Propensity score analysis with hierarchical data

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Propensity score analysis with hierarchical data"

Transcription

1 Section on Statistics in Epidemiology Propensity score analysis wit ierarcical data Fan Li, Alan M. Zaslavsky, Mary Bet Landrum Department of Healt Care Policy, Harvard Medical Scool 180 Longwood Avenue, Boston, MA 0115 October 9, 007 Abstract Propensity score (Rosenbaum and Rubin, 1983 metods are being increasingly used as a less parametric alternative to traditional regression metods in medical care and ealt policy researc. Data collected in tese disciplines are often clustered or ierarcically structured, in te sense tat subjects are grouped togeter in one or more ways tat may be relevant to te analysis. However, propensity score was developed and as been applied in settings wit unstructured data. In tis report, we present and compare several propensity-scoreweigted estimators of treatment effect in te context of ierarcically structured data. For te simplest case witout covariates, we sow te double-robustness of tose weigted estimators, tat is, wen bot of te true underlying treatment assignment mecanism and te outcome generating mecanism are ierarcically structured, te estimator is consistent as long as te ierarcical structure is taken into account in at least one of te two steps in te propensity score procedure. Tis result olds for any balancing weigt. We obtain te exact form of bias wen clustering is ignored in bot steps. We apply tose metods to study racial disparity in te service of breast cancer screening among elders wo participate Medicare ealt plans. KEY WORDS: double robustness, ealt policy researc, ierarcical data, propensity score, racial disparity, weigting. 1. Introduction Population-based observational studies often are te best metodology for obtaining generalizable results on access to, patterns of, and outcomes from medical care wen large-scale controlled experiments are infeasible. Comparisons between groups can be biased, owever, wen te groups are unbalanced wit respect to measured and unmeasured confounders. Standard analytic metods adjust for observed differences between treatment groups by stratifying or matcing patients on a few observed covariates or wit regression analysis in te case of many observed confounders. But if treatment groups differ greatly in observed caracteristics, estimates of treatment effects from regression models rely on model extrapolations and te resulting conclusions can be very sensitive to model mis-specification (Rubin, Propensity score metods (Rosenbaum and Rubin, 1983, 1984 ave been proposed as a less parametric alternative to regression adjustment and are being increasingly used in ealt policy studies (Connors et al., 1996; D Agostino, 1998, and references terein. Tis approac, wic involves comparing subjects weigted (or stratified, matced according to teir propensity to receive treatment (i.e., propensity score, attempts to balance subjects in treatment groups in terms of observed caracteristics as would occur in a randomized experiment. Propensity score metods permit control of all observed confounding factors tat migt influence bot coice of treatment and outcome using a single composite measure, witout requiring specification of te relationsips between te control variables and outcome. Propensity score metods were developed and ave been applied in settings wit unstructured data. However, data collected in medical care and ealt policy studies are typically clustered or ierarcically structured, in te sense tat subjects are grouped togeter in one or more ways tat may be relevant to te analysis. For example, subjects maybe grouped by geograpical area, treatment center (e.g., ospital or pysicians, or in te example we consider in tis paper, ealt plan. Generally, subjects are assigned to clusters by an unknown mecanism tat may be associated wit measured subject caracteristics tat we are interested in (e.g., race, age, clinical caracteristics, measured subject caracteristics tat are not of intrinsic interest and are believed to be unrelated to outcomes except troug teir effects on assignment to clusters (e.g., location, and unmeasured subject caracteristics (e.g., unmeasured severity of disease, aggressiveness in seeking treatment. Wen subjects are ierarcically structured, a number of issues appear tat are not present wit an unstructured collection of subjects. First of all, standard error calculations tat ignore te ierarcical structure will be inaccurate, leading to incorrect inferences. A more interesting set of issues arises because tere may be bot measured and unmeasured factors at te cluster level tat create variation among clusters in quality of treatment and ence in outcomes. Hierarcical regression models ave been developed to give a more compreensive description tan non-ierarcical models provide for suc data (e.g., Gatsonis et al., Despite te increasing popularity of propensity score analyses and te vast literature regarding regional and provider variation in medical care and ealt policy researc (e.g., Nattinger et al., 199; Farrow et al., 1996, owever, to our knowledge, te implications of suc data structures for propensity score analyses ave been rarely studied. Huang et al. (005 applied propensity score metods to clustered ealt service data. But teir goal was to rank te performance of multiple ealt service providers (clusters in- 474

2 stead of to estimate an overall treatment effect from data wit clustered structure, wic is te goal of tis paper. Specifically, we will present several propensity score models analogues to many of te commonly used regression models for clustered data in Section ; investigate te beavior of tose estimators, especially te bias wen clustering information is ignored in te analysis in Section 3; and apply te metods to study racial disparities in te service of breast cancer screening among elders in Section 4. Summaries and remarks will be provided in Section 5. Our discussion concerns te case were a binary treatment is assigned at individual level. Also, to illustrate te major point and yet witout loss of generality, we focus on data wit two-level ierarcical structure.. Estimators Te class of estimands considered in tis paper is generally referred as a treatment effect, E x [E(Y X, Z 1] E x [E(Y X, Z 0], (1 Section on Statistics in Epidemiology i.e., te average difference in outcome between two treatment groups tat ave same distribution of covariates. Te propensity score e is defined as te conditional probability of being assigned to a particular treatment z given measured covariates x: e(x P (z 1 x. In most observational studies, te propensity score is not known and tus needed to be estimated. Terefore propensity score analysis usually involves two steps. Te first step is to estimate te propensity score, typically by a logistic regression. Te second step is to estimate te treatment effect by incorporating (e.g., by weigting or matcing te. Hierarcical structure leads to a range of different coices of modeling in bot steps. In tis section, we will introduce several most widely used models. Before going into more details, ere we make a note regarding te targeted estimand treatment effect defined above, wic is sligtly different from tose causal treatment effect defined using te conventional potential outcomes framework. Te propensity score originated from and as been widely used in causal inference, but its use is certainly not restricted to studying causal effects. For instance, in many ealt policy studies, te major interest is to compare te difference in te average of a feature (e.g., access to care between two groups (e.g., races, social economical status, rater tan to make a causal statement. Moreover, te treatment is often a non-manipulable variable, e.g., race or gender, wic does not gives a well-defined casual effect in te sense of Rubin (1978 (more discussion in Section 4. Neverteless, propensity score is still a valid and powerful tool to balance te covariates distribution between groups for studies wit non-causal purposes. Terefore, we avoid te subtle issue of causality trougout te paper and note te results obtained ere are applicable for studies wit more general (non-causal purposes. For ease of description, we still refer to our estimands discussed as treatment effects even toug tey are not necessarily causal. Hencefort, let m denote te total number of clusters; n te number of subjects in cluster ; y k te outcome for subject k in cluster (e.g., a clinical diagnosis; x k te corresponding covariates (typically vector-valued, e.g., age, stage of detection, comorbidity scores, etc.; v te cluster-level covariates (e.g., teacing status or measures of tecnical capacity of a ospital; z k te treatment assignment for te subject, z k {0, 1}; and e k te propensity score..1 Step 1. Estimating te propensity score To estimate te propensity score, several logistic regression models are available wit various treatment of te ierarcical structure..1.1 Marginal model As te name suggests, marginal regression models ignore clustering information. A typical marginal propensity score model would be ( ek log β e x k + κ e v, ( 1 e k were e k P (z k 1 x k, v. Tis model in fact assumes te treatment assignment mecanism is te same across all clusters. In oter words, it assumes tat two subjects are excangeable in terms of treatment propensity if tey ave te same vector of covariates, weter or not tey come from te same cluster. Tis propensity score model can be tougt of as a nonparametric alternative to a regression-based adjustment for individual and cluster covariates. Te analogous marginal regression model would be, y k γz k + β y x k + κ y v + ɛ k, (3 were ɛ k N(0, δ ɛ, and γ is te treatment effect. As model (, estimates derived from tis regression model rely on te assumption tat te outcome generating mecanism is te same across all clusters. Models ( and (3 ave a manifest similarity of form. A deeper connection is tat te sufficient statistics to estimate te treatment effect tat are balanced under propensity score estimator are te same tat must be balanced under model (3..1. Pooled witin-cluster model A pooled witin-cluster model for propensity score conditions on bot te covariates and te cluster indicators, e k log( δ e + β e x k, (4 1 e k were δ e is a cluster-level main effect, δe N(0,, and e k P (z k 1 x k,. Tis model implies te treatment assignment mecanism differs among clusters, and te difference is controlled by a cluster-level main effect δ e. Model (4 involves a more general assumption (weaker on te treatment assignment mecanism tan te marginal model (, because te cluster-level covariate v is a function of te cluster indicator. 475

