ARTICLE IN PRESS. Neuropsychologia xxx (2009) xxx xxx. Contents lists available at ScienceDirect. Neuropsychologia

Size: px
Start display at page:

Download "ARTICLE IN PRESS. Neuropsychologia xxx (2009) xxx xxx. Contents lists available at ScienceDirect. Neuropsychologia"

Transcription

1 Neuropsychologia xxx (2009) xxx xxx Contents lists available at ScienceDirect Neuropsychologia j o u r n a l h o m e p a g e : Examining the neural basis of episodic memory: ERP evidence that faces are recollected differently from names Graham MacKenzie b,, David I. Donaldson a a Psychological Imaging Laboratory, Department of Psychology, University of Stirling, UK b Department of Psychology, University of Glasgow, UK a r t i c l e i n f o a b s t r a c t Article history: Received 16 October 2008 Received in revised form 26 May 2009 Accepted 31 May 2009 Available online xxx Keywords: Recognition memory Dual process theory Episodic memory Face recognition Recollection Episodic memory is supported by recollection, the conscious retrieval of contextual information associated with the encoding of a stimulus. Event-Related Potential (ERP) studies of episodic memory have identified a robust neural correlate of recollection the left parietal old/new effect that has been widely observed during recognition memory tests. This left parietal old/new effect is believed to provide an index of generic cognitive operations related to recollection; however, it has recently been suggested that the neural correlate of recollection observed when faces are used as retrieval cues has an anterior scalp distribution, raising the possibility that faces are recollected differently from other types of information. To investigate this possibility, we directly compared neural activity associated with remember responses for correctly recognized face and name retrieval cues. Compound face name stimuli were studied, and at test either a face or a name was presented alone. Participants discriminated studied from unstudied stimuli, and made a remember/familiar decision for stimuli judged old. Remembering faces was associated with anterior ( ms) and late right frontal old/new effects ( ms), whereas remembering names elicited mid frontal ( ms) and left parietal ( ms) effects. These findings demonstrate that when directly compared, with reference to common episodes, distinct cognitive operations are associated with remembering faces and names. We discuss whether faces can be remembered in the absence of recollection, or whether there may be more than one way of retrieving episodic context Elsevier Ltd. All rights reserved. 1. Introduction The human episodic memory system allows the past to be reexperienced in the present (Tulving, 1983). The hallmark of episodic memory is recollection: the reinstatement of information about past events into conscious awareness. Recollection occurs when the processing of a retrieval cue reactivates memories associated with the cue (e.g., when the smell of baking bread brings a childhood visit to a bakery back to mind) and different types of retrieval cue are thought to elicit the same general process of recollection. In the present article we challenge the assumption that recollection is always associated with the same core cognitive operations; we present electrophysiological data that reveal dissociable neural correlates when recollection is elicited by face and name retrieval cues. Recollection is not, of course, the only basis for making episodic memory judgments. Dual process models of recognition memory Corresponding author at: Department of Psychology, Faculty of Information and Mathematical Sciences, University of Glasgow, 58 Hillhead Street, Glasgow G12 8QB, UK. Tel.: ; fax: address: g.mackenzie@psy.gla.ac.uk (G. MacKenzie). (e.g., Atkinson & Juola, 1974; Jacoby & Dallas, 1981; Mandler, 1980; Yonelinas, 1994) propose that a retrieval process called familiarity also supports episodic judgments. According to such models, a retrieval cue is assessed for its familiarity and if the level of familiarity is sufficiently high then the cue can be accepted as previously encountered, even if no contextual information about the original episode can be recollected. Familiarity is a fast-acting, relatively automatic process that provides a conscious feeling that an item has been experienced before. Importantly, from a theoretical perspective both familiarity and recollection are thought to be generic retrieval processes, operating across modalities and domains of information (see Yonelinas, 2002, for a review). One important feature of dual process models is that recollection and familiarity are independent retrieval processes that elicit distinct phenomenological experiences, which can be assessed using the remember/know procedure (Tulving, 1985). Remember responses are required when recognition is accompanied by the retrieval of specific details about the study episode (made on the basis of recollection), whereas know responses reflect recognition without the retrieval of specific details (made on the basis of familiarity). While the remember/know procedure has been criticized for failing to completely isolate familiarity and recollection (e.g., Yonelinas & Jacoby, 1995; Wais, Mickes, & Wixted, /$ see front matter 2009 Elsevier Ltd. All rights reserved. doi: /j.neuropsychologia

2 2 G. MacKenzie, D.I. Donaldson / Neuropsychologia xxx (2009) xxx xxx 2008), remember judgments are widely believed to be supported by relatively more recollection than familiarity, and as such the R/K procedure provides a useful measure of the contribution of recollection to recognition memory performance. One of the strongest bases for dual process models is evidence from event-related potentials (ERPs: an electrophysiological method that can be used to provide a record of the neural activity evoked during performance of a cognitive task). ERP studies of recognition memory reveal differences in activity between correctly identified studied (old) and unstudied (new) stimuli, referred to as ERP old/new effects (see Friedman & Johnson, 2000; Rugg & Curran, 2007, for reviews). In particular, an early ( ms post-stimulus onset) modulation maximal over mid frontal scalp electrodes is associated with familiarity, while a later ( ms) modulation maximal over left parietal scalp is linked with recollection. The mid frontal and left parietal old/new effects have been functionally dissociated by a number of task (e.g., Rugg et al., 1998) and stimulus (e.g., Greve, Van Rossum, & Donaldson, 2007) manipulations, providing strong evidence that the effects reflect distinct cognitive operations. While the left parietal effect appears to provide an index of recollection (Rugg & Yonelinas, 2003), the precise functional significance of the mid frontal effect remains contested, with some theorists arguing that it reflects familiarity (Rugg & Curran, 2007) and others contending that it may reflect conceptual priming processes that sometimes co-occur with episodic retrieval, particularly when words are used as stimuli (Voss & Paller, 2006; Paller, Voss, & Boehm, 2007). The left parietal and mid frontal ERP old/new effects have also been dissociated from a number of other old/new effects, including a late posterior negativity (LPN, which has been associated with heterogeneous cognitive functions such as retrieval fluency and action monitoring; see Herron, 2007) and a late right frontal effect (typically associated with post-retrieval monitoring; Hayama, Johnson, & Rugg, 2008). Nonetheless, whilst other ERP old/new effects are evident, the majority of ERP retrieval studies have been interpreted within a dual process framework, and a wide range of evidence suggests that the left parietal effect provides a generic index of recollection primarily because it has been observed with different stimulus materials (e.g., words Donaldson & Rugg, 1998; line drawings Curran & Cleary, 2003; landscape/object compound stimuli Tsivilis, Otten, & Rugg, 2001) and for information that is presented in different modalities (Schloerscheidt & Rugg, 2004). Thus, consistent with dual process models, the left parietal effect is typically believed to be neither material- nor modality-specific and is considered to provide an index of core cognitive operations related to recollection. Despite the foregoing evidence, in a recent study MacKenzie and Donaldson (2007) reported that recollection elicited by face retrieval cues was associated with an anterior old/new effect ( ms; see Donaldson & Curran, 2007). In this experiment participants studied a series of photographs of faces, each presented with an auditory name. At test, old and new faces were presented, and participants made an initial old/new decision, and for faces judged old, were asked to report on any contextual information about the study episode that they retrieved. For recognition supported by familiarity, the ERP old/new effect was manifest over posterior scalp only (replicating the findings of Yovel & Paller, 2004), suggesting that recognition memory for faces is associated with a novel ERP signature of familiarity (and hence that there are multiple ERP signatures of familiarity). We note, however, that this finding could be interpreted as evidence against a familiarity account of the mid frontal old/new effect, providing indirect support for a priming interpretation. More importantly for present purposes, recollection-related ERPs elicited by face stimuli revealed a clear anterior old/new effect; this effect was larger when the associated names were retrieved than when other specific contextual information was retrieved. Although associated names were verbally reported and verified in the name condition, there was no verification of retrieved information in the other specifics condition; given that the two recollection-related effects were associated with the same scalp distribution the requirement to report on retrieved information did not affect the old/new effect in a qualitative manner. Critically, the anterior old/new effect was absent when contextual information could not be retrieved, suggesting a specific link with recollection. Although MacKenzie and Donaldson (2007) was the first ERP study to describe a recollection-related anterior old/new effect, a comparable neural correlate of recollection appears to be present in previous experiments using non-verbal stimuli (Duarte, Ranganath, Winward, Hayward, & Knight, 2004, Fig. 8), including faces (Paller, Gonsalves, Grabowecky, Bozic, & Yamada, 2000, Fig. 4; Yovel & Paller, 2004, Fig. 2), leaving open the possibility that recollection may be supported by different cognitive operations under certain circumstances. In particular, a recent study compared face and word retrieval using a simple old/new recognition decision (Yick & Wilding, 2008). This study reported more anteriorly distributed old/new effects for faces than words; however, a clear functional interpretation of the anterior effect was not possible because trials where recognition was supported by recollection were not isolated, and because faces and words were encoded separately. Despite evidence of anterior old/new effects, the proposal that recollection is associated with material-specific neural correlates cannot be accepted easily. Importantly, to date no ERP study has directly compared recollection elicited by word and face cues whilst holding the content of encoding episodes constant across face and name test trials (and hence limiting the possibility that differences at encoding acted as a confound). Thus, to add weight to this proposal, the present study aims to replicate the anterior recollection effect, using a similar paradigm as in MacKenzie and Donaldson (2007), but explicitly comparing recollection elicited by different types of retrieval cue. In the present experiment participants studied a series of compound visual stimuli, each consisting of a face name pair. Later, at test, a single element from each pair was presented, intermixed with unstudied faces and names. Importantly, each study episode was only ever probed once, with either the face or the name being presented as a retrieval cue. Participants were required to make an old/new discrimination for each test item, and made secondary remember/familiar decisions for each item judged old. These response options support inferences about the relative contributions of recollection and familiarity to test performance, and allow the identification of trials where recognition was supported by recollection. Given previous findings, we predicted that materialspecific neural correlates of recollection would be observed across cue types contrary to the pervasive view that recollection is supported by one homogenous set of cognitive operations. 2. Methods Twenty-six right-handed native English speakers gave informed consent and took part in the study, which was approved by the Psychology Department ethics committee at the University of Stirling. Participants reported having normal or corrected-to-normal vision, and were paid 5 per hour. Data from two participants were discarded due to contamination with ocular artifacts. Of the remaining sample, 20 participants with a mean age of 20 years (range: 18 28) contributed a sufficient number of trials for ERPs to be formed for remember responses to correctly recognized faces and names, and therefore data from these 20 participants are reported here. Faces and names were shown on a 17 in. LCD colour monitor; stimuli were presented and behavioural data were recorded with E-Prime (Psychology Software Tools; Participants sat on a chair approximately one meter away from the monitor, with a button box on a desk in front of them. All faces were of young Caucasian individuals who did not wear any jewellery, glasses or facial hair. Two hundred and sixteen faces were presented during the experiment, and an additional four faces were used in a practice phase. Facial images were masked to

