Anxiety Detection during Human-Robot Interaction *

Size: px
Start display at page:

Download "Anxiety Detection during Human-Robot Interaction *"

Transcription

1 Anxiety Detection during Human-Robot Interaction * Dana Kulić and Elizabeth Croft Department of Mechanical Engineering University of British Columbia Vancouver, Canada {dana,ecroft}@mech.ubc.ca Abstract - This paper describes an experiment to determine the feasibility of using physiological signals to determine the human response to robot motions during direct human-robot interaction. A robot manipulator is used to generate common interaction motions, and human subjects are asked to report their response to the motions. The human physiological response is also measured. Motion paths are generated using a classic potential field planner and a safe motion planner, which minimizes the potential collision force along the path. A fuzzy inference engine is developed to estimate the human response based on the physiological measures. Results show that emotional arousal can be detected using physiological signals and the inference engine. Comparison of initial results between the two planners shows that subjects report less anxiety and surprise with the safe planner for high planner speeds. Index Terms human-robot interaction, physiological signal monitoring, affective state estimation, safety. I. INTRODUCTION As robot manipulators move from isolated work cells to unstructured and interactive environments, they will need to become better at acquiring and interpreting information about their environment [1]. In particular, in cases where robothuman interaction is planned, human monitoring can enhance the safety of the interaction by providing additional information to robot planning and control systems [2, 3]. Recently, research has focused at using non-verbal communication, such as eye-gaze [2, 3], facial expressions and physiological signals [4-8] for human-robot and humancomputer interaction. Physiological signals are particularly well suited for human-robot interaction, as they are relatively easy to measure and interpret using on-line signal processing methods [6-8]. By using non-verbal information such as physiological signals, the robot can gauge user approval of its performance without requiring the user to continuously issue explicit feedback [2, 3]. In addition, changes in some nonverbal signals precede a verbal signal from the user. Observation of physiological information can allow the robot control system to anticipate command changes, creating a more responsive and intuitive human-robot interface. Our research is focused on detecting user anxiety during a real-time human-robot interaction, using physiological signals. To examine the feasibility of this approach, an experiment was conducted testing the human subjective and physiological response to various robot motions. The physiological response was then classified using fuzzy methods [5, 7] to determine if physiological response can be used as a mode of communication during human robot interaction. Early results of this work indicate that physiological signals have potential as an additional mode of communication during human-robot interaction. Existing research in this area is overviewed in Section II. The experimental setup and our emotional state estimation algorithm are described in Section III. Results are described in Section IV. Section V concludes the paper and outlines directions for future research. II. RELATED WORK Physiological monitoring systems have previously been used to extract information about the user s reaction, both for human-computer and human-robot interaction. Signals proposed for use in human-computer interfaces include skin conductance, heart rate, pupil dilation and brain and muscle neural activity. Bien et al. [9] advocate that soft computing methods are the most suitable methods for interpreting and classifying these types of signals, because these methods can deal with imprecise and incomplete data. Sarkar proposes using multiple physiological signals to estimate emotional state, and using this estimate to modify robotic actions to make the user more comfortable [8]. Rani et al. [7, 10] use heart-rate analysis and multiple physiological signals to estimate human stress levels. In [7], the stress information is used by an autonomous mobile robot to return to the human if the human is in distress. In this case, the robot is not directly interacting with the human; physiological information is used to allow the robot to assess the human s condition in a rescue situation. Nonaka et al. [11] describe a set of experiments where human response to pick-and-place motions of a virtual humanoid robot is evaluated. In their experiment, a virtual reality display is used to depict the robot. Human response is measured through heart rate measurements and subjective responses. No relationship was found between the heart rate and robot motion, but a correlation was reported between the robot velocity and the subject s rating of fear and surprise. All the above studies use virtual environments such as a video game [7, 10], or a virtual robot [11] to simulate an interaction situation. To the authors knowledge, no studies have been performed to date testing methods suitable for real-time affective state estimation during an actual human-robot interaction. * This work is partially supported by the Natural Sciences and Engineering Research Council of Canada

2 III. APPROACH In order to determine if it is possible to use human physiological signals to detect human anxiety or fear during human-robot interaction on-line, the experiment was designed to generate various robot motions and to evaluate both the human subjective response and physiological response to the motions. After the physiological data was collected, it was analyzed using a fuzzy inference engine based on an existing psychophysiological research knowledge base [5]. The analysis methods used are algorithmically simple enough to be incorporated into an on-line estimator. A second goal of the study was to determine if a robot motion strategy could be employed to reduce human anxiety. A safe planner [12], which tries to minimize the potential force during a collision along the path, is compared to the standard potential field planner. At higher motion speeds, the safe planner shows potential for reducing human anxiety. A. Experimental Method The experiment was performed using the CRS A460 6 degree of freedom (DoF) manipulator, shown in Figure human subjects were tested. For 8 of the 10 subjects, physiological data as well as subjective response was recorded, for the remaining 2 subjects, only the subjective response was recorded. 1. Trajectory Generation Two different tasks were used for the experiment: a pick-andplace motion (PP), similar to [11] and a (shorter) reach and retract motion (RR). These tasks were chosen to represent typical motions a robot could be asked to perform during human-robot interaction. For the pick-and-place motion, the pick location was specified to the right and away from the subject, and the place location was directly in front and close to the subject. For the reach and retract motion, the reach location was the same as the place location. For both tasks, the robot started and ended in the home upright position. Each of the selected positions is shown (from the subject s point of view) in Figure 1. Two planning strategies were used to plan the path of the robot for each task: a standard potential field (PF) method with obstacle avoidance and goal attraction [13], and a safe path (S) [12]. The safe path planner is similar to the potential field method, with the addition of a danger criterion, comprising of factors that affect the impact force during a collision between the robot and the human, which is minimized along the path. Point to point planning was not used, as this type of planning a. b. c. Fig 1 Robot task positions (a = Robot start/end position, b = pick position, c = place/reach position) would not be suitable for an interactive, human environment. This resulted in four motions, which are detailed in Table I. Figs. 2 5 show frames of video depicting each motion. For each path, a motion trajectory was planned using the trajectory planner described in [14]. Trajectories at three different speeds were planned (slow, medium, fast), resulting in 12 trajectories. The three speeds corresponded to 0.1, 0.5 and 1.0 of the maximum joint velocity of 3.14 rad/s. The accelerations and jerk were also scaled accordingly, as described in [14]. 2. Physiological Sensing The ProComp Infinity system from Thought Technology [15] was used to gather the physiological data. Heart muscle activity, skin conductance and corrugator muscle activity were measured. In earlier studies [5], the respiration rate was also measured, but it was found that data from this sensor is too slow to use in real-time interaction, so respiration rate was not used.the heart muscle activity was measured via electro cardiogram (ECG) measurement using EKG Flex/Pro sensor. The skin conductance was measured using the SCFlex-Pro sensor. Corrugator muscle activity was measured with the Myoscan Pro electromyography (EMG) sensor. The corrugator muscle is located on the forehead, it is used to control brow location; the activity of this muscle has been correlated to negative emotions such as frustration and anger [16, 17]. All sensor data was collected at 256 Hz. This rate is sufficient for capturing physiological signal events. Path PP-PF PP-S RR-PF RR-S TABLE I TEST PATH NAMING AND DESCRIPTIONS Description Pick & Place task planned by potential field planner Pick & place task planned by safe planner Reach & retract task planned by potential field planner Reach & retract task planned by safe planner 3. Experimental Procedure For each experiment, the human subject was connected to the physiological sensors and seated facing the robot. The robot was initially held motionless for a minimum of 30 seconds to collect baseline physiological data for each subject. The robot then executed the 12 trajectories described above. The trajectories were presented to each subject in randomized order. After each trajectory had executed, the subject was asked to rate their response to the motion in the following emotional response categories: anxiety, calm and surprise. The Likert scale (from 1 to 5) was used the characterise the response, with 5 representing extremely or completely and 1 representing not at all. B. Data Analysis The collected data was processed to extract features relevant to emotional state estimation. These features were then processed using fuzzy inference to estimate the emotional response. 1. Data Processing and Feature Extraction The fuzzy inference engine does not use the measured signals directly; the signals are pre-processed to extract relevant features, which are then used for inference.