3 Section on Statistics in Epidemiology In te above model, if we assume te cluster-specific main..1 Marginal estimator effects δ e follow a distribution, δe N(0, σ δ, ten we ave a new propensity score model wit random effects, Similar to te marginal model in step 1, te marginal estimator ignores clustering. A specific nonparametric estimator is te e k log( δ e + β e x k + κ e v. difference of te weigted overall means of te outcome of 1 e k two treatment groups, More generally, β e can be allowed to vary across clusters and zk 1 zk 0 follow a distribution. In practice, results from te above random effects model are usually similar to tose from te pooled.,marg zk 1,k w k y k,k w k y k ˆ zk 0, (7,k w k,k w k witin-cluster model wen te number of clusters is big. A corresponding pooled witin-cluster outcome model adjusting for cluster-level main effects and covariates is of te form: were te weigt w k is a function of te estimated propensity score. Te coice of weigt will be discussed in Section.3. Assume y k is omoscedastic and var(y k σ, ten te y k γz k + δ y + βy x k + ɛ k, (5 large sample variance of te marginal estimator is, were δ y is a cluster-level main effect, δy N(0,. Under s.,marg var( ˆ.,marg tis model, all information is obtained by comparisons witin clusters, since te δ y term absorbs all between-cluster information..1.3 Surrogate indicator model Wen tere are a large number of clusters wit large sample size, te computational task of fitting te pooled witin-cluster model can get demanding for standard software. Alternatively, define d z k n, te cluster-specific proportion of being treated, we can consider te following propensity score model e k d log( λ log( + β e x k + κ e v. (6 1 e k 1 d In te simplest situation were tere is no covariates, e k d for any, k. Terefore, comparing models (4 and (6, te logit of d maybe expected to be a reasonable surrogate for te cluster indicator in te pooled witin-cluster model wit te coefficient λ being around 1. Te inference is same as in te marginal model wit an additional covariate logit(d. Usually te coefficients of te cluster-level covariates κ e are very small since most of teir effects ave been absorbed by λ. Te surrogate indicator model reduces te m parameters (δ s in te pooled witin-cluster model to a single parameter λ, tus greatly reducing te computation required for model fitting. However, tis reduction is based on te assumption tat logit of te empirical cluster-specific proportion of being treated, logit(d, is linearly correlated wit logit of te true propensity score. Wen te underlying trut is far from tis assumption, te surrogate indicator model could perform poorly. Te goodness of fit of tese models can be cecked by conventional diagnostic procedures (e.g., Rosenbaum and Rubin, For example, one can ceck bot te overall and witin-cluster balance of te distribution of covariates weigted by te in different groups.. Step. Estimating te treatment effect Common approaces estimate treatment effects using propensity score involve weigting, matcing and stratification. We will focus on weigting in tis report. σ z k1,k wk zk0 ( z k 1,k w k + σ,k wk ( z k 0,k w k. (8 In practice σ can be estimated from te sample variance of y k... Clustered estimator A second estimator is to first obtain te cluster-specific weigted difference and ten calculate te weigted average of tese differences based on te sum of weigts in eac cluster. Tat is, for cluster, ˆ zk 1 w k y k zk 1 w k zk 0 w k y k zk 0. w k Te variance of te cluster-specific estimator ˆ under te independent omoscedastic assumption of y k witin cluster is s var( ˆ σ zk 1 wk ( z k 1 w k + σ zk 0 wk w k. ( z k 0 Similarly, σ can be estimated from its empirical counterpart witin eac cluster. Let w be a function of te weigts in cluster, e.g., te sum of weigts w w k, or te precision of te estimator ˆ, w s. Te overall clustered estimator is ten an average of te ˆ s weigted by w, And te overall variance is s.,clu var( ˆ.,clu ˆ.,clu w ˆ w. (9 ( w k s (,k w k. (10 Standard errors of estimators s.,marg and s.,clu also be obtained from resampling metods suc as te bootstrap. 476

4 ..3 Doubly-robust estimators Te weigted mean can be regarded as a weigted regression witout covariates. Terefore in step, we can replace te nonparametric weigted mean (7 or (9 by a parametric regression (e.g., model (3 or (5 weigted by te estimated propensity score. And te coefficient of te treatment assignment γ is te targeted estimand of treatment effect. Tis is essentially te class of doubly-robust estimators proposed by Scarfstein et al. (1999. Doubly-robust estimators allow flexible model coices in bot steps, wic can be very beneficial in applications. Tese estimators are coined doubly-robust in te sense tat tey are proven to be consistent if one but not necessarily bot of te step 1 and models are correctly specified under te Horvitz-Tompson weigt (see below. Detailed discussion of tis property wit ierarcical data is presented in te next section..3 Coice of weigts We now consider te coice of weigts. We call te class of weigts wic balances te distribution of covariates between treatment groups balancing weigts. Te most widely used balancing weigt is te Horvitz-Tompson (inverse probability weigt [ X(1Z 1e(X w k { 1 e k, for z k 1 1 1e k, for z k 0. [ ] XZ Te H-T weigt is a balancing weigt because E e(x ] E. Te H-T estimator compares te expected outcome of te subjects placed in z 0 versus tat of te subjects placed in z 1, averaging over te distribution of covariates in te combined population. Tat is, [ ] Y Z Y (1 Z E E[(Y Z 1 (Y Z 0]. e(x 1 e(x In fact, te doubly-robust estimators in Scarfstein et al. (1999 are restricted to using te H-T weigt because of tis clear causal interpretation. However, te H-T estimator as been well known to ave excessively large variance wen tere are subjects wit extremely small propensity score. Neverteless, te same idea is readily extended to any balancing weigt, altoug alternative weigts migt define different estimands. For example, we can consider te population-overlap weigt, { 1 ek, for z w k k 1 e k, for z k 0. were eac subject is weigted by te probability of being assigned to te oter treatment group. It is also a balancing weigt because E[XZ{1 e(x}] E[X(1 Ze(X]. In teory, te population-overlap weigt gives te smallest variance under a omoscedastic model for Y given X. But it defines a different estimand tan te te Horvitz-Tompson weigt. Specifically, we call tis te population-overlap weigt because it results in an average treatment effect tat is Section on Statistics in Epidemiology averaged over te distribution of covariates in te population were te two treatment groups overlap E[Y Z{1 e(x} Y (1 Ze(X] E[{(Y Z 1 (Y Z 0}e(X{1 e(x}]. Tis population-overlap estimator can be calculated wit acceptable variance wen te H-T estimator cannot be practically estimated, because e(x can approac 0 or 1 for some would become extremely large. In effect te H-T estimator attempts to estimate a treatment effect for types of cases wic are essentially unrepresented in one or te oter group, wile te populationoverlap weigting focuses on te types of cases wit a more balanced distribution of treatment. In addition to its statistical advantage, te latter analysis may be more scientifically relevant since it focuses attention on comparison of outcomes among te kinds of cases wic bot treatments are currently observed, for example tose in clinical equipoise between treatments. part of x space suc tat 1 e(x or 1 1e(x 3. Bias of Estimators In tis section, we investigate te bias of eac of te estimators proposed in te previous section. We first look at te simplest case wit two level-ierarcical structure and no covariates. Let n 1 (n 0 denote te number of subjects wit z 1(z 0 in cluster ; and n +1 n 1, n +0 n 0, n +1 + n +0. Assume te outcome generating mecanism for a continuous outcome follows a random effects model wit cluster-level random intercepts and random treatment effects, y k δ + γ z k + αd + ɛ k, (11 were δ N(0, σδ, ɛ k N(0, σɛ, α is te effect of te cluster-specific proportion of being treated d on te outcome, and te true treatment effect is γ wit γ N(γ 0, σγ. We first look at te situation were clustering information is ignored in bot steps. For te marginal model in step 1, it is easy to sow tat te is te same for eac subject ê k n+1. Consequently, te marginal estimator is ˆ marg,marg zk 1,k y k n +1 n 1 n +1 zk 0,k y k n +0 γ + ( n 1 n 0 δ n +1 n +1 n +0 zk 1 zk 0,k ɛ k,k ɛ k +( n +0 +α n +1n +0 n d (1 d n +1n +0 n 1 < and n +1 < old, ten by te weak law of large num- Assume te common regularity conditions n 0 n

