CS221 / Autumn 2017 / Liang & Ermon. Lecture 19: Conclusion

Size: px
Start display at page:

Download "CS221 / Autumn 2017 / Liang & Ermon. Lecture 19: Conclusion"

Transcription

1 CS221 / Autumn 2017 / Liang & Ermon Lecture 19: Conclusion

2 Outlook AI is everywhere: IT, transportation, manifacturing, etc. AI being used to make decisions for: education, credit, employment, advertising, health care and policing CS221 / Autumn 2017 / Liang & Ermon 1

3 Ethical Issues Algorithms and computers are neutral: but algorithms and data are created by people: CS221 / Autumn 2017 / Liang & Ermon 2

4 2D visualization of word vectors CS221 / Autumn 2017 / Liang & Ermon 3

5 Analogies [Bolukbasi et al., 2016] Differences in vectors capture relations: θ france θ french θ mexico θ spanish (language) θ king θ man θ queen θ woman (gender) θ king θ man + θ woman θ queen Data as a social mirror: θ computer programmer θ man + θ woman θ homemaker θ doctor θ father + θ mother θ nurse θ feminism θ woman + θ man θ convervatism CS221 / Autumn 2017 / Liang & Ermon 4

6 Framework x D train Learner f y By design: picks up patterns in training data, including biases CS221 / Autumn 2017 / Liang & Ermon 5

7 Ethical concerns..big data analytics have the potential to eclipse longstanding civil rights protections in how personal information is used in housing, credit, employment, health, education and the marketplace. Americans relationship with data should expand, not diminish, their opportunities.. CS221 / Autumn 2017 / Liang & Ermon 6

8 Question When you develop ML systems, what should you be aware of? CS221 / Autumn 2017 / Liang & Ermon 7

9 Protected attributes Example task: predict whether a criminal will re-offend Available data: [Conviction Type, Number of Priors, Age, Income, Location, Race] Protected Attributes: To avoid discrimination, we should discard the Race attribute. New data: [Conviction Type, Number of Priors, Age, Income, Location] Use degree-2 polynomial features: [Conviction Type * Number of Priors, Conviction Type * Age,..., Income*Location] CS221 / Autumn 2017 / Liang & Ermon 8

10 Protected attributes Example task: predict whether a criminal will re-offend Features: [Conviction Type * Number of Priors, Conviction Type * Age,..., Income*Location] We have access to the following feature: (Location = Oakland) (Income < 10K) Can infer absent attributes: for example, race and gender CS221 / Autumn 2017 / Liang & Ermon 9

11 Machine Bias COMPAS: software used across the country to predict future criminals (recidivism) Propublica: it s biased against blacks (higher false positive rates) Disputed by Northpointe Inc. (same precision) CS221 / Autumn 2017 / Liang & Ermon 10

12 Approximation and estimation error All predictors F f approx. error g Learning est. error ˆf Feature extraction Generally, more data means smaller estimation error By definition, less data on minority groups. Can lead to higher error rates on minority. CS221 / Autumn 2017 / Liang & Ermon 11

13 Fairness Figure from Moritz Hardt Most ML training objectives will produce model accurate for majority class, at the expense of the minority one. CS221 / Autumn 2017 / Liang & Ermon 12

14 Fairness Figure from Moritz Hardt Two classifiers with 5% error: CS221 / Autumn 2017 / Liang & Ermon 13

15 References Links: CS221 / Autumn 2017 / Liang & Ermon 14

16 Responsibility fatml.org Principles for Accountable Algorithms: There is always a human ultimately responsible for decisions made or informed by an algorithm. The algorithm did it is not an acceptable excuse if algorithmic systems make mistakes or have undesired consequences, including from machine-learning processes CS221 / Autumn 2017 / Liang & Ermon 15

17 Feedback loops Data Hypothesis Predictions CS221 / Autumn 2017 / Liang & Ermon 16

18 Privacy Not reveal sensitive information (income, health, communication) Compute average statistics (how many people have cancer?) yes no yes no no no no yes no yes CS221 / Autumn 2017 / Liang & Ermon 17

19 [Warner, 1965] Randomized response Do you have a sibling? Method: Flip two coins. If both heads: answer yes/no randomly Otherwise: answer yes/no truthfully Analysis: true-prob = 4 3 (observed-prob 1 8 ) CS221 / Autumn 2017 / Liang & Ermon 18

20 Causality Goal: figure out the effect of a treatment on survival Data: For untreated patients, 80% survive For treated patients, 30% survive Does the treatment help? Nothing! Sick people are more likely to undergo treatment... CS221 / Autumn 2017 / Liang & Ermon 19

21 [Szegedy et al., 2013; Goodfellow et al., 2014] Adversaries AlexNet predicts correctly on the left AlexNet predicts ostrich on the right CS221 / Autumn 2017 / Liang & Ermon 20

22 [Mykel Kochdorfer] Safety guarantees For air-traffic control, threshold level of safety: probability 10 9 for a catastrophic failure (e.g., collision) per flight hour Move from human designed rules to a numeric Q-value table? yes CS221 / Autumn 2017 / Liang & Ermon 21

