Observational learning of instrumental discriminations in the rat: The role of demonstrator type

Size: px
Start display at page:

Download "Observational learning of instrumental discriminations in the rat: The role of demonstrator type"

Transcription

1 THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY 2006, 59 (11), Observational learning of instrumental discriminations in the rat: The role of demonstrator type A. L. Saggerson and R. C. Honey Cardiff University, Cardiff, UK In two experiments, observer rats saw a pretrained demonstrator rat of either the same or a different strain engaging in a discrimination task in which the presentation of a discriminative stimulus indicated whether performing a particular response (pulling a chain) would be reinforced. In both experiments an effect of demonstrator familiarity was found: Observers of a demonstrator from a different strain behaved in a manner that was consistent with the demonstrator whereas observers of a demonstrator from the same strain did not. These results suggest that an effect akin to latent inhibition operates in the social domain: Familiarity with the demonstrator retards the readiness with which observational learning proceeds. The issue of whether nonhuman animals exhibit anything akin to imitative learning has a venerable history (e.g., Heyes, 2001; Miller & Dollard, 1941; Romanes, 1884; Thorndike, 1911; Thorpe, 1956) and has been the focus of an increasing amount of experimental investigation. For example, Heyes and her colleagues have recently adopted a similar procedure to that used by Grindley (1932), the bi-directional control, to investigate observational learning in rats (Heyes & Dawson, 1990; Heyes, Dawson, & Nokes, 1992; Heyes, Jaldow, & Dawson, 1994). In these studies, demonstrator rats were first trained to push a joystick to the left or to the right in order to obtain food. Observer rats were then placed in a chamber that faced the demonstration chamber and could view a demonstrator pushing the joystick to either the left or the right. When the observers were subsequently placed in the demonstration chamber they pushed the joystick in the same direction as the demonstrator; for example, an observer who had witnessed a demonstrator pushing the joystick to the right were more likely to push the joystick in that direction when placed in the demonstration chamber. The observers appeared to have learnt to perform a specific response as a result of being exposed to a demonstrator performing that response. It has recently become apparent, however, that the observers in these studies were preferentially pushing the joystick in the same direction as the demonstrator because the demonstrator had deposited odour cues (e.g., saliva, microscopic food particles) on the side of the joystick contralateral to the Correspondence should be addressed to A. L. Saggerson or R. C. Honey, School of Psychology, Cardiff University, Cardiff CF10 3AT, UK. Honey@cardiff.ac.uk We thank Dennis Simmonds and Howard Thomas for their technical assistance and Rachel Gazey for helping to score the videotapes. # 2006 The Experimental Psychology Society 1909 DOI: /

2 SAGGERSON AND HONEY direction in which is was being pushed. If one makes the reasonable assumption that observers will be drawn to the side of the joystick on which odour cues had been deposited, then a secondary consequence of investigating this side of the joystick might be to increase the likelihood that the joystick will be moved in the direction that the demonstrator had pushed the joystick (see Mitchell, Heyes, Gardner, & Dawson, 1999). Further studies that have controlled for the influence of odour cues (e.g., by swapping chambers between observation and test, Campbell & Heyes, 2002; Ray & Heyes, 2002) have now indicated that in the absence of the odour-cue confound observer rats exhibit either demonstrator-inconsistent responding (pushing the joystick in the opposite direction to the demonstrator) or no observational learning effects (see also, Ray, Gardner, & Heyes, 2000). Given the fact that there remains little evidence of observational learning in rats, the experiments reported here examined whether or not such evidence can be secured and, if it can, then what conditions foster it. In particular, we were interested in whether the nature of the demonstrator (the relatedness, or visual and olfactory familiarity to the observer) influences the likelihood that an observer s behaviour would come to match or resemble that of a demonstrator. A feature of standard laboratory practice is that rats are usually housed socially and most often in pairs. One consequence of this arrangement is that the rats used in studies of observational learning will usually have had a considerable amount of exposure to conspecifics of the same strain as the demonstrator prior to observational training. They will also have received food at the same time as their cage mates and engaged in synchronous feeding-related behaviours with them. This fact might well influence the outcome of observational learning studies. However, to date there has been surprisingly little research directed toward whether or not the nature of the demonstrator (e.g., demonstrator familiarity) influences the effects of observational experience in rats. In one study, Ray et al. (2000) manipulated the familiarity of the demonstrator in a study of observational learning. Observer rats either were housed together with their prospective demonstrators prior to observation training and testing (and hence the demonstrator was familiar), or were housed separately and first encountered their demonstrator during the first observation session. At test, observers pushed the joystick in the same direction as their demonstrator had done irrespective of whether their demonstrator had been familiar or novel. That is, there was no effect of demonstrator familiarity. Interpretation of this pattern of results is, however, complicated by the possibility that the observational learning effect was a product of odour cues deposited on the joystick (see Mitchell et al., 1999). Using the same procedure as Ray et al. (2000), Reed, Skiera, Adams, and Heyes (1996) examined whether social rearing influenced observational learning. In this study, half of the observer rats were housed socially, and the other half were housed in isolation. Socially reared observers (those for whom the demonstrator might be presumed to be more familiar) were more likely to exhibit demonstrator-consistent behaviour than those reared in isolation (which tended to show demonstrator-inconsistent behaviour). However, it is difficult to know whether this finding reflects a difference in the familiarity of the demonstrator or some other effect of social isolation (see Reed et al., 1996, p. 113). Moreover, interpretation of the effect is again complicated by the possibility that odour cues deposited on the manipulandum might have contaminated test performance to an unknown extent in the two groups of observers (see Mitchell et al., 1999). In the two experiments reported here, all rats were socially reared with conspecifics of the same strain, and we manipulated whether demonstrators were from the same strain as the observers and the observers cage mates (for group same) or from a different strain than the observers (for group different). Given the reasonable assumption that there would be more generalization between a cage mate and a demonstrator of the same strain than between a cage mate and a demonstrator of different strain, we supposed that the demonstrators would be more familiar to observers in 1910 THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2006, 59 (11)