5 Section on Statistics in Epidemiology bers for te weigted sum of independent and identicallydistributed n < as n random variables (e.g., Cow and Lai, 1973, ++ n 1 n +1 γ converges to γ 0 as te number of clusters goes to infinity, and ( n 1 n +1 n 0 ˆ n +0 δ goes to 0, so does te tird pool,marg n term in te above formula. In te fourt term, ++ n +1n +0 is in fact te variance of te total number of treated subjects, var(n +1, if all clusters are excangeable, i.e., if all subjects regardless of te clusters follow te same treatment assignment mecanism, z Bernoulli( n+1. Furtermore, n d (1 d is te sum of te variance of te number of treated subjects witin eac cluster, var(n 1, if eac cluster separately follows a treatment assignment mecanism, z Bernoulli( n 1 n. Terefore, bias of te marginal estimator wit propensity score estimated from te marginal model is [ Bias( ˆ var(n+1 marg,marg α var(n ] 1. var(n +1 (1 Te size of te bias is controlled by two factors: (1 te ratio of te variance of te total number of treated subjects under a omogeneous versus a cluster-eterogeneous treatment assignment mecanism; and ( te effect tat te cluster-specific proportion of being treated d as in te response, i.e., α. Tis is intuitive because te first factor measures te variation in te treatment assignment mecanism among clusters and te second measures te variation in te outcome generating mecanism, bot of wic are ignored in te analysis wit marginal models in bot steps. Wen eiter but not necessarily bot of te two mecanisms is omogenous across clusters, te marginal estimator, ˆ marg,marg, is also consistent. However, in reality, it is most likely tat bot of te mecanisms are eterogenous among clusters. We now look at te opposite situation were clustering information is taken into account in bot steps. For te pooled witin-cluster model in step 1, it is easy to sow tat te estimated propensity score is ê k n 1 n. Ten te clustered weigted estimator is ˆ pool,clu ( z k 1 y k n 1 m γ m + ( z k 1 ( z k 0 ɛ k n 1 m y k n 0 ( z k 0 ɛ k n 0 m m n,m γ 0 (13 wic is asymptotically unbiased. Te result is free of te form of weigt. Simple calculation sows tat te clustered weigted estimator combining te marginal model in step 1, ˆ marg,clu, is of exactly te same form as tat in (13 and tus also unbiased. Furtermore, te marginal estimator wit propensity score estimated from te pooled witincluster model, ˆ pool,clu, follows te same form as in (13, but only under H-T weigt and a balanced design (i.e., eac cluster as same number of subjects. Under H-T weigt but an unbalanced design, te estimator is also consistent (assume n γ n,m γ 0. However, te same estimator under te population-overlap weigt is n,m γ 0. ˆ pool,marg n 0( z k 1 n 1 n 0 y k n n 1( z k 0 n 1 n 0 n ɛ k n (γ + z k 1 n 1 z k 0 n 1 n 0 n y k n ɛ k n 0 Even toug tis estimator is also asymptotically unbiased, its small sample beavior can be quite different from tat of te estimator under H-T weigt. Under te omoscedasticity assumption of outcome, te tree H-T estimators ˆ pool,marg, ˆ marg,clu, and ˆ pool,clu tat take into account clustering in at least one step ave te same variance, s σɛ n n ( n 1 n 0 Similarly as te discussion on bias, tis result is generally not applicable for oter type of weigts. Specifically, te variance of ˆ pool,marg is usually larger tan tat of ˆ marg,clu and ˆ pool,clu. Wen tere are no covariates, te surrogate indicator model gives te as te pooled witincluster model. Tus te results obtained above regarding te pooled witin-cluster model automatically old for te surrogate indicator model. But tis is not te case for te general situation wit covariates. Te proofs are analogous for data wit a iger order of ierarcical levels. For te simplest case witout covariates, above we ave sown te double-robustness of tose propensity score estimators, tat is, wen bot of te true underlying treatment assignment mecanism and outcome generating mecanism are ierarcically structured, te estimator using a balancing weigt is consistent as long as te ierarcical structure is taken into account in at least one of te two steps in te propensity score procedure. Tis can be viewed as bot a special case and an extension of te double-robustness property of te estimator in Scarfstein et al. (1999. Te extension lies in tat our conclusion is instead free of te form of weigt. In te more general cases wit covariates, usually tere is no closed-form solution to te logistic models for estimating te propensity score. Consequently, tere is no closed-form of te bias of tose estimators as above. Neverteless, tis situation can be explored eiter by large-scale simulations, or by adopting a probit (instead of logistic link for estimating te propensity score. Intuitively, te double-robustness property still olds. But te bias of a marginal estimator ˆ marg,marg is 478

6 expected to also be affected by te size of te true treatment effect γ (negative correlated and te ratio of between-cluster and witin-cluster variance g σ δ σ (positively correlated, ɛ in addition to α and var(n+1 var(n 1 var(n +1 in (1. A compreensive discussion is beyond te scope tis report and is subject to furter researc. 4. Application We now apply te above metods to study racial disparity in ealt services. Disparity refers to racial differences in care attributed to operations of ealt care system. Our application concerns te HEDIS R measures of ealt care provided in Medicare ealt plans. Eac of tese measures is an estimate of te rate at wic a guideline-recommended clinical service is provided witin te appropriate population. We obtained individual-level data from te Centers for Medicare and Medicaid Services (CMS on breast cancer screening of women in Medicare managed care ealt plans (Scneider et al., 00. Our main interest is te disparity between wites and blacks, so we exclude subjects of oter races for wom racial identification is unreliable in tis dataset. We focus on plans wit at least 5 wites and 5 blacks, leaving 64 plans wit a total sample size of For practical reasons, we drew a random subsample of size 3000 from eac of te tree large plans wit more tan 3000 subjects, leaving a total sample size of All te covariates considered in te analysis are binary. Te individual-level covariates x k include two indicators of age category (70-80,>80 wit reference group being 60-70; eligibility for Medicaid (1 yes; neigborood status indicator (1 poor. Te plan-level covariates v include nine geograpical code indicators; non/for-profit status (1 for-profit; and te practice model of providers (1 staff-group model; 0 networkindependent practice model. Te outcome y is a binary variable equal to 1 if te enrollee underwent breast cancer screening and equal to 0 oterwise, and te treatment z ere is race (1 black, 0 wite. We want to estimate te difference in te proportion of undergoing breast cancer screening between wites and blacks. As mentioned before, race is not a valid treatment in conventional sense in causal inference, because it is not manipulable (Holland, However, in tis particular application, our goal is not to study te causal patway between race and ealt service utilization, but simply to estimate te magnitude of disparity under balanced distributions of covariates between te two races. Hence, te propensity score in tis application is merely an analytical tool to acieve tis goal, and it sould not be taken as aving te explicit meaning of te probability of being black. We first estimate te propensity score using te tree models introduced in Section.1 wit all te above covariates included. Details of te fitted models are omitted ere since te focus is te fitted values (. All models suggest tat living in poor neigborood, being eligible for Medicaid and enrollment in for-profit insurance plan are significantly associated wit being black race. Figures 1 and sow istograms of te for Section on Statistics in Epidemiology wites and blacks. Different models clearly give quite different estimates of propensity score in tis data, were te marginal model departs mostly from te oter two models. Te variance of te of blacks is muc bigger tan tat of wites, regardless of te model. We cecked te weigted distributions of covariates. Eac model leads to good balance of te overall weigted covariates distributions between groups. However, te marginal model in general does poorly in balancing covariates between races witin eac cluster, wile te surrogate indicator model does better, and te pooled witin-cluster model does te best. Tis suggests tat tere is important between-cluster variation Histogram of Propensity score of Wites Estimated from Marginal Model Histogram of Propensity score of Wites Estimated from Pooled WitinCluster Model Histogram of Propensity score of Wites Estimated from Surrogate Indicator Model Figure 1: Histogram of propensity score estimated from different models for wites Histogram of Propensity score of Blacks Estimated from Marginal Model Histogram of Propensity score of Wites Estimated from Pooled WitinCluster Model Histogram of Propensity score of Wites Estimated from Surrogate Indicator Model Figure : Histogram of propensity score estimated from different models for blacks. Using te, we estimate racial disparity in breast cancer screening among te elder women participating Medicare ealt plans by te estimators proposed in Section.. Altoug te outcome is binary in tis case, te probabilities of outcome are in a range were te linear probability model is an acceptable fit. Hence, for te doubly-robust estimators, we adopt te combinations of te tree propensity score models (, (4 and (6 in step 1 and 479