3 G. MacKenzie, D.I. Donaldson / Neuropsychologia xxx (2009) xxx xxx 3 Fig. 1. Schematic depiction of study and test trial sequences. On each study trial, a grey fixation cross was replaced after 1000 ms by a face name compound stimulus, which was presented for 2000 ms. After stimulus offset, participants were prompted to rate the fit between face and name with a binary judgment, i.e., good fit or bad fit. There were two types of test trial, face trials and name trials, which were pseudo-randomly intermixed. On each test trial, a grey fixation cross was replaced after 1500 ms with either a face or a name, which was presented for 500 ms. Test items were either old (studied) or new (unstudied). A black screen followed test stimulus offset, and remained for 2000 ms during which time participants pressed either old or new. If a test item was endorsed as new then the trial terminated; if a test item was endorsed as old then a screen prompted participants to introspect upon the quality of their memory for the study episode. If recognition was accompanied by retrieval of specific information from the study episode then participants were required to press remember, which terminated the trial. If recognition was not accompanied by retrieval of specific information from the study episode then participants were required to press familiar, which terminated the trial. remove background, hair and ears, before being resized and positioned in the centre of the display. To eliminate gross differences in luminance between individual stimuli, colour was transformed 25% towards average using Psychomorph (Tiddeman, Burt, & Perrett, 2001). Faces were presented against a black background, and subtended a maximum horizontal visual angle of 2 and a maximum vertical visual angle of 5. Names were presented in 18-point bold Courier New font: during the study phase, names were presented immediately below the faces, while during the test phase, names were presented in the centre of the display, subtending a vertical angle of 0.7 and a maximum horizontal angle of 3.9. Data were acquired during 18 study test blocks. Each block contained 12 unique face name pairings presented at study, and was followed by six studied faces and six studied names intermixed with six new stimuli (three faces and three names) at test. There was a self-paced break between the study and test phases, and the test phase was initiated after the experimenter examined the EEG to ensure a clean signal was being recorded, and to prevent any contribution of short-term memory to performance. Each list contained an equal number of male and female faces and names. The test status of the stimuli was rotated across participants such that each stimulus had an equal chance of being new at test. Within each block there was random selection of stimuli to counter against order of presentation effects. The study and test phase procedures are illustrated in Fig. 1. In the study phase, each trial began with a grey fixation cross (+), which was presented in the centre of the screen against a black background for 1000 ms. The fixation cross was followed immediately by a face name presentation, which lasted for 2000 ms. After stimulus offset, the screen went blank and participants made a binary judgment as to whether the face fit the name. Participants responded with one of two buttons, and their response terminated the trial. Participants were told that the judgment was arbitrary, and that the task was designed to help them remember face name associations for the test phase. In the test phase, each trial began with a grey fixation cross, which was presented against a black background for 1500 ms. The fixation cross was replaced by a face or name presentation that lasted for 500 ms. After stimulus offset, a blank screen was displayed for 2000 ms, while participants indicated whether they thought the stimulus was old or new by pressing one of two buttons. If a new response was made, the trial terminated. If an old response was made, the blank screen was followed by a prompt indicating two response options: remember and familiar. Participants were asked to respond remember if they retrieved any information associated with the stimulus from the study episode and to respond familiar if they did not retrieve any specific information about the stimulus. The remember/familiar instructions were modeled on the other specifics/no specifics instructions described by Yovel and Paller (2004); participants were given the opportunity for questioning, to ensure that participants fully understood the distinction. The participant s response terminated the trial. The subsequent response options allowed trials where recognition was supported by recollection to be sorted for averaging EEG into ERPs. Recollection was inferred on trials where participants made a remember response to a studied stimulus. During testing, EEG was recorded from 62 silver/silver chloride electrodes embedded in an elasticized Quick-Cap (Neuromedical Supplies: neuro.com). Electrodes used were: FP1, FPZ, FP2, AF3, AF4, F7, F5, F3, F1, FZ, F2, F4, F6, F8, FT7, FC5, FC3, FC1, FCZ, FC2, FC4, FC6, FT8, T7, C5, C3, C1, CZ, C2, C4, C6, T8, TP7, CP5, CP3, CP1, CPZ, CP2, CP4, CP6, TP8, P7, P5, P3, P1, PZ, P2, P4, P6, P8, PO7, PO5, PO3, POZ, PO4, PO6, PO8, CB1, O1, OZ, O2 and CB2. All channels were referenced to an electrode positioned between CZ and CPZ; two further electrodes were placed on the mastoid processes. Electrode positions were based on the extended International system (Jasper, 1958). Electro-oculogram (EOG) electrodes were placed above and below the left eye, and on the outer canthi. Data were recorded and analyzed using Scan 4.3 software ( Impedances were below 5 k before recording commenced. The data were band pass filtered between 0.1 and 40 Hz and digitized at a rate of 250 Hz (4 ms/point). Data were re-referenced off-line to recreate an average mastoid reference. EEG was segmented into 2100 ms epochs, starting 100 ms before stimulus onset. Ocular artifacts were removed using a regression procedure, and trials were excluded from the averages if drift exceeded ±75 V (measured by the difference between the first and last data points in the epoch) or where activity in any of the EEG channels anywhere in the epoch exceeded ±100 V. Waveforms were smoothed over a 5-point kernel. To ensure a good signal-to-noise ratio, a minimum of 16 artifact-free trials per condition was set as a criterion before an individual participant s data were included in grand-average ERPs. Grand-average ERPs were formed for four conditions: face remember, face correct rejection, name remember and name correct rejection. The average number of trials in these conditions was 45, 32, 51 and 43, respectively. Given that the focus of the experiment was on identifying neural correlates of recollection, during piloting an attempt was made to foster a high number of remember responses at the expense of familiar responses. Accordingly, an insufficient number of participants

4 4 G. MacKenzie, D.I. Donaldson / Neuropsychologia xxx (2009) xxx xxx Table 1 Remember hit Familiar hit Remember FA Familiar FA Face 0.48 (0.16) 0.31 (0.13) 0.06 (0.06) 0.22 (0.14) Name 0.57 (0.14) 0.23 (0.12) 0.01 (0.01) 0.04 (0.03) contributed enough trials to examine ERPs for familiar responses across faces and names. The old/new effects evoked by remember responses were first characterized for the face and name conditions separately, and then magnitude and topographic comparisons were made between the conditions. The analysis of ERP data was directed at frontal and parietal locations where old/new effects associated with recollection and familiarity have been found previously. For the initial amplitude analyses, ANOVA was performed with the factors of old/new (face remember/face correct rejection; name remember/name correct rejection), location (frontal/parietal), hemisphere (left/right) and site (superior/medial/inferior). For the magnitude analyses, subtraction waveforms were derived and the old/new factor was replaced by a factor of condition (face/name). The specific electrodes included in the analysis were: F1/3/5/2/4/6 and P1/3/5/2/4/6. Significant interactions involving the old/new factor were followed up by ANOVA performed on data from each location separately, identifying the locus of differences in the distribution of effects. The Greenhouse Geisser correction for breaches of the sphericity assumption was used as appropriate. As a final step in our analysis strategy, for each cue type and latency period, the magnitude of the old/new difference was examined numerically to determine the location of the maximal old/new difference; paired-samples t-tests were performed on the electrode where the effect was maximal to assess whether the effect was reliable at this location. Finally, data were rescaled according to the Max Min method (McCarthy & Wood, 1985) so that topographic analyses were not confounded by amplitude differences. 3. Results 3.1. Behaviour Mean probabilities for hits and false alarms are plotted in Fig. 2(panel a), which shows an equivalent hit rate across cue types and a higher false alarm rate for faces than names. ANOVA with factors of cue type (face/name) and status (hit/false alarm) revealed main effects of cue type [F(1,19) = 26.7; p < 0.001] and status [F(1,19) = 826.4; p < 0.001], along with an interaction between the factors [F(1,19) = 31.4; p < 0.001], reflecting the differential false alarm rate [t(19) = 6.5; p < 0.001]. Sensitivity (Pr) was measured by subtracting the probability of false alarms from the probability of hits separately for face (0.51) and name (0.74) cues; a pairedsamples t-test found that sensitivity is lower for faces than for names [t(19) = 16.8; p < 0.001]. Response times for the initial old/new discrimination are plotted in Fig. 2(panel b). Hits were faster for faces than for names, while all other responses for faces were slower than for names. ANOVA with factors of cue type (face/name) and response (hit/correct rejection/miss/false alarm) revealed an interaction between the factors [F(1.8,30.6) = 4.9; p < 0.05], reflecting significant differences in reaction times to faces and names for hits [t(19) = 3.7; p = 0.001] and misses [t(19) = 4.2; p < 0.001], but not for correct rejections or false alarms. 1 The raw probabilities of hits and false alarms attracting remember/familiar responses are shown in Table 1. The hit data were rescaled under the independence assumption (IRK, see Yonelinas & Jacoby, 1995) and are plotted in Fig. 2(panel c). As can be seen, names were more likely than faces to be recollected, while faces appear more likely than names to be judged familiar. ANOVA with factors of cue type (face/name) and process estimate (rec- 1 It has been noted that response times (RTs) are rather long in this study, and we feel that the reason why RTs are longer in the present study than in other item recognition studies reflects the use of a two-stage decision task. In a recent item recognition study for faces, a mean RT for 989 ms was observed (Yick & Wilding, 2008) while in a previous two-stage decision task for faces a mean RT of 1277 ms was observed (Yovel & Paller, 2004). ollection/familiarity) revealed an interaction between the factors [F(1,19) = 11.2; p < 0.01], and subsidiary paired-samples t-tests found that the only significant difference was between the estimates of recollection for names and faces [t(19) = 2.5; p < 0.05]. This pattern of results indicates that name recognition receives greater input from recollection than face recognition, while familiarity contributes equally across conditions. Response times for the correctly recognized faces and names separated by subsequent remember/familiar response are plotted in Fig. 2(panel d). As can be seen, remember responses are faster for faces than for names, while there is little difference in response time for familiar responses. ANOVA with factors of cue type (face/name) and response (remember/familiar) revealed main effects of cue type [F(1,19) = 9.4; p < 0.01] and response [F(1,19) = 18.2; p < 0.001] along with an interaction between the factors [F(1,19) = 21.2; p < 0.001]. The effect of cue type reflects faster responses for faces than for names, and the effect of response reflects faster remember responses than familiar responses. Paired-samples t-tests identified differences in response time between remember responses for faces and names [t(19) = 6.5; p < 0.001] and between remember and familiar responses for faces [t(19) = 7.8; p < 0.001], while all other comparisons were non-reliable. This pattern of results demonstrates that the interaction between cue type and response is due to remember responses for faces being faster than any other response category. In sum, the behavioural data indicate that recollection contributes more to name recognition than face recognition. It is important to note, however, that we are confident that recollection supported hit performance for faces primarily because the estimates of the contribution of familiarity to recognition performance were equivalent for faces and names. False alarm rates are also informative with respect to the contribution of familiarity to hits. Across cue types there were more false alarms receiving familiar responses than remember responses. In fact, the rates of remember false alarms were very low, suggesting that participants used the remember/familiar response options correctly, and tended to make a familiar response when recognition was primarily based on familiarity. On this basis it seems likely that the participants used the response options correctly for studied faces and names, and it therefore seems reasonable to conclude that recollection supported hits for both faces and names Electrophysiology Grand-average waveforms were formed for correct remember and new responses to faces and names. Waveforms were first quantified into two a priori time windows where episodic retrieval related effects for faces have been observed previously: and ms (Yovel & Paller, 2004; Curran & Hancock, 2007; MacKenzie & Donaldson, 2007). To assess whether apparent differences in the old/new effects for faces and names result from variations in timing across conditions, two further time windows were analyzed: and ms Face cues The top panel of Fig. 3 shows ERPs for correctly recognized old faces given remember responses along with correctly rejected new faces, at the frontal and parietal electrode sites used for analysis. As can be seen, the old waveform becomes more positive-going than the new waveform from around 400 ms. The old/new divergence persists until roughly 700 ms, and appears to be greatest at frontal electrodes. In addition to early old/new effects, from approximately 700 ms onwards there appears to be a negative-going deflection at parietal electrodes, and a sustained positive-going deflection at right frontal electrodes.

