimulus maximize! Linear Kernel The maximum likelihood: k LL = t spk log Pr{spk t spk } t Pr{spk t} N on-linearity P f oisson process Response (Spike Train) Paninski (2004): No local minima in likelihood surface given certain forms of non-linearity (f) Matlab can solve for optimal parameters in very little time! [e.g., 2 minutes of data, 0.5 ms resolution ~ 20 seconds] 36

37 LN model is fit optimally using maximum likelihood Quick Matlab Interlude 37

38 Outline 1. Introduction to receptive fields 2. Building a visual neuron model The LN (Linear-Non-linear) model 3. The problem of temporal precision and the need for new statistical methods Maximum-likelihood modeling 4. Research: Application of maximum-likelihood modeling to explain precise timing of neuronal responses 38

39 Receptive field predictions ms Temporal Stimulus (full-field) x Temporal Receptive Field = Filtered stimulus Neuronʼs Firing Rate 500 Hz LN Model Actual 0 39

40 Receptive field predictions Spike Rasters Neuron's Response "Function-based" Prediction Neuronʼs Firing Rate 500 Hz LN Model Actual 0 40

41 How to generate precision? 500 Hz 0 Neuron is tuned to the stimulus Need to suppress neuron s response during periods of stimulus that matches RF Refractoriness and Neural Precision e.g., Berry and Meister, 1998 Brillinger, 1992 Keat et al., 2001 Paninski, 2004 Pillow et al., Refractory effects 30 ms 41

42 Generalized Linear Model (GLM) Stimulus Paninski (2004): Linear Kernel k Optimal solution for model parameters (no matter how many parameters!) + N on-linearity P f oisson process Spike History Term w RP But, spike history term does not explain the temporal resolution of the data. Response (Spike Train) 42

43 GLM model does not explain LGN temporal precision 1200 Data (60 reps x-validated) LN GLM Despite matching ISI distributions Data LN Model +spike history 0.5 ms resolution Firing Rate (Hz) Interspike Interval (ms) Time (sec) 43

44 What about network suppression? 500 Hz 0 Refractoriness and precision model Network suppression model Stimulus Tuned Stimulus RF Spike generation Effects Spike-Refractory LGN neuron spikes Others neurons in network active Response (Spike Train) Suppression after spikes 44

45 What about network suppression? 500 Hz 0 Refractoriness and precision model Stimulus Network suppression model Stimulus RF RF 1 RF 2 Spike generation Effects Spike-Refractory Spike generation (Rectified) Suppression Response (Spike Train) Response (Spike Train) 45

46 Directly fit *multiple* receptive fields Stimulus RF 1 RF 2 -- Alternative to spiketriggered covariance Spike generation (Rectified) Suppression -- Simplest way to incorporate two RFs Response (Spike Train) -- Application to neurons that process stimuli non-linearly (e.g., on-off cells in mouse retina) 46

47 Precision explained by suppression Data (60 reps x-validated) LN GLM Suppression ms resolution

48 Cross-validation Fit model to 2 min Model test... 2 minutes of FF stimulation 30 sec unique sequence repeated 60 times 1.2 X-cells Y-cells (N = 13) (N = 10) GLM 0.4 GLM Sup Sup1 Response Time Scale (ms) Information (bits/spk) Significant improvement across all recorded neurons 3 X cells Ycells Information gain (bits/spk) 48

49 Precision computation Stimulus Linear Filter Suppressive filter ** RF 1 RF 2 Spike generation (Rectified) Suppression firing rate Response (Spike Train) - sup linear

50 long-range excitatory project ion General role of local inhibition? Retina Exc: bipolar cell Inh: spiking amacrine LGN V1 local inhibitory interneuron Exc: LGN input Inh: interneurons Exc: RGC input Inh: interneurons 50

51 Circuitry of the retina OUTER PLEXIFORM LAYER Role in spatial processing? INNER PLEXIFORM LAYER Role in temporal processing? 51

52 Conclusions/Parting Thoughts 1. Visual neuron modeling Don t forget the LN model -- it is everywhere Basis for sensory models in neuroscience ( minimal model ) 2. Neuroscience has been (but no longer is?) stuck with standard statistics Brought field to where it is (VERY USEFUL) but... could not go much further Neuroscience-statisticians are having large impact on basic science (Emory Brown, Liam Paninski, Rob Kass, Valerie Ventura, Han Amarsingham,... ) 3. Maximum likelihood modeling System of models that have smooth likelihood surface Ability to solve higher-order models with limited data 52

Analysis of in-vivo extracellular recordings. Ryan Morrill Bootcamp 9/10/2014

Analysis of in-vivo extracellular recordings. Ryan Morrill Bootcamp 9/10/2014 Analysis of in-vivo extracellular recordings Ryan Morrill Bootcamp 9/10/2014 Goals for the lecture Be able to: Conceptually understand some of the analysis and jargon encountered in a typical (sensory)