3 OBSERVATIONAL LEARNING group same than to those in group different. Of course, we could have manipulated familiarity more directly by (a) giving observer rats more or less exposure to a demonstrator, or (b) housing observers with rats of either the same strain or a different strain and then using demonstrators that match or do not match the strain of the observers cagemates. However, both of these experimental strategies have limitations. For example, rats are routinely weaned with dams of the same strain and with same-strain conspecifics, and this might compromise or otherwise dilute the subsequent efficacy of either of the alternative manipulations just considered. We therefore chose to attempt to maximize the potential effect of demonstrator type by simply manipulating whether or not the demonstrators were the same strain as that of the observers, the observers cagemates, and conspecifics with which they had been weaned. In both experiments, the observers received exposure to demonstrators that were performing a discrimination in which a specific response was rewarded in the presence of one discriminative stimulus but not another. During test sessions, observers were placed in the demonstration chamber, and their behaviour in the presence of the two discriminative stimuli was monitored. The issues of central interest were whether or not the observers behaviour during the discriminative stimuli would be influenced by (a) how the demonstrators behaved during these stimuli, and (b) the nature of the demonstrator. If our procedures reveal an observational learning effect then this effect will not be subject to the analysis that has been offered for previous reports of observational learning in rats by Heyes and her colleagues (see Campbell & Heyes, 2002; Heyes & Dawson, 1990; Heyes et al., 1992; Heyes et al., 1994; Mitchell et al., 1999; Ray et al., 2000; Ray & Heyes, 2002). This is because in our procedure, it is the auditory discriminative stimuli rather than the manipulanda that control the observer s (and demonstrator s) behaviour, and this fact eliminates the possibility that odour cues deposited on the manipulandum could produce an observational learning effect. If the type of demonstrator modulates observational learning then this would inform theoretical analyses of observational learning that to date have been relatively unconstrained by empirical observations. EXPERIMENT 1 Dark Agouti (DA; brown in colour) and Hooded Lister (HL; black and white in shade) rats were used. The DA and HL demonstrators were trained on an instrumental discrimination in which pulling one chain (positioned on the left side of the experimental chamber) was reinforced during the presentation of one discriminative stimulus (the left Sþ; e.g., clicker), and pulling a second chain on the right side of the chamber was reinforced during another stimulus (the right Sþ; e.g., tone). Once the demonstrators had acquired this discrimination, observers were placed in an operant chamber from which they could view a demonstrator in the adjacent, demonstration chamber, engaging in the discrimination task. One group of DA and HL rats (those in group same) observed a demonstrator of the same strain, and the other group of rats (those in group different) observed a demonstrator of a different strain. Following observation sessions, the observers received a test in which they were placed in the demonstration chamber and received presentations of the two discriminative stimuli in the absence of the demonstrator and with free access to the chains. Pilot work established that rats that had received no rewards for chain pulling failed to pull them with sufficient force to actuate the microswitch to which they were attached. It was, therefore, impossible to record the observers behaviour using the automated system used for recording the demonstrators chain pulling. The observers behaviour during the test was therefore video-recorded, and the number of chain pulls (or contacts) that they made in the presence of the left Sþ and the right Sþ was monitored. If rats are capable of learning an instrumental discrimination by observing a demonstrator rat, then presenting the left Sþ to the observer should result in them pulling the THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2006, 59 (11) 1911