3 Fig 2 Path PP-PF (Pick and Place Task Planned with the Potential Field Planner) Fig3 Path PP-S (Pick and Place Task Planned with the Safe Planner) Fig 4 Path RR-PF (Reach and Retract Task Planned with the Potential Field Planner) Fig5 Path RR-S (Reach and Retract Task Planned with the Safe Planner) Because the magnitudes of physiological signals vary widely between individuals, another important function of the preprocessing is to normalize the signal features so that a single inference engine can be used across individuals. Two features were extracted from the ECG data: the heart rate (HeartRate) and the heart rate acceleration (HRAccel). Recent research [7, 10] has reported the use of frequency domain heart rate analysis for use in emotional state estimation. However, since heart rate data is very slow (less than 1 Hz), using frequency windowing methods such as windowed Fourier analysis or wavelets results in unacceptable delays, which are not suitable for real-time interaction. The ECG data was low-pass filtered before applying a peak detection algorithm to detect R-waves of the QRS signal. The peak-topeak time was used to calculate the heart rate. The heart rate was smoothed using a 3 sample averaging filter, and normalized based on the baseline heart rate and heart rate variability, such that the signal ranged between [-1,1]. The heart rate acceleration was calculated by differentiating the smoothed heart rate signal. The heart rate acceleration was normalized to range between [-1,1], based on the resting heart rate of the subject measured during the initialisation phase. Two features were extracted from the skin conductance response (SCR): the level SCR and the rate of change of the SCR (dscr). The skin conductance data was low-pass filtered and smoothed using a 1 second averaging window. The data was then normalized to range between [0,1], using the minimum and maximum values in the preceding 30 seconds. In previous experiments [5], the baseline data had been used to normalize the skin conductance data, however, this normalization failed to account for the fact that occasionally, baseline response of the skin conductance failed to return to baseline prior to the start of new stimuli. Using only data in the preceding 30 seconds to normalize the response ensures that repeated stimuli do not generate an exaggerated response. The rate of change of the skin conductance response is calculated by differentiating the smoothed SCR data and normalizing so that the data ranges from [-1,1].

4 One feature was extracted from the corrugator muscle EMG data: the level of response (CorrugEMG). The EMG data was low-pass filtered and smoothed using a 1s averaging window. The data was normalized to range between [0,1], based on the resting EMG level measured during the initialisation phase. C. Emotional State Estimation An issue when estimating human emotional response is how to represent the emotional state. Two different representations are in common use in emotion and emotion detection research: one using discrete emotion categories (anger, happiness, fear, etc.), and the other using a two-dimensional representation of valence and arousal. Valence measures the degree to which the emotion is positive (or negative), and arousal measures the strength of the emotion. The valence/arousal representation provides less data, but the amount of information retained appears adequate for the purposes of robotic control, and is easier to convert to a measure of user approval. In this paper, the valence/arousal representation is used. This representation system has been favored for use with physiological signals and in psychophysiological research [4, 16, 17]. 1. Fuzzy Inference Engine The fuzzy rule base used to estimate the emotional state is similar to the rule base reported in [5]. The five extracted features were fuzzified using simple trapezoidal input membership functions. The outputs of the fuzzy engine were the estimated valence and arousal. Table II shows the rule base for the system. This rule base was derived using data from psychophysiological research [16-20]. The first set of rules encapsulates the relationship between the skin conductance response and arousal. Several studies [16, 17, 20] have shown that skin conductance is correlated with arousal. Bradley and Lang [16] report that more than 80% of subjects exhibit this correlation. Because of the variable rate of the decay of the response, it is not adequate to simply use the level of the skin conductance response; instead, both the level and the rate of change must be used. The second set of rules describes the relationship between corrugator muscle EMG and valence. The corrugator muscle is responsible for the lowering and contraction of the brows, i.e. frowning, which is intuitively associated with negative valence. Bradley and Lang also report that EMG levels are highly above the baseline level for negative valence stimuli, slightly above baseline level for neutral valence stimuli, and slightly below baseline level for positive stimuli. In their study, more than 80% of subjects show this correlation. The third set of rules relates heart activity to emotional state. Unlike the SCR and EMG muscle activity, the activity of the heart is governed by many variables, including physical fitness, posture, and activity level as well as emotional state. It is therefore more difficult to obtain significant correlation between heart activity and emotional state. In addition, heart rate activity is also dependent on context. In tests using external stimuli to generate the emotional response (such as picture viewing), heart rate response is initially decellerative, while tests using internal stimulus (recalling emotional imagery) showed an accelerative response [16]. Since our experimental setup consisted of using external stimuli, the external stimuli results were used. Using these results, heart rate deceleration is associated with the orienting response (i.e. increased arousal). Heart rate at the baseline, with no heart rate acceleration or deceleration is associated with low arousal, while high heart rate and heart rate acceleration are associated with high arousal. Due to the added variables affecting heart rate response, heart rate rules were underweighted relative to the SCR and EMG rules. TABLE II FUZZY INFERENCE ENGINE RULE BASE 1. If (SCR is HIGH) and (dscr is NEG) then (Arousal is MED) 2. If (SCR is MED) and (dscr is NEG) then (Arousal is LOW) 3. If (SCR is LOW) and (dscr is NEG) then (Arousal is LOW) 4. If (SCR is ZERO) and (dscr is NEG) then (Arousal is LOW) 5. If (dscr is ZERO) then (Arousal is LOW) 6. If (SCR is ZERO) and (dscr is POS) then (Arousal is MED) 7. If (SCR is LOW) and (dscr is POS) then (Arousal is MED) 8. If (SCR is MED) and (dscr is POS) then (Arousal is HIGH) 9. If (SCR is HIGH) and (dscr is POS) then (Arousal is HIGH) 10. If (CorrugEMG is NEG) then (Valence is POS) 11. If (CorrugEMG is ZERO) then (Valence is ZERO) 12. If (CorrugEMG is LOW) then (Valence is ZERO) 13. If (CorrugEMG is MED) then (Valence is NEG) 14. If (CorrugEMG is HIGH) then (Valence is VNEG) 15. If (HeartRate is VNEG) then (Arousal is HIGH) 16. If (HeartRate is NEG) then (Arousal is MED) 17. If (HRAccel is VNEG) then (Arousal is MED) 18. If (HeartRate is VPOS) then (Arousal is HIGH)(Valence is NEG) 19. If (HRAccel is VPOS) then (Arousal is HIGH)(Valence is NEG) For each trajectory, the average arousal and valence over the duration of the trajectory were calculated. IV. RESULTS A. Subjective Response Figs. 6-8 show the average subjective response and a comparison of the average responses between the potential field and the safe planned paths. Table III shows the correlation analysis between the subjective responses and the trajectory speed for each trajectory type. Correlation among the responses is also shown to validate the use of the valencearousal emotional model. For each set of variables, the upper value is the correlation coefficient, and the lower value is the probability value (the p-value). The p-value is computed from a two sided t-test. As expected, for each trajectory, there is a strong positive correlation between anxiety and speed, and surprise and speed, and a negative correlation between calm and speed. A comparison between the two planners shows that for each motion type, subjects reported on average lower levels of anxiety and surprise, and higher levels of calm, for the safe planned paths. The anxiety response for the fast pick and place trajectory was found to be significantly higher (α = 0.05, student t-test) for the PF planned path, when compared to the safe plan. There was also a smaller correlation between speed and anxiety and surprise for the safe planned paths.