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi: 10.1038/nature06105 SUPPLEMENTARY INFORMATION Supplemental #1: Calculation of LGN receptive fields and temporal scales [Accompanying Butts et al. (2007)] To draw a direct comparison between the relevant

More information

Prof. Greg Francis 7/31/15

Prof. Greg Francis 7/31/15 s PSY 200 Greg Francis Lecture 06 How do you recognize your grandmother? Action potential With enough excitatory input, a cell produces an action potential that sends a signal down its axon to other cells

More information

Neuronal Dynamics: Computational Neuroscience of Single Neurons

Neuronal Dynamics: Computational Neuroscience of Single Neurons Week 7 part 7: Helping Humans Neuronal Dynamics: Computational Neuroscience of Single Neurons Week 7 Optimizing Neuron Models For Coding and Decoding Wulfram Gerstner EPFL, Lausanne, Switzerland 7.1 What

More information

CS294-6 (Fall 2004) Recognizing People, Objects and Actions Lecture: January 27, 2004 Human Visual System

CS294-6 (Fall 2004) Recognizing People, Objects and Actions Lecture: January 27, 2004 Human Visual System CS294-6 (Fall 2004) Recognizing People, Objects and Actions Lecture: January 27, 2004 Human Visual System Lecturer: Jitendra Malik Scribe: Ryan White (Slide: layout of the brain) Facts about the brain:

More information

Lecture overview. What hypothesis to test in the fly? Quantitative data collection Visual physiology conventions ( Methods )

Lecture overview. What hypothesis to test in the fly? Quantitative data collection Visual physiology conventions ( Methods ) Lecture overview What hypothesis to test in the fly? Quantitative data collection Visual physiology conventions ( Methods ) 1 Lecture overview What hypothesis to test in the fly? Quantitative data collection

More information

Nonlinear processing in LGN neurons

Nonlinear processing in LGN neurons Nonlinear processing in LGN neurons Vincent Bonin *, Valerio Mante and Matteo Carandini Smith-Kettlewell Eye Research Institute 2318 Fillmore Street San Francisco, CA 94115, USA Institute of Neuroinformatics

More information

Single cell tuning curves vs population response. Encoding: Summary. Overview of the visual cortex. Overview of the visual cortex

Single cell tuning curves vs population response. Encoding: Summary. Overview of the visual cortex. Overview of the visual cortex Encoding: Summary Spikes are the important signals in the brain. What is still debated is the code: number of spikes, exact spike timing, temporal relationship between neurons activities? Single cell tuning

More information

M Cells. Why parallel pathways? P Cells. Where from the retina? Cortical visual processing. Announcements. Main visual pathway from retina to V1

M Cells. Why parallel pathways? P Cells. Where from the retina? Cortical visual processing. Announcements. Main visual pathway from retina to V1 Announcements exam 1 this Thursday! review session: Wednesday, 5:00-6:30pm, Meliora 203 Bryce s office hours: Wednesday, 3:30-5:30pm, Gleason https://www.youtube.com/watch?v=zdw7pvgz0um M Cells M cells

More information

Lecture 1: Neurons. Lecture 2: Coding with spikes. To gain a basic understanding of spike based neural codes

Lecture 1: Neurons. Lecture 2: Coding with spikes. To gain a basic understanding of spike based neural codes Lecture : Neurons Lecture 2: Coding with spikes Learning objectives: To gain a basic understanding of spike based neural codes McCulloch Pitts Neuron I w in Σ out Θ Examples: I = ; θ =.5; w=. - in = *.

More information

Information Processing During Transient Responses in the Crayfish Visual System

Information Processing During Transient Responses in the Crayfish Visual System Information Processing During Transient Responses in the Crayfish Visual System Christopher J. Rozell, Don. H. Johnson and Raymon M. Glantz Department of Electrical & Computer Engineering Department of

More information

Construction of the Visual Image

Construction of the Visual Image Construction of the Visual Image Anne L. van de Ven 8 Sept 2003 BioE 492/592 Sensory Neuroengineering Lecture 3 Visual Perception Light Photoreceptors Interneurons Visual Processing Ganglion Neurons Optic

More information

G5)H/C8-)72)78)2I-,8/52& ()*+,-./,-0))12-345)6/3/782 9:-8;<;4.= J-3/ J-3/ "#&' "#% "#"% "#%$

G5)H/C8-)72)78)2I-,8/52& ()*+,-./,-0))12-345)6/3/782 9:-8;<;4.= J-3/ J-3/ #&' #% #% #%$ # G5)H/C8-)72)78)2I-,8/52& #% #$ # # &# G5)H/C8-)72)78)2I-,8/52' @5/AB/7CD J-3/ /,?8-6/2@5/AB/7CD #&' #% #$ # # '#E ()*+,-./,-0))12-345)6/3/782 9:-8;;4. @5/AB/7CD J-3/ #' /,?8-6/2@5/AB/7CD #&F #&' #% #$