5 G. MacKenzie, D.I. Donaldson / Neuropsychologia xxx (2009) xxx xxx 5 Fig. 2. Behavioural performance. Panel (a) shows the mean hit and false alarm rates for faces and names; error bars show the standard error of the mean. There is little difference in the hit rate, while there is a greater false alarm rate for faces than for names. Panel (b) shows mean response times for faces and names; error bars show the standard error of the mean. Hits were associated with shorter response times for faces than for names, while misses were associated with longer response times for faces than for names. Panel (c) shows mean probabilities of remember and familiar responses to correctly recognized items for faces and names; error bars show the standard error of the mean. A double dissociation is evident, with more remember responses than familiar responses for name recognition, and more familiar responses than remember responses for face recognition. Panel (d) shows mean response times for correctly recognized faces and names separated by subsequent response; error bars show the standard error of the mean. Remember hits are associated with faster response times for faces than for names. The analysis of data from 100 to 300 ms failed to reveal any significant differences. However, from 300 to 500 ms the analysis revealed interactions between old/new, hemisphere and site [F(1.9,35.7) = 4.0; p < 0.05] and between old/new, location, hemisphere and site [F(1.5,28.7) = 7.1; p < 0.01]. Reliable differences between the waveforms were only present at the frontal location, where an interaction between old/new, hemisphere and site [F(1.6,30.7) = 8.0; p < 0.01] was observed. This three-way interaction reflects an effect that is largest at inferior sites on the left hemisphere and becomes steadily smaller from left to right across the scalp. No differences were observed at the parietal location. Examination of the data found that the effect is only reliable at the F5 electrode [t(19) = 2.5; p < 0.05]. The analysis of data from 500 to 700 ms revealed a main effect of old/new [F(1,19) = 22.8; p < 0.001] and a marginally significant interaction between old/new, location and hemisphere Fig. 3. Grand average ERP waveforms are shown for representative frontal and parietal electrodes. ERPs are shown for correctly recognized studied items given remember responses (old) plotted along with correct rejections (new) for faces and names. The depicted epoch begins 100 ms pre-stimulus onset and ends 900 ms post-stimulus onset. Scale bars indicate the magnitude of activity (in microvolts) and the time course of activity (in milliseconds). The top of the figure shows the old/new effect for faces: the old waveform is more positive-going than the new waveform from roughly ms post-stimulus onset, and the difference between waveforms is greatest at the frontal location. The bottom of the figure shows the old/new effect for names: the old waveform is more positive-going than the new waveform from roughly ms post-stimulus onset, and the difference between waveforms is greatest at the left parietal electrode.

6 6 G. MacKenzie, D.I. Donaldson / Neuropsychologia xxx (2009) xxx xxx [F(1,19) = 3.9; p = 0.06], reflecting the right-lateralization of the effect at the frontal location (subsidiary analysis of data from the frontal location revealed a main effect of old/new [F(1,19) = 18.7; p < 0.001] and a marginal interaction between old/new and hemisphere [F(1,19) = 4.2; p = 0.054], while no hemispheric differences are observed at the parietal location, where subsidiary analysis revealed a main effect of old/new only [F(1,19) = 9.8; p < 0.01]). Examination of the data found that the effect is maximal at F2 [t(19) = 4.4; p < 0.001], suggesting that remembering faces elicits an anterior effect. Finally, the analysis of data from 700 to 900 ms revealed an interaction between old/new and site [F(1.1,20.8) = 6.1; p < 0.05], reflecting a negative-going deflection for the old waveform at superior sites compared to a positive-going deflection at inferior sites. In addition, the analysis revealed an interaction between old/new, location and hemisphere [F(1,19) = 5.9; p < 0.05]: the face effect is larger on the right hemisphere than on the left hemisphere at the frontal location (subsidiary analysis revealed an interaction between old/new and hemisphere [F(1,19) = 6.3; p < 0.05]), while no hemispheric differences were observed at the parietal location. Subsidiary analysis of data from the parietal location revealed an interaction between old/new and site [F(1.1,21.6) = 7.1; p < 0.05], reflecting a negative-going deflection for the old waveform that is greater at superior sites than at inferior sites. Examination of the data found that the effect is maximal at F6 [t(19) = 2.6; p < 0.05]. Remembering faces is associated with two separate effects during this time window: a late posterior negativity (LPN) and a late right frontal effect. This pattern of results demonstrates that remember responses for face cues are associated with frontally distributed positive-going old/new effects. From 300 to 500 ms, a small old/new difference with a left-lateralized inferior frontal distribution was observed, but was only reliable at one single electrode (F5). More importantly, remembering faces elicits an anterior effect with a right superior frontal maximum from 500 to 700 ms, and from 700 to 900 ms the onset of a late right frontal effect can be observed Name cues The lower panel of Fig. 3 shows ERPs for correctly recognized old names given remember responses, along with corresponding correct rejections. The old waveform is more positive-going from around 300 to 700 ms. The effect appears to be most pronounced at parietal locations, where the difference between waveforms is greatest on the left hemisphere. The analysis of data from 100 to 300 ms revealed a main effect of old/new [F(1,19) = 4.5; p < 0.05], but subsidiary analysis of data from the frontal and parietal locations separately failed to identify any significant differences. Examination of the data revealed that the effect is maximal at F3 [t(19) = 2.5; p < 0.05], suggesting that remembering names elicits an early manifestation of the mid frontal effect. The analysis of data from 300 to 500 ms revealed a main effect of old/new [F(1,19) = 10.2; p = 0.05] and interactions between: old/new and hemisphere [F(1,19) = 9.7; p < 0.01]; old/new, location and site [F(1.4,25.9) = 7.5; p < 0.01]; and between old/new, location, hemisphere and site [F(1.7,32.8) = 11.3; p < 0.001]. The four-way interaction was examined with subsidiary analysis of data from the frontal and parietal locations separately. At the frontal location, the analysis revealed a main effect of old/new [F(1,19) = 9.4; p < 0.01], along with an interaction between old/new and site [F(1.4,26.2) = 7.6; p < 0.01], reflecting a bigger effect at superior sites. The analysis of parietal sites revealed a main effect of old/new [F(1,19) = 5.8; p < 0.05], and interactions between old/new and hemisphere [F(1,19) = 26.3; p < 0.001] and between old/new, hemisphere and site [F(1.2,22.2) = 7.1; p < 0.05]. The effect is only present on the left hemisphere, where it is bigger at inferior sites. Examination of the data found that the effect is maximal at F1 [t(19) = 3.9; p = 0.001], suggesting that remembering names elicits a mid frontal effect. The analysis of data from 500 to 700 ms revealed a main effect of old/new [F(1,19) = 22.6; p < 0.001] along with interactions between old/new, location and hemisphere [F(1,19) = 8.3; p < 0.01] and between old/new, location, hemisphere and site [F(1.6,29.7) = 8.2; p < 0.01]. Subsidiary analysis revealed a main effect of old/new [F(1,19) = 6.5; p < 0.05] at the frontal location compared to a main effect of old/new [F(1,19) = 27.0; p < 0.001] and an interaction between old/new and hemisphere [F(1,19) = 9.9; p = 0.005] at the parietal location, reflecting a bigger effect on the left hemisphere. Examination of the data found that the effect is maximal at P3 [t(19) = 6.6; p < 0.001], suggesting that remembering names also elicits a left parietal old/new effect. The analysis of data from 700 to 900 ms revealed a main effect of old/new [F(1,19) = 5.6; p < 0.05] along with interactions between old/new and site [F(1.1,21.4) = 6.1; p < 0.05] and between old/new, location and site [F(1.1,21.8) = 6.4; p < 0.05]. These interactions reflect a negative-going deflection for the old waveform that is reliable at the parietal location [F(1,19) = 13.1; p < 0.01] but not at the frontal location; this negativity is bigger at superior sites than at inferior sites (interaction between old/new and site at the parietal location [F(1.1,21.5) = 12.2; p < 0.01]). Examination of the data revealed that the effect is maximal at P2 [t(19) = 4.3; p < 0.001], suggesting that remembering names elicits an LPN. In sum, this pattern of results suggests that remembering names elicits a mid frontal effect (maximal from 300 to 500 ms) and a left parietal effect (maximal from 500 to 700 ms). From 700 to 900 ms, the positive-going deflection of the old waveform can no longer be observed, while an LPN is present over parietal electrodes: given that the LPN is not the focus of this paper, no further consideration will be given to this effect Magnitude comparisons Difference waveforms were computed by subtracting the correct rejection waveform from the remember waveform for both faces and names. These difference waveforms reflect the magnitudes of the old/new differences and allow inferences to be drawn concerning the relative activity of underlying cognitive operations across conditions. Data were quantified into the same four latency periods used for the amplitude analyses, and were submitted to ANOVA with factors of condition (face/name), location (frontal/parietal), hemisphere (left/right) and site (superior/medial/inferior). During the ms latency period, the analysis revealed a four-way interaction [F(1.7,32.5) = 4.3; p > 0.05]. Subsidiary analyses were performed on data from the frontal and parietal locations separately; while no differences were observed at the frontal location, an interaction between condition, hemisphere and site was observed at the parietal location [F(1.3,24.5) = 4.4; p < 0.05]. This interaction appears to reflect differences in distribution between the two effects: the name effect is larger than the face effect on the left hemisphere, where it is maximal at inferior electrodes; by contrast, on the right hemisphere the name effect is larger than the face effect at the superior electrode only, while the face effect is larger than the name effect at the medial electrode and little difference was observed across cue types at the inferior electrode. The name effect is larger than the face effect at all frontal and parietal electrodes except for P4. From 300 to 500 ms, the analysis revealed an interaction between condition and hemisphere [F(1,19) = 6.2; p < 0.05], which reflects the right-lateralization of the face effect compared to the left-lateralization of the name effect. In addition, the analysis revealed an interaction between condition, location, hemisphere