5 Fig 6 Average Anxiety Response for all Trajectories Tested Fig 7 Average Calm Response for all Trajectories Tested Fig 8 Average Surprise Response for all Trajectories Tested Subjects were not familiar with the safe planner, and were not informed prior to the experiment that some motions would be generated by the safe planner. Some subjects commented that they were more surprised when a safe motion was executed, as the safe motion did not result in a straight line robotlike path. B. Estimated Response Figure 9 shows the average estimated arousal for each trajectory tested. The estimated arousal tends to increase with speed. Table IV shows the correlation analysis between the estimated arousal, the subject-reported response and the trajectory speed for each path. For the pick and place motions, arousal is positively correlated with anxiety and surprise, and negatively correlated with calm, however these relationships were not found to be significant, due to the small sample size. However, arousal is strongly correlated with speed for both the potential field and the safe planned path. For the reach and retract motion, there was no significant correlation between the arousal and the self-reported data. For the safe planned path, arousal was correlated with the speed, while for the potential field planned path this correlation was not found. Fig 9 Average Estimated Arousal for all Trajectories Tested TABLE III CORRELATION BETWEEN REPORTED VARIABLES AND TRAJECTORY VELOCITY Path Calm Surprise Speed PP-PF Anxiety Corr p-value < Calm Corr p-value Surprise Corr p-value PP-S Anxiety Corr p-value Calm Corr p-value Surprise Corr p-value RR-PF Anxiety Corr p-value < Calm Corr p-value Surprise Corr p-value RR-S Anxiety Corr p-value Calm Corr p-value Surprise Corr p-value 0.32 For most trajectories, a correlation was found between the estimated arousal and robot speed, but not between arousal and the reported emotional responses. This raises the issue of the relationship between the physiological signals and the subjective experience. It is possible that the physiological response measured is an involuntary response, such as the startle reflex, rather than an emotional state. Another significant factor that reduces the correlation between the reported anxiety and the estimated arousal is the effect of habituation. Most subjects physiological response habituated to the robot motions during the experiment. For several subjects, the first motion generated a strong response, regardless of the trajectory type. Table V shows the correlation coefficients and significance probabilities between the number of trajectories viewed and the reported responses, and also the estimated arousal. As can be seen from this table, while there is no correlation between the subject-reported outputs and the number of trajectories viewed, there is a significant correlation between the physiological response (i.e. the estimated arousal) and the number of trajectories viewed.

6 TABLE IV CORRELATION BETWEEN ESTIMATED AROUSAL, SELF REPORTED VARIABLES AND SPEED Path Variable Corr w/ Arousal p-value PP-PF Anxiety Calm Surprise Speed PP-S Anxiety Calm Surprise Speed RR-PF Anxiety Calm Surprise Speed RR-S Anxiety Calm Surprise Speed The emotional state inference engine also attempted to estimate valence, based on the corrugator muscle EMG signal and heart activity. Corrugator muscle activity has been reported to have strong correlation with negative valence in existing studies, and had shown promise during earlier studies with the inference engine using images as stimuli. However, for most of the trajectories tested, the estimated valence was very small or zero. Corrugator muscle activity was primarily at baseline for all subjects tested during robot motions. TABLE V CORRELATION BETWEEN REPORTED VARIABLES, AROUSAL AND NUMBER OF TRAJECTORIES VIEWED Anxiety Calm Surprise Arousal # Traj. Corr Viewed p-value V. CONCLUSIONS Two types of robot motions were presented to human subjects during the study: motions planned with a classical potential field planner, and motions planned with the safe planner [12]. Subjects reported less anxiety when safe planned motions were presented. The anxiety was significantly smaller for the safe planned pick and place task during fast motions. Further study is needed, with more test points at higher speeds to confirm that anxiety can be reduced through the use of the safe planner. The results from this study indicate that physiological signals show promise for use during human robot interaction. Fast robot motions tend to reliably elicit a strong arousal response. While in most cases a good correlation is observed between estimated emotional arousal and the robot velocity, only weak or no correlation is found between the estimated emotional response and the subjective responses. Further research is needed to determine the relationship between the physiological and subjective response. A key question is whether the measured arousal indicates a measure of an involuntary reaction the subject may not be aware of (such as the startle reflex), or a measure of a consciously experienced emotional state such as anxiety or surprise. Another issue is the quick habituation of physiological response. Finally, valence estimation using corrugator muscle activity does not appear to be suitable for human robot interaction, based on this preliminary study. Even when high levels of anxiety (a negative valence emotion) were reported, corrugator muscle activity was not reliably present. ACKNOWLEDGEMENT The authors wish to acknowledge David Meger for his help with the robot controller, and during the experiments. REFERENCES [1] A. Pentland, "Perceptual Intelligence," Communications of the ACM, vol. 43, pp , [2] Y. Matsumoto, J. Heinzmann, and A. Zelinsky, "The Essential Components of Human - Friendly Robot Systems," International Conference on Field and Service Robotics, pp , [3] V. J. Traver, A. P. del Pobil, and M. Perez-Francisco, "Making Service Robots Human-Safe," IROS, pp , [4] R. Picard, Affective Computing. Cambridge, Massachussetts: MIT Press, [5] D. Kulic and E. Croft, "Estimating Intent for Human-Robot Interaction," ICAR, pp , [6] R. Picard et al., "Toward Machine Emotional Intelligence: Analysis of Affective Physiological State," IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 23, pp , [7] P. Rani, N. Sarkar, C. A. Smith, and L. D. Kirby, "Anxiety detecting robotic system - towards implicit human-robot collaboration," Robotica, vol. 22, pp , [8] N. Sarkar, "Psychophysiological Control Architecture for Human-Robot Coordination - Concepts and Initial Experiments," ICRA, Washington, DC, USA, pp , [9] Z. Bien et al., "Soft Computing Based Emotion / Intention Reading for Service Robot," Lecture Notes in Computer Science, vol. 2275, pp , [10] P. Rani, J. Sims, R. Brackin, and N. Sarkar, "Online stress detection using phychophysiological signals for implicit human-robot cooperation," Robotica, vol. 20, pp , [11] S. Nonaka, K. Inoue, T. Arai, and Y. Mae, "Evaluation of Human Sense of Security for Coexisting Robots using Virtual Reality," ICRA, New Orleans, LA, USA, pp , [12] D. Kulic and E. Croft, "Safe Planning for Human-Robot Interaction," Journal of Robotic Systems. In Press [13] O. Khatib, "Real-Time Obstacle Avoidance for Manipulators and Mobile Robots," Int. Journal of Robotics Research, vol. 5, pp , [14] S. Macfarlane and E. Croft, "Jerk-Bounded Robot Trajectory Planning - Design for Real-Time Applications," IEEE Trans. on Robotics and Automation, vol. 19, pp , [15] [16] M. M. Bradley and P. J. Lang, "Measuring Emotion: Behavior, Feeling and Physiology," in Cognitive Neuroscience of Emotion, R. D. Lane and L. Nadel, Eds. New York: Oxford University Press, [17] P. J. Lang, "The Emotion Probe: Studies of Motivation and Attention," American Psychologicst, vol. 50, pp , [18] K. A. Brownley et al., "Cardiovascular Psychophysiology," in Handbook of Psychophysiology, J. T. Cacioppo and L. G. Tassinary, Eds. Cambridge: Cambridge University Press, [19] M. E. Dawson et al., "The Electrodermal System," in Handbook of Psychophysiology, J. T. Cacioppo and L. G. Tassinary, Eds. Cambridge: Cambridge University Press, [20] P. Ekman, R. W. Levenson, and W. V. Friesen, "Autonomic Nervous System Activity Distinguishes Among Emotions," Science, vol. 221, pp , 1983.