More information

TEMPORAL PRECISION OF SENSORY RESPONSES Berry and Meister, 1998

TEMPORAL PRECISION OF SENSORY RESPONSES Berry and Meister, 1998 TEMPORAL PRECISION OF SENSORY RESPONSES Berry and Meister, 1998 Today: (1) how can we measure temporal precision? (2) what mechanisms enable/limit precision? A. 0.1 pa WHY SHOULD YOU CARE? average rod

More information

Spectrograms (revisited)

Spectrograms (revisited) Spectrograms (revisited) We begin the lecture by reviewing the units of spectrograms, which I had only glossed over when I covered spectrograms at the end of lecture 19. We then relate the blocks of a

More information

Coding and computation by neural ensembles in the primate retina

Coding and computation by neural ensembles in the primate retina Coding and computation by neural ensembles in the primate retina Liam Paninski Department of Statistics and Center for Theoretical Neuroscience Columbia University http://www.stat.columbia.edu/ liam liam@stat.columbia.edu

More information

Modeling the Primary Visual Cortex

Modeling the Primary Visual Cortex Modeling the Primary Visual Cortex David W. McLaughlin Courant Institute & Center for Neural Science New York University http://www.cims.nyu.edu/faculty/dmac/ Ohio - MBI Oct 02 Input Layer of Primary Visual

More information

The Integration of Features in Visual Awareness : The Binding Problem. By Andrew Laguna, S.J.

The Integration of Features in Visual Awareness : The Binding Problem. By Andrew Laguna, S.J. The Integration of Features in Visual Awareness : The Binding Problem By Andrew Laguna, S.J. Outline I. Introduction II. The Visual System III. What is the Binding Problem? IV. Possible Theoretical Solutions

More information

Reading Assignments: Lecture 5: Introduction to Vision. None. Brain Theory and Artificial Intelligence

Reading Assignments: Lecture 5: Introduction to Vision. None. Brain Theory and Artificial Intelligence Brain Theory and Artificial Intelligence Lecture 5:. Reading Assignments: None 1 Projection 2 Projection 3 Convention: Visual Angle Rather than reporting two numbers (size of object and distance to observer),

More information

Adaptation to Stimulus Contrast and Correlations during Natural Visual Stimulation

Adaptation to Stimulus Contrast and Correlations during Natural Visual Stimulation Article Adaptation to Stimulus Contrast and Correlations during Natural Visual Stimulation Nicholas A. Lesica, 1,4, * Jianzhong Jin, 2 Chong Weng, 2 Chun-I Yeh, 2,3 Daniel A. Butts, 1 Garrett B. Stanley,

More information

Information and neural computations

Information and neural computations Information and neural computations Why quantify information? We may want to know which feature of a spike train is most informative about a particular stimulus feature. We may want to know which feature

More information

Neural Coding. Computing and the Brain. How Is Information Coded in Networks of Spiking Neurons?

Neural Coding. Computing and the Brain. How Is Information Coded in Networks of Spiking Neurons? Neural Coding Computing and the Brain How Is Information Coded in Networks of Spiking Neurons? Coding in spike (AP) sequences from individual neurons Coding in activity of a population of neurons Spring

More information

Introduction to Computational Neuroscience

Introduction to Computational Neuroscience Introduction to Computational Neuroscience Lecture 5: Data analysis II Lesson Title 1 Introduction 2 Structure and Function of the NS 3 Windows to the Brain 4 Data analysis 5 Data analysis II 6 Single

More information

2/3/17. Visual System I. I. Eye, color space, adaptation II. Receptive fields and lateral inhibition III. Thalamus and primary visual cortex

2/3/17. Visual System I. I. Eye, color space, adaptation II. Receptive fields and lateral inhibition III. Thalamus and primary visual cortex 1 Visual System I I. Eye, color space, adaptation II. Receptive fields and lateral inhibition III. Thalamus and primary visual cortex 2 1 2/3/17 Window of the Soul 3 Information Flow: From Photoreceptors

More information

Photoreceptors Rods. Cones

Photoreceptors Rods. Cones Photoreceptors Rods Cones 120 000 000 Dim light Prefer wavelength of 505 nm Monochromatic Mainly in periphery of the eye 6 000 000 More light Different spectral sensitivities!long-wave receptors (558 nm)

More information

Computing with Spikes in Recurrent Neural Networks

Computing with Spikes in Recurrent Neural Networks Computing with Spikes in Recurrent Neural Networks Dezhe Jin Department of Physics The Pennsylvania State University Presented at ICS Seminar Course, Penn State Jan 9, 2006 Outline Introduction Neurons,

More information

OPTO 5320 VISION SCIENCE I

OPTO 5320 VISION SCIENCE I OPTO 5320 VISION SCIENCE I Monocular Sensory Processes of Vision: Color Vision Mechanisms of Color Processing . Neural Mechanisms of Color Processing A. Parallel processing - M- & P- pathways B. Second

More information

Primary Visual Pathways (I)

Primary Visual Pathways (I) Primary Visual Pathways (I) Introduction to Computational and Biological Vision CS 202-1-5261 Computer Science Department, BGU Ohad Ben-Shahar Where does visual information go from the eye? Where does

More information

Title A generalized linear model for estimating spectrotemporal receptive fields from responses to natural sounds.