23 CS221 / Autumn 2017 / Liang & Ermon 22

24 CS221 / Autumn 2017 / Liang & Ermon 23

25 CS221 / Autumn 2017 / Liang & Ermon 24

26 Other AI-related courses Foundations: CS228: Probabilistic Graphical Models CS229: Machine Learning CS229T: Statistical Learning Theory CS334A: Convex Optimization CS238: Decision Making Under Uncertainty CS257: Logic and Artificial Intelligence CS246: Mining Massive Data Sets CS221 / Autumn 2017 / Liang & Ermon 25

27 Other AI-related courses Applications: CS224N: Natural Language Processing (with Deep Learning) CS224U: Natural Language Understanding CS231A: Introduction to Computer Vision CS231N: Convolutional Neural Networks for Visual Recognition CS223A: Introduction to Robotics CS227B: General Game Playing CS221 / Autumn 2017 / Liang & Ermon 26

28 Probabilistic graphical models (CS228) h x Forward-backward, variable elimination belief propagation, variational inference Gibbs sampling Markov Chain Monte Carlo (MCMC) Learning the structure CS221 / Autumn 2017 / Liang & Ermon 27

29 Machine learning (CS229) Boosting, bagging, feature selection Discrete continuous K-means mixture of Gaussians Q-learning policy gradient CS221 / Autumn 2017 / Liang & Ermon 28

30 Statistical learning theory (CS229T) Question: what are the mathematical principles behind learning? Uniform convergence: with probability at least 0.95, your algorithm will return a predictor h H such that TestError(h) TrainError(h) + Complexity(H) n CS221 / Autumn 2017 / Liang & Ermon 29

31 Cognitive science Question: How does the human mind work? Cognitive science and AI grew up together Humans can learn from few examples on many tasks Computation and cognitive science (PSYCH204): Cognition as Bayesian modeling probabilistic program [Tenenbaum, Goodman, Griffiths] CS221 / Autumn 2017 / Liang & Ermon 30

32 Neuroscience Neuroscience: hardware; cognitive science: software Artificial neural network as computational models of the brain Modern neural networks (GPUs + backpropagation) not biologically plausible Analogy: birds versus airplanes; what are principles of intelligence? CS221 / Autumn 2017 / Liang & Ermon 31

33 Online materials Online courses (Coursera, edx) Videolectures.net: tons of recorded talks from major leaders of AI (and other fields) arxiv.org: latest research (pre-prints) Blog posts, tutorials CS221 / Autumn 2017 / Liang & Ermon 32

34 Conferences AI: IJCAI, AAAI Machine learning: ICML, NIPS, UAI, COLT Data mining: KDD, CIKM, WWW Natural language processing: ACL, EMNLP, NAACL Computer vision: CPVR, ICCV, ECCV Robotics: RSS, ICRA CS221 / Autumn 2017 / Liang & Ermon 33

35 Search problems Markov decision processes Constraint satisfaction problems Adversarial games Bayesian networks Reflex States Variables Logic Low-level intelligence Machine learning High-level intelligence Please fill out course evaluations on Axess. Thanks for an exciting quarter! CS221 / Autumn 2017 / Liang & Ermon 34

Applied Machine Learning, Lecture 11: Ethical and legal considerations; domain effects and domain adaptation

Applied Machine Learning, Lecture 11: Ethical and legal considerations; domain effects and domain adaptation Applied Machine Learning, Lecture 11: Ethical and legal considerations; domain effects and domain adaptation Richard Johansson including some slides borrowed from Barbara Plank overview introduction bias

More information

ERA: Architectures for Inference

ERA: Architectures for Inference ERA: Architectures for Inference Dan Hammerstrom Electrical And Computer Engineering 7/28/09 1 Intelligent Computing In spite of the transistor bounty of Moore s law, there is a large class of problems

More information

Cognitive Modeling. Lecture 12: Bayesian Inference. Sharon Goldwater. School of Informatics University of Edinburgh

Cognitive Modeling. Lecture 12: Bayesian Inference. Sharon Goldwater. School of Informatics University of Edinburgh Cognitive Modeling Lecture 12: Bayesian Inference Sharon Goldwater School of Informatics University of Edinburgh sgwater@inf.ed.ac.uk February 18, 20 Sharon Goldwater Cognitive Modeling 1 1 Prediction

More information

CS 4365: Artificial Intelligence Recap. Vibhav Gogate

CS 4365: Artificial Intelligence Recap. Vibhav Gogate CS 4365: Artificial Intelligence Recap Vibhav Gogate Exam Topics Search BFS, DFS, UCS, A* (tree and graph) Completeness and Optimality Heuristics: admissibility and consistency CSPs Constraint graphs,

More information

Bayesian Inference Bayes Laplace

Bayesian Inference Bayes Laplace Bayesian Inference Bayes Laplace Course objective The aim of this course is to introduce the modern approach to Bayesian statistics, emphasizing the computational aspects and the differences between the

More information

Artificial intelligence and judicial systems: The so-called predictive justice. 20 April

Artificial intelligence and judicial systems: The so-called predictive justice. 20 April Artificial intelligence and judicial systems: The so-called predictive justice 20 April 2018 1 Context The use of so-called artificielle intelligence received renewed interest over the past years.. Stakes

More information

On Algorithms and Fairness

On Algorithms and Fairness On Algorithms and Fairness Jon Kleinberg Cornell University Includes joint work with Sendhil Mullainathan, Manish Raghavan, and Maithra Raghu Forming Estimates of Future Performance Estimating probability

More information

Kai-Wei Chang UCLA. What It Takes to Control Societal Bias in Natural Language Processing. References:

Kai-Wei Chang UCLA. What It Takes to Control Societal Bias in Natural Language Processing. References: What It Takes to Control Societal Bias in Natural Language Processing Kai-Wei Chang UCLA References: http://kwchang.net Kai-Wei Chang (kwchang.net/talks/sp.html) 1 A father and son get in a car crash and

More information

Intelligent Machines That Act Rationally. Hang Li Toutiao AI Lab

Intelligent Machines That Act Rationally. Hang Li Toutiao AI Lab Intelligent Machines That Act Rationally Hang Li Toutiao AI Lab Four Definitions of Artificial Intelligence Building intelligent machines (i.e., intelligent computers) Thinking humanly Acting humanly Thinking

More information

Signal Detection Theory and Bayesian Modeling

Signal Detection Theory and Bayesian Modeling Signal Detection Theory and Bayesian Modeling COGS 202: Computational Modeling of Cognition Omar Shanta, Shuai Tang, Gautam Reddy, Reina Mizrahi, Mehul Shah Detection Theory and Psychophysics: A Review

More information

Burn-in, bias, and the rationality of anchoring

Burn-in, bias, and the rationality of anchoring Burn-in, bias, and the rationality of anchoring Falk Lieder Translational Neuromodeling Unit ETH and University of Zurich lieder@biomed.ee.ethz.ch Thomas L. Griffiths Psychology Department University of

More information

Intelligent Machines That Act Rationally. Hang Li Bytedance AI Lab

Intelligent Machines That Act Rationally. Hang Li Bytedance AI Lab Intelligent Machines That Act Rationally Hang Li Bytedance AI Lab Four Definitions of Artificial Intelligence Building intelligent machines (i.e., intelligent computers) Thinking humanly Acting humanly

More information

Generative Adversarial Networks.

Generative Adversarial Networks. Generative Adversarial Networks www.cs.wisc.edu/~page/cs760/ Goals for the lecture you should understand the following concepts Nash equilibrium Minimax game Generative adversarial network Prisoners Dilemma

More information

Putting Context into. Vision. September 15, Derek Hoiem

Putting Context into. Vision. September 15, Derek Hoiem Putting Context into Vision Derek Hoiem September 15, 2004 Questions to Answer What is context? How is context used in human vision? How is context currently used in computer vision? Conclusions Context

More information

Vision as Bayesian inference: analysis by synthesis?

Vision as Bayesian inference: analysis by synthesis? Vision as Bayesian inference: analysis by synthesis? Schwarz Andreas, Wiesner Thomas 1 / 70 Outline Introduction Motivation Problem Description Bayesian Formulation Generative Models Letters, Text Faces

More information

CS343: Artificial Intelligence

CS343: Artificial Intelligence CS343: Artificial Intelligence Introduction: Part 2 Prof. Scott Niekum University of Texas at Austin [Based on slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All materials

More information

A Gendered Perspective on Artificial Intelligence

A Gendered Perspective on Artificial Intelligence A Gendered Perspective on Artificial Intelligence Smriti Parsheera National Institute of Public Finance & Policy smriti.parsheera@gmail.com Overview The origins of AI and its gender dimensions The questions:

More information

Event Classification and Relationship Labeling in Affiliation Networks

Event Classification and Relationship Labeling in Affiliation Networks Event Classification and Relationship Labeling in Affiliation Networks Abstract Many domains are best described as an affiliation network in which there are entities such as actors, events and organizations

More information

Bias In, Bias Out. Adventures in Algorithmic Fairness. Sandy Mayson November 3, 2016

Bias In, Bias Out. Adventures in Algorithmic Fairness. Sandy Mayson November 3, 2016 Bias In, Bias Out Adventures in Algorithmic Fairness Sandy Mayson November 3, 2016 1 [B]lacks are almost twice as likely as whites to be labeled a higher risk but not actually re-offend. It makes the opposite

More information

Course Departmental Prefix and #: Title: Course Departmental Prefix and #: Title: Course Departmental Prefix and #: Title:

Course Departmental Prefix and #: Title: Course Departmental Prefix and #: Title: Course Departmental Prefix and #: Title: Psychology Major Tracking Sheet AB Requirements Eleven (11) courses in psychology are required for the major. The major is devised to provide breadth and depth, a small group course in psychology, and

More information

CISC453 Winter Probabilistic Reasoning Part B: AIMA3e Ch

CISC453 Winter Probabilistic Reasoning Part B: AIMA3e Ch CISC453 Winter 2010 Probabilistic Reasoning Part B: AIMA3e Ch 14.5-14.8 Overview 2 a roundup of approaches from AIMA3e 14.5-14.8 14.5 a survey of approximate methods alternatives to the direct computing

More information

Probabilistically Estimating Backbones and Variable Bias: Experimental Overview

Probabilistically Estimating Backbones and Variable Bias: Experimental Overview Probabilistically Estimating Backbones and Variable Bias: Experimental Overview Eric I. Hsu, Christian J. Muise, J. Christopher Beck, and Sheila A. McIlraith Department of Computer Science, University

More information

Pythia WEB ENABLED TIMED INFLUENCE NET MODELING TOOL SAL. Lee W. Wagenhals Alexander H. Levis