7 te two outcome models (3 and (5 in step. Table 1 sows te estimates using te H-T weigt. Eac row represents one step 1 model, and eac column represents one type of step model/estimator. Analogous results using te populationoverlap weigt are given in Table. Section on Statistics in Epidemiology among te elders wo participate in Medicare ealt plans, blacks on average ave a significantly lower cance to receive breast cancer screening tan wites, after adjusting for age, geograpical region, social economical status and ealt plan caracteristics. weigted doubly-robust marginal clustered marginal pooled witin marginal (0.008 (0.008 (0.004 (0.004 pooled witin (0.009 (0.008 (0.004 (0.004 surrogate indicator (0.009 (0.008 (0.004 (0.004 Table 1: Difference in te proportion of getting breast cancer screening between blacks and wites using Horvitz- Tompson weigt All models sow te proportion of receiving breast cancer screening is significantly lower among blacks tan among wites wit similar caracteristics. Te estimates are similar except for te analyses tat ignore clustering in bot steps, wic overestimate te treatment effect. Tis pattern matces te double-robustness property. Results from te surrogate indicator model in step 1 are sligtly different from te oters, suggesting te cluster-specific proportion of being treated d is correlated wit certain covariates. Te doubly-robust estimates ave smaller standard errors because te extra variation is explained by covariates in step. Not surprisingly, te estimates using H-T weigt ave muc larger variances tan tose using te population-overlap weigt. We also notice tat te estimates incorporating clustering in step ave less variation tan tose doing so in step 1. Tis observation suggests, in application, modeling te ierarcical structure for te outcome generating mecanism leads to more stable estimates, even toug in teory correct model specification in bot steps are equivalent in terms of teir effect on consistency. A possible explanation is te impact of misspecifying propensity score is attenuated troug weigting because te ultimate estimand is a function of te outcome, rater tan of te propensity score. Even toug we do not know te underlying trut, te similarity of various estimators suggests our analyses capture te main information regarding disparity in tis data. Tat is, weigted doubly-robust marginal clustered marginal pooled witin marginal (0.007 (0.008 (0.004 (0.004 pooled witin (0.007 (0.008 (0.004 (0.004 surrogate indicator (0.007 (0.008 (0.004 (0.004 Table : Difference in te proportion of getting breast cancer screening between blacks and wites using population-overlap weigt 5. Summary and Remarks Since first been proposed twenty-five years ago, propensity score metods ave gained increasing popularity in observational studies in multiple disciplines. One example is ealt care policy researc, were data wit ierarcical structure are rule rater tan exception nowadays. However, despite te wide appreciation of propensity score among bot statisticians and ealt policy researcers, tere is very limited literature regarding te metodological issues of propensity score metods in te context of ierarcical data, wic motivates our exploration in tis paper. Specifically, we present tree typical models for estimating propensity score and two types of nonparametric weigted (by estimators of treatment effect for ierarcically structured data. Furtermore, for te simplest (conceptual case witout covariates, we sow te double-robustness of tose weigted estimators: wen bot of te true underlying treatment assignment mecanism and outcome generating mecanism are ierarcically structured, te estimator is consistent as long as te ierarcical structure is taken into account in at least one of te two steps in te propensity score procedure. We also quantify te bias of te estimator wen clustering is ignored in bot steps. We ave focused on te case of treatment being assigned at te individual level in tis paper. Treatment assigned at te cluster level (e.g., ospital, ealt care provider is also common in medical care and ealt policy studies, were several new callenging issues can arise. First, te number of clusters is often relatively small despite a large total sample size. Tis could lead to poorly s wit excessively large standard errors. Second, te clusterlevel propensity score only balances te cluster-level covariates and te average individual-level coviariates. Wat are te consequences of te possible imbalance in te overall distributions of individual-level covariates? Tis also as a strong connection to te ecological inference commonly encountered in political science (e.g., King, 1997 were te estimand as an interpretation as an average effect on individual outcomes. Tird, all te nonparametric weigted estimators discussed in tis paper do not make use of te individual-level covariates, wic often contain crucial information. Te doubly-robust estimators wit flexible regression model coice in te second step appear to be preferable in tis case. But wat specific regression model to coose greatly depends on te specific data. Fourt, most interestingly, te foundational stable-unittreatment-value assumption (SUTVA te observation on one unit sould be unaffected by te particular assignment of treatments to te oter units (Cox 1958,.4 often no longer olds under clustered treatment assignment, especially in te studies wit, for instance, beavioral outcomes and infectious disease. In tat case, correct modeling of te interference 480

8 Section on Statistics in Epidemiology among subjects is crucial for valid analysis. Tose issues are among a range of open questions remained to be explored on tis topic. Furter systematic researc efforts are desired to sed insigt to te metodological issues and to provide guidelines for practical applications. REFERENCES Connors, A., Speroff, T., Dawson, N., and et al. (1996. Te effectiveness of rigt eart cateterization in te initial care of critically ill patients. Journal of te American Medical Association 76, Cox. C.P. (1958. Te Analysis of Latin Square Designs wit Individual Curvatures in one Direction. Journal of te Royal Statistical Society. Series B. 0(1, Cow, Y. S. and Lai, T.L. (1973. Limiting beavior of weigted sums of independent random variables. Te Annals of Probability 1(5, D Agostino, R. (1998. Tutorial in biostatistics: propensity score metods for bias reduction in te comparisons of a treatment to a non-randomized control. Statistics in Medicine 17, Farrow, D., Samet, J. and Hunt, W. (1996. Regional variation in survival following te diagnosis of cancer. Journal of Clinical Epidemiology 49, Gatsonis, C., Normand, S., Liu, C., and Morris, C. (1993. Geograpic variation of procedure utilization: a ierarcical model approac. Medical Care 31, YS54-YS59. King, G. (1997. A Solution to te Ecological Inference Problem: Reconstructing Individual Beavior from Aggregate Data. Princeton University Press. Holland, P.W. (1986. Statistics and causal inference (wit discussion. Journal of te American Statistical Association 81, Huang, I.C., Frangakis, C.E., Dominici, F., Diette, G. and Wu, A.W. (005. Application of a propensity score approac for risk adjustment in profiling multiple pysician groups on astma care. Healt Services Researc 40, Nattinger, A., Gottilieb, M., Veum, J., and et al. (199. Geograpic variation in te use of breast-conserving treatment for breast cancer. New England Journal of Medicine 36, Rosenbaum, P.R. and Rubin, D.B. (1983. Te central role of te propensity score in observational studies for causal effects. Biometrika 70(1, Rosenbaum, P.R. and Rubin, D.B. (1984. Reducing bias in observational studies using subclassification on te propensity score. Journal of te American Statistical Association 79, Rubin, D.B. (1978 Bayesian inference for causal effects: te role of randomization. Annals of Statistics 6, Rubin, D.B. (1979. Using multivariate matced sampling and regression adjustment to control bias in observational studies. Journal of te American Statistical Association 74, Scarfstein, D. O., Rotnitzky, A. and Robins, J. M. (1999. Adjusting for nonignorable drop-out using semiparametric nonresponse models (wit discussion. Journal of te American Statistical Association 94, Scneider E.C., Zaslavsky A.M., Epstein, A.M. (00. Racial disparities in te quality of care for enrollees in Medicare managed care. Journal of te American Medical Association 87(10,

EXPERTISE, UNDERUSE, AND OVERUSE IN HEALTHCARE * Amitabh Chandra Harvard and the NBER. Douglas O. Staiger Dartmouth and the NBER

EXPERTISE, UNDERUSE, AND OVERUSE IN HEALTHCARE * Amitabh Chandra Harvard and the NBER. Douglas O. Staiger Dartmouth and the NBER PRELIMINARY & INCOMPLETE DO NOT CITE OR DISTRIBUTE EXPERTISE, UNDERUSE, AND OVERUSE IN HEALTHCARE * Amitab Candra Harvard and te NBER Douglas O. Staiger Dartmout and te NBER Version: Marc 27, 2011 Abstract

More information

Propensity Score Methods with Multilevel Data. March 19, 2014

Propensity Score Methods with Multilevel Data. March 19, 2014 Propensity Score Methods with Multilevel Data March 19, 2014 Multilevel data Data in medical care, health policy research and many other fields are often multilevel. Subjects are grouped in natural clusters,

More information

Name: Key: E = brown eye color (note that blue eye color is still represented by the letter e, but a lower case one...this is very important)

Name: Key: E = brown eye color (note that blue eye color is still represented by the letter e, but a lower case one...this is very important) MONOHYBRID CROSS v2 Name: Introduction A gamete is te egg or sperm cell tat is produced by meiosis. A gamete contains te aploid number of cromosomes (in a uman tis number is 23). In eac of tese cromosomes

More information

Propensity Score Analysis Shenyang Guo, Ph.D.

Propensity Score Analysis Shenyang Guo, Ph.D. Propensity Score Analysis Shenyang Guo, Ph.D. Upcoming Seminar: April 7-8, 2017, Philadelphia, Pennsylvania Propensity Score Analysis 1. Overview 1.1 Observational studies and challenges 1.2 Why and when

More information

the risk of heart disease and stroke in alabama: burden document

the risk of heart disease and stroke in alabama: burden document te risk of eart disease and stroke in alabama: burden document finding te Pat to CardioVasCUlar ealt 21 table of Contents executive Summary... 1 demograpic caracteristics of Alabama... 2 Leading causes

More information

Three-dimensional simulation of lung nodules for paediatric multidetector array CT

Three-dimensional simulation of lung nodules for paediatric multidetector array CT Te Britis Journal of Radiology, 82 (2009), 401 411 Tree-dimensional simulation of lung nodules for paediatric multidetector array CT 1,2 X LI, MS, 1,2,3 E SAMEI, PD, 4 D M DELONG, PD, 5 R P JONES, BA,

More information

Propensity Score Methods for Causal Inference with the PSMATCH Procedure

Propensity Score Methods for Causal Inference with the PSMATCH Procedure Paper SAS332-2017 Propensity Score Methods for Causal Inference with the PSMATCH Procedure Yang Yuan, Yiu-Fai Yung, and Maura Stokes, SAS Institute Inc. Abstract In a randomized study, subjects are randomly

More information

USE OF AREA UNDER THE CURVE (AUC) FROM PROPENSITY MODEL TO ESTIMATE ACCURACY OF THE ESTIMATED EFFECT OF EXPOSURE

USE OF AREA UNDER THE CURVE (AUC) FROM PROPENSITY MODEL TO ESTIMATE ACCURACY OF THE ESTIMATED EFFECT OF EXPOSURE USE OF AREA UNDER THE CURVE (AUC) FROM PROPENSITY MODEL TO ESTIMATE ACCURACY OF THE ESTIMATED EFFECT OF EXPOSURE by Zhijiang Zhang B. Med, Nanjing Medical University, China, 1998 M.Sc, Harvard University,

More information

Summary. Introduction. Methods

Summary. Introduction. Methods Osteoartritis and Cartilage (2001) 9, 771 778 2001 OsteoArtritis Researc Society International 1063 4584/01/080771+08 $35.00/0 doi:10.1053/joca.2001.0474, available online at ttp://www.idealibrary.com

More information

Public Assessment Report. Scientific discussion. Ramipril Teva 1.25 mg, 2.5 mg, 5 mg and 10 mg tablets Ramipril DK/H/2130/ /DC.