4 SAGGERSON AND HONEY left chain, and presenting the right Sþ should result in them pulling the right chain. Method Subjects There were 24 rats in this experiment (12 HL and 12 DA). The 4 demonstrator rats (2 HL and 2 DA) had previously served as observers in another experiment on observational learning, but the 20 observers were naïve and were maintained throughout the experiment at 80% of their adlib weight (M ¼ 235 g, range ¼ g). The observer and demonstrator rats were housed in same-strain pairs in a vivarium, which had a 12:12-hr light:dark cycle. Experimental sessions took place during the light phase of the cycle, between 0900 and The 20 rats that served as observers were housed in pairs, for 9 weeks before the experiment began. Apparatus All training and testing occurred in four operant chambers (supplied by Campden Instruments Ltd, UK) measuring cm (height width depth); two served as demonstration chambers and two as observation chambers. Both demonstration chambers had a grid floor composed of 18 stainless steel rods, which were 5 mm in diameter and were spaced 11 mm apart. Below this floor was a removable tray ( cm; height width depth), which was filled with sawdust. Three walls of the demonstration chambers (the left and right side walls and the back wall) were made of aluminium. The front wall, which served as the door to the chamber, was made of transparent Perspex and allowed observers to view the demonstrator. The ceiling was made from opaque plastic. The wall to the left of the door contained a recessed food well into which 45-mg food pellets were delivered. Access to this food well was obscured by a transparent plastic flap (6 5 cm; height width) hinged along its uppermost edge to the top of the food well aperture. Two 8-ohm speakers attached to the ceiling of the chambers were used to present a 1,000-Hz tone at 65 db and a 10-Hz clicker at 75 db. The main overhead light in the experimental room was turned off, but an angle-poise lamp (with a 60-W bulb) positioned above the demonstration chambers provided a low level of ambient illumination. Local illumination was provided by an overhead houselight (2.8 W, 24 V) inside each chamber. Two brass-plated chains (2-mm gauge, 1-cm width, 20-cm length) were suspended through small apertures (2-cm diameter) in the ceiling of the demonstration chamber, and each rested 2 cm from the floor of the chamber. The chains were positioned 3.5 cm inside the door and 5.9 cm from each end of the door. The left chain was designated as the one closest to the food well, and the right chain was designated as the one furthest from the food well. A downward movement of either chain of 2 mm actuated a microswitch that was recorded as a response by automated software. During observation training, an observation chamber was placed adjacent and approximately 8 cm from each demonstration chamber. The two observation chambers were identical to the demonstration chambers with the exception that they contained no chains, and the rear wall had been removed and replaced with a wall of transparent Perspex. This arrangement allowed the observer to view the demonstrator from the observation chamber and meant that the observation chamber was oriented in the same way as the demonstration chamber (i.e., with the food well on the lefthand side of the chamber). The only other respects in which the observation chambers differed from the demonstration chambers were that the food magazine, houselight, and overhead speakers were not operational. Procedure The demonstrators were first trained to collect pellets (Harlan Teklan, UK) from the food well. In the first six 20-min sessions of training, food pellets were delivered on a variable-time (VT) 40-s schedule (range: s). The chains were not present during these sessions. During the next six 20-min sessions, a food pellet was delivered on a VT 60-s schedule and each time a chain was pulled (i.e., on a continuous 1912 THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2006, 59 (11)