Estimating Intent for Human-Robot Interaction

Estimating Intent for Human-Robot Interaction Estimating Intent for Human-Robot Interaction D. Kulić E. A. Croft Department of Mechanical Engineering University of British Columbia 2324 Main Mall Vancouver, BC, V6T 1Z4, Canada Abstract This work proposes

More information

Estimation of the Upper Limb Lifting Movement Under Varying Weight and Movement Speed

Estimation of the Upper Limb Lifting Movement Under Varying Weight and Movement Speed 1 Sungyoon Lee, 1 Jaesung Oh, 1 Youngwon Kim, 1 Minsuk Kwon * Jaehyo Kim 1 Department of mechanical & control engineering, Handong University, qlfhlxhl@nate.com * Department of mechanical & control engineering,

More information

Artificial Emotions to Assist Social Coordination in HRI

Artificial Emotions to Assist Social Coordination in HRI Artificial Emotions to Assist Social Coordination in HRI Jekaterina Novikova, Leon Watts Department of Computer Science University of Bath Bath, BA2 7AY United Kingdom j.novikova@bath.ac.uk Abstract. Human-Robot

More information

PHYSIOLOGICAL RESEARCH

PHYSIOLOGICAL RESEARCH DOMAIN STUDIES PHYSIOLOGICAL RESEARCH In order to understand the current landscape of psychophysiological evaluation methods, we conducted a survey of academic literature. We explored several different

More information

Emotion based E-learning System using Physiological Signals. Dr. Jerritta S, Dr. Arun S School of Engineering, Vels University, Chennai

Emotion based E-learning System using Physiological Signals. Dr. Jerritta S, Dr. Arun S School of Engineering, Vels University, Chennai CHENNAI - INDIA Emotion based E-learning System using Physiological Signals School of Engineering, Vels University, Chennai Outline Introduction Existing Research works on Emotion Recognition Research

More information

ECHORD call1 experiment MAAT

ECHORD call1 experiment MAAT ECHORD call1 experiment MAAT Multimodal interfaces to improve therapeutic outcomes in robot-assisted rehabilitation Loredana Zollo, Antonino Salerno, Eugenia Papaleo, Eugenio Guglielmelli (1) Carlos Pérez,

More information

Emote to Win: Affective Interactions with a Computer Game Agent

Emote to Win: Affective Interactions with a Computer Game Agent Emote to Win: Affective Interactions with a Computer Game Agent Jonghwa Kim, Nikolaus Bee, Johannes Wagner and Elisabeth André Multimedia Concepts and Application, Faculty for Applied Computer Science

More information

Emotional memory: from affective relevance to arousal

Emotional memory: from affective relevance to arousal BBS-D-15-00893_ Mather_ Montagrin & Sander Emotional memory: from affective relevance to arousal Alison Montagrin 1,2,3 * & David Sander 1,2 1 Swiss Center for Affective Sciences, 2 Department of Psychology

More information

Affective Priming: Valence and Arousal

Affective Priming: Valence and Arousal Affective Priming: Valence and Arousal Dr. Mark Ashton Smith Introduction Affect: Its hypothesized 3-D structure: valence, arousal and control It is widely held that emotion can be defined as a coincidence

More information

Aversive picture processing: Effects of a concurrent task on sustained defensive system engagement

Aversive picture processing: Effects of a concurrent task on sustained defensive system engagement Psychophysiology, 48 (2011), 112 116. Wiley Periodicals, Inc. Printed in the USA. Copyright r 2010 Society for Psychophysiological Research DOI: 10.1111/j.1469-8986.2010.01041.x BRIEF REPORT Aversive picture

More information

Emotion Detection Using Physiological Signals. M.A.Sc. Thesis Proposal Haiyan Xu Supervisor: Prof. K.N. Plataniotis

Emotion Detection Using Physiological Signals. M.A.Sc. Thesis Proposal Haiyan Xu Supervisor: Prof. K.N. Plataniotis Emotion Detection Using Physiological Signals M.A.Sc. Thesis Proposal Haiyan Xu Supervisor: Prof. K.N. Plataniotis May 10 th, 2011 Outline Emotion Detection Overview EEG for Emotion Detection Previous

More information

EBCC Data Analysis Tool (EBCC DAT) Introduction

EBCC Data Analysis Tool (EBCC DAT) Introduction Instructor: Paul Wolfgang Faculty sponsor: Yuan Shi, Ph.D. Andrey Mavrichev CIS 4339 Project in Computer Science May 7, 2009 Research work was completed in collaboration with Michael Tobia, Kevin L. Brown,

More information

THE PHYSIOLOGICAL UNDERPINNINGS OF AFFECTIVE REACTIONS TO PICTURES AND MUSIC. Matthew Schafer The College of William and Mary SREBCS, USC

THE PHYSIOLOGICAL UNDERPINNINGS OF AFFECTIVE REACTIONS TO PICTURES AND MUSIC. Matthew Schafer The College of William and Mary SREBCS, USC THE PHYSIOLOGICAL UNDERPINNINGS OF AFFECTIVE REACTIONS TO PICTURES AND MUSIC Matthew Schafer The College of William and Mary SREBCS, USC Outline Intro to Core Affect Theory Neuroimaging Evidence Sensory

More information

Affective Dialogue Communication System with Emotional Memories for Humanoid Robots

Affective Dialogue Communication System with Emotional Memories for Humanoid Robots Affective Dialogue Communication System with Emotional Memories for Humanoid Robots M. S. Ryoo *, Yong-ho Seo, Hye-Won Jung, and H. S. Yang Artificial Intelligence and Media Laboratory Department of Electrical

More information

Affective Game Engines: Motivation & Requirements

Affective Game Engines: Motivation & Requirements Affective Game Engines: Motivation & Requirements Eva Hudlicka Psychometrix Associates Blacksburg, VA hudlicka@ieee.org psychometrixassociates.com DigiPen Institute of Technology February 20, 2009 1 Outline

More information

Strategies using Facial Expressions and Gaze Behaviors for Animated Agents

Strategies using Facial Expressions and Gaze Behaviors for Animated Agents Strategies using Facial Expressions and Gaze Behaviors for Animated Agents Masahide Yuasa Tokyo Denki University 2-1200 Muzai Gakuendai, Inzai, Chiba, 270-1382, Japan yuasa@sie.dendai.ac.jp Abstract. This

More information

Valence-arousal evaluation using physiological signals in an emotion recall paradigm. CHANEL, Guillaume, ANSARI ASL, Karim, PUN, Thierry.

Valence-arousal evaluation using physiological signals in an emotion recall paradigm. CHANEL, Guillaume, ANSARI ASL, Karim, PUN, Thierry. Proceedings Chapter Valence-arousal evaluation using physiological signals in an emotion recall paradigm CHANEL, Guillaume, ANSARI ASL, Karim, PUN, Thierry Abstract The work presented in this paper aims

More information

Introduction to affect computing and its applications

Introduction to affect computing and its applications Introduction to affect computing and its applications Overview What is emotion? What is affective computing + examples? Why is affective computing useful? How do we do affect computing? Some interesting

More information

Artificial Intelligence Lecture 7

Artificial Intelligence Lecture 7 Artificial Intelligence Lecture 7 Lecture plan AI in general (ch. 1) Search based AI (ch. 4) search, games, planning, optimization Agents (ch. 8) applied AI techniques in robots, software agents,... Knowledge

More information

A Vision-based Affective Computing System. Jieyu Zhao Ningbo University, China

A Vision-based Affective Computing System. Jieyu Zhao Ningbo University, China A Vision-based Affective Computing System Jieyu Zhao Ningbo University, China Outline Affective Computing A Dynamic 3D Morphable Model Facial Expression Recognition Probabilistic Graphical Models Some

More information

Emotional State Recognition via Physiological Measurement and Processing

Emotional State Recognition via Physiological Measurement and Processing APPLICATION NOTE 42 Aero Camino, Goleta, CA 93117 Tel (805) 685-0066 Fax (805) 685-0067 info@biopac.com www.biopac.com Application Note 276: Emotional State Recognition via Physiological Measurement and

More information

A USER INDEPENDENT, BIOSIGNAL BASED, EMOTION RECOGNITION METHOD

A USER INDEPENDENT, BIOSIGNAL BASED, EMOTION RECOGNITION METHOD A USER INDEPENDENT, BIOSIGNAL BASED, EMOTION RECOGNITION METHOD G. Rigas 1, C.D. Katsis 1,2, G. Ganiatsas 1, and D.I. Fotiadis 1 1 Unit of Medical Technology and Intelligent Information Systems, Dept.