Pythia WEB ENABLED TIMED INFLUENCE NET MODELING TOOL SAL. Lee W. Wagenhals Alexander H. Levis Pythia WEB ENABLED TIMED INFLUENCE NET MODELING TOOL Lee W. Wagenhals Alexander H. Levis ,@gmu.edu Adversary Behavioral Modeling Maxwell AFB, Montgomery AL March 8-9, 2007 1 Outline Pythia

More information

Computational Cognitive Neuroscience

Computational Cognitive Neuroscience Computational Cognitive Neuroscience Computational Cognitive Neuroscience Computational Cognitive Neuroscience *Computer vision, *Pattern recognition, *Classification, *Picking the relevant information

More information

Marcus Hutter Canberra, ACT, 0200, Australia

Marcus Hutter Canberra, ACT, 0200, Australia Marcus Hutter Canberra, ACT, 0200, Australia http://www.hutter1.net/ Australian National University Abstract The approaches to Artificial Intelligence (AI) in the last century may be labelled as (a) trying

More information

Why did the network make this prediction?

Why did the network make this prediction? Why did the network make this prediction? Ankur Taly (Google Inc.) Joint work with Mukund Sundararajan and Qiqi Yan Some Deep Learning Successes Source: https://www.cbsinsights.com Deep Neural Networks

More information

Supervised Learner for the Prediction of Hi-C Interaction Counts and Determination of Influential Features. Tyler Yue Lab

Supervised Learner for the Prediction of Hi-C Interaction Counts and Determination of Influential Features. Tyler Yue Lab Supervised Learner for the Prediction of Hi-C Interaction Counts and Determination of Influential Features Tyler Derr @ Yue Lab tsd5037@psu.edu Background Hi-C is a chromosome conformation capture (3C)

More information

Exploring the Influence of Particle Filter Parameters on Order Effects in Causal Learning

Exploring the Influence of Particle Filter Parameters on Order Effects in Causal Learning Exploring the Influence of Particle Filter Parameters on Order Effects in Causal Learning Joshua T. Abbott (joshua.abbott@berkeley.edu) Thomas L. Griffiths (tom griffiths@berkeley.edu) Department of Psychology,

More information

Minority Report: ML Fairness in Criminality Prediction

Minority Report: ML Fairness in Criminality Prediction Minority Report: ML Fairness in Criminality Prediction Dominick Lim djlim@stanford.edu Torin Rudeen torinmr@stanford.edu 1. Introduction 1.1. Motivation Machine learning is used more and more to make decisions

More information

CS6501: Deep Learning for Visual Recognition. GenerativeAdversarial Networks (GANs)

CS6501: Deep Learning for Visual Recognition. GenerativeAdversarial Networks (GANs) CS6501: Deep Learning for Visual Recognition GenerativeAdversarial Networks (GANs) Today s Class Adversarial Examples Input Optimization Generative Adversarial Networks (GANs) Conditional GANs Style-Transfer

More information

PART - A 1. Define Artificial Intelligence formulated by Haugeland. The exciting new effort to make computers think machines with minds in the full and literal sense. 2. Define Artificial Intelligence

More information

Decisions and Dependence in Influence Diagrams

Decisions and Dependence in Influence Diagrams JMLR: Workshop and Conference Proceedings vol 52, 462-473, 2016 PGM 2016 Decisions and Dependence in Influence Diagrams Ross D. hachter Department of Management cience and Engineering tanford University

More information

How do Categories Work?

How do Categories Work? Presentations Logistics Think about what you want to do Thursday we ll informally sign up, see if we can reach consensus. Topics Linear representations of classes Non-linear representations of classes

More information

Lecture 3: Bayesian Networks 1

Lecture 3: Bayesian Networks 1 Lecture 3: Bayesian Networks 1 Jingpeng Li 1 Content Reminder from previous lecture: Bayes theorem Bayesian networks Why are they currently interesting? Detailed example from medical diagnostics Bayesian

More information

High-level Vision. Bernd Neumann Slides for the course in WS 2004/05. Faculty of Informatics Hamburg University Germany

High-level Vision. Bernd Neumann Slides for the course in WS 2004/05. Faculty of Informatics Hamburg University Germany High-level Vision Bernd Neumann Slides for the course in WS 2004/05 Faculty of Informatics Hamburg University Germany neumann@informatik.uni-hamburg.de http://kogs-www.informatik.uni-hamburg.de 1 Contents

More information

Visual semantics: image elements. Symbols Objects People Poses

Visual semantics: image elements. Symbols Objects People Poses Visible Partisanship Polmeth XXXIII, Rice University, July 22, 2016 Convolutional Neural Networks for the Analysis of Political Images L. Jason Anastasopoulos ljanastas@uga.edu (University of Georgia,

More information

Learning and Adaptive Behavior, Part II

Learning and Adaptive Behavior, Part II Learning and Adaptive Behavior, Part II April 12, 2007 The man who sets out to carry a cat by its tail learns something that will always be useful and which will never grow dim or doubtful. -- Mark Twain

More information

Introduction to Machine Learning. Katherine Heller Deep Learning Summer School 2018

Introduction to Machine Learning. Katherine Heller Deep Learning Summer School 2018 Introduction to Machine Learning Katherine Heller Deep Learning Summer School 2018 Outline Kinds of machine learning Linear regression Regularization Bayesian methods Logistic Regression Why we do this

More information

Convolutional Neural Networks for Text Classification

Convolutional Neural Networks for Text Classification Convolutional Neural Networks for Text Classification Sebastian Sierra MindLab Research Group July 1, 2016 ebastian Sierra (MindLab Research Group) NLP Summer Class July 1, 2016 1 / 32 Outline 1 What is