Title A generalized linear model for estimating spectrotemporal receptive fields from responses to natural sounds. 1 Title A generalized linear model for estimating spectrotemporal receptive fields from responses to natural sounds. Authors Ana Calabrese 1,2, Joseph W. Schumacher 1, David M. Schneider 1, Liam Paninski

More information

Lateral Geniculate Nucleus (LGN)

Lateral Geniculate Nucleus (LGN) Lateral Geniculate Nucleus (LGN) What happens beyond the retina? What happens in Lateral Geniculate Nucleus (LGN)- 90% flow Visual cortex Information Flow Superior colliculus 10% flow Slide 2 Information

More information

Perceptual Grouping in a Self-Organizing Map of Spiking Neurons

Perceptual Grouping in a Self-Organizing Map of Spiking Neurons Perceptual Grouping in a Self-Organizing Map of Spiking Neurons Yoonsuck Choe Department of Computer Sciences The University of Texas at Austin August 13, 2001 Perceptual Grouping Group Two! Longest Contour?

More information

Introduction to Computational Neuroscience

Introduction to Computational Neuroscience Introduction to Computational Neuroscience Lecture 10: Brain-Computer Interfaces Ilya Kuzovkin So Far Stimulus So Far So Far Stimulus What are the neuroimaging techniques you know about? Stimulus So Far

More information

Introduction to Physiological Psychology

Introduction to Physiological Psychology Introduction to Physiological Psychology Vision ksweeney@cogsci.ucsd.edu cogsci.ucsd.edu/~ksweeney/psy260.html This class n Sensation vs. Perception n How light is translated into what we see n Structure

More information

PHY3111 Mid-Semester Test Study. Lecture 2: The hierarchical organisation of vision

PHY3111 Mid-Semester Test Study. Lecture 2: The hierarchical organisation of vision PHY3111 Mid-Semester Test Study Lecture 2: The hierarchical organisation of vision 1. Explain what a hierarchically organised neural system is, in terms of physiological response properties of its neurones.

More information

Monocular and Binocular Mechanisms of Contrast Gain Control. Izumi Ohzawa and Ralph D. Freeman

Monocular and Binocular Mechanisms of Contrast Gain Control. Izumi Ohzawa and Ralph D. Freeman Monocular and Binocular Mechanisms of Contrast Gain Control Izumi Ohzawa and alph D. Freeman University of California, School of Optometry Berkeley, California 9472 E-mail: izumi@pinoko.berkeley.edu ABSTACT

More information

2 INSERM U280, Lyon, France

2 INSERM U280, Lyon, France Natural movies evoke responses in the primary visual cortex of anesthetized cat that are not well modeled by Poisson processes Jonathan L. Baker 1, Shih-Cheng Yen 1, Jean-Philippe Lachaux 2, Charles M.

More information

Different inhibitory effects by dopaminergic modulation and global suppression of activity

Different inhibitory effects by dopaminergic modulation and global suppression of activity Different inhibitory effects by dopaminergic modulation and global suppression of activity Takuji Hayashi Department of Applied Physics Tokyo University of Science Osamu Araki Department of Applied Physics

More information

Overview of the visual cortex. Ventral pathway. Overview of the visual cortex

Overview of the visual cortex. Ventral pathway. Overview of the visual cortex Overview of the visual cortex Two streams: Ventral What : V1,V2, V4, IT, form recognition and object representation Dorsal Where : V1,V2, MT, MST, LIP, VIP, 7a: motion, location, control of eyes and arms

More information

The Structure and Function of the Auditory Nerve

The Structure and Function of the Auditory Nerve The Structure and Function of the Auditory Nerve Brad May Structure and Function of the Auditory and Vestibular Systems (BME 580.626) September 21, 2010 1 Objectives Anatomy Basic response patterns Frequency

More information

Mechanisms of stimulus feature selectivity in sensory systems

Mechanisms of stimulus feature selectivity in sensory systems Mechanisms of stimulus feature selectivity in sensory systems 1. Orientation and direction selectivity in the visual cortex 2. Selectivity to sound frequency in the auditory cortex 3. Feature selectivity

More information

Visual Physiology. Perception and Attention. Graham Hole. Problems confronting the visual system: Solutions: The primary visual pathways: The eye:

Visual Physiology. Perception and Attention. Graham Hole. Problems confronting the visual system: Solutions: The primary visual pathways: The eye: Problems confronting the visual system: Visual Physiology image contains a huge amount of information which must be processed quickly. image is dim, blurry and distorted. Light levels vary enormously.