More information

Emotions of Living Creatures

Emotions of Living Creatures Robot Emotions Emotions of Living Creatures motivation system for complex organisms determine the behavioral reaction to environmental (often social) and internal events of major significance for the needs

More information

BioGraph Infiniti DynaMap Suite 3.0 for ProComp Infiniti March 2, SA7990B Ver 3.0

BioGraph Infiniti DynaMap Suite 3.0 for ProComp Infiniti March 2, SA7990B Ver 3.0 BioGraph Infiniti DynaMap Suite 3.0 for ProComp Infiniti March 2, 2006 SA7990B Ver 3.0 DynaMap Suite 3.0 for ProComp Infiniti Contents List P Inf 8 Ch EMG Bi-Lateral Difference.chs 3 P Inf 8 Ch EMG.chs

More information

REACTION TIME MEASUREMENT APPLIED TO MULTIMODAL HUMAN CONTROL MODELING

REACTION TIME MEASUREMENT APPLIED TO MULTIMODAL HUMAN CONTROL MODELING XIX IMEKO World Congress Fundamental and Applied Metrology September 6 11, 2009, Lisbon, Portugal REACTION TIME MEASUREMENT APPLIED TO MULTIMODAL HUMAN CONTROL MODELING Edwardo Arata Y. Murakami 1 1 Digital

More information

Affective reactions to briefly presented pictures

Affective reactions to briefly presented pictures Psychophysiology, 38 ~2001!, 474 478. Cambridge University Press. Printed in the USA. Copyright 2001 Society for Psychophysiological Research Affective reactions to briefly presented pictures MAURIZIO

More information

Emotion Theory. Dr. Vijay Kumar

Emotion Theory. Dr. Vijay Kumar Emotion Theory Dr. Vijay Kumar Emotions Just how many emotions are there? Basic Emotions Some have criticized Plutchik s model as applying only to English-speakers Revised model of basic emotions includes:

More information

Smart Sensor Based Human Emotion Recognition

Smart Sensor Based Human Emotion Recognition Smart Sensor Based Human Emotion Recognition 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29 3 31 32 33 34 35 36 37 38 39 4 41 42 Abstract A smart sensor based emotion recognition

More information

Quick detection of QRS complexes and R-waves using a wavelet transform and K-means clustering

Quick detection of QRS complexes and R-waves using a wavelet transform and K-means clustering Bio-Medical Materials and Engineering 26 (2015) S1059 S1065 DOI 10.3233/BME-151402 IOS Press S1059 Quick detection of QRS complexes and R-waves using a wavelet transform and K-means clustering Yong Xia

More information

Psychophysiological correlates of inquiry and advocacy in human interactions Ilkka Leppänen

Psychophysiological correlates of inquiry and advocacy in human interactions Ilkka Leppänen Psychophysiological correlates of inquiry and advocacy in human interactions Ilkka Leppänen Raimo P. Hämäläinen Esa Saarinen Mikko Viinikainen Systems Analysis Laboratory Aalto University School of Science,

More information

A Possibility for Expressing Multi-Emotion on Robot Faces

A Possibility for Expressing Multi-Emotion on Robot Faces The 5 th Conference of TRS Conference 26-27 May 2011, Bangkok, Thailand A Possibility for Expressing Multi-Emotion on Robot Faces Trin Veerasiri 1*, Djitt Laowattana 2 Institute of Field robotics, King

More information

Motion Control for Social Behaviours

Motion Control for Social Behaviours Motion Control for Social Behaviours Aryel Beck a.beck@ntu.edu.sg Supervisor: Nadia Magnenat-Thalmann Collaborators: Zhang Zhijun, Rubha Shri Narayanan, Neetha Das 10-03-2015 INTRODUCTION In order for

More information

Bio-Feedback Based Simulator for Mission Critical Training

Bio-Feedback Based Simulator for Mission Critical Training Bio-Feedback Based Simulator for Mission Critical Training Igor Balk Polhemus, 40 Hercules drive, Colchester, VT 05446 +1 802 655 31 59 x301 balk@alum.mit.edu Abstract. The paper address needs for training

More information

Jan Kaiser, Andrzej Beauvale and Jarostaw Bener. Institute of Psychology, Jagiellonian University, 13 Golcbia St., ?

Jan Kaiser, Andrzej Beauvale and Jarostaw Bener. Institute of Psychology, Jagiellonian University, 13 Golcbia St., ? The evoked cardiac response as 0.0 1 1. a runction or cognitive load in subjects differing on the individual difference variable of reaction time Jan Kaiser, Andrzej Beauvale and Jarostaw Bener Institute

More information

Feelings. Subjective experience Phenomenological awareness Cognitive interpretation. Sense of purpose

Feelings. Subjective experience Phenomenological awareness Cognitive interpretation. Sense of purpose Motivation & Emotion Aspects of Feelings Subjective experience Phenomenological awareness Cognitive interpretation What is an? Bodily arousal Bodily preparation for action Physiological activiation Motor

More information

Aspects of emotion. Motivation & Emotion. Aspects of emotion. Review of previous lecture: Perennial questions about emotion

Aspects of emotion. Motivation & Emotion. Aspects of emotion. Review of previous lecture: Perennial questions about emotion Motivation & Emotion Aspects of Dr James Neill Centre for Applied Psychology University of Canberra 2016 Image source 1 Aspects of (Emotion Part 2): Biological, cognitive & social aspects Reading: Reeve

More information

PCA Enhanced Kalman Filter for ECG Denoising

PCA Enhanced Kalman Filter for ECG Denoising IOSR Journal of Electronics & Communication Engineering (IOSR-JECE) ISSN(e) : 2278-1684 ISSN(p) : 2320-334X, PP 06-13 www.iosrjournals.org PCA Enhanced Kalman Filter for ECG Denoising Febina Ikbal 1, Prof.M.Mathurakani

More information

On Shape And the Computability of Emotions X. Lu, et al.

On Shape And the Computability of Emotions X. Lu, et al. On Shape And the Computability of Emotions X. Lu, et al. MICC Reading group 10.07.2013 1 On Shape and the Computability of Emotion X. Lu, P. Suryanarayan, R. B. Adams Jr., J. Li, M. G. Newman, J. Z. Wang

More information

Practical Approaches to Comforting Users with Relational Agents

Practical Approaches to Comforting Users with Relational Agents Practical Approaches to Comforting Users with Relational Agents Timothy Bickmore, Daniel Schulman Northeastern University College of Computer and Information Science 360 Huntington Avenue, WVH 202, Boston,

More information

AFFECTIVE COMMUNICATION FOR IMPLICIT HUMAN-MACHINE INTERACTION

AFFECTIVE COMMUNICATION FOR IMPLICIT HUMAN-MACHINE INTERACTION AFFECTIVE COMMUNICATION FOR IMPLICIT HUMAN-MACHINE INTERACTION Pramila Rani Electrical Engineering and Computer Science Vanderbilt University Nashville, TN 37235 pramila.rani@vanderbilt.edu Nilanjan Sarkar

More information

PSYC 222 Motivation and Emotions

PSYC 222 Motivation and Emotions PSYC 222 Motivation and Emotions Session 6 The Concept of Emotion Lecturer: Dr. Annabella Osei-Tutu, Psychology Department Contact Information: aopare-henaku@ug.edu.gh College of Education School of Continuing

More information

Issues Surrounding the Normalization and Standardisation of Skin Conductance Responses (SCRs).