More information

Hierarchical Convolutional Features for Visual Tracking

Hierarchical Convolutional Features for Visual Tracking Hierarchical Convolutional Features for Visual Tracking Chao Ma Jia-Bin Huang Xiaokang Yang Ming-Husan Yang SJTU UIUC SJTU UC Merced ICCV 2015 Background Given the initial state (position and scale), estimate

More information

Applications with Bayesian Approach

Applications with Bayesian Approach Applications with Bayesian Approach Feng Li feng.li@cufe.edu.cn School of Statistics and Mathematics Central University of Finance and Economics Outline 1 Missing Data in Longitudinal Studies 2 FMRI Analysis

More information

MS&E 226: Small Data

MS&E 226: Small Data MS&E 226: Small Data Lecture 10: Introduction to inference (v2) Ramesh Johari ramesh.johari@stanford.edu 1 / 17 What is inference? 2 / 17 Where did our data come from? Recall our sample is: Y, the vector

More information

Bayesian Machine Learning for Decoding the Brain

Bayesian Machine Learning for Decoding the Brain for Decoding the Brain Radboud University Nijmegen, The Netherlands Institute for Computing and Information Sciences Radboud University Nijmegen, The Netherlands June 10, IWANN 2011, Torremolinos Faculty

More information

Testing Bias Prevention Techniques on Recidivism Risk Models

Testing Bias Prevention Techniques on Recidivism Risk Models Testing Bias Prevention Techniques on Recidivism Risk Models Claudia McKenzie, Mathematical and Computational Science, Stanford University, claudi10@stanford.edu 1 Introduction Risk assessment algorithms

More information

What is Artificial Intelligence? A definition of Artificial Intelligence. Systems that act like humans. Notes

What is Artificial Intelligence? A definition of Artificial Intelligence. Systems that act like humans. Notes What is? It is a young area of science (1956) Its goals are what we consider Intelligent behaviour There are many approaches from different points of view It has received influence from very diverse areas

More information

BAYESIAN HYPOTHESIS TESTING WITH SPSS AMOS

BAYESIAN HYPOTHESIS TESTING WITH SPSS AMOS Sara Garofalo Department of Psychiatry, University of Cambridge BAYESIAN HYPOTHESIS TESTING WITH SPSS AMOS Overview Bayesian VS classical (NHST or Frequentist) statistical approaches Theoretical issues

More information

Risk Assessment Update: ARREST SCALES February 28, 2018 DRAFT

Risk Assessment Update: ARREST SCALES February 28, 2018 DRAFT SUMMARY: In December 2017 the Commission voted to replace number of prior convictions with number of prior arrests as a predictor in the risk assessment scales. Over the past months staff has prepared

More information

Is Motion Planning Overrated? Jeannette Bohg - Interactive Perception and Robot Learning Lab - Stanford

Is Motion Planning Overrated? Jeannette Bohg - Interactive Perception and Robot Learning Lab - Stanford Is Motion Planning Overrated? Jeannette Bohg - Interactive Perception and Robot Learning Lab - Stanford Is Motion Planning Overrated? Jeannette Bohg - Interactive Perception and Robot Learning Lab - Stanford

More information

Probabilistic Models in Cognitive Science and Artificial Intelligence

Probabilistic Models in Cognitive Science and Artificial Intelligence Probabilistic Models in Cognitive Science and Artificial Intelligence Very Brief History of Cog Sci and AI 1950 s-1980 s Symbolic models of cognition von Neumann computer architecture as metaphor 1980

More information

Just Machine Learning

Just Machine Learning Just Machine Learning tina@eliassi.org Tina Eliassi-Rad @tinaeliassi http://eliassi.org/safra17.pdf What is machine learning? https://xkcd.com/1838/ Machine learning emerged from AI Economics and Organizational

More information

Introduction and Historical Background. August 22, 2007

Introduction and Historical Background. August 22, 2007 1 Cognitive Bases of Behavior Introduction and Historical Background August 22, 2007 2 Cognitive Psychology Concerned with full range of psychological processes from sensation to knowledge representation

More information

Evaluating Risk Assessment: Finding a Methodology that Supports your Agenda There are few issues facing criminal justice decision makers generating

Evaluating Risk Assessment: Finding a Methodology that Supports your Agenda There are few issues facing criminal justice decision makers generating Evaluating Risk Assessment: Finding a Methodology that Supports your Agenda There are few issues facing criminal justice decision makers generating more interest than fairness and bias with risk assessments.

More information

State Estimation: Particle Filter

State Estimation: Particle Filter State Estimation: Particle Filter Daniel Seliger HAUPT-/ BACHELOR- SEMINAR ADAPTIVE 28.06.2012 SYSTEME PST PROF. DR. WIRSING 14. JUNI 2009 VORNAME NAME Overview 1. Repitition: Bayesian Filtering 2. Particle

More information

A Bayesian Network Model for Analysis of the Factors Affecting Crime Risk

A Bayesian Network Model for Analysis of the Factors Affecting Crime Risk A Bayesian Network Model for Analysis of the Factors Affecting Crime Risk ROONGRASAMEE BOONDAO, VATCHARAPORN ESICHAIKUL and NITIN KUMAR TRIPATHI School of Advanced Technologies Asian Institute of Technology

More information

Improving the Interpretability of DEMUD on Image Data Sets

Improving the Interpretability of DEMUD on Image Data Sets Improving the Interpretability of DEMUD on Image Data Sets Jake Lee, Jet Propulsion Laboratory, California Institute of Technology & Columbia University, CS 19 Intern under Kiri Wagstaff Summer 2018 Government

More information

Between-word regressions as part of rational reading

Between-word regressions as part of rational reading Between-word regressions as part of rational reading Klinton Bicknell & Roger Levy UC San Diego CUNY 2010: New York Bicknell & Levy (UC San Diego) Regressions as rational reading CUNY 2010 1 / 23 Introduction

More information

HHS Public Access Author manuscript Trends Cogn Sci. Author manuscript; available in PMC 2018 May 01.