5 OBSERVATIONAL LEARNING reinforcement schedule). To encourage the rats to pull the chains during these sessions, food pellet paste (food pellets mixed with water and left until a paste formed) was smeared on the chains, and training continued until the demonstrators were reliably chain pulling. After these 6 sessions, the demonstrators received 10 sessions of training in which the presentation of reinforcement was contingent on pulling the right chain during one stimulus (the left Sþ) and the left chain during the other stimulus (the right Sþ). For one of the HL and one of the DA demonstrators, the clicker served as the left Sþ, and the tone served as the right Sþ, and for the remaining two demonstrators this arrangement was reversed. In each session, demonstrators received ten 60-s presentations of each discriminative stimulus, which were presented according to a pseudorandom sequence, with the constraint that there were no more than two presentations of a given stimulus in succession. No food could be earned during the first 20-s of each trial, but food was made available on a variable-interval (VI) schedule for the remaining 40 s of each trial. The demonstrators behaviour during the first 20-s reinforcer-free periods of each trial allowed an assessment to be made of the discriminative control exercised by the auditory stimuli independently of the delivery of reinforcement. The VI schedule was gradually increased from 10 s, at the outset of training, to 30 s, by the end of training. The intertrial interval (ITI) was variable around a mean of 40 s (range: s). Observer training and testing. Each observer received two 20-min sessions of exposure to the demonstration chamber in the two days immediately prior to observation training. Although the chain was present in the chamber, no reinforcement was given for any chain pulls, and the discriminative stimuli were not presented. During observation sessions, the demonstrator was placed in the demonstration chamber, the observer was then placed in the observation chamber, and the demonstrator received a discrimination training session that was identical to those that it had received at the end of training. For approximately half of the observers in groups same (2 HL and 3 DA) and different (2 HL and 3 DA), the demonstrator s left Sþ was the tone, and the right Sþ was the clicker, and for the remaining observers the demonstrator received the reverse stimulus assignments. There was one observation session on each of two consecutive days, and observers received a test 2 min after the second session. Once the demonstrator had been removed from the demonstration chamber, the observer was introduced into this chamber and received two presentations of the tone (T) and the clicker (C), which were presented in a counterbalanced order (either CTTC or TCCT). No reinforcement was presented during the test sessions, and observers from the same and different groups were tested in a counterbalanced order. The observer rats behaviour during these test sessions was video-recorded, and their chain contacts monitored. A chain contact was defined as any contact with the chain made with the snout, head (up to and including the ears), or the paw that resulted in some movement of the chain. One person (Anna Saggerson, A.S.) scored all of the videotapes in Experiments 1 and 2 and a second person (Rachel Gazey, R.G.) scored a subset of the videotapes in Experiment 2. A.S. was blind with respect to the group allocations of individual rats during scoring (there was no information on the video footage regarding group allocations), and R.G. was blind with respect to the nature of the experiment and to group allocations. There was a high degree of concordance between scorers (Pearson s rs.78, ps,.01) as is confirmed in greater detail when the results of Experiment 2 are presented. Results Demonstrator performance during training and observation sessions The demonstrators chain-pulling responses during the two stimuli were converted into a discrimination ratio of the following kind: rate of left chain pulling during the stimulus in which this response was reinforced (left Sþ) divided by the total rate of left chain pulling during both stimuli. THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2006, 59 (11) 1913

6 SAGGERSON AND HONEY Table 1. Experiment 1: Mean discrimination ratios for demonstrators during the observation sessions Group Left chain (20 s/60 s) Right chain (20 s/60 s) Same.65/.70.75/.74 Different.66/.67.68/.71 Note: The ratios are presented separately for the left and right chains and for the first 20 s of the 60-s trials (in which no food was presented) and the entire 60 s. The corresponding ratio was also calculated for responses to the right chain. Using this ratio, scores above.50 indicate that rats are responding more on reinforced trials than on nonreinforced trials. The mean discrimination ratio for left and right chain pulling during the final two sessions of training was.63 (left chain ¼.64, right chain ¼.62). The mean rate of nonreinforced left chain pulling during the right Sþ was 3.40 rpm, and the corresponding rate of right chain pulling during the left Sþ was 3.92 rpm. The mean discrimination ratio in the 20-s reinforcer-free periods during these sessions was.66 (left chain ¼.70, right chain ¼.62); the mean rate of nonreinforced left chain pulling during the right S was 4.43 rpm, and the corresponding rate of right chain pulling during the left S was 5.55 rpm. The same demonstrators could serve as models for observers in both groups same and different, and the demonstrators discrimination ratios for the first, nonreinforced 20 s of the trials and for the entire 60-s duration of the trials are shown in Table 1. Inspection of Table 1 reveals that these ratios did not vary according to the nature of the rats that they were being viewed by. The mean rates of nonreinforced left and right chain pulls from which these ratios were derived were also similar in the two groups (same M ¼ 5.14 rpm; different M ¼ 6.01). Observer behaviour during test sessions The observers rates of chain contacts were also converted into discrimination ratios of the kind used for their demonstrators. In this case, therefore, a score above.50 indicates that the observer is behaving in a way that is consistent with their demonstrator. The mean discrimination ratios for contacts with the right chain in groups same and different are shown in the right-hand panel of Figure 1, and inspection of this panel reveals that rats in group different were more likely to show demonstrator-consistent behaviour than those in group same. Analysis of variance (ANOVA) confirmed that the discrimination ratios for rats in group different were greater than those for group same, F(1, 18) ¼ 5.49, p,.05, although in this experiment neither group s scores differed Figure 1. Experiment 1: Mean chain contact discrimination ratios (+SEMs) for the left chain (left-hand panel) and right chain (right-hand panel) in groups same and different THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2006, 59 (11)