More information

A Virtual Retina for Studying Population Coding

A Virtual Retina for Studying Population Coding Illya Bomash, Yasser Roudi, Sheila Nirenberg* Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, New York, United States of America Abstract At every level

More information

Project Report: Investigating topographic neural map development of the visual system ELEN E6002

Project Report: Investigating topographic neural map development of the visual system ELEN E6002 Project Report: Investigating topographic neural map development of the visual system ELEN E6002 Daniel Clark djc2184 May 14, 2013 Overview The human visual system is the most efficient and complex information

More information

Information-theoretic stimulus design for neurophysiology & psychophysics

Information-theoretic stimulus design for neurophysiology & psychophysics Information-theoretic stimulus design for neurophysiology & psychophysics Christopher DiMattina, PhD Assistant Professor of Psychology Florida Gulf Coast University 2 Optimal experimental design Part 1

More information

Vision and Eye Movements Peter H. Schiller, Motion perception and pursuit eye movements

Vision and Eye Movements Peter H. Schiller, Motion perception and pursuit eye movements Vision and Eye Movements Peter H. Schiller, 2013 Motion perception and pursuit eye movements 1 Topics: 1. The responses of neurons to motion in various brain regions. 2. Mechananisms for creating motion-selective

More information

Ch.20 Dynamic Cue Combination in Distributional Population Code Networks. Ka Yeon Kim Biopsychology

Ch.20 Dynamic Cue Combination in Distributional Population Code Networks. Ka Yeon Kim Biopsychology Ch.20 Dynamic Cue Combination in Distributional Population Code Networks Ka Yeon Kim Biopsychology Applying the coding scheme to dynamic cue combination (Experiment, Kording&Wolpert,2004) Dynamic sensorymotor

More information

The Visual System. Cortical Architecture Casagrande February 23, 2004

The Visual System. Cortical Architecture Casagrande February 23, 2004 The Visual System Cortical Architecture Casagrande February 23, 2004 Phone: 343-4538 Email: vivien.casagrande@mcmail.vanderbilt.edu Office: T2302 MCN Required Reading Adler s Physiology of the Eye Chapters

More information

Spontaneous Cortical Activity Reveals Hallmarks of an Optimal Internal Model of the Environment. Berkes, Orban, Lengyel, Fiser.

Spontaneous Cortical Activity Reveals Hallmarks of an Optimal Internal Model of the Environment. Berkes, Orban, Lengyel, Fiser. Statistically optimal perception and learning: from behavior to neural representations. Fiser, Berkes, Orban & Lengyel Trends in Cognitive Sciences (2010) Spontaneous Cortical Activity Reveals Hallmarks

More information

FENS Brain Function CoE 2018 Satellite Meeting

FENS Brain Function CoE 2018 Satellite Meeting FENS Brain Function CoE 2018 Satellite Meeting Friday, 6 July 2018 The Australian Research Council Centre of Excellence for Integrative Brain Function is hosting a satellite meeting as part of the 11th

More information

Neuromorphic computing

Neuromorphic computing Neuromorphic computing Robotics M.Sc. programme in Computer Science lorenzo.vannucci@santannapisa.it April 19th, 2018 Outline 1. Introduction 2. Fundamentals of neuroscience 3. Simulating the brain 4.

More information

V1 (Chap 3, part II) Lecture 8. Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Princeton University, Fall 2017

V1 (Chap 3, part II) Lecture 8. Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Princeton University, Fall 2017 V1 (Chap 3, part II) Lecture 8 Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Princeton University, Fall 2017 Topography: mapping of objects in space onto the visual cortex contralateral representation

More information

Self-Organization and Segmentation with Laterally Connected Spiking Neurons

Self-Organization and Segmentation with Laterally Connected Spiking Neurons Self-Organization and Segmentation with Laterally Connected Spiking Neurons Yoonsuck Choe Department of Computer Sciences The University of Texas at Austin Austin, TX 78712 USA Risto Miikkulainen Department

More information

J Jeffress model, 3, 66ff

J Jeffress model, 3, 66ff Index A Absolute pitch, 102 Afferent projections, inferior colliculus, 131 132 Amplitude modulation, coincidence detector, 152ff inferior colliculus, 152ff inhibition models, 156ff models, 152ff Anatomy,

More information

Thalamo-Cortical Relationships Ultrastructure of Thalamic Synaptic Glomerulus

Thalamo-Cortical Relationships Ultrastructure of Thalamic Synaptic Glomerulus Central Visual Pathways V1/2 NEUR 3001 dvanced Visual Neuroscience The Lateral Geniculate Nucleus () is more than a relay station LP SC Professor Tom Salt UCL Institute of Ophthalmology Retina t.salt@ucl.ac.uk

More information

Early Stages of Vision Might Explain Data to Information Transformation

Early Stages of Vision Might Explain Data to Information Transformation Early Stages of Vision Might Explain Data to Information Transformation Baran Çürüklü Department of Computer Science and Engineering Mälardalen University Västerås S-721 23, Sweden Abstract. In this paper

More information

Dual Inhibitory Mechanisms for Definition of Receptive Field Characteristics in Cat Striate Cortex

Dual Inhibitory Mechanisms for Definition of Receptive Field Characteristics in Cat Striate Cortex Dual Inhibitory Mechanisms for Definition of Receptive Field Characteristics in Cat Striate Cortex A. B. Bonds Dept. of Electrical Engineering Vanderbilt University N ashville, TN 37235 Abstract In single

More information

How is the stimulus represented in the nervous system?