HHS Public Access Author manuscript Trends Cogn Sci. Author manuscript; available in PMC 2018 May 01. Cognitive Computational Neuroscience: A New Conference for an Emerging Discipline Thomas Naselaris 1, Danielle S. Bassett 2, Alyson K. Fletcher 3, Konrad Kording 4, Nikolaus Kriegeskorte 5, Hendrikje Nienborg

More information

P. RICHARD HAHN. Research areas. Employment. Education. Research papers

P. RICHARD HAHN. Research areas. Employment. Education. Research papers P. RICHARD HAHN Arizona State University email: prhahn@asu.edu Research areas Bayesian methods, causal inference, foundations of statistics, nonlinear regression, Monte Carlo methods, applications to social

More information

Introduction to Deep Reinforcement Learning and Control

Introduction to Deep Reinforcement Learning and Control Carnegie Mellon School of Computer Science Deep Reinforcement Learning and Control Introduction to Deep Reinforcement Learning and Control Lecture 1, CMU 10703 Katerina Fragkiadaki Logistics 3 assignments

More information

Rethinking Cognitive Architecture!

Rethinking Cognitive Architecture! Rethinking Cognitive Architecture! Reconciling Uniformity and Diversity via Graphical Models! Paul Rosenbloom!!! 1/25/2010! Department of Computer Science &! Institute for Creative Technologies! The projects

More information

Kelvin Chan Feb 10, 2015

Kelvin Chan Feb 10, 2015 Underestimation of Variance of Predicted Mean Health Utilities Derived from Multi- Attribute Utility Instruments: The Use of Multiple Imputation as a Potential Solution. Kelvin Chan Feb 10, 2015 Outline

More information

Fodor on Functionalism EMILY HULL

Fodor on Functionalism EMILY HULL Fodor on Functionalism EMILY HULL Deficiencies in Other Theories Dualism Failure to account for mental causation Immaterial substance cannot cause physical events If mental processes were a different substance

More information

A Vision-based Affective Computing System. Jieyu Zhao Ningbo University, China

A Vision-based Affective Computing System. Jieyu Zhao Ningbo University, China A Vision-based Affective Computing System Jieyu Zhao Ningbo University, China Outline Affective Computing A Dynamic 3D Morphable Model Facial Expression Recognition Probabilistic Graphical Models Some

More information

arxiv: v1 [stat.ml] 23 Jan 2017

arxiv: v1 [stat.ml] 23 Jan 2017 Learning what to look in chest X-rays with a recurrent visual attention model arxiv:1701.06452v1 [stat.ml] 23 Jan 2017 Petros-Pavlos Ypsilantis Department of Biomedical Engineering King s College London

More information

The University of Tokyo, NVAIL Partner Yoshitaka Ushiku

The University of Tokyo, NVAIL Partner Yoshitaka Ushiku Recognize, Describe, and Generate: Introduction of Recent Work at MIL The University of Tokyo, NVAIL Partner Yoshitaka Ushiku MIL: Machine Intelligence Laboratory Beyond Human Intelligence Based on Cyber-Physical

More information

A HMM-based Pre-training Approach for Sequential Data

A HMM-based Pre-training Approach for Sequential Data A HMM-based Pre-training Approach for Sequential Data Luca Pasa 1, Alberto Testolin 2, Alessandro Sperduti 1 1- Department of Mathematics 2- Department of Developmental Psychology and Socialisation University

More information

Individual Differences in Attention During Category Learning

Individual Differences in Attention During Category Learning Individual Differences in Attention During Category Learning Michael D. Lee (mdlee@uci.edu) Department of Cognitive Sciences, 35 Social Sciences Plaza A University of California, Irvine, CA 92697-5 USA

More information

Fairness in Machine Learning and Its Causal Aspects

Fairness in Machine Learning and Its Causal Aspects Fairness in Machine Learning and Its Causal Aspects Ricardo Silva University College London and The Alan Turing Institute ricardo@stats.ucl.ac.uk With joint work by Matt Kusner, Joshua Loftus and Chris

More information

What is AI? The science of making machines that:

What is AI? The science of making machines that: What is AI? The science of making machines that: Think like humans Think rationally Act like humans Act rationally Thinking Like Humans? The cognitive science approach: 1960s ``cognitive revolution'':

More information

Making fair decisions with algorithms

Making fair decisions with algorithms Making fair decisions with algorithms Sam Corbett-Davies with Emma Pierson, Avi Feller, Aziz Huq, and Sharad Goel How do we identify bias in algorithmic decisions? Idea: consider how researchers have identified