Issues Surrounding the Normalization and Standardisation of Skin Conductance Responses (SCRs). Issues Surrounding the Normalization and Standardisation of Skin Conductance Responses (SCRs). Jason J. Braithwaite {Behavioural Brain Sciences Centre, School of Psychology, University of Birmingham, UK}

More information

Emotion Lecture 26 1

Emotion Lecture 26 1 Emotion Lecture 26 1 The Trilogy of Mind Immanuel Kant (1791); Hilgard (1980) There are three absolutely irreducible faculties of mind: knowledge, feeling, and desire. Cognition Knowledge and Beliefs Emotion

More information

Author. Published. Journal Title. Copyright Statement. Downloaded from. Link to published version. Griffith Research Online

Author. Published. Journal Title. Copyright Statement. Downloaded from. Link to published version. Griffith Research Online The use of an unpleasant sound as the unconditional stimulus in aversive Pavlovian conditioning experiments that involve children and adolescent participants Author Neumann, David, Waters, Allison, Westbury

More information

Human Machine Interface Using EOG Signal Analysis

Human Machine Interface Using EOG Signal Analysis Human Machine Interface Using EOG Signal Analysis Krishna Mehta 1, Piyush Patel 2 PG Student, Dept. of Biomedical, Government Engineering College, Gandhinagar, Gujarat, India 1 Assistant Professor, Dept.

More information

Comparison of Mamdani and Sugeno Fuzzy Interference Systems for the Breast Cancer Risk

Comparison of Mamdani and Sugeno Fuzzy Interference Systems for the Breast Cancer Risk Comparison of Mamdani and Sugeno Fuzzy Interference Systems for the Breast Cancer Risk Alshalaa A. Shleeg, Issmail M. Ellabib Abstract Breast cancer is a major health burden worldwide being a major cause

More information

Facial Expression Recognition Using Principal Component Analysis

Facial Expression Recognition Using Principal Component Analysis Facial Expression Recognition Using Principal Component Analysis Ajit P. Gosavi, S. R. Khot Abstract Expression detection is useful as a non-invasive method of lie detection and behaviour prediction. However,

More information

Towards an EEG-based Emotion Recognizer for Humanoid Robots

Towards an EEG-based Emotion Recognizer for Humanoid Robots The 18th IEEE International Symposium on Robot and Human Interactive Communication Toyama, Japan, Sept. 27-Oct. 2, 2009 WeC3.4 Towards an EEG-based Emotion Recognizer for Humanoid Robots Kristina Schaaff

More information

Gender Based Emotion Recognition using Speech Signals: A Review

Gender Based Emotion Recognition using Speech Signals: A Review 50 Gender Based Emotion Recognition using Speech Signals: A Review Parvinder Kaur 1, Mandeep Kaur 2 1 Department of Electronics and Communication Engineering, Punjabi University, Patiala, India 2 Department

More information

Affect in Virtual Agents (and Robots) Professor Beste Filiz Yuksel University of San Francisco CS 686/486

Affect in Virtual Agents (and Robots) Professor Beste Filiz Yuksel University of San Francisco CS 686/486 Affect in Virtual Agents (and Robots) Professor Beste Filiz Yuksel University of San Francisco CS 686/486 Software / Virtual Agents and Robots Affective Agents Computer emotions are of primary interest

More information

Perceptual and Motor Skills, 2010, 111, 3, Perceptual and Motor Skills 2010 KAZUO MORI HIDEKO MORI

Perceptual and Motor Skills, 2010, 111, 3, Perceptual and Motor Skills 2010 KAZUO MORI HIDEKO MORI Perceptual and Motor Skills, 2010, 111, 3, 785-789. Perceptual and Motor Skills 2010 EXAMINATION OF THE PASSIVE FACIAL FEEDBACK HYPOTHESIS USING AN IMPLICIT MEASURE: WITH A FURROWED BROW, NEUTRAL OBJECTS

More information

Psychophysiological Methods to Evaluate User s Response in Human Robot Interaction: A Review and Feasibility Study

Psychophysiological Methods to Evaluate User s Response in Human Robot Interaction: A Review and Feasibility Study Robotics 2013, 2, 92-121; doi:10.3390/robotics2020092 Review OPEN ACCESS robotics ISSN 2218-6581 www.mdpi.com/journal/robotics Psychophysiological Methods to Evaluate User s Response in Human Robot Interaction:

More information

BioGraph Infiniti DynaMap Suite 3.0 for FlexComp Infiniti March 2, SA7990A Ver 3.0

BioGraph Infiniti DynaMap Suite 3.0 for FlexComp Infiniti March 2, SA7990A Ver 3.0 BioGraph Infiniti DynaMap Suite 3.0 for FlexComp Infiniti March 2, 2006 SA7990A Ver 3.0 DynaMap Suite 3.0 for FlexComp Infiniti Contents List F Inf 10 Ch EMG Bi-Lateral Difference.chs 3 F Inf 10 Ch EMG.chs

More information

An Adaptable Fuzzy Emotion Model for Emotion Recognition

An Adaptable Fuzzy Emotion Model for Emotion Recognition An Adaptable Fuzzy Emotion Model for Emotion Recognition Natascha Esau Lisa Kleinjohann C-LAB Fuerstenallee 11 D-33102 Paderborn, Germany e-mail: {nesau, lisa, bernd}@c-lab.de Bernd Kleinjohann Abstract

More information

On the Possible Pitfalls in the Evaluation of Brain Computer Interface Mice

On the Possible Pitfalls in the Evaluation of Brain Computer Interface Mice On the Possible Pitfalls in the Evaluation of Brain Computer Interface Mice Riccardo Poli and Mathew Salvaris Brain-Computer Interfaces Lab, School of Computer Science and Electronic Engineering, University

More information

Heart Rate Calculation by Detection of R Peak

Heart Rate Calculation by Detection of R Peak Heart Rate Calculation by Detection of R Peak Aditi Sengupta Department of Electronics & Communication Engineering, Siliguri Institute of Technology Abstract- Electrocardiogram (ECG) is one of the most

More information

E-MRS: Emotion-based Movie Recommender System. Ai Thanh Ho, Ilusca L. L. Menezes, and Yousra Tagmouti

E-MRS: Emotion-based Movie Recommender System. Ai Thanh Ho, Ilusca L. L. Menezes, and Yousra Tagmouti E-MRS: Emotion-based Movie Recommender System Ai Thanh Ho, Ilusca L. L. Menezes, and Yousra Tagmouti IFT 6251 11/12/2006 Outline Introduction and Future Work 2 Introduction Electronic commerce Large amount

More information

Embracing Complexity in System of Systems Analysis and Architecting

Embracing Complexity in System of Systems Analysis and Architecting Embracing Complexity in System of Systems Analysis and Architecting Complex Adaptive System 2013 November 13-15, 2013, Baltimore, MA Cihan H. Dagli INCOSE and IIE Fellow Founder Director Systems Engineering

More information

Optical Illusions 4/5. Optical Illusions 2/5. Optical Illusions 5/5 Optical Illusions 1/5. Reading. Reading. Fang Chen Spring 2004

Optical Illusions 4/5. Optical Illusions 2/5. Optical Illusions 5/5 Optical Illusions 1/5. Reading. Reading. Fang Chen Spring 2004 Optical Illusions 2/5 Optical Illusions 4/5 the Ponzo illusion the Muller Lyer illusion Optical Illusions 5/5 Optical Illusions 1/5 Mauritz Cornelis Escher Dutch 1898 1972 Graphical designer World s first