How is the stimulus represented in the nervous system? How is the stimulus represented in the nervous system? Eric Young F Rieke et al Spikes MIT Press (1997) Especially chapter 2 I Nelken et al Encoding stimulus information by spike numbers and mean response

More information

Basics of Computational Neuroscience

Basics of Computational Neuroscience Basics of Computational Neuroscience 1 1) Introduction Lecture: Computational Neuroscience, The Basics A reminder: Contents 1) Brain, Maps,, Networks,, and The tough stuff: 2,3) Membrane Models 3,4) Spiking

More information

Electrophysiological and firing properties of neurons: categorizing soloists and choristers in primary visual cortex

Electrophysiological and firing properties of neurons: categorizing soloists and choristers in primary visual cortex *Manuscript Click here to download Manuscript: Manuscript revised.docx Click here to view linked Referenc Electrophysiological and firing properties of neurons: categorizing soloists and choristers in

More information

Carlson (7e) PowerPoint Lecture Outline Chapter 6: Vision

Carlson (7e) PowerPoint Lecture Outline Chapter 6: Vision Carlson (7e) PowerPoint Lecture Outline Chapter 6: Vision This multimedia product and its contents are protected under copyright law. The following are prohibited by law: any public performance or display,

More information

Biological Information Neuroscience

Biological Information Neuroscience Biological Information Neuroscience The Nervous System Sensory neurons Motor neurons Interneurons Gathers, stores, process, and communicate vast amounts of information and uses it successfully. 10/25/2012

More information

Vision Seeing is in the mind

Vision Seeing is in the mind 1 Vision Seeing is in the mind Stimulus: Light 2 Light Characteristics 1. Wavelength (hue) 2. Intensity (brightness) 3. Saturation (purity) 3 4 Hue (color): dimension of color determined by wavelength

More information

Image Processing in the Human Visual System, a Quick Overview

Image Processing in the Human Visual System, a Quick Overview Image Processing in the Human Visual System, a Quick Overview By Orazio Gallo, April 24th, 2008 The Visual System Our most advanced perception system: The optic nerve has 106 fibers, more than all the

More information

COGS 101A: Sensation and Perception

COGS 101A: Sensation and Perception COGS 101A: Sensation and Perception 1 Virginia R. de Sa Department of Cognitive Science UCSD Lecture 5: LGN and V1: Magno and Parvo streams Chapter 3 Course Information 2 Class web page: http://cogsci.ucsd.edu/

More information

HST 583 fmri DATA ANALYSIS AND ACQUISITION

HST 583 fmri DATA ANALYSIS AND ACQUISITION HST 583 fmri DATA ANALYSIS AND ACQUISITION Neural Signal Processing for Functional Neuroimaging Neuroscience Statistics Research Laboratory Massachusetts General Hospital Harvard Medical School/MIT Division

More information

Visual Orientation and Directional Selectivity Through Thalamic Synchrony

Visual Orientation and Directional Selectivity Through Thalamic Synchrony Visual Orientation and Directional Selectivity Through Thalamic Synchrony Garrett B. Stanley 1, Jianzhong Jin 2, Yushi Wang 2, Gaëlle Desbordes 1, Qi Wang 1, Michael J. Black 3, and Jose-Manuel Alonso

More information

Introduction to Computational Neuroscience

Introduction to Computational Neuroscience Introduction to Computational Neuroscience Lecture 7: Network models Lesson Title 1 Introduction 2 Structure and Function of the NS 3 Windows to the Brain 4 Data analysis 5 Data analysis II 6 Single neuron

More information

The ON and OFF Channels

The ON and OFF Channels The visual and oculomotor systems Peter H. Schiller, year 2006 The ON and OFF Channels Questions: 1. How are the ON and OFF channels created for the cones? 2. How are the ON and OFF channels created for

More information

Binaural Hearing. Steve Colburn Boston University

Binaural Hearing. Steve Colburn Boston University Binaural Hearing Steve Colburn Boston University Outline Why do we (and many other animals) have two ears? What are the major advantages? What is the observed behavior? How do we accomplish this physiologically?