More information

in Engineering Prof. Dr. Michael Havbro Faber ETH Zurich, Switzerland Swiss Federal Institute of Technology

in Engineering Prof. Dr. Michael Havbro Faber ETH Zurich, Switzerland Swiss Federal Institute of Technology Risk and Safety in Engineering Prof. Dr. Michael Havbro Faber ETH Zurich, Switzerland Contents of Today's Lecture Introduction to Bayesian Probabilistic Nets (BPN) Causality as a support in reasoning Basic

More information

Introduction to Computational Neuroscience

Introduction to Computational Neuroscience Introduction to Computational Neuroscience Lecture 5: Data analysis II Lesson Title 1 Introduction 2 Structure and Function of the NS 3 Windows to the Brain 4 Data analysis 5 Data analysis II 6 Single

More information

Professional Skills in Computer Science Lecture 8: Induction (2)

Professional Skills in Computer Science Lecture 8: Induction (2) Professional Skills in Computer Science Lecture 8: Induction (2) Ullrich Hustadt Department of Computer Science School of Electrical Engineering, Electronics, and Computer Science University of Liverpool

More information

Definitions. The science of making machines that: This slide deck courtesy of Dan Klein at UC Berkeley

Definitions. The science of making machines that: This slide deck courtesy of Dan Klein at UC Berkeley Definitions The science of making machines that: Think like humans Think rationally Act like humans Act rationally This slide deck courtesy of Dan Klein at UC Berkeley Acting Like Humans? Turing (1950)

More information

KECERDASAN BUATAN 3. By Sirait. Hasanuddin Sirait, MT

KECERDASAN BUATAN 3. By Sirait. Hasanuddin Sirait, MT KECERDASAN BUATAN 3 By @Ir.Hasanuddin@ Sirait Why study AI Cognitive Science: As a way to understand how natural minds and mental phenomena work e.g., visual perception, memory, learning, language, etc.

More information

Deep Networks and Beyond. Alan Yuille Bloomberg Distinguished Professor Depts. Cognitive Science and Computer Science Johns Hopkins University

Deep Networks and Beyond. Alan Yuille Bloomberg Distinguished Professor Depts. Cognitive Science and Computer Science Johns Hopkins University Deep Networks and Beyond Alan Yuille Bloomberg Distinguished Professor Depts. Cognitive Science and Computer Science Johns Hopkins University Artificial Intelligence versus Human Intelligence Understanding

More information

University of Cambridge Engineering Part IB Information Engineering Elective

University of Cambridge Engineering Part IB Information Engineering Elective University of Cambridge Engineering Part IB Information Engineering Elective Paper 8: Image Searching and Modelling Using Machine Learning Handout 1: Introduction to Artificial Neural Networks Roberto

More information

Interpreting Deep Neural Networks and their Predictions

Interpreting Deep Neural Networks and their Predictions Fraunhofer Image Processing Heinrich Hertz Institute Interpreting Deep Neural Networks and their Predictions Wojciech Samek ML Group, Fraunhofer HHI (joint work with S. Lapuschkin, A. Binder, G. Montavon,

More information

First Problem Set: Answers, Discussion and Background

First Problem Set: Answers, Discussion and Background First Problem Set: Answers, Discussion and Background Part I. Intuition Concerning Probability Do these problems individually Answer the following questions based upon your intuitive understanding about

More information

Introduction to Medical Computing

Introduction to Medical Computing CS 2124-2125 Introduction to Medical Computing Stephen M. Watt Artificial Intelligence in Medicine Notes by Jacquelyne Forgette, March 2012. University of Western Ontario CS 2125. Stephen M. Watt AIM Artificial

More information

Confluence: Conformity Influence in Large Social Networks

Confluence: Conformity Influence in Large Social Networks Confluence: Conformity Influence in Large Social Networks Jie Tang *, Sen Wu *, and Jimeng Sun + * Tsinghua University + IBM TJ Watson Research Center 1 Conformity Conformity is the act of matching attitudes,

More information

Appendix I Teaching outcomes of the degree programme (art. 1.3)

Appendix I Teaching outcomes of the degree programme (art. 1.3) Appendix I Teaching outcomes of the degree programme (art. 1.3) The Master graduate in Computing Science is fully acquainted with the basic terms and techniques used in Computing Science, and is familiar

More information

Artificial Neural Networks in Cardiology - ECG Wave Analysis and Diagnosis Using Backpropagation Neural Networks

Artificial Neural Networks in Cardiology - ECG Wave Analysis and Diagnosis Using Backpropagation Neural Networks Artificial Neural Networks in Cardiology - ECG Wave Analysis and Diagnosis Using Backpropagation Neural Networks 1.Syed Khursheed ul Hasnain C Eng MIEE National University of Sciences & Technology, Pakistan

More information

TRIPODS Workshop: Models & Machine Learning for Causal I. & Decision Making

TRIPODS Workshop: Models & Machine Learning for Causal I. & Decision Making TRIPODS Workshop: Models & Machine Learning for Causal Inference & Decision Making in Medical Decision Making : and Predictive Accuracy text Stavroula Chrysanthopoulou, PhD Department of Biostatistics

More information

The brain-mind-computer trichotomy: hermeneutic approach

The brain-mind-computer trichotomy: hermeneutic approach The brain-mind-computer trichotomy: hermeneutic approach Péter Érdi perdi@kzoo.edu Henry R. Luce Professor Center for Complex Systems Studies Kalamazoo College http://people.kzoo.edu/ perdi/ and Institue