7 G. MacKenzie, D.I. Donaldson / Neuropsychologia xxx (2009) xxx xxx 7 and site [F(1.7,32.0) = 19.6; p < 0.001]. Subsidiary analyses revealed an interaction between condition, hemisphere and site at the frontal location [F(1.4,26.6) = 6.8; p < 0.01], reflecting differences on the left hemisphere, where the face effect is maximal at the inferior electrode and the name effect is maximal at superior electrode (interaction between condition and site [F(1.2, 22.4) = 5.9; p < 0.05]). At the parietal location, subsidiary analyses revealed an interaction between condition and hemisphere [F(1.19) = 13.3; p < 0.01], reflecting the right-lateralization of the face effect compared to the left-lateralization of the name effect. In addition, at the parietal location an interaction between condition, hemisphere and site was observed [F(1.3,25.6) = 7.6; p < 0.01], reflecting differences on the right hemisphere, where the face effect is maximal at the medial electrode while the name effect is maximal at the superior electrode (interaction between condition and site [F(1.3,23.8) = 4.8; p < 0.05]. As in the ms latency period, the name effect is larger than the face effect at all frontal and parietal electrodes except for P4. During the ms latency period, the analysis revealed a four-way interaction [F(1.8,33.4) = 7.0; p < 0.01]. Subsidiary analyses were performed on data from the frontal and parietal locations separately. The face effect is larger than the name effect at the frontal location, while at the parietal location the name effect is larger; furthermore, at the parietal location, an interaction between condition and hemisphere was observed [F(1,19) = 6.0; p < 0.05], reflecting a face effect with a bilateral distribution compared to a left-lateralized name effect. The overall four-way interaction appears to reflect differences in distribution that are restricted to the right hemisphere, where the face effect is maximal at the superior electrode at the frontal location (relative to a name effect that is roughly equivalent across sites); while at the parietal location the face effect is maximal at the medial electrode whereas the name effect is maximal at the superior electrode. In contrast to the two earlier latency periods, the name effect is only larger than the face effect at left parietal electrodes, while the face effect is larger at the frontal location and at right parietal electrodes. Finally, from 700 to 900 ms, the analysis revealed an interaction between condition and hemisphere [F(1,19) = 6.1; p < 0.05], reflecting the right-lateralization of the face effect relative to the leftlateralization of the name effect. In addition, the analysis revealed an interaction between condition, location and hemisphere [F(1,19) = 6.3; p < 0.05]. Subsidiary analyses identified the aforementioned laterality differences at the frontal location (interaction between condition and hemisphere [F(1,19) = 7.8; p < 0.05]) while no differences were observed at the parietal location. The face effect is larger than the name effect at all frontal and parietal electrodes Topographic analysis Fig. 4 shows the distributions of the face and name remember effects. For faces, the most pronounced activity can be observed over right superior frontal electrodes from 500 to 700 ms, while for names classic mid frontal ( ms) and left parietal ( ms) effects can be observed. The most important topographic feature concerns the differential activity from 500 to 700 ms when faces elicit an anterior effect and, by contrast, a left parietal effect can be observed for names. Finally, the topography of the face effect appears to shift from a superior frontal distribution ( ms) to an inferior, right-sided frontal distribution ( ms), reflecting the onset of the late right frontal effect. Topographic analyses of rescaled difference waveforms were performed to assess whether faces and names are associated with qualitatively distinct old/new effects. The first analysis compared the face and name conditions to see if there is any evidence that the effects present from 500 to 700 ms have different distributions. Data were submitted to ANOVA with the factors of cue type (face/name), location (frontal/parietal), hemisphere (left/right) and Fig. 4. Topographic distribution of recollection old/new effects for faces and names. Each cartoon shows the distribution of the difference between correctly recognized old items given remember responses and correctly rejected new items, averaged over a 200 ms time period. The front of the head is at the top of each map, and the left hemisphere is on the left-hand side. Each dot represents a recording electrode. The scale bar indicates the range of activity (in microvolts). The distribution of the face recollection effect has an anterior maximum, whereas the distribution of the name recollection effect has topographically dissociable mid frontal ( ms) and left parietal ( ms) maxima. site (superior/medial/inferior). The analysis revealed a four-way interaction [F(1.7,33.1) = 7.5; p < 0.01], reflecting the fact that the face effect is bigger on the right hemisphere at superior, frontal sites, whereas the name effect is bigger on the left hemisphere at medial, parietal sites. This topographic dissociation indicates that the anterior and left parietal effects had different scalp distributions, providing evidence that remembering can be associated with a different pattern of underlying cognitive operations for faces and names. A second analysis was performed to assess whether the distribution of the face recollection effect ( ms) differs from the distribution of the name recollection effect present in the early time window ( ms). Although these two effects were present in different time windows, both were maximal at anterior sites and it is conceivable that the face recollection effect represents nothing more than a delayed manifestation of the early mid frontal effect seen for names. ANOVA was performed with factors of condition (face ms/name ms), location (frontal/parietal), hemisphere (left/right) and site (superior/medial/inferior). The analysis revealed an interaction between condition and hemisphere [F(1,19) = 10.0; p = 0.005], reflecting the fact that the face effect is right-lateralized whereas the name effect is left-lateralized. The analysis also revealed an interaction between condition, location, hemisphere and site [F(2.0,37.2) = 10.1; p < 0.001]. The name effect is left-lateralized at both locations whereas the face effect is right-lateralized at the frontal location and bilateral at the parietal location. In addition, at the parietal location, the name effect is smaller at inferior sites than at superior sites, whereas the face effect is larger at inferior sites than at superior sites. This pattern of topographic differences between the mid frontal effect for names ( ms) and the anterior effect for faces ( ms) is critical because it suggests that the anterior effect observed for faces cannot simply be explained as a delayed manifestation of the mid frontal effect observed for names. 2 2 The ms latency period allows comparison of the face old/new effect with the classic mid frontal effect, but it does not represent the best fit for the face effect, which begins to diverge around 400 ms. We examined the possibility that