Public Assessment Report. Scientific discussion. Ramipril Teva 1.25 mg, 2.5 mg, 5 mg and 10 mg tablets Ramipril DK/H/2130/ /DC. Public Assessment Report Scientific discussion Ramipril Teva 1.25 mg, 2.5 mg, 5 mg and 10 mg tablets Ramipril DK/H/2130/001-004/DC 3 April 2014 Tis module reflects te scientific discussion for te approval

More information

Multilevel analysis quantifies variation in the experimental effect while optimizing power and preventing false positives

Multilevel analysis quantifies variation in the experimental effect while optimizing power and preventing false positives DOI 10.1186/s12868-015-0228-5 BMC Neuroscience RESEARCH ARTICLE Open Access Multilevel analysis quantifies variation in the experimental effect while optimizing power and preventing false positives Emmeke

More information

Public Assessment Report. Scientific discussion. Carbidopa/Levodopa Bristol 10 mg/100 mg, 12.5 mg/50 mg, 25 mg/100 mg and 25 mg/250 mg tablets

Public Assessment Report. Scientific discussion. Carbidopa/Levodopa Bristol 10 mg/100 mg, 12.5 mg/50 mg, 25 mg/100 mg and 25 mg/250 mg tablets Public Assessment Report Scientific discussion Carbidopa/Levodopa Bristol 10 mg/100 mg, 12.5 mg/50 mg, 25 mg/100 mg and 25 mg/250 mg tablets (carbidopa/levodopa) NL/H/3044/001-004/DC Date: 25 February

More information

Public Assessment Report. Scientific discussion. Orlyelle 0.02 mg/3 mg and 0.03 mg/3 mg film-coated tablets. (Ethinylestradiol/Drospirenone)

Public Assessment Report. Scientific discussion. Orlyelle 0.02 mg/3 mg and 0.03 mg/3 mg film-coated tablets. (Ethinylestradiol/Drospirenone) Public Assessment Report Scientific discussion Orlyelle 0.02 mg/3 mg and 0.03 mg/3 mg film-coated tablets (Etinylestradiol/Drospirenone) NL/H/2890/001-002/DC Date: 18 June 2014 Tis module reflects te scientific

More information

Public Assessment Report. Scientific discussion. Mebeverine HCl Aurobindo Retard 200 mg modified release capsules, hard. (mebeverine hydrochloride)

Public Assessment Report. Scientific discussion. Mebeverine HCl Aurobindo Retard 200 mg modified release capsules, hard. (mebeverine hydrochloride) Public Assessment Report Scientific discussion ebeverine HCl Aurobindo Retard 200 mg modified release capsules, ard (mebeverine ydrocloride) NL/H/3750/001/DC Date: 18 September 2017 Tis module reflects

More information

Improving ecological inference using individual-level data

Improving ecological inference using individual-level data Improving ecological inference using individual-level data Christopher Jackson, Nicky Best and Sylvia Richardson Department of Epidemiology and Public Health, Imperial College School of Medicine, London,

More information

Chapter 21 Multilevel Propensity Score Methods for Estimating Causal Effects: A Latent Class Modeling Strategy

Chapter 21 Multilevel Propensity Score Methods for Estimating Causal Effects: A Latent Class Modeling Strategy Chapter 21 Multilevel Propensity Score Methods for Estimating Causal Effects: A Latent Class Modeling Strategy Jee-Seon Kim and Peter M. Steiner Abstract Despite their appeal, randomized experiments cannot

More information

Multiple Mediation Analysis For General Models -with Application to Explore Racial Disparity in Breast Cancer Survival Analysis

Multiple Mediation Analysis For General Models -with Application to Explore Racial Disparity in Breast Cancer Survival Analysis Multiple For General Models -with Application to Explore Racial Disparity in Breast Cancer Survival Qingzhao Yu Joint Work with Ms. Ying Fan and Dr. Xiaocheng Wu Louisiana Tumor Registry, LSUHSC June 5th,

More information

Analysis of Environmental Data Conceptual Foundations: En viro n m e n tal Data

Analysis of Environmental Data Conceptual Foundations: En viro n m e n tal Data Analysis of Environmental Data Conceptual Foundations: En viro n m e n tal Data 1. Purpose of data collection...................................................... 2 2. Samples and populations.......................................................

More information

Identifying Mechanisms behind Policy Interventions via Causal Mediation Analysis

Identifying Mechanisms behind Policy Interventions via Causal Mediation Analysis Identifying Mechanisms behind Policy Interventions via Causal Mediation Analysis December 20, 2013 Abstract Causal analysis in program evaluation has largely focused on the assessment of policy effectiveness.

More information

Insights. Central Nervous System Cancers, Version

Insights. Central Nervous System Cancers, Version NCCN Guidelines Insigts Central Nervous System Cancers NCCN Guidelines Insigts Featured Updates to te NCCN Guidelines 1331 Louis Burt Nabors, MD 1,* ; Jana Portnow, MD 2,* ; Mario Ammirati, MD, MBA 3 ;

More information

HCN channels enhance spike phase coherence and regulate the phase of spikes and LFPs in the theta-frequency range

HCN channels enhance spike phase coherence and regulate the phase of spikes and LFPs in the theta-frequency range HCN cannels enance spike pase coerence and regulate te pase of spikes and LFPs in te teta-frequency range Manisa Sina and Risikes Narayanan 1 Cellular Neuropysiology Laboratory, Molecular Biopysics Unit,

More information

THE JOURNAL OF BIOLOGICAL CHEMISTRY Vol. 262, No. 26, Issue of September 15, pp , 1987 Printed in U.S.A.

THE JOURNAL OF BIOLOGICAL CHEMISTRY Vol. 262, No. 26, Issue of September 15, pp , 1987 Printed in U.S.A. THE JOURNAL OF BIOLOGICAL CHEMISTRY Vol. 262, No. 26, Issue of September 15, pp. 12730-12734, 1987 Printed in U.S.A. Regulation of Biosyntesis of Hypusine in Cinese Hamster Ovary Cells EVIDENCE FOR eif-4d

More information

Investigating the robustness of the nonparametric Levene test with more than two groups

Investigating the robustness of the nonparametric Levene test with more than two groups Psicológica (2014), 35, 361-383. Investigating the robustness of the nonparametric Levene test with more than two groups David W. Nordstokke * and S. Mitchell Colp University of Calgary, Canada Testing

More information

Optimal full matching for survival outcomes: a method that merits more widespread use

Optimal full matching for survival outcomes: a method that merits more widespread use Research Article Received 3 November 2014, Accepted 6 July 2015 Published online 6 August 2015 in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/sim.6602 Optimal full matching for survival

More information

TRAUMATIC HIP DISLOCATION IN CHILDHOOD

TRAUMATIC HIP DISLOCATION IN CHILDHOOD Actaortop. scand. 50,549-553,1979 TRAUMATIC HIP DISLOCATION IN CHILDHOOD A Report of 26 Cases and a Review of te Literature ANTONIO B ARQUET Institute and Department of Ortopaedics and Traumatology, Montevideo,

More information

George B. Ploubidis. The role of sensitivity analysis in the estimation of causal pathways from observational data. Improving health worldwide

George B. Ploubidis. The role of sensitivity analysis in the estimation of causal pathways from observational data. Improving health worldwide George B. Ploubidis The role of sensitivity analysis in the estimation of causal pathways from observational data Improving health worldwide www.lshtm.ac.uk Outline Sensitivity analysis Causal Mediation

More information

Multilevel IRT for group-level diagnosis. Chanho Park Daniel M. Bolt. University of Wisconsin-Madison

Multilevel IRT for group-level diagnosis. Chanho Park Daniel M. Bolt. University of Wisconsin-Madison Group-Level Diagnosis 1 N.B. Please do not cite or distribute. Multilevel IRT for group-level diagnosis Chanho Park Daniel M. Bolt University of Wisconsin-Madison Paper presented at the annual meeting

More information

Public Assessment Report Scientific discussion. Aspirin (acetylsalicylic acid) Asp no:

Public Assessment Report Scientific discussion. Aspirin (acetylsalicylic acid) Asp no: Public Assessment Report Scientific discussion Aspirin (acetylsalicylic acid) Asp no: 20150618 Tis module reflects te scientific discussion for te approval of Aspirin. Te procedure was finalised on 20160609.