More information

Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings. Md Musa Leibniz University of Hannover

Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings. Md Musa Leibniz University of Hannover Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings Md Musa Leibniz University of Hannover Agenda Introduction Background Word2Vec algorithm Bias in the data generated from

More information

SCUOLA DI SPECIALIZZAZIONE IN FISICA MEDICA. Sistemi di Elaborazione dell Informazione. Introduzione. Ruggero Donida Labati

SCUOLA DI SPECIALIZZAZIONE IN FISICA MEDICA. Sistemi di Elaborazione dell Informazione. Introduzione. Ruggero Donida Labati SCUOLA DI SPECIALIZZAZIONE IN FISICA MEDICA Sistemi di Elaborazione dell Informazione Introduzione Ruggero Donida Labati Dipartimento di Informatica via Bramante 65, 26013 Crema (CR), Italy http://homes.di.unimi.it/donida

More information

Lesson 6 Learning II Anders Lyhne Christensen, D6.05, INTRODUCTION TO AUTONOMOUS MOBILE ROBOTS

Lesson 6 Learning II Anders Lyhne Christensen, D6.05, INTRODUCTION TO AUTONOMOUS MOBILE ROBOTS Lesson 6 Learning II Anders Lyhne Christensen, D6.05, anders.christensen@iscte.pt INTRODUCTION TO AUTONOMOUS MOBILE ROBOTS First: Quick Background in Neural Nets Some of earliest work in neural networks

More information

EECS 433 Statistical Pattern Recognition

EECS 433 Statistical Pattern Recognition EECS 433 Statistical Pattern Recognition Ying Wu Electrical Engineering and Computer Science Northwestern University Evanston, IL 60208 http://www.eecs.northwestern.edu/~yingwu 1 / 19 Outline What is Pattern

More information

The Development and Application of Bayesian Networks Used in Data Mining Under Big Data

The Development and Application of Bayesian Networks Used in Data Mining Under Big Data 2017 International Conference on Arts and Design, Education and Social Sciences (ADESS 2017) ISBN: 978-1-60595-511-7 The Development and Application of Bayesian Networks Used in Data Mining Under Big Data

More information

Analysis of acgh data: statistical models and computational challenges

Analysis of acgh data: statistical models and computational challenges : statistical models and computational challenges Ramón Díaz-Uriarte 2007-02-13 Díaz-Uriarte, R. acgh analysis: models and computation 2007-02-13 1 / 38 Outline 1 Introduction Alternative approaches What

More information

Accuracy and Racial Biases of. Recidivism Prediction Instruments

Accuracy and Racial Biases of. Recidivism Prediction Instruments Accuracy and Racial Biases of Recidivism Prediction Instruments Julia J. Dressel Senior Honors Thesis Advisor: Professor Hany Farid Dartmouth Computer Science Technical Report TR2017-822 May 31, 2017 Abstract

More information

A Decision-Theoretic Approach to Evaluating Posterior Probabilities of Mental Models

A Decision-Theoretic Approach to Evaluating Posterior Probabilities of Mental Models A Decision-Theoretic Approach to Evaluating Posterior Probabilities of Mental Models Jonathan Y. Ito and David V. Pynadath and Stacy C. Marsella Information Sciences Institute, University of Southern California

More information

Stereotyping and Bias in the Flickr30k Dataset

Stereotyping and Bias in the Flickr30k Dataset Stereotyping and Bias in the Flickr30k Dataset Emiel van Miltenburg Vrije Universiteit Amsterdam Multimodal Corpora: Computer vision and language processing (MMC 2016) Background Automatic image description

More information

Bayesian Joint Modelling of Benefit and Risk in Drug Development

Bayesian Joint Modelling of Benefit and Risk in Drug Development Bayesian Joint Modelling of Benefit and Risk in Drug Development EFSPI/PSDM Safety Statistics Meeting Leiden 2017 Disclosure is an employee and shareholder of GSK Data presented is based on human research

More information

Introduction. Patrick Breheny. January 10. The meaning of probability The Bayesian approach Preview of MCMC methods

Introduction. Patrick Breheny. January 10. The meaning of probability The Bayesian approach Preview of MCMC methods Introduction Patrick Breheny January 10 Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 1/25 Introductory example: Jane s twins Suppose you have a friend named Jane who is pregnant with twins

More information

Computational Models for Belief Revision, Group Decisions and Cultural Shifts

Computational Models for Belief Revision, Group Decisions and Cultural Shifts Computational Models for Belief Revision, Group Decisions and Cultural Shifts Whitman Richards (PI), M. I. T. Computer Science and Artificial Intelligence Laboratory MURI Objective: models that forecast

More information

Lecture 2: Foundations of Concept Learning

Lecture 2: Foundations of Concept Learning Lecture 2: Foundations of Concept Learning Cognitive Systems - Machine Learning Part I: Basic Approaches to Concept Learning Version Space, Candidate Elimination, Inductive Bias last change October 18,

More information

Inferencing in Artificial Intelligence and Computational Linguistics

Inferencing in Artificial Intelligence and Computational Linguistics Inferencing in Artificial Intelligence and Computational Linguistics (http://www.dfki.de/~horacek/infer-ai-cl.html) no classes on 28.5., 18.6., 25.6. 2-3 extra lectures will be scheduled Helmut Horacek

More information