8 8 G. MacKenzie, D.I. Donaldson / Neuropsychologia xxx (2009) xxx xxx A third analysis was performed to assess whether the anterior old/new effect seen for faces ( ms) differs from the late right frontal effect that emerges during the next time window ( ms). ANOVA was performed with the factors of latency ( ms/ ms), location (frontal/parietal), hemisphere (left/right) and site (superior/medial/inferior). The analysis revealed an interaction between latency and site [F(1.1,20.3) = 13.8; p = 0.001], reflecting a superior distribution from 500 to 700 ms which differs from the inferior distribution of the effect observed from 700 to 900 ms. The analysis also revealed an interaction between latency, location, hemisphere and site [F(1.4,26.1) = 5.0; p < 0.05]. Interpretation of this interaction is confounded by the presence of an LPN in the later time window, and therefore subsidiary ANOVA were performed on data from the frontal location to assess whether the anterior and right frontal old/new effects can be dissociated. The analysis revealed a marginally significant interaction between latency, hemisphere and site [F(1.2,23.4) = 3.2; p = 0.08] that reflects a combination of no significant differences on the left hemisphere (F < 2.7) and highly significant differences on the right hemisphere (interaction between latency and site [F(1.1,21.4) = 9.6; p < 0.01]). Taken together, the topographic analyses reveal that the superior distribution of the anterior effect ( ms) differs from the inferior distribution of the late right frontal effect ( ms). This pattern of results suggests that different cognitive operations are engaged when the superior frontal effect is manifest compared to when the late right frontal and late posterior negativities are observed. Finally, an analysis was performed to assess whether the mid frontal ( ms) and left parietal ( ms) effects can be dissociated on topographic grounds. ANOVA was performed with factors of latency period ( ms/ ms), location (frontal/parietal), hemisphere (left/right) and site (superior/medial/inferior). The analysis revealed interactions between condition and location [F(1,19) = 7.8; p < 0.05], condition and hemisphere [F(1.19) = 4.4; p < 0.05], and between condition, location and site [F(1.1,20.8) = 5.4; p < 0.05]. These results imply that the mid frontal and left parietal effects are associated with different scalp topographies Summary Topographic analysis identified qualitative differences between the old/new effects associated with remembering faces and names. Face cues elicited superior frontal ( ms) and late right frontal ( ms) effects whereas name cues elicited mid frontal ( ms) and left parietal effects ( ms). The topographic analysis supports the view that different cognitive operations underlie the anterior face effect when compared to the mid frontal and left parietal effects observed for names, and when compared to the late right frontal effect seen for faces. Overall, this pattern of results implies that remembering faces recruits different retrieval processes from remembering names. 4. Discussion In this recognition memory experiment qualitatively distinct neural correlates of retrieval were observed for remember responses to face and name cues. During the critical ms the dissociation between the anterior face effect and the mid frontal name effect is an artifact of inappropriate time window selection by segmenting waveforms into consecutive 50 ms latency periods from 300 to 700 ms. Amplitude analysis revealed that the face effect achieves significance at 450 ms with a right superior frontal distribution. The distribution remains stable from ms, and therefore it is unlikely that the dissociation between the anterior face and mid frontal name effects rests upon inappropriate time window selection. latency period, faces were associated with an anterior ERP old/new effect, whereas names were associated with the classic left parietal effect linked with recollection. The anterior effect was topographically dissociable from both the mid frontal effect observed for names and the late right frontal effect observed for faces, suggesting that the anterior effect cannot be accounted for straightforwardly in terms of familiarity or post-retrieval monitoring. Most importantly, the anterior and left parietal effects had different scalp distributions, providing evidence that remembering can be associated with different underlying cognitive operations for faces and names. Below, we discuss the potential role of familiarity and postretrieval processing during remembering, and we then consider whether the anterior effect observed for faces represents a blend of mid frontal and late right frontal effects, or whether in fact recollection processing differs for face and name cues The role of familiarity and post-retrieval processing in remembering Remember judgments should in theory be supported by recollection, but most researchers would agree that familiarity also contributes towards remembering. The relationship between familiarity and recollection is disputed, however, with at least three models having some currency: exclusivity, independence and redundancy (Jones, 1987). Clearly, if either independence or redundancy are assumed, and familiarity can co-occur with recollection, then familiarity is likely to contribute to remembering. Here, the behavioural evidence suggests that this is the case; in fact, the estimates of the contribution of familiarity to recognition performance were equivalent across cue types. Recently, the remember/know procedure has been criticized for not providing a pure estimate of familiarity (Wais et al., 2008); however, the consensus remains that remember responses receive contributions from both recollection and familiarity. In comparing old/new effects associated with remember responses, therefore, it is to be expected that both recollection and familiarity signals should be present. For names, the remember old/new effect featured both mid frontal ( ms) and left parietal ( ms) effects. As described in the introduction, the mid frontal effect has been associated with both familiarity (Rugg et al., 1998; Curran, 2000; Curran & Cleary, 2003; Azimian-Faridani & Wilding, 2006) and conceptual priming (Voss & Paller, 2006; Paller et al., 2007), while the left parietal effect is associated with recollection (Wilding & Rugg, 1996; Allan, Wilding, & Rugg, 1998; Donaldson & Rugg, 1998; Johansson, Mecklinger, & Treese, 2004; Johnson, Minton, & Rugg, 2008). For faces, however, the remember old/new effect had an anterior maximum associated with recollection (MacKenzie & Donaldson, 2007) but no distinct component related to familiarity was observed. A posterior old/new effect has been linked to familiarity by studies examining recognition of faces in the absence of contextual retrieval (see Yovel & Paller, 2004; MacKenzie & Donaldson, 2007), and therefore it may be the case that a posterior familiarity signal is present in the current data for faces but that it is obscured by the anterior recollection effect. Whilst the behavioural data suggest equivalent rates of familiarity across cue types, there were fewer remember responses for faces than for names. Thus, although the topographic analyses reveal distinct ERP old/new effects for faces and names, it is possible that this reflects nothing more than the fact that recollection was not sufficiently engaged to elicit a reliable left parietal effect when faces were used as retrieval cues. By this account, in the absence of recollection, one might assume that the anterior effect seen for faces may therefore reflect a delayed mid frontal effect or the early onset of the late right frontal effect; that is, performance is supported by a combination of familiarity and post-retrieval processing. As mentioned above, however, topographic differences are present between the

ARTICLE IN PRESS. Introduction

ARTICLE IN PRESS. Introduction YNIMG-04114; No. of pages: 14; 4C: 9 model 5 www.elsevier.com/locate/ynimg NeuroImage xx (2006) xxx xxx Investigating the functional interaction between semantic and episodic memory: Convergent behavioral

More information

Material-speci c neural correlates of memory retrieval

Material-speci c neural correlates of memory retrieval BRAIN IMAGING Material-speci c neural correlates of memory retrieval Yee Y. Yick and Edward L. Wilding Cardi University Brain Research Imaging Centre, School of Psychology, Cardi University, Cardi, Wales,

More information

Dissociable neural correlates for familiarity and recollection during the encoding and retrieval of pictures

Dissociable neural correlates for familiarity and recollection during the encoding and retrieval of pictures Cognitive Brain Research 18 (2004) 255 272 Research report Dissociable neural correlates for familiarity and recollection during the encoding and retrieval of pictures Audrey Duarte a, *, Charan Ranganath

More information

ERP correlates of retrieval orientation: Direct versus indirect memory tasks

ERP correlates of retrieval orientation: Direct versus indirect memory tasks available at www.sciencedirect.com www.elsevier.com/locate/brainres Research Report ERP correlates of retrieval orientation: Direct versus indirect memory tasks Michael Hornberger a, Michael D. Rugg b,

More information

ERP correlates of Remember/Know decisions: Association with the late posterior negativity

ERP correlates of Remember/Know decisions: Association with the late posterior negativity Biological Psychology 75 (2007) 131 135 www.elsevier.com/locate/biopsycho ERP correlates of Remember/Know decisions: Association with the late posterior negativity David A. Wolk a, Daniel L. Schacter b,

More information

The relationship between electrophysiological correlates of recollection and amount of information retrieved

The relationship between electrophysiological correlates of recollection and amount of information retrieved BRAIN RESEARCH 1122 (2006) 161 170 available at www.sciencedirect.com www.elsevier.com/locate/brainres Research Report The relationship between electrophysiological correlates of recollection and amount

More information

An event-related potential study of the revelation effect

An event-related potential study of the revelation effect Psychonomic Bulletin & Review 2004, 11 (5), 926-931 An event-related potential study of the revelation effect NAZANIN AZIMIAN-FARIDANI and EDWARD L. WILDING Cardiff University, Cardiff, Wales Event-related

More information

Identifying the ERP correlate of a recognition memory search attempt

Identifying the ERP correlate of a recognition memory search attempt Cognitive Brain Research 24 (2005) 674 684 Research Report Identifying the ERP correlate of a recognition memory search attempt Rachel A. Diana a, *, Kaia L. Vilberg b, Lynne M. Reder a a Department of

More information

Neurophysiological correlates of memory illusion in both encoding and retrieval phases

Neurophysiological correlates of memory illusion in both encoding and retrieval phases available at www.sciencedirect.com www.elsevier.com/locate/brainres Research Report Neurophysiological correlates of memory illusion in both encoding and retrieval phases Haiyan Geng a,, Yaqiong Qi a,

More information

In what way does the parietal ERP old new effect index recollection?

In what way does the parietal ERP old new effect index recollection? Ž. International Journal of Psychophysiology 35 2000 81 87 In what way does the parietal ERP old new effect index recollection? Edward L. Wilding School of Psychology, Cardiff Uni ersity, Cardiff, CF10

More information

Reward prediction error signals associated with a modified time estimation task

Reward prediction error signals associated with a modified time estimation task Psychophysiology, 44 (2007), 913 917. Blackwell Publishing Inc. Printed in the USA. Copyright r 2007 Society for Psychophysiological Research DOI: 10.1111/j.1469-8986.2007.00561.x BRIEF REPORT Reward prediction

More information

Electrophysiological dissociation of the neural correlates of recollection and familiarity

Electrophysiological dissociation of the neural correlates of recollection and familiarity ava i l a b l e a t w w w. s c i e n c e d i r e c t. c o m w w w. e l s ev i e r. c o m / l o c a t e / b r a i n r e s Research Report Electrophysiological dissociation of the neural correlates of recollection

More information

The worth of pictures: Using high density event-related potentials to understand the memorial power of pictures and the dynamics of recognition memory

The worth of pictures: Using high density event-related potentials to understand the memorial power of pictures and the dynamics of recognition memory www.elsevier.com/locate/ynimg NeuroImage 35 (2007) 378 395 The worth of pictures: Using high density event-related potentials to understand the memorial power of pictures and the dynamics of recognition

More information

Semantic and perceptual effects on recognition memory: Evidence from ERP

Semantic and perceptual effects on recognition memory: Evidence from ERP available at www.sciencedirect.com www.elsevier.com/locate/brainres Research Report Semantic and perceptual effects on recognition memory: Evidence from ERP Erika Nyhus, Tim Curran Department of Psychology

More information

Task-switching and memory retrieval processing: Electrophysiological evidence.