More information

Comparing affective responses to standardized pictures and videos: A study report

Comparing affective responses to standardized pictures and videos: A study report Comparing affective responses to standardized pictures and videos: A study report Marko Horvat 1, Davor Kukolja 2 and Dragutin Ivanec 3 1 Polytechnic of Zagreb, Department of Computer Science and Information

More information

Determining Emotions via Biometric Software

Determining Emotions via Biometric Software Proceedings of Student-Faculty Research Day, CSIS, Pace University, May 5 th, 2017 Determining Emotions via Biometric Software Thomas Croteau, Akshay Dikshit, Pranav Narvankar, and Bhakti Sawarkar Seidenberg

More information

Mental State Recognition by using Brain Waves

Mental State Recognition by using Brain Waves Indian Journal of Science and Technology, Vol 9(33), DOI: 10.17485/ijst/2016/v9i33/99622, September 2016 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 Mental State Recognition by using Brain Waves

More information

Learning and Adaptive Behavior, Part II

Learning and Adaptive Behavior, Part II Learning and Adaptive Behavior, Part II April 12, 2007 The man who sets out to carry a cat by its tail learns something that will always be useful and which will never grow dim or doubtful. -- Mark Twain

More information

Modeling and Implementing an Adaptive Human-Computer Interface Using Passive Biosensors

Modeling and Implementing an Adaptive Human-Computer Interface Using Passive Biosensors ing and Implementing an Adaptive Human-Computer Interface Using Passive Biosensors Curtis S. Ikehara, David N. Chin and Martha E. Crosby University of Hawaii at Manoa Department of Information and Computer

More information

Analysis of Emotion Recognition using Facial Expressions, Speech and Multimodal Information

Analysis of Emotion Recognition using Facial Expressions, Speech and Multimodal Information Analysis of Emotion Recognition using Facial Expressions, Speech and Multimodal Information C. Busso, Z. Deng, S. Yildirim, M. Bulut, C. M. Lee, A. Kazemzadeh, S. Lee, U. Neumann, S. Narayanan Emotion

More information

Intelligent Agents. CmpE 540 Principles of Artificial Intelligence

Intelligent Agents. CmpE 540 Principles of Artificial Intelligence CmpE 540 Principles of Artificial Intelligence Intelligent Agents Pınar Yolum pinar.yolum@boun.edu.tr Department of Computer Engineering Boğaziçi University 1 Chapter 2 (Based mostly on the course slides

More information

Dimensional Emotion Prediction from Spontaneous Head Gestures for Interaction with Sensitive Artificial Listeners

Dimensional Emotion Prediction from Spontaneous Head Gestures for Interaction with Sensitive Artificial Listeners Dimensional Emotion Prediction from Spontaneous Head Gestures for Interaction with Sensitive Artificial Listeners Hatice Gunes and Maja Pantic Department of Computing, Imperial College London 180 Queen

More information

Reading Assignments: Lecture 18: Visual Pre-Processing. Chapters TMB Brain Theory and Artificial Intelligence

Reading Assignments: Lecture 18: Visual Pre-Processing. Chapters TMB Brain Theory and Artificial Intelligence Brain Theory and Artificial Intelligence Lecture 18: Visual Pre-Processing. Reading Assignments: Chapters TMB2 3.3. 1 Low-Level Processing Remember: Vision as a change in representation. At the low-level,

More information

Affective Computing for Intelligent Agents. Introduction to Artificial Intelligence CIS 4930, Spring 2005 Guest Speaker: Cindy Bethel

Affective Computing for Intelligent Agents. Introduction to Artificial Intelligence CIS 4930, Spring 2005 Guest Speaker: Cindy Bethel Affective Computing for Intelligent Agents Introduction to Artificial Intelligence CIS 4930, Spring 2005 Guest Speaker: Cindy Bethel Affective Computing Affect: phenomena manifesting i itself under the

More information

CS148 - Building Intelligent Robots Lecture 5: Autonomus Control Architectures. Instructor: Chad Jenkins (cjenkins)

CS148 - Building Intelligent Robots Lecture 5: Autonomus Control Architectures. Instructor: Chad Jenkins (cjenkins) Lecture 5 Control Architectures Slide 1 CS148 - Building Intelligent Robots Lecture 5: Autonomus Control Architectures Instructor: Chad Jenkins (cjenkins) Lecture 5 Control Architectures Slide 2 Administrivia

More information

Towards natural human computer interaction in BCI

Towards natural human computer interaction in BCI Towards natural human computer interaction in BCI Ian Daly 1 (Student) and Slawomir J Nasuto 1 and Kevin Warwick 1 Abstract. BCI systems require correct classification of signals interpreted from the brain

More information

Introduction to Psychology. Lecture no: 27 EMOTIONS

Introduction to Psychology. Lecture no: 27 EMOTIONS Lecture no: 27 EMOTIONS o Derived from the Latin word Emovere emotion means to excite, stir up or agitate. o A response that includes feelings such as happiness, fear, sadness, grief, sorrow etc: it is

More information

Autonomous Mobile Robotics

Autonomous Mobile Robotics 1 2 3 A reflex arc is a neural pathway that controls a reflex. In vertebrates, most sensory neurons do not pass directly into the brain, but synapse in the spinal cord. This allows for faster reflex actions

More information

Empathy for Max. (Preliminary Project Report)

Empathy for Max. (Preliminary Project Report) Empathy for Max (Preliminary Project Report) Christian Becker Faculty of Technology University of Bielefeld 33549 Bielefeld, Germany cbecker@techfak.uni-bielefeld.de Mitsuru Ishizuka Graduate School of

More information

1. INTRODUCTION. Vision based Multi-feature HGR Algorithms for HCI using ISL Page 1

1. INTRODUCTION. Vision based Multi-feature HGR Algorithms for HCI using ISL Page 1 1. INTRODUCTION Sign language interpretation is one of the HCI applications where hand gesture plays important role for communication. This chapter discusses sign language interpretation system with present

More information

FUZZY LOGIC AND FUZZY SYSTEMS: RECENT DEVELOPMENTS AND FUTURE DIWCTIONS

FUZZY LOGIC AND FUZZY SYSTEMS: RECENT DEVELOPMENTS AND FUTURE DIWCTIONS FUZZY LOGIC AND FUZZY SYSTEMS: RECENT DEVELOPMENTS AND FUTURE DIWCTIONS Madan M. Gupta Intelligent Systems Research Laboratory College of Engineering University of Saskatchewan Saskatoon, Sask. Canada,

More information

Detecting and Indexing Emotion

Detecting and Indexing Emotion Detecting and Indexing Emotion Brian Lickel University of Southern California Department of Psychology When Measuring Emotion It is Useful to have a Theory of Emotion Dimensional Positive versus Negative

More information

Sociable Robots Peeping into the Human World

Sociable Robots Peeping into the Human World Sociable Robots Peeping into the Human World An Infant s Advantages Non-hostile environment Actively benevolent, empathic caregiver Co-exists with mature version of self Baby Scheme Physical form can evoke

More information

Compound Effects of Top-down and Bottom-up Influences on Visual Attention During Action Recognition

Compound Effects of Top-down and Bottom-up Influences on Visual Attention During Action Recognition Compound Effects of Top-down and Bottom-up Influences on Visual Attention During Action Recognition Bassam Khadhouri and Yiannis Demiris Department of Electrical and Electronic Engineering Imperial College

More information

Outline. Emotion. Emotions According to Darwin. Emotions: Information Processing 10/8/2012

Outline. Emotion. Emotions According to Darwin. Emotions: Information Processing 10/8/2012 Outline Emotion What are emotions? Why do we have emotions? How do we express emotions? Cultural regulation of emotion Eliciting events Cultural display rules Social Emotions Behavioral component Characteristic