More information

Title: A robustness study of parametric and non-parametric tests in Model-Based Multifactor Dimensionality Reduction for epistasis detection

Title: A robustness study of parametric and non-parametric tests in Model-Based Multifactor Dimensionality Reduction for epistasis detection Author's response to reviews Title: A robustness study of parametric and non-parametric tests in Model-Based Multifactor Dimensionality Reduction for epistasis detection Authors: Jestinah M Mahachie John

More information

Public Assessment Report. Scientific discussion. Efavirenz/Emtricitabine/Tenofovirdisoproxil Teva, film-coated tablets

Public Assessment Report. Scientific discussion. Efavirenz/Emtricitabine/Tenofovirdisoproxil Teva, film-coated tablets Public Assessment Report Scientific discussion Efavirenz/Emtricitabine/Tenofovirdisoproxil Teva, film-coated tablets (efavirenz/emtricitabine/tenofovir disoproxil) NL/H/3602/001/DC Date: 28 September 2017

More information

Meta-analysis using individual participant data: one-stage and two-stage approaches, and why they may differ

Meta-analysis using individual participant data: one-stage and two-stage approaches, and why they may differ Tutorial in Biostatistics Received: 11 March 2016, Accepted: 13 September 2016 Published online 16 October 2016 in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/sim.7141 Meta-analysis using

More information

The Prevalence of HIV in Botswana

The Prevalence of HIV in Botswana The Prevalence of HIV in Botswana James Levinsohn Yale University and NBER Justin McCrary University of California, Berkeley and NBER January 6, 2010 Abstract This paper implements five methods to correct

More information

Pros. University of Chicago and NORC at the University of Chicago, USA, and IZA, Germany

Pros. University of Chicago and NORC at the University of Chicago, USA, and IZA, Germany Dan A. Black University of Chicago and NORC at the University of Chicago, USA, and IZA, Germany Matching as a regression estimator Matching avoids making assumptions about the functional form of the regression

More information

Do Your Online Friends Make You Pay? A Randomized Field Experiment on Peer Influence in Online Social Networks Online Appendix

Do Your Online Friends Make You Pay? A Randomized Field Experiment on Peer Influence in Online Social Networks Online Appendix Forthcoming in Management Science 2014 Do Your Online Friends Make You Pay? A Randomized Field Experiment on Peer Influence in Online Social Networks Online Appendix Ravi Bapna University of Minnesota,

More information

Comparison And Application Of Methods To Address Confounding By Indication In Non- Randomized Clinical Studies

Comparison And Application Of Methods To Address Confounding By Indication In Non- Randomized Clinical Studies University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses 1911 - February 2014 Dissertations and Theses 2013 Comparison And Application Of Methods To Address Confounding By Indication

More information

Identifying Peer Influence Effects in Observational Social Network Data: An Evaluation of Propensity Score Methods

Identifying Peer Influence Effects in Observational Social Network Data: An Evaluation of Propensity Score Methods Identifying Peer Influence Effects in Observational Social Network Data: An Evaluation of Propensity Score Methods Dean Eckles Department of Communication Stanford University dean@deaneckles.com Abstract

More information

Missing Data and Imputation

Missing Data and Imputation Missing Data and Imputation Barnali Das NAACCR Webinar May 2016 Outline Basic concepts Missing data mechanisms Methods used to handle missing data 1 What are missing data? General term: data we intended

More information

Current Directions in Mediation Analysis David P. MacKinnon 1 and Amanda J. Fairchild 2

Current Directions in Mediation Analysis David P. MacKinnon 1 and Amanda J. Fairchild 2 CURRENT DIRECTIONS IN PSYCHOLOGICAL SCIENCE Current Directions in Mediation Analysis David P. MacKinnon 1 and Amanda J. Fairchild 2 1 Arizona State University and 2 University of South Carolina ABSTRACT

More information

Chapter 1: Exploring Data

Chapter 1: Exploring Data Chapter 1: Exploring Data Key Vocabulary:! individual! variable! frequency table! relative frequency table! distribution! pie chart! bar graph! two-way table! marginal distributions! conditional distributions!

More information

Challenges of Observational and Retrospective Studies

Challenges of Observational and Retrospective Studies Challenges of Observational and Retrospective Studies Kyoungmi Kim, Ph.D. March 8, 2017 This seminar is jointly supported by the following NIH-funded centers: Background There are several methods in which

More information

Score Tests of Normality in Bivariate Probit Models

Score Tests of Normality in Bivariate Probit Models Score Tests of Normality in Bivariate Probit Models Anthony Murphy Nuffield College, Oxford OX1 1NF, UK Abstract: A relatively simple and convenient score test of normality in the bivariate probit model

More information

Logistic Regression with Missing Data: A Comparison of Handling Methods, and Effects of Percent Missing Values

Logistic Regression with Missing Data: A Comparison of Handling Methods, and Effects of Percent Missing Values Logistic Regression with Missing Data: A Comparison of Handling Methods, and Effects of Percent Missing Values Sutthipong Meeyai School of Transportation Engineering, Suranaree University of Technology,

More information

REVIEW ARTICLE Anesthesiology 2010; 113: Copyright 2010, the American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins

REVIEW ARTICLE Anesthesiology 2010; 113: Copyright 2010, the American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins REVIEW ARTICLE Anestesiology 2010; 113:968 76 Copyrigt 2010, te American Society of Anestesiologists, Inc. Lippincott Williams & Wilkins David S. Warner, M.D., Editor Efficacy and Safety of Melatonin as

More information

An Investigation of Factors Influencing Causal Attributions in Managerial Decision Making

An Investigation of Factors Influencing Causal Attributions in Managerial Decision Making Marketing Letters 9:3 (1998): 301 312 1998 Kluwer Academic Publishers, Manufactured in The Netherlands An Investigation of Factors Influencing Causal Attributions in Managerial Decision Making SUNDER NARAYANAN

More information

Objective: To describe a new approach to neighborhood effects studies based on residential mobility and demonstrate this approach in the context of

Objective: To describe a new approach to neighborhood effects studies based on residential mobility and demonstrate this approach in the context of Objective: To describe a new approach to neighborhood effects studies based on residential mobility and demonstrate this approach in the context of neighborhood deprivation and preterm birth. Key Points:

More information

REPRODUCTIVE ENDOCRINOLOGY

REPRODUCTIVE ENDOCRINOLOGY FERTILITY AND STERILITY VOL. 74, NO. 2, AUGUST 2000 Copyright 2000 American Society for Reproductive Medicine Published by Elsevier Science Inc. Printed on acid-free paper in U.S.A. REPRODUCTIVE ENDOCRINOLOGY

More information

Clinical Trials A Practical Guide to Design, Analysis, and Reporting

Clinical Trials A Practical Guide to Design, Analysis, and Reporting Clinical Trials A Practical Guide to Design, Analysis, and Reporting Duolao Wang, PhD Ameet Bakhai, MBBS, MRCP Statistician Cardiologist Clinical Trials A Practical Guide to Design, Analysis, and Reporting

More information

Remarks on Bayesian Control Charts

Remarks on Bayesian Control Charts Remarks on Bayesian Control Charts Amir Ahmadi-Javid * and Mohsen Ebadi Department of Industrial Engineering, Amirkabir University of Technology, Tehran, Iran * Corresponding author; email address: ahmadi_javid@aut.ac.ir

More information

Using Inverse Probability-Weighted Estimators in Comparative Effectiveness Analyses With Observational Databases

Using Inverse Probability-Weighted Estimators in Comparative Effectiveness Analyses With Observational Databases ORIGINAL ARTICLE Using in Comparative Effectiveness Analyses With Observational Databases Lesley H. Curtis, PhD,* Bradley G. Hammill, MS,* Eric L. Eisenstein, DBA,* Judith M. Kramer, MD, MS,* and Kevin

More information

PharmaSUG Paper HA-04 Two Roads Diverged in a Narrow Dataset...When Coarsened Exact Matching is More Appropriate than Propensity Score Matching

PharmaSUG Paper HA-04 Two Roads Diverged in a Narrow Dataset...When Coarsened Exact Matching is More Appropriate than Propensity Score Matching PharmaSUG 207 - Paper HA-04 Two Roads Diverged in a Narrow Dataset...When Coarsened Exact Matching is More Appropriate than Propensity Score Matching Aran Canes, Cigna Corporation ABSTRACT Coarsened Exact

More information

Clinical trials with incomplete daily diary data

Clinical trials with incomplete daily diary data Clinical trials with incomplete daily diary data N. Thomas 1, O. Harel 2, and R. Little 3 1 Pfizer Inc 2 University of Connecticut 3 University of Michigan BASS, 2015 Thomas, Harel, Little (Pfizer) Clinical

More information

Public Assessment Report. Scientific discussion. (Atorvastatin calcium) SE/H/757/01-03/DC

Public Assessment Report. Scientific discussion. (Atorvastatin calcium) SE/H/757/01-03/DC Public Assessment Report Scientific discussion Atovans 10mg, 20mg and 40mg film coated tablets (Atorvastatin calcium) SE/H/757/01-03/DC Tis module reflects te scientific discussion for te approval of Atovans.