Task-switching and memory retrieval processing: Electrophysiological evidence. COGNITIVE NEUROSCIENCE AND NEUROPSYCHOLOGY Task-switching and memory retrieval processing: Electrophysiological evidence. E. L. Wilding CA and A. C. Nobre 1 School of Psychology, Cardiff University, Cardiff,

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

The neural basis of the butcher-on-the-bus phenomenon: when a face seems familiar but is not remembered

The neural basis of the butcher-on-the-bus phenomenon: when a face seems familiar but is not remembered Rapid Communication The neural basis of the butcher-on-the-bus phenomenon: when a face seems familiar but is not remembered Galit Yovel 1 and Ken A. Paller* Department of Psychology and Institute for Neuroscience,

More information

The influence of criterion shifts on electrophysiological correlates of recognition memory. N. Azimian-Faridani* & E.L. Wilding. School of Psychology

The influence of criterion shifts on electrophysiological correlates of recognition memory. N. Azimian-Faridani* & E.L. Wilding. School of Psychology In Press: Journal of Cognitive Neuroscience. The influence of criterion shifts on electrophysiological correlates of recognition memory N. Azimian-Faridani* & E.L. Wilding School of Psychology Cardiff

More information

A study of the effect of auditory prime type on emotional facial expression recognition

A study of the effect of auditory prime type on emotional facial expression recognition RESEARCH ARTICLE A study of the effect of auditory prime type on emotional facial expression recognition Sameer Sethi 1 *, Dr. Simon Rigoulot 2, Dr. Marc D. Pell 3 1 Faculty of Science, McGill University,

More information

Age effects on brain activity associated with episodic memory retrieval Mark, Ruth; Rugg, M.D.

Age effects on brain activity associated with episodic memory retrieval Mark, Ruth; Rugg, M.D. Tilburg University Age effects on brain activity associated with episodic memory retrieval Mark, Ruth; Rugg, M.D. Published in: Brain Publication date: 1998 Link to publication Citation for published version

More information

encoding and predict subsequent memory. Michael Griffin, Melissa DeWolf, Alexander Keinath, Xiaonan Liu and Lynne Reder* Carnegie Mellon University

encoding and predict subsequent memory. Michael Griffin, Melissa DeWolf, Alexander Keinath, Xiaonan Liu and Lynne Reder* Carnegie Mellon University Identical vs. Conceptual repetition FN400 and Parietal Old/New ERP components occur during encoding and predict subsequent memory. Michael Griffin, Melissa DeWolf, Alexander Keinath, Xiaonan Liu and Lynne

More information

Woollams et al. 1. In Press, Journal of Cognitive Neuroscience. ERPs associated with masked priming of test cues reveal multiple potential

Woollams et al. 1. In Press, Journal of Cognitive Neuroscience. ERPs associated with masked priming of test cues reveal multiple potential Woollams et al. 1 In Press, Journal of Cognitive Neuroscience ERPs associated with masked priming of test cues reveal multiple potential contributions to recognition memory A. Woollams 1, J.R. Taylor 1,

More information

ERP Correlates of Identity Negative Priming

ERP Correlates of Identity Negative Priming ERP Correlates of Identity Negative Priming Jörg Behrendt 1,3 Henning Gibbons 4 Hecke Schrobsdorff 1,2 Matthias Ihrke 1,3 J. Michael Herrmann 1,2 Marcus Hasselhorn 1,3 1 Bernstein Center for Computational

More information

Mental representation of number in different numerical forms

Mental representation of number in different numerical forms Submitted to Current Biology Mental representation of number in different numerical forms Anna Plodowski, Rachel Swainson, Georgina M. Jackson, Chris Rorden and Stephen R. Jackson School of Psychology

More information

The influence of directed attention at encoding on source memory retrieval in the young and old: An ERP study

The influence of directed attention at encoding on source memory retrieval in the young and old: An ERP study brain research 1500 (2013) 55 71 Available online at www.sciencedirect.com www.elsevier.com/locate/brainres Research Report The influence of directed attention at encoding on source memory retrieval in

More information

Neural correlates of conceptual implicit memory and their contamination of putative neural correlates of explicit memory

Neural correlates of conceptual implicit memory and their contamination of putative neural correlates of explicit memory Research Neural correlates of conceptual implicit memory and their contamination of putative neural correlates of explicit memory Joel L. Voss 1 and Ken A. Paller Interdepartmental Neuroscience Program

More information

NeuroImage 50 (2010) Contents lists available at ScienceDirect. NeuroImage. journal homepage:

NeuroImage 50 (2010) Contents lists available at ScienceDirect. NeuroImage. journal homepage: NeuroImage 50 (2010) 329 339 Contents lists available at ScienceDirect NeuroImage journal homepage: www.elsevier.com/locate/ynimg Switching associations between facial identity and emotional expression:

More information

Event-related potential correlates of interference effects on recognition memory

Event-related potential correlates of interference effects on recognition memory Psychonomic Bulletin & Review 2008, 15 (1), 36-43 doi: 10.3758/PBR.15.1.36 Event-related potential correlates of interference effects on recognition memory Kenneth A. Norman Princeton University, Princeton,

More information

Title of Thesis. Study on Audiovisual Integration in Young and Elderly Adults by Event-Related Potential

Title of Thesis. Study on Audiovisual Integration in Young and Elderly Adults by Event-Related Potential Title of Thesis Study on Audiovisual Integration in Young and Elderly Adults by Event-Related Potential 2014 September Yang Weiping The Graduate School of Natural Science and Technology (Doctor s Course)

More information

Investigating Familiarity's Contribution to Source Recognition

Investigating Familiarity's Contribution to Source Recognition University of Colorado, Boulder CU Scholar Psychology and Neuroscience Graduate Theses & Dissertations Psychology and Neuroscience Spring 1-1-2010 Investigating Familiarity's Contribution to Source Recognition

More information

ERP correlates of item recognition memory: Effects of age and performance

ERP correlates of item recognition memory: Effects of age and performance available at www.sciencedirect.com www.elsevier.com/locate/brainres Research Report ERP correlates of item recognition memory: Effects of age and performance David A. Wolk a,, N. Mandu Sen c, Hyemi Chong

More information

Evaluating Models of Object-Decision Priming: Evidence From Event-Related Potential Repetition Effects

Evaluating Models of Object-Decision Priming: Evidence From Event-Related Potential Repetition Effects Journal of Experimental Psychology: Learning, Memory, and Cognition 2006, Vol. 32, No. 2, 230 248 Copyright 2006 by the American Psychological Association 0278-7393/06/$12.00 DOI: 10.1037/0278-7393.32.2.230

More information

Discovering Processing Stages by combining EEG with Hidden Markov Models

Discovering Processing Stages by combining EEG with Hidden Markov Models Discovering Processing Stages by combining EEG with Hidden Markov Models Jelmer P. Borst (jelmer@cmu.edu) John R. Anderson (ja+@cmu.edu) Dept. of Psychology, Carnegie Mellon University Abstract A new method

More information

The Effects of Unitization on Familiarity-Based Source Memory: Testing a Behavioral Prediction Derived From Neuroimaging Data

The Effects of Unitization on Familiarity-Based Source Memory: Testing a Behavioral Prediction Derived From Neuroimaging Data Journal of Experimental Psychology: Learning, Memory, and Cognition 2008, Vol. 34, No. 4, 730 740 Copyright 2008 by the American Psychological Association 0278-7393/08/$12.00 DOI: 10.1037/0278-7393.34.4.730

More information

Figure 1. Source localization results for the No Go N2 component. (a) Dipole modeling

Figure 1. Source localization results for the No Go N2 component. (a) Dipole modeling Supplementary materials 1 Figure 1. Source localization results for the No Go N2 component. (a) Dipole modeling analyses placed the source of the No Go N2 component in the dorsal ACC, near the ACC source

More information

BRIEF REPORTS Modes of cognitive control in recognition and source memory: Depth of retrieval

BRIEF REPORTS Modes of cognitive control in recognition and source memory: Depth of retrieval Journal Psychonomic Bulletin & Review 2005,?? 12 (?), (5),???-??? 852-857 BRIEF REPORTS Modes of cognitive control in recognition and source memory: Depth of retrieval LARRY L. JACOBY, YUJIRO SHIMIZU,

More information

Brainpotentialsassociatedwithoutcome expectation and outcome evaluation

Brainpotentialsassociatedwithoutcome expectation and outcome evaluation COGNITIVE NEUROSCIENCE AND NEUROPSYCHOLOGY Brainpotentialsassociatedwithoutcome expectation and outcome evaluation Rongjun Yu a and Xiaolin Zhou a,b,c a Department of Psychology, Peking University, b State

More information

Implicit effects of emotional contexts: An ERP study

Implicit effects of emotional contexts: An ERP study Cogn Affect Behav Neurosci (2012) 12:748 760 DOI 10.3758/s13415-012-0110-1 Implicit effects of emotional contexts: An ERP study Antonio Jaeger & Michael D. Rugg Published online: 15 July 2012 # Psychonomic

More information

Electrophysiological Substrates of Auditory Temporal Assimilation Between Two Neighboring Time Intervals

Electrophysiological Substrates of Auditory Temporal Assimilation Between Two Neighboring Time Intervals Electrophysiological Substrates of Auditory Temporal Assimilation Between Two Neighboring Time Intervals Takako Mitsudo *1, Yoshitaka Nakajima 2, Gerard B. Remijn 3, Hiroshige Takeichi 4, Yoshinobu Goto

More information

NeuroImage 49 (2010) Contents lists available at ScienceDirect. NeuroImage. journal homepage:

NeuroImage 49 (2010) Contents lists available at ScienceDirect. NeuroImage. journal homepage: NeuroImage 49 (2010) 2879 2889 Contents lists available at ScienceDirect NeuroImage journal homepage: www.elsevier.com/locate/ynimg Finding meaning in novel geometric shapes influences electrophysiological

More information

An ERP Examination of the Different Effects of Sleep Deprivation on Exogenously Cued and Endogenously Cued Attention

An ERP Examination of the Different Effects of Sleep Deprivation on Exogenously Cued and Endogenously Cued Attention Sleep Deprivation and Selective Attention An ERP Examination of the Different Effects of Sleep Deprivation on Exogenously Cued and Endogenously Cued Attention Logan T. Trujillo, PhD 1 ; Steve Kornguth,

More information

Episodic memory storage and retrieval: Insights from electrophysiological. measures

Episodic memory storage and retrieval: Insights from electrophysiological. measures 1 Episodic memory storage and retrieval: Insights from electrophysiological measures Axel Mecklinger and Theodor Jäger Experimental Neuropsychology Unit, Department of Psychology, Saarland University,

More information

Does contralateral delay activity reflect working memory storage or the current focus of spatial attention within visual working memory?