7 OBSERVATIONAL LEARNING significantly from.50: same, t(9) ¼ 1.48, p..10; different, t(9) ¼ 1.91, p ¼.09, respectively. The mean rate of right chain contacts for groups same and different during both stimuli were, respectively, 4.60 rpm and 5.70 rpm (right Sþ), and 5.90 rpm and 3.80 rpm (left Sþ). ANOVA with stimulus (right Sþ or left Sþ) and group (same or different) as factors revealed no effect of group or stimulus (Fs, 1), and no interaction between these factors, F(1, 18) ¼ 3.59, p ¼.07. The mean discrimination ratios for the left chain contacts in groupssameanddifferentareshowninthelefthand panel of Figure 1. Inspection of this panel reveals, and statistical analysis confirmed, that the discrimination ratios for the left-hand chain were similar in groups same and different (F, 1) and that neither group s scores differed from.50: same, t(9) ¼ 0.93, p..30; different, t(9) ¼ 0.41, p..60. The mean rate of left chain contacts for groups same and different were, respectively, 4.40 rpm and 3.50 rpm (left Sþ), and 5.80 rpm and 5.10 rpm (right Sþ). ANOVA with stimulus (left Sþ or right Sþ) and group (same or different) as factors revealed no effect of group (F, 1) or stimulus, F(1, 18) ¼ 1.48, p..24, and no interaction between these factors (F, 1). Discussion The results of Experiment 1 suggest that the effects of observational experience differ depending on the nature of the demonstrator: Rats are more likely to behave in a demonstrator-consistent manner when their demonstrator is from a different strain than when the demonstrator is from the same strain. It should be acknowledged, however, that this pattern of results was restricted to behaviour directed towards the right chain, and the scores of neither group were significantly different from.50. The finding that the effect of primary interest was restricted to the right chain might reflect the fact that the demonstrator s correct and incorrect left chain pull responses tended to be both temporally and spatially coincident with common magazine approach responses. From the observer s perspective, this could render the demonstrators correct and incorrect left chain responses less distinctive from one another than the demonstrators correct and incorrect right chain responses (which are spatiotemporally remote from magazine responses). The finding that the discrimination ratios for rats in group different were not greater than.50 might simply reflect the fact that the discrimination that they were witnessing was rather complex or that they had received relatively little observational experience. Before considering how best to interpret the effect of demonstrator type that was apparent in Experiment 1, we conducted a second study in which we attempted to replicate this effect using a simpler discrimination (involving a single, centrally positioned response chain), upon which the demonstrators received more protracted training, and in which the observers received more extensive observational training. EXPERIMENT 2 DA and HL demonstrators received instrumental discrimination training in which pulling a chain (located in a central position adjacent to the door) was reinforced during the presentation of one discriminative stimulus (e.g., clicker; the Sþ), and pulling this chain was not reinforced during another stimulus (e.g., tone; the S ). Once the demonstrators had acquired this discrimination, observers were placed in an operant chamber from which they could view a demonstrator in the adjacent, demonstration chamber, engaging in the discrimination task. As in Experiment 1, one group of DA and HL observers (group same) observed a demonstrator from the same strain, and the other group (group different) observed a demonstrator from a different strain. The observers received repeated cycles of observation training and testing in which they were placed in the demonstration chamber and received presentations of the two discriminative stimuli in the absence of the demonstrator and with free access to the chain. If the observers are capable of learning an instrumental discrimination by observing a proficient demonstrator of a same THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2006, 59 (11) 1915