More information

Visual cortical plasticity

Visual cortical plasticity Visual cortical plasticity Deprivation-induced changes in representation Ocular dominance plasticity Retinal scotoma and cortical re-organization Perceptual learning-related plasticity Timing-dependent

More information

The Role of Thalamic Population Synchrony in the Emergence of Cortical Feature Selectivity

The Role of Thalamic Population Synchrony in the Emergence of Cortical Feature Selectivity The Role of Thalamic Population Synchrony in the Emergence of Cortical Feature Selectivity Sean T. Kelly, Emory University Jens Kremkow, State University of New York Jianzhong Jin, State University of

More information

Plasticity of Cerebral Cortex in Development

Plasticity of Cerebral Cortex in Development Plasticity of Cerebral Cortex in Development Jessica R. Newton and Mriganka Sur Department of Brain & Cognitive Sciences Picower Center for Learning & Memory Massachusetts Institute of Technology Cambridge,

More information

postsynaptic), and each plasma membrane has a hemichannel, sometimes called a connexon)

postsynaptic), and each plasma membrane has a hemichannel, sometimes called a connexon) The Retina The retina is the part of the CNS that sends visual information from the eye to the brain. It very efficient at capturing and relaying as much visual information as possible, under a great range

More information

Characterization of Neural Responses with Stochastic Stimuli

Characterization of Neural Responses with Stochastic Stimuli To appear in: The New Cognitive Neurosciences, 3rd edition Editor: M. Gazzaniga. MIT Press, 2004. Characterization of Neural Responses with Stochastic Stimuli Eero P. Simoncelli, Liam Paninski, Jonathan

More information

LISC-322 Neuroscience Cortical Organization

LISC-322 Neuroscience Cortical Organization LISC-322 Neuroscience Cortical Organization THE VISUAL SYSTEM Higher Visual Processing Martin Paré Assistant Professor Physiology & Psychology Most of the cortex that covers the cerebral hemispheres is

More information

Relative contributions of cortical and thalamic feedforward inputs to V2

Relative contributions of cortical and thalamic feedforward inputs to V2 Relative contributions of cortical and thalamic feedforward inputs to V2 1 2 3 4 5 Rachel M. Cassidy Neuroscience Graduate Program University of California, San Diego La Jolla, CA 92093 rcassidy@ucsd.edu

More information

arxiv: v3 [q-bio.nc] 7 Jul 2017

arxiv: v3 [q-bio.nc] 7 Jul 2017 Capturing the Dynamical Repertoire of Single Neurons with Generalized Linear Models arxiv:162.7389v3 [q-bio.nc] 7 Jul 217 Alison I. Weber 1 & Jonathan W. Pillow 2,3 1 Graduate Program in Neuroscience,

More information

Inhibition: Effects of Timing, Time Scales and Gap Junctions

Inhibition: Effects of Timing, Time Scales and Gap Junctions Inhibition: Effects of Timing, Time Scales and Gap Junctions I. Auditory brain stem neurons and subthreshold integ n. Fast, precise (feed forward) inhibition shapes ITD tuning. Facilitating effects of

More information

Supplementary materials for: Executive control processes underlying multi- item working memory

Supplementary materials for: Executive control processes underlying multi- item working memory Supplementary materials for: Executive control processes underlying multi- item working memory Antonio H. Lara & Jonathan D. Wallis Supplementary Figure 1 Supplementary Figure 1. Behavioral measures of

More information

How Neurons Do Integrals. Mark Goldman

How Neurons Do Integrals. Mark Goldman How Neurons Do Integrals Mark Goldman Outline 1. What is the neural basis of short-term memory? 2. A model system: the Oculomotor Neural Integrator 3. Neural mechanisms of integration: Linear network theory

More information

USING AUDITORY SALIENCY TO UNDERSTAND COMPLEX AUDITORY SCENES

USING AUDITORY SALIENCY TO UNDERSTAND COMPLEX AUDITORY SCENES USING AUDITORY SALIENCY TO UNDERSTAND COMPLEX AUDITORY SCENES Varinthira Duangudom and David V Anderson School of Electrical and Computer Engineering, Georgia Institute of Technology Atlanta, GA 30332

More information

Introduction to Computational Neuroscience

Introduction to Computational Neuroscience Introduction to Computational Neuroscience Lecture 11: Attention & Decision making Lesson Title 1 Introduction 2 Structure and Function of the NS 3 Windows to the Brain 4 Data analysis 5 Data analysis

More information

Cellular Bioelectricity

Cellular Bioelectricity ELEC ENG 3BB3: Cellular Bioelectricity Notes for Lecture 24 Thursday, March 6, 2014 8. NEURAL ELECTROPHYSIOLOGY We will look at: Structure of the nervous system Sensory transducers and neurons Neural coding

More information

eye as a camera Kandel, Schwartz & Jessel (KSJ), Fig 27-3

eye as a camera Kandel, Schwartz & Jessel (KSJ), Fig 27-3 eye as a camera Kandel, Schwartz & Jessel (KSJ), Fig 27-3 retinal specialization fovea: highest density of photoreceptors, aimed at where you are looking -> highest acuity optic disk: cell-free area, where

More information

Orientation selective neurons in primary visual cortex receive

Orientation selective neurons in primary visual cortex receive The spatial receptive field of thalamic inputs to single cortical simple cells revealed by the interaction of visual and electrical stimulation Prakash Kara*, John S. Pezaris, Sergey Yurgenson, and R.