More information

11/24/2017. Do not imply a cause-and-effect relationship

11/24/2017. Do not imply a cause-and-effect relationship Correlational research is used to describe the relationship between two or more naturally occurring variables. Is age related to political conservativism? Are highly extraverted people less afraid of rejection

More information

Introduction & Basics

Introduction & Basics CHAPTER 1 Introduction & Basics 1.1 Statistics the Field... 1 1.2 Probability Distributions... 4 1.3 Study Design Features... 9 1.4 Descriptive Statistics... 13 1.5 Inferential Statistics... 16 1.6 Summary...

More information

Analysis of Rheumatoid Arthritis Data using Logistic Regression and Penalized Approach

Analysis of Rheumatoid Arthritis Data using Logistic Regression and Penalized Approach University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School November 2015 Analysis of Rheumatoid Arthritis Data using Logistic Regression and Penalized Approach Wei Chen

More information

Two-stage Methods to Implement and Analyze the Biomarker-guided Clinical Trail Designs in the Presence of Biomarker Misclassification

Two-stage Methods to Implement and Analyze the Biomarker-guided Clinical Trail Designs in the Presence of Biomarker Misclassification RESEARCH HIGHLIGHT Two-stage Methods to Implement and Analyze the Biomarker-guided Clinical Trail Designs in the Presence of Biomarker Misclassification Yong Zang 1, Beibei Guo 2 1 Department of Mathematical

More information

Improved control for confounding using propensity scores and instrumental variables?

Improved control for confounding using propensity scores and instrumental variables? Improved control for confounding using propensity scores and instrumental variables? Dr. Olaf H.Klungel Dept. of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute of Pharmaceutical Sciences

More information

Causal Inference in Randomized Experiments With Mediational Processes

Causal Inference in Randomized Experiments With Mediational Processes Psychological Methods 2008, Vol. 13, No. 4, 314 336 Copyright 2008 by the American Psychological Association 1082-989X/08/$12.00 DOI: 10.1037/a0014207 Causal Inference in Randomized Experiments With Mediational

More information

Section on Survey Research Methods JSM 2009

Section on Survey Research Methods JSM 2009 Missing Data and Complex Samples: The Impact of Listwise Deletion vs. Subpopulation Analysis on Statistical Bias and Hypothesis Test Results when Data are MCAR and MAR Bethany A. Bell, Jeffrey D. Kromrey

More information

Selected Topics in Biostatistics Seminar Series. Missing Data. Sponsored by: Center For Clinical Investigation and Cleveland CTSC

Selected Topics in Biostatistics Seminar Series. Missing Data. Sponsored by: Center For Clinical Investigation and Cleveland CTSC Selected Topics in Biostatistics Seminar Series Missing Data Sponsored by: Center For Clinical Investigation and Cleveland CTSC Brian Schmotzer, MS Biostatistician, CCI Statistical Sciences Core brian.schmotzer@case.edu

More information

Structural Approach to Bias in Meta-analyses

Structural Approach to Bias in Meta-analyses Original Article Received 26 July 2011, Revised 22 November 2011, Accepted 12 December 2011 Published online 2 February 2012 in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/jrsm.52 Structural

More information

Graphical assessment of internal and external calibration of logistic regression models by using loess smoothers

Graphical assessment of internal and external calibration of logistic regression models by using loess smoothers Tutorial in Biostatistics Received 21 November 2012, Accepted 17 July 2013 Published online 23 August 2013 in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/sim.5941 Graphical assessment of

More information

Regression Discontinuity Designs: An Approach to Causal Inference Using Observational Data

Regression Discontinuity Designs: An Approach to Causal Inference Using Observational Data Regression Discontinuity Designs: An Approach to Causal Inference Using Observational Data Aidan O Keeffe Department of Statistical Science University College London 18th September 2014 Aidan O Keeffe

More information

Iyengar Yoga Increases Cardiac Parasympathetic Nervous Modulation Among Healthy Yoga Practitioners

Iyengar Yoga Increases Cardiac Parasympathetic Nervous Modulation Among Healthy Yoga Practitioners Advance Access Publication 27 October 27 ecam 27;4(4)511 517 doi:1.193/ecam/nem87 Original Article Iyengar Increases Cardiac Parasympatetic Nervous Modulation Among Healty Practitioners Kerstin Kattab

More information

Propensity score methods to adjust for confounding in assessing treatment effects: bias and precision

Propensity score methods to adjust for confounding in assessing treatment effects: bias and precision ISPUB.COM The Internet Journal of Epidemiology Volume 7 Number 2 Propensity score methods to adjust for confounding in assessing treatment effects: bias and precision Z Wang Abstract There is an increasing

More information

Use of GEEs in STATA

Use of GEEs in STATA Use of GEEs in STATA 1. When generalised estimating equations are used and example 2. Stata commands and options for GEEs 3. Results from Stata (and SAS!) 4. Another use of GEEs Use of GEEs GEEs are one

More information

Estimating Reliability in Primary Research. Michael T. Brannick. University of South Florida

Estimating Reliability in Primary Research. Michael T. Brannick. University of South Florida Estimating Reliability 1 Running Head: ESTIMATING RELIABILITY Estimating Reliability in Primary Research Michael T. Brannick University of South Florida Paper presented in S. Morris (Chair) Advances in

More information

Analysis Propensity Score with Structural Equation Model Partial Least Square

Analysis Propensity Score with Structural Equation Model Partial Least Square PROCEEDING OF 3 RD INTERNATIONAL CONFERENCE ON RESEARCH, IMPLEMENTATION AND EDUCATION OF MATHEMATICS AND SCIENCE YOGYAKARTA, 16 17 MAY 2016 Analysis Propensity Score with Structural Equation Model Partial

More information

JSM Survey Research Methods Section

JSM Survey Research Methods Section Methods and Issues in Trimming Extreme Weights in Sample Surveys Frank Potter and Yuhong Zheng Mathematica Policy Research, P.O. Box 393, Princeton, NJ 08543 Abstract In survey sampling practice, unequal

More information

Individualized Treatment Effects Using a Non-parametric Bayesian Approach

Individualized Treatment Effects Using a Non-parametric Bayesian Approach Individualized Treatment Effects Using a Non-parametric Bayesian Approach Ravi Varadhan Nicholas C. Henderson Division of Biostatistics & Bioinformatics Department of Oncology Johns Hopkins University

More information

DRAFT (Final) Concept Paper On choosing appropriate estimands and defining sensitivity analyses in confirmatory clinical trials

DRAFT (Final) Concept Paper On choosing appropriate estimands and defining sensitivity analyses in confirmatory clinical trials DRAFT (Final) Concept Paper On choosing appropriate estimands and defining sensitivity analyses in confirmatory clinical trials EFSPI Comments Page General Priority (H/M/L) Comment The concept to develop

More information

Generalizing the right question, which is?

Generalizing the right question, which is? Generalizing RCT results to broader populations IOM Workshop Washington, DC, April 25, 2013 Generalizing the right question, which is? Miguel A. Hernán Harvard School of Public Health Observational studies

More information

BEST PRACTICES FOR IMPLEMENTATION AND ANALYSIS OF PAIN SCALE PATIENT REPORTED OUTCOMES IN CLINICAL TRIALS

BEST PRACTICES FOR IMPLEMENTATION AND ANALYSIS OF PAIN SCALE PATIENT REPORTED OUTCOMES IN CLINICAL TRIALS BEST PRACTICES FOR IMPLEMENTATION AND ANALYSIS OF PAIN SCALE PATIENT REPORTED OUTCOMES IN CLINICAL TRIALS Nan Shao, Ph.D. Director, Biostatistics Premier Research Group, Limited and Mark Jaros, Ph.D. Senior

More information

Nonresponse Rates and Nonresponse Bias In Household Surveys

Nonresponse Rates and Nonresponse Bias In Household Surveys Nonresponse Rates and Nonresponse Bias In Household Surveys Robert M. Groves University of Michigan and Joint Program in Survey Methodology Funding from the Methodology, Measurement, and Statistics Program

More information

Jae Jin An, Ph.D. Michael B. Nichol, Ph.D.

Jae Jin An, Ph.D. Michael B. Nichol, Ph.D. IMPACT OF MULTIPLE MEDICATION COMPLIANCE ON CARDIOVASCULAR OUTCOMES IN PATIENTS WITH TYPE II DIABETES AND COMORBID HYPERTENSION CONTROLLING FOR ENDOGENEITY BIAS Jae Jin An, Ph.D. Michael B. Nichol, Ph.D.

More information

Estimating indirect and direct effects of a Cancer of Unknown Primary (CUP) diagnosis on survival for a 6 month-period after diagnosis.