More information

MODULE 41: THEORIES AND PHYSIOLOGY OF EMOTION

MODULE 41: THEORIES AND PHYSIOLOGY OF EMOTION MODULE 41: THEORIES AND PHYSIOLOGY OF EMOTION EMOTION: a response of the whole organism, involving 1. physiological arousal 2. expressive behaviors, and 3. conscious experience A mix of bodily arousal

More information

Neural Network based Heart Arrhythmia Detection and Classification from ECG Signal

Neural Network based Heart Arrhythmia Detection and Classification from ECG Signal Neural Network based Heart Arrhythmia Detection and Classification from ECG Signal 1 M. S. Aware, 2 V. V. Shete *Dept. of Electronics and Telecommunication, *MIT College Of Engineering, Pune Email: 1 mrunal_swapnil@yahoo.com,

More information

Emotions in a repeated Cournot game

Emotions in a repeated Cournot game Emotions in a repeated Cournot game A psychophysiological experiment Ilkka Leppänen and Raimo P. Hämäläinen Systems Analysis Laboratory Aalto University July 14, 2014 Why study emotions in OR? To understand

More information

Recognising Emotions from Keyboard Stroke Pattern

Recognising Emotions from Keyboard Stroke Pattern Recognising Emotions from Keyboard Stroke Pattern Preeti Khanna Faculty SBM, SVKM s NMIMS Vile Parle, Mumbai M.Sasikumar Associate Director CDAC, Kharghar Navi Mumbai ABSTRACT In day to day life, emotions

More information

Strick Lecture 1 March 22, 2006 Page 1

Strick Lecture 1 March 22, 2006 Page 1 Strick Lecture 1 March 22, 2006 Page 1 Motor Planning and Programming The point of this lecture is to reveal important features about the operation of our motor system by studying motor behavior. Figures

More information

Temporal Context and the Recognition of Emotion from Facial Expression

Temporal Context and the Recognition of Emotion from Facial Expression Temporal Context and the Recognition of Emotion from Facial Expression Rana El Kaliouby 1, Peter Robinson 1, Simeon Keates 2 1 Computer Laboratory University of Cambridge Cambridge CB3 0FD, U.K. {rana.el-kaliouby,

More information

MSAS: An M-mental health care System for Automatic Stress detection

MSAS: An M-mental health care System for Automatic Stress detection Quarterly of Clinical Psychology Studies Allameh Tabataba i University Vol. 7, No. 28, Fall 2017, Pp 87-94 MSAS: An M-mental health care System for Automatic Stress detection Saeid Pourroostaei Ardakani*

More information

General Psych Thinking & Feeling

General Psych Thinking & Feeling General Psych Thinking & Feeling Piaget s Theory Challenged Infants have more than reactive sensing Have some form of discrimination (reasoning) 1-month-old babies given a pacifier; never see it Babies

More information

DETECTION OF HEART ABNORMALITIES USING LABVIEW

DETECTION OF HEART ABNORMALITIES USING LABVIEW IASET: International Journal of Electronics and Communication Engineering (IJECE) ISSN (P): 2278-9901; ISSN (E): 2278-991X Vol. 5, Issue 4, Jun Jul 2016; 15-22 IASET DETECTION OF HEART ABNORMALITIES USING

More information

What We Do To Reduce Work-related Musculoskeletal Disorders and Injuries at Occupational Ergonomics and Biomechanics (OEB) Laboratory

What We Do To Reduce Work-related Musculoskeletal Disorders and Injuries at Occupational Ergonomics and Biomechanics (OEB) Laboratory What We Do To Reduce Work-related Musculoskeletal Disorders and Injuries at Occupational Ergonomics and Biomechanics (OEB) Laboratory Jay Kim, PhD, MS Assistant Professor Environmental & Occupational Health

More information

HOW IS IT THAT YOU MOVE?

HOW IS IT THAT YOU MOVE? HOW IS IT THAT YOU MOVE? *Timing, *stress, *intensity, *speed, *fluidity, *duration, and *targeting inhibition Think of a time when you wanted to learn a skill and... What helped? What didn t? Successful

More information

Keywords: Adaptive Neuro-Fuzzy Interface System (ANFIS), Electrocardiogram (ECG), Fuzzy logic, MIT-BHI database.

Keywords: Adaptive Neuro-Fuzzy Interface System (ANFIS), Electrocardiogram (ECG), Fuzzy logic, MIT-BHI database. Volume 3, Issue 11, November 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Detection

More information

A brief comparison between the Subsumption Architecture and Motor Schema Theory in light of Autonomous Exploration by Behavior

A brief comparison between the Subsumption Architecture and Motor Schema Theory in light of Autonomous Exploration by Behavior A brief comparison between the Subsumption Architecture and Motor Schema Theory in light of Autonomous Exploration by Behavior Based Robots Dip N. Ray 1*, S. Mukhopadhyay 2, and S. Majumder 1 1 Surface

More information

Overview. Basic concepts Theories of emotion Universality of emotions Brain basis of emotions Applied research: microexpressions

Overview. Basic concepts Theories of emotion Universality of emotions Brain basis of emotions Applied research: microexpressions Emotion Overview Basic concepts Theories of emotion Universality of emotions Brain basis of emotions Applied research: microexpressions Definition of Emotion Emotions are biologically-based responses

More information

Various Methods To Detect Respiration Rate From ECG Using LabVIEW

Various Methods To Detect Respiration Rate From ECG Using LabVIEW Various Methods To Detect Respiration Rate From ECG Using LabVIEW 1 Poorti M. Vyas, 2 Dr. M. S. Panse 1 Student, M.Tech. Electronics 2.Professor Department of Electrical Engineering, Veermata Jijabai Technological

More information

Capturing Driver Response to In-Vehicle Human- Machine Interface Technologies Using Facial Thermography

Capturing Driver Response to In-Vehicle Human- Machine Interface Technologies Using Facial Thermography University of Iowa Iowa Research Online Driving Assessment Conference 2009 Driving Assessment Conference Jun 25th, 12:00 AM Capturing Driver Response to In-Vehicle Human- Machine Interface Technologies

More information

ANTICIPATORY SKIN CONDUCTANCE RESPONSES: A POSSIBLE EXAMPLE OF DECISION AUGMENTATION THEORY

ANTICIPATORY SKIN CONDUCTANCE RESPONSES: A POSSIBLE EXAMPLE OF DECISION AUGMENTATION THEORY ANTICIPATORY SKIN CONDUCTANCE RESPONSES: A POSSIBLE EXAMPLE OF DECISION AUGMENTATION THEORY Edwin C. May Laboratories for Fundamental Research Palo Alto, California USA ABSTRACT Two recent skin conductance

More information

Founder and Chief Technology Officer, Zyrobotics

Founder and Chief Technology Officer, Zyrobotics Ayanna Howard, Ph.D. Professor, Linda J. and Mark C. Smith Chair in Bioengineering School of Electrical and Computer Engineering Georgia Institute of Technology Founder and Chief Technology Officer, Zyrobotics

More information

Research Proposal on Emotion Recognition

Research Proposal on Emotion Recognition Research Proposal on Emotion Recognition Colin Grubb June 3, 2012 Abstract In this paper I will introduce my thesis question: To what extent can emotion recognition be improved by combining audio and visual

More information

1 Introduction. Christopher G. Courtney 1,3, Michael E. Dawson 1, Anne M. Schell 2, and Thomas D. Parsons 3

1 Introduction. Christopher G. Courtney 1,3, Michael E. Dawson 1, Anne M. Schell 2, and Thomas D. Parsons 3 Affective Computer-Generated Stimulus Exposure: Psychophysiological Support for Increased Elicitation of Negative Emotions in High and Low Fear Subjects Christopher G. Courtney 1,3, Michael E. Dawson 1,

More information