More information

Optimal speed estimation in natural image movies predicts human performance

Optimal speed estimation in natural image movies predicts human performance ARTICLE Received 8 Apr 215 Accepted 24 Jun 215 Published 4 Aug 215 Optimal speed estimation in natural image movies predicts human performance Johannes Burge 1 & Wilson S. Geisler 2 DOI: 1.138/ncomms89

More information

We (1 4) and many others (e.g., 5 8) have studied the

We (1 4) and many others (e.g., 5 8) have studied the Some transformations of color information from lateral geniculate nucleus to striate cortex Russell L. De Valois*, Nicolas P. Cottaris, Sylvia D. Elfar*, Luke E. Mahon, and J. Anthony Wilson* *Psychology

More information

The connection between sleep spindles and epilepsy in a spatially extended neural field model

The connection between sleep spindles and epilepsy in a spatially extended neural field model The connection between sleep spindles and epilepsy in a spatially extended neural field model 1 2 3 Carolina M. S. Lidstrom Undergraduate in Bioengineering UCSD clidstro@ucsd.edu 4 5 6 7 8 9 10 11 12 13

More information

Senses are transducers. Change one form of energy into another Light, sound, pressure, etc. into What?

Senses are transducers. Change one form of energy into another Light, sound, pressure, etc. into What? 1 Vision 2 TRANSDUCTION Senses are transducers Change one form of energy into another Light, sound, pressure, etc. into What? Action potentials! Sensory codes Frequency code encodes information about intensity

More information

COGS 101A: Sensation and Perception

COGS 101A: Sensation and Perception COGS 101A: Sensation and Perception 1 Virginia R. de Sa Department of Cognitive Science UCSD Lecture 4: Coding Concepts Chapter 2 Course Information 2 Class web page: http://cogsci.ucsd.edu/ desa/101a/index.html

More information

Figure 4-1. Layers of the Neural Retina.

Figure 4-1. Layers of the Neural Retina. Chapter 4. The Neural Retina Basic Organization At one level the retina works like film in a camera: it records the optical image that is focused onto it by the cornea and lens, and relays this information

More information

This article was originally published in a journal published by Elsevier, and the attached copy is provided by Elsevier for the author s benefit and for the benefit of the author s institution, for non-commercial

More information

Structure and Function of the Auditory and Vestibular Systems (Fall 2014) Auditory Cortex (3) Prof. Xiaoqin Wang

Structure and Function of the Auditory and Vestibular Systems (Fall 2014) Auditory Cortex (3) Prof. Xiaoqin Wang 580.626 Structure and Function of the Auditory and Vestibular Systems (Fall 2014) Auditory Cortex (3) Prof. Xiaoqin Wang Laboratory of Auditory Neurophysiology Department of Biomedical Engineering Johns

More information

Neural codes PSY 310 Greg Francis. Lecture 12. COC illusion

Neural codes PSY 310 Greg Francis. Lecture 12. COC illusion Neural codes PSY 310 Greg Francis Lecture 12 Is 100 billion neurons enough? COC illusion The COC illusion looks like real squares because the neural responses are similar True squares COC squares Ganglion

More information

Transformation of Stimulus Correlations by the Retina

Transformation of Stimulus Correlations by the Retina University of Pennsylvania ScholarlyCommons Department of Physics Papers Department of Physics 12-2013 Transformation of Stimulus Correlations by the Retina Kristina D. Simmons University of Pennsylvania

More information

Analysis of spectro-temporal receptive fields in an auditory neural network

Analysis of spectro-temporal receptive fields in an auditory neural network Analysis of spectro-temporal receptive fields in an auditory neural network Madhav Nandipati Abstract Neural networks have been utilized for a vast range of applications, including computational biology.

More information

Visual Motion Detection

Visual Motion Detection MS number 1975 Visual Motion Detection B K Dellen, University of Goettingen, Goettingen, Germany R Wessel, Washington University, St Louis, MO, USA Contact information: Babette Dellen, Bernstein Center

More information

Neuron Phase Response

Neuron Phase Response BioE332A Lab 4, 2007 1 Lab 4 February 2, 2007 Neuron Phase Response In this lab, we study the effect of one neuron s spikes on another s, combined synapse and neuron behavior. In Lab 2, we characterized

More information

Why is our capacity of working memory so large?

Why is our capacity of working memory so large? LETTER Why is our capacity of working memory so large? Thomas P. Trappenberg Faculty of Computer Science, Dalhousie University 6050 University Avenue, Halifax, Nova Scotia B3H 1W5, Canada E-mail: tt@cs.dal.ca

More information