Estimating indirect and direct effects of a Cancer of Unknown Primary (CUP) diagnosis on survival for a 6 month-period after diagnosis. Estimating indirect and direct effects of a Cancer of Unknown Primary (CUP) diagnosis on survival for a 6 month-period after diagnosis. A Manuscript prepared in Fulfillment of a B.S Honors Thesis in Statistics

More information

Version No. 7 Date: July Please send comments or suggestions on this glossary to

Version No. 7 Date: July Please send comments or suggestions on this glossary to Impact Evaluation Glossary Version No. 7 Date: July 2012 Please send comments or suggestions on this glossary to 3ie@3ieimpact.org. Recommended citation: 3ie (2012) 3ie impact evaluation glossary. International

More information

Content. Basic Statistics and Data Analysis for Health Researchers from Foreign Countries. Research question. Example Newly diagnosed Type 2 Diabetes

Content. Basic Statistics and Data Analysis for Health Researchers from Foreign Countries. Research question. Example Newly diagnosed Type 2 Diabetes Content Quantifying association between continuous variables. Basic Statistics and Data Analysis for Health Researchers from Foreign Countries Volkert Siersma siersma@sund.ku.dk The Research Unit for General

More information

Estimands and Sensitivity Analysis in Clinical Trials E9(R1)

Estimands and Sensitivity Analysis in Clinical Trials E9(R1) INTERNATIONAL CONCIL FOR HARMONISATION OF TECHNICAL REQUIREMENTS FOR PHARMACEUTICALS FOR HUMAN USE ICH HARMONISED GUIDELINE Estimands and Sensitivity Analysis in Clinical Trials E9(R1) Current Step 2 version

More information

Methods to control for confounding - Introduction & Overview - Nicolle M Gatto 18 February 2015

Methods to control for confounding - Introduction & Overview - Nicolle M Gatto 18 February 2015 Methods to control for confounding - Introduction & Overview - Nicolle M Gatto 18 February 2015 Learning Objectives At the end of this confounding control overview, you will be able to: Understand how

More information

LINEAR REGRESSION FOR BIVARIATE CENSORED DATA VIA MULTIPLE IMPUTATION

LINEAR REGRESSION FOR BIVARIATE CENSORED DATA VIA MULTIPLE IMPUTATION STATISTICS IN MEDICINE Statist. Med. 18, 3111} 3121 (1999) LINEAR REGRESSION FOR BIVARIATE CENSORED DATA VIA MULTIPLE IMPUTATION WEI PAN * AND CHARLES KOOPERBERG Division of Biostatistics, School of Public

More information

Bayesian Confidence Intervals for Means and Variances of Lognormal and Bivariate Lognormal Distributions

Bayesian Confidence Intervals for Means and Variances of Lognormal and Bivariate Lognormal Distributions Bayesian Confidence Intervals for Means and Variances of Lognormal and Bivariate Lognormal Distributions J. Harvey a,b, & A.J. van der Merwe b a Centre for Statistical Consultation Department of Statistics

More information

Author's response to reviews

Author's response to reviews Author's response to reviews Title:Mental health problems in the 10th grade and non-completion of upper secondary school: the mediating role of grades in a population-based longitudinal study Authors:

More information

CHAPTER 3 RESEARCH METHODOLOGY

CHAPTER 3 RESEARCH METHODOLOGY CHAPTER 3 RESEARCH METHODOLOGY 3.1 Introduction 3.1 Methodology 3.1.1 Research Design 3.1. Research Framework Design 3.1.3 Research Instrument 3.1.4 Validity of Questionnaire 3.1.5 Statistical Measurement

More information

Underuse, Overuse, Comparative Advantage and Expertise in Healthcare

Underuse, Overuse, Comparative Advantage and Expertise in Healthcare Underuse, Overuse, Comparative Advantage and Expertise in Healthcare Amitabh Chandra Harvard and NBER Douglas Staiger Dartmouth and NBER Highest Performance Lowest Performance Source: Chandra, Staiger

More information

Discussion. Ralf T. Münnich Variance Estimation in the Presence of Nonresponse

Discussion. Ralf T. Münnich Variance Estimation in the Presence of Nonresponse Journal of Official Statistics, Vol. 23, No. 4, 2007, pp. 455 461 Discussion Ralf T. Münnich 1 1. Variance Estimation in the Presence of Nonresponse Professor Bjørnstad addresses a new approach to an extremely

More information

A Comparison of Methods for Determining HIV Viral Set Point

A Comparison of Methods for Determining HIV Viral Set Point STATISTICS IN MEDICINE Statist. Med. 2006; 00:1 6 [Version: 2002/09/18 v1.11] A Comparison of Methods for Determining HIV Viral Set Point Y. Mei 1, L. Wang 2, S. E. Holte 2 1 School of Industrial and Systems

More information

Worth the weight: Using Inverse Probability Weighted Cox Models in AIDS Research

Worth the weight: Using Inverse Probability Weighted Cox Models in AIDS Research University of Rhode Island DigitalCommons@URI Pharmacy Practice Faculty Publications Pharmacy Practice 2014 Worth the weight: Using Inverse Probability Weighted Cox Models in AIDS Research Ashley L. Buchanan

More information

On Regression Analysis Using Bivariate Extreme Ranked Set Sampling

On Regression Analysis Using Bivariate Extreme Ranked Set Sampling On Regression Analysis Using Bivariate Extreme Ranked Set Sampling Atsu S. S. Dorvlo atsu@squ.edu.om Walid Abu-Dayyeh walidan@squ.edu.om Obaid Alsaidy obaidalsaidy@gmail.com Abstract- Many forms of ranked

More information

Should a Normal Imputation Model Be Modified to Impute Skewed Variables?

Should a Normal Imputation Model Be Modified to Impute Skewed Variables? Sociological Methods and Research, 2013, 42(1), 105-138 Should a Normal Imputation Model Be Modified to Impute Skewed Variables? Paul T. von Hippel Abstract (169 words) Researchers often impute continuous

More information

Supplementary Appendix

Supplementary Appendix Supplementary Appendix This appendix has been provided by the authors to give readers additional information about their work. Supplement to: Weintraub WS, Grau-Sepulveda MV, Weiss JM, et al. Comparative

More information

Small Group Presentations

Small Group Presentations Admin Assignment 1 due next Tuesday at 3pm in the Psychology course centre. Matrix Quiz during the first hour of next lecture. Assignment 2 due 13 May at 10am. I will upload and distribute these at the

More information

Comparing Multiple Imputation to Single Imputation in the Presence of Large Design Effects: A Case Study and Some Theory

Comparing Multiple Imputation to Single Imputation in the Presence of Large Design Effects: A Case Study and Some Theory Comparing Multiple Imputation to Single Imputation in the Presence of Large Design Effects: A Case Study and Some Theory Nathaniel Schenker Deputy Director, National Center for Health Statistics* (and

More information

Jinhui Ma 1,2,3, Parminder Raina 1,2, Joseph Beyene 1 and Lehana Thabane 1,3,4,5*

Jinhui Ma 1,2,3, Parminder Raina 1,2, Joseph Beyene 1 and Lehana Thabane 1,3,4,5* Ma et al. BMC Medical Research Methodology 2013, 13:9 RESEARCH ARTICLE Open Access Comparison of population-averaged and cluster-specific models for the analysis of cluster randomized trials with missing

More information

Quality assessment of starter- produced weaning food subjected to different temperatures and ph

Quality assessment of starter- produced weaning food subjected to different temperatures and ph African Journal of Food Science Vol. 6(5), pp. 147-154, 15 Marc, 2012 Available online at ttp://www.academicjournals.org/ajfs DOI: 10.5897/AJFS11.143 ISSN 1996-0794 2012 Academic Journals Full Lengt Researc

More information

Statistical Power Sampling Design and sample Size Determination

Statistical Power Sampling Design and sample Size Determination Statistical Power Sampling Design and sample Size Determination Deo-Gracias HOUNDOLO Impact Evaluation Specialist dhoundolo@3ieimpact.org Outline 1. Sampling basics 2. What do evaluators do? 3. Statistical

More information

Post mortem proteome degradation profiles of longissimus muscle in Yorkshire and Duroc

Post mortem proteome degradation profiles of longissimus muscle in Yorkshire and Duroc Arc. Tierz., Dummerstorf 51 (8) Special Issue, 62-68 1 Animal Breeding and Genomics Centre (ABGC), Wageningen University and Researc Centre Animal Sciences Group (ASG-WUR), Te Neterlands 2 Hypor BV, A

More information

Carrying out an Empirical Project

Carrying out an Empirical Project Carrying out an Empirical Project Empirical Analysis & Style Hint Special program: Pre-training 1 Carrying out an Empirical Project 1. Posing a Question 2. Literature Review 3. Data Collection 4. Econometric

More information

Meta-analysis using HLM 1. Running head: META-ANALYSIS FOR SINGLE-CASE INTERVENTION DESIGNS

Meta-analysis using HLM 1. Running head: META-ANALYSIS FOR SINGLE-CASE INTERVENTION DESIGNS Meta-analysis using HLM 1 Running head: META-ANALYSIS FOR SINGLE-CASE INTERVENTION DESIGNS Comparing Two Meta-Analysis Approaches for Single Subject Design: Hierarchical Linear Model Perspective Rafa Kasim

More information

Propensity Score Analysis: Its rationale & potential for applied social/behavioral research. Bob Pruzek University at Albany

Propensity Score Analysis: Its rationale & potential for applied social/behavioral research. Bob Pruzek University at Albany Propensity Score Analysis: Its rationale & potential for applied social/behavioral research Bob Pruzek University at Albany Aims: First, to introduce key ideas that underpin propensity score (PS) methodology

More information