Does contralateral delay activity reflect working memory storage or the current focus of spatial attention within visual working memory? Running Head: Visual Working Memory and the CDA Does contralateral delay activity reflect working memory storage or the current focus of spatial attention within visual working memory? Nick Berggren and

More information

The impact of numeration on visual attention during a psychophysical task; An ERP study

The impact of numeration on visual attention during a psychophysical task; An ERP study The impact of numeration on visual attention during a psychophysical task; An ERP study Armita Faghani Jadidi, Raheleh Davoodi, Mohammad Hassan Moradi Department of Biomedical Engineering Amirkabir University

More information

The Mechanism of Valence-Space Metaphors: ERP Evidence for Affective Word Processing

The Mechanism of Valence-Space Metaphors: ERP Evidence for Affective Word Processing : ERP Evidence for Affective Word Processing Jiushu Xie, Ruiming Wang*, Song Chang Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, Guangdong

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

Event-related potentials as an index of similarity between words and pictures

Event-related potentials as an index of similarity between words and pictures Psychophysiology, 42 (25), 361 368. Blackwell Publishing Inc. Printed in the USA. Copyright r 25 Society for Psychophysiological Research DOI: 1.1111/j.1469-8986.25.295.x BRIEF REPORT Event-related potentials

More information

Age-related changes in source memory retrieval: an ERP replication and extension

Age-related changes in source memory retrieval: an ERP replication and extension Cognitive Brain Research 13 (2002) 323 338 www.elsevier.com/ locate/ bres Research report Age-related changes in source memory retrieval: an ERP replication and extension a,b, b a,b a Domonick J. Wegesin

More information

ERP evidence for successful voluntary avoidance of conscious recollection

ERP evidence for successful voluntary avoidance of conscious recollection ava i l a b l e a t w w w. s c i e n c e d i r e c t. c o m w w w. e l s ev i e r. c o m / l o c a t e / b r a i n r e s Research Report ERP evidence for successful voluntary avoidance of conscious recollection

More information

Independence of Visual Awareness from the Scope of Attention: an Electrophysiological Study

Independence of Visual Awareness from the Scope of Attention: an Electrophysiological Study Cerebral Cortex March 2006;16:415-424 doi:10.1093/cercor/bhi121 Advance Access publication June 15, 2005 Independence of Visual Awareness from the Scope of Attention: an Electrophysiological Study Mika

More information

Supplementary materials for: Executive control processes underlying multi- item working memory

Supplementary materials for: Executive control processes underlying multi- item working memory Supplementary materials for: Executive control processes underlying multi- item working memory Antonio H. Lara & Jonathan D. Wallis Supplementary Figure 1 Supplementary Figure 1. Behavioral measures of

More information

The attentional selection of spatial and non-spatial attributes in touch: ERP evidence for parallel and independent processes

The attentional selection of spatial and non-spatial attributes in touch: ERP evidence for parallel and independent processes Biological Psychology 66 (2004) 1 20 The attentional selection of spatial and non-spatial attributes in touch: ERP evidence for parallel and independent processes Bettina Forster, Martin Eimer School of

More information

Neural Substrates of Remembering: Event-Related Potential Studies q

Neural Substrates of Remembering: Event-Related Potential Studies q Neural Substrates of Remembering: Event-Related Potential Studies q Joel L Voss, Northwestern University, Chicago, IL, United States Ken A Paller, Northwestern University, Evanston, IL, United States Ó

More information

The influence of predictive value of cues in the endogenous orienting paradigm examined with event-related lateralizations

The influence of predictive value of cues in the endogenous orienting paradigm examined with event-related lateralizations The influence of predictive value of cues in the endogenous orienting paradigm examined with event-related lateralizations Franka Roorda First supervisor: Rob van der Lubbe Second supervisor: Suzanne Vosslamber

More information

Resistance to forgetting associated with hippocampus-mediated. reactivation during new learning

Resistance to forgetting associated with hippocampus-mediated. reactivation during new learning Resistance to Forgetting 1 Resistance to forgetting associated with hippocampus-mediated reactivation during new learning Brice A. Kuhl, Arpeet T. Shah, Sarah DuBrow, & Anthony D. Wagner Resistance to

More information

Description of the Spectro-temporal unfolding of temporal orienting of attention.

Description of the Spectro-temporal unfolding of temporal orienting of attention. Description of the Spectro-temporal unfolding of temporal orienting of attention. All behaviors unfold over time; therefore, our ability to perceive and adapt our behavior according to the temporal constraints

More information

Examining Event-Related Potential (ERP) Correlates of Decision Bias in Recognition Memory Judgments

Examining Event-Related Potential (ERP) Correlates of Decision Bias in Recognition Memory Judgments Examining Event-Related Potential (ERP) Correlates of Decision Bias in Recognition Memory Judgments Holger Hill 1,2 *, Sabine Windmann 1 1 Goethe University Frankfurt, Institute for Psychology, Cognitive

More information

Effects of attention and confidence on the hypothesized ERP correlates of recollection and familiarity

Effects of attention and confidence on the hypothesized ERP correlates of recollection and familiarity Neuropsychologia 42 (2004) 1088 1106 Effects of attention and confidence on the hypothesized ERP correlates of recollection and familiarity Tim Curran Department of Psychology, University of Colorado,

More information

Supporting Information

Supporting Information Supporting Information ten Oever and Sack 10.1073/pnas.1517519112 SI Materials and Methods Experiment 1. Participants. A total of 20 participants (9 male; age range 18 32 y; mean age 25 y) participated

More information

PAPER Developmental changes in memory encoding: insights from event-related potentials

PAPER Developmental changes in memory encoding: insights from event-related potentials Developmental Science (2013), pp 1 12 DOI: 10.1111/desc.12072 PAPER Developmental changes in memory encoding: insights from event-related potentials Leslie Rollins and Tracy Riggins Department of Psychology,

More information

Supplementary experiment: neutral faces. This supplementary experiment had originally served as a pilot test of whether participants

Supplementary experiment: neutral faces. This supplementary experiment had originally served as a pilot test of whether participants Supplementary experiment: neutral faces This supplementary experiment had originally served as a pilot test of whether participants would automatically shift their attention towards to objects the seen

More information

Early posterior ERP components do not reflect the control of attentional shifts toward expected peripheral events

Early posterior ERP components do not reflect the control of attentional shifts toward expected peripheral events Psychophysiology, 40 (2003), 827 831. Blackwell Publishing Inc. Printed in the USA. Copyright r 2003 Society for Psychophysiological Research BRIEF REPT Early posterior ERP components do not reflect the

More information

The role of selective attention in visual awareness of stimulus features: Electrophysiological studies

The role of selective attention in visual awareness of stimulus features: Electrophysiological studies Cognitive, Affective, & Behavioral Neuroscience 2008, 8 (2), 195-210 doi: 10.3758/CABN.8.2.195 The role of selective attention in visual awareness of stimulus features: Electrophysiological studies MIKA

More information

Neural events that underlie remembering something that never happened

Neural events that underlie remembering something that never happened articles Neural events that underlie remembering something that never happened Brian Gonsalves and Ken A. Paller Department of Psychology, Northwestern University, 2029 Sheridan Road, Evanston, Illinois

More information

DATA MANAGEMENT & TYPES OF ANALYSES OFTEN USED. Dennis L. Molfese University of Nebraska - Lincoln

DATA MANAGEMENT & TYPES OF ANALYSES OFTEN USED. Dennis L. Molfese University of Nebraska - Lincoln DATA MANAGEMENT & TYPES OF ANALYSES OFTEN USED Dennis L. Molfese University of Nebraska - Lincoln 1 DATA MANAGEMENT Backups Storage Identification Analyses 2 Data Analysis Pre-processing Statistical Analysis

More information

Context-dependent repetition effects on recognition memory

Context-dependent repetition effects on recognition memory Context-dependent repetition effects on recognition memory Bertram Opitz Experimental Neuropsychology Unit, Saarland University, P.O. Box 151150, 66041 Saarbrücken, Germany A b s t r a c t One widely acknowledged

More information

International Journal of Psychophysiology

International Journal of Psychophysiology International Journal of Psychophysiology 75 (2010) 339 348 Contents lists available at ScienceDirect International Journal of Psychophysiology journal homepage: www.elsevier.com/locate/ijpsycho Flanker

More information

The overlap of neural selectivity between faces and words: evidences

The overlap of neural selectivity between faces and words: evidences The overlap of neural selectivity between faces and words: evidences from the N170 adaptation effect Xiao-hua Cao 1, Chao Li 1, Carl M Gaspar 2, Bei Jiang 1 1. Department of Psychology,Zhejiang Normal

More information

The Meaning of the Mask Matters

The Meaning of the Mask Matters PSYCHOLOGICAL SCIENCE Research Report The Meaning of the Mask Matters Evidence of Conceptual Interference in the Attentional Blink Paul E. Dux and Veronika Coltheart Macquarie Centre for Cognitive Science,

More information

JOHN M. GARDINER University of Sussex, Brighton, England

JOHN M. GARDINER University of Sussex, Brighton, England Memory & Cognition 2006, 34 (2), 227-239 Recognition memory and awareness: Occurrence of perceptual effects in remembering or in knowing depends on conscious resources at encoding, but not at retrieval

More information

The role of top-down spatial attention in contingent attentional capture

The role of top-down spatial attention in contingent attentional capture Psychophysiology, 53 (2016), 650 662. Wiley Periodicals, Inc. Printed in the USA. Copyright VC 2016 Society for Psychophysiological Research DOI: 10.1111/psyp.12615 The role of top-down spatial attention

More information

The Time Course of Negative Priming

The Time Course of Negative Priming The Time Course of Negative Priming Hendrik Degering Bernstein Center for Computational Neuroscience Göttingen University of Göttingen, Institute for Nonlinear Dynamics 11.12.2009, Disputation Aging Effects

More information

In the first section, Introduction, we present our experimental design.

In the first section, Introduction, we present our experimental design. Occipital and left temporal EEG correlates of phenomenal consciousness Abstract In the first section, Introduction, we present our experimental design. In the second section, we characterize the grand

More information

Boston University

Boston University Boston University OpenBU Theses & Dissertations http://open.bu.edu Boston University Theses & Dissertations 2015 Investigating the neural correlates of successful learning in a classroom environment: the

More information

Running Head: VISUAL WORKING MEMORY LOAD AND ATTENTIONAL CONTROL

Running Head: VISUAL WORKING MEMORY LOAD AND ATTENTIONAL CONTROL Running Head: VISUAL WORKING MEMORY LOAD AND ATTENTIONAL CONTROL Visual working memory load disrupts template-guided attentional selection during visual search Nick Berggren* and Martin Eimer Department

More information

An electrophysiological signature of unconscious recognition memory

An electrophysiological signature of unconscious recognition memory An electrophysiological signature of unconscious recognition memory Joel L Voss, & Ken A Paller Contradicting the common assumption that accurate recognition reflects explicit-memory processing, we provide

More information

Does Contralateral Delay Activity Reflect Working Memory Storage or the Current Focus of Spatial Attention within Visual Working Memory?

Does Contralateral Delay Activity Reflect Working Memory Storage or the Current Focus of Spatial Attention within Visual Working Memory? Does Contralateral Delay Activity Reflect Working Memory Storage or the Current Focus of Spatial Attention within Visual Working Memory? Nick Berggren and Martin Eimer Abstract During the retention of

More information

Interpreting Instructional Cues in Task Switching Procedures: The Role of Mediator Retrieval

Interpreting Instructional Cues in Task Switching Procedures: The Role of Mediator Retrieval Journal of Experimental Psychology: Learning, Memory, and Cognition 2006, Vol. 32, No. 3, 347 363 Copyright 2006 by the American Psychological Association 0278-7393/06/$12.00 DOI: 10.1037/0278-7393.32.3.347

More information

Stages of Processing in Associative Recognition: Evidence from Behavior, EEG, and Classification

Stages of Processing in Associative Recognition: Evidence from Behavior, EEG, and Classification Stages of Processing in Associative Recognition: Evidence from Behavior, EEG, and Classification Jelmer P. Borst*, Darryl W. Schneider*, Matthew M. Walsh*, and John R. Anderson Abstract In this study,

More information

International Journal of Neurology Research

International Journal of Neurology Research International Journal of Neurology Research Online Submissions: http://www.ghrnet.org/index./ijnr/ doi:1.1755/j.issn.313-511.1..5 Int. J. of Neurology Res. 1 March (1): 1-55 ISSN 313-511 ORIGINAL ARTICLE

More information

Profiling Attention s Pure Effect on the Sensory-Evoked P1 and N1 Event-Related Potentials of Human Electroencephalography

Profiling Attention s Pure Effect on the Sensory-Evoked P1 and N1 Event-Related Potentials of Human Electroencephalography Profiling Attention s Pure Effect on the Sensory-Evoked P1 and N1 Event-Related Potentials of Human Electroencephalography by Allison Elisabeth Connell A dissertation submitted in partial satisfaction

More information

Asymmetry between the upper and lower visual fields: An event-related potential study

Asymmetry between the upper and lower visual fields: An event-related potential study Chinese Science Bulletin 2006 Vol. 51 No. 5 536 541 DOI: 10.1007/s11434-006-0536-3 Asymmetry between the upper and lower visual fields: An event-related potential study QU Zhe 1,2, SONG Yan 3 & DING Yulong

More information

Dual Mechanisms for the Cross-Sensory Spread of Attention: How Much Do Learned Associations Matter?

Dual Mechanisms for the Cross-Sensory Spread of Attention: How Much Do Learned Associations Matter? Cerebral Cortex January 2010;20:109--120 doi:10.1093/cercor/bhp083 Advance Access publication April 24, 2009 Dual Mechanisms for the Cross-Sensory Spread of Attention: How Much Do Learned Associations

More information

Oscillatory Correlates of Retrieval-induced Forgetting in Recognition Memory

Oscillatory Correlates of Retrieval-induced Forgetting in Recognition Memory Oscillatory Correlates of Retrieval-induced Forgetting in Recognition Memory Bernhard Spitzer 1, Simon Hanslmayr 1, Bertram Opitz 2, Axel Mecklinger 2, and Karl-Heinz Bäuml 1 Abstract & Retrieval practice

More information

Top-down search strategies determine attentional capture in visual search: Behavioral and electrophysiological evidence

Top-down search strategies determine attentional capture in visual search: Behavioral and electrophysiological evidence Attention, Perception, & Psychophysics 2010, 72 (4), 951-962 doi:10.3758/app.72.4.951 Top-down search strategies determine attentional capture in visual search: Behavioral and electrophysiological evidence

More information

Event-Related Potentials Recorded during Human-Computer Interaction

Event-Related Potentials Recorded during Human-Computer Interaction Proceedings of the First International Conference on Complex Medical Engineering (CME2005) May 15-18, 2005, Takamatsu, Japan (Organized Session No. 20). Paper No. 150, pp. 715-719. Event-Related Potentials

More information

Memory for drawings in locations: Spatial source memory and event-related potentials

Memory for drawings in locations: Spatial source memory and event-related potentials Psychophysiology, 37 ~2000!, 551 564. Cambridge University Press. Printed in the USA. Copyright 2000 Society for Psychophysiological Research Memory for drawings in locations: Spatial source memory and

More information

Neural correlates of retrieval processing in the prefrontal cortex during recognition and exclusion tasks

Neural correlates of retrieval processing in the prefrontal cortex during recognition and exclusion tasks Neuropsychologia 41 (2003) 40 52 Neural correlates of retrieval processing in the prefrontal cortex during recognition and exclusion tasks Michael D. Rugg a,b,, Richard N.A. Henson a,c, William G.K. Robb

More information

Neural Correlates of Human Cognitive Function:

Neural Correlates of Human Cognitive Function: Neural Correlates of Human Cognitive Function: A Comparison of Electrophysiological and Other Neuroimaging Approaches Leun J. Otten Institute of Cognitive Neuroscience & Department of Psychology University

More information

Seizure onset can be difficult to asses in scalp EEG. However, some tools can be used to increase the seizure onset activity over the EEG background:

Seizure onset can be difficult to asses in scalp EEG. However, some tools can be used to increase the seizure onset activity over the EEG background: This presentation was given during the Dianalund Summer School on EEG and Epilepsy, July 24, 2012. The main purpose of this introductory talk is to show the possibilities of improved seizure onset analysis

More information

Tracking the Development of Automaticity in Memory Search with Human Electrophysiology

Tracking the Development of Automaticity in Memory Search with Human Electrophysiology Tracking the Development of Automaticity in Memory Search with Human Electrophysiology Rui Cao (caorui.beilia@gmail.com) Thomas A. Busey (busey@indiana.edu) Robert M. Nosofsky (nosofsky@indiana.edu) Richard

More information

Recollection Is a Continuous Process Implications for Dual-Process Theories of Recognition Memory

Recollection Is a Continuous Process Implications for Dual-Process Theories of Recognition Memory PSYCHOLOGICAL SCIENCE Research Article Recollection Is a Continuous Process Implications for Dual-Process Theories of Recognition Memory Laura Mickes, Peter E. Wais, and John T. Wixted University of California,

More information

Neural Correlates of the In-Group Memory Advantage on the Encoding and Recognition of Faces

Neural Correlates of the In-Group Memory Advantage on the Encoding and Recognition of Faces on the Encoding and Recognition of Faces Grit Herzmann 1 *, Tim Curran 2 1 Department of Psychology, The College of Wooster, Wooster, Ohio, United States of America, 2 Department of Psychology and Neuroscience,

More information

False Memory: P300 Amplitude, Topography, and Latency. Antoinette R. Miller, Christopher Baratta, Christine Wynveen, and J.

False Memory: P300 Amplitude, Topography, and Latency. Antoinette R. Miller, Christopher Baratta, Christine Wynveen, and J. 1 False Memory: P300 Amplitude, Topography, and Latency Antoinette R. Miller, Christopher Baratta, Christine Wynveen, and J. Peter Rosenfeld Northwestern University Address correspondence to: J. Peter

More information

Reversing the picture superiority effect: A speed accuracy trade-off study of recognition memory

Reversing the picture superiority effect: A speed accuracy trade-off study of recognition memory Memory & Cognition 007, 35(1), 113-13 Reversing the picture superiority effect: A speed accuracy trade-off study of recognition memory ANGELA BOLDINI, RICCARDO RUSSO, SAHIBA PUNIA, AND S. E. AVONS University

More information

Strong memories obscure weak memories in associative recognition

Strong memories obscure weak memories in associative recognition Psychonomic Bulletin & Review 2004, 11 (6), 1062-1066 Strong memories obscure weak memories in associative recognition MICHAEL F. VERDE and CAREN M. ROTELLO University of Massachusetts, Amherst, Massachusetts

More information

Mental Representation of Number in Different Numerical Forms

Mental Representation of Number in Different Numerical Forms Current Biology, Vol. 13, 2045 2050, December 2, 2003, 2003 Elsevier Science Ltd. All rights reserved. DOI 10.1016/j.cub.2003.11.023 Mental Representation of Number in Different Numerical Forms Anna Plodowski,

More information

Recollection Can Be Weak and Familiarity Can Be Strong

Recollection Can Be Weak and Familiarity Can Be Strong Journal of Experimental Psychology: Learning, Memory, and Cognition 2012, Vol. 38, No. 2, 325 339 2011 American Psychological Association 0278-7393/11/$12.00 DOI: 10.1037/a0025483 Recollection Can Be Weak

More information

Measuring Recollection and Familiarity in the Medial Temporal Lobe

Measuring Recollection and Familiarity in the Medial Temporal Lobe Measuring Recollection and Familiarity in the Medial Temporal Lobe John T. Wixted, 1 * Laura Mickes, 1 and Larry R. Squire 1,2,3,4 HIPPOCAMPUS 20:1195 1205 (2010) ABSTRACT: Many recent studies have investigated

More information

Immediate and delayed stimulus repetitions evoke different ERPs in a serial-probe recognition task.

Immediate and delayed stimulus repetitions evoke different ERPs in a serial-probe recognition task. University of Texas at El Paso From the SelectedWorks of Stephen L Crites Jr. 2000 Immediate and delayed stimulus repetitions evoke different ERPs in a serial-probe recognition task. Stephen L Crites,

More information