8 SAGGERSON AND HONEY or a different strain, then presenting the Sþ to the observer should provoke more chain pulling (or more chain contacts) than should presenting the S. If the effect observed in Experiment 1 is reliable then rats in group different should be more likely to show observational learning than those in group same. Method Subjects and apparatus Charles River Ltd (UK) supplied the 38 rats (19 DA and 19 HL) used in this experiment. Of these, 6 rats were trained as demonstrators (3 DA, 3 HL), and 32 served as observers. All rats were maintained throughout the experiment at 80% of their ad-lib weights (M ¼ 249 g, range ¼ g) by restricting the amount of food they were given. Observers were housed in the vivarium for 12 weeks before testing began. The apparatus was the same as that used in Experiment 1 with the exception that there was a single chain that was positioned 2.5 cm from the front of the chamber s door, 12.3 cm from the side walls of the chamber. Procedure Demonstrator training. Once the demonstrators had been trained to collect food pellets in the same way as in Experiment 1, the single chain was introduced into the chamber, and during the next six 20-min sessions, a food pellet was delivered on a VT 60-s schedule and each time the chain was pulled (i.e., on a continuous reinforcement schedule). After these 6 sessions, the discriminative stimuli (tone and clicker) were introduced, and training continued for a further 44 sessions, by which point the demonstrators were reliably pulling the chain during the correct discriminative stimulus. In each of these sessions, demonstrators received ten 60-s presentations of both discriminative stimuli that were presented according to a pseudorandom sequence with the constraint that there were no more than two presentations of a given stimulus in succession. The ITI was variable around a mean of 40 s (range: s). As in Experiment 1, no reinforcers were presented during the first 20 s of each trial, but reinforcement was provided on a VI schedule during the remaining 40 s of each trial. The VI schedule was gradually increased from 10 s, at the outset of training, to 30 s, by the end of training. For one of the HL and one of the DA demonstrators the tone served as the Sþ, and the clicker served as the S, and for the remaining demonstrators this arrangement was reversed. Observer training and testing. Each observer was given two 20-min sessions of exposure to the demonstration chamber in the two days before observational training. As in Experiment 1, although the chain was present in the chamber, no reinforcement was given for any chain pulls, and the discriminative stimuli were not presented. During observation sessions, the demonstrator was placed in the demonstration chamber; the observer was then placed in the observation chamber, and the demonstrator received a session of discrimination training that was identical to those that it had received at the end of training. For 6 observers in groups same (3 DA and 3 HL) and different (3 DA and 3 HL), the demonstrator s Sþ was the tone, and S was the clicker, and for the remaining observers the demonstrator received the reverse stimulus assignments. There was one such observation session on each of 8 days, and observers received a test immediately after the 2nd, 4th, 6th, and 8th observation sessions. During each test, the demonstrator was removed from its chamber, and after a delay of 2min the observer was placed in this chamber. The observers received four presentations of the tone and the clicker in each test, which were presented in a counterbalanced order (either CTTCTCCT or TCCTCTTC) that was exchanged between successive tests. No reinforcement was presented during the test sessions. As in Experiment 1, the observer rats behaviour during these test sessions was videorecorded, and their chain contacts were monitored. There was a high degree of concordance between two independent scorers. For the sample of footage that was scored by both AS and RG 1916 THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2006, 59 (11)

9 OBSERVATIONAL LEARNING (eight 1-min epochs for 10 different observers during the test), the mean rate of chain contacts scored by AS was 2.66 rpm (Sþ ¼ 2.35 rpm, S ¼ 2.98 rpm), and for RG it was 3.15 rpm (Sþ ¼ 2.43 rpm, S ¼ 3.88 rpm). Pearson s product moment correlations revealed a significant correlation between the scores generated by AS and RG for rates of chain contacts both during the Sþ and during the S2 (rs ¼.91 and.88, respectively; ps,.01). These raw scores were converted into discrimination ratios of the following form: rate of chain contacts during the Sþ divided by the combined rate of responding during the Sþ and S2. The mean discrimination ratio for chain contacts scored by AS was.42 and by RG was.37, and Pearson s product moment correlations for these ratio scores also revealed a significant correlation (r ¼.78, p,.01). Results and discussion Demonstrator performance during training and observation sessions The mean discrimination ratio during the final two sessions of demonstrator training was.73, and the mean rate of chain pulling during the S2 was 0.79 rpm. The mean discrimination ratio during the 20-s reinforcer-free periods during the same two sessions was.74, and the mean rate of chain pulling during the S2 was 2.47 rpm. The same demonstrators could serve as models for observers in groups same and different, and their behaviour during observation sessions is shown in Table 2 pooled across the eight observation sessions. Inspection of this table indicates Table 2. Experiment 2: Mean discrimination ratios for demonstrators during the observation sessions Group Centre chain (20 s/60 s) Same.94/.92 Different.95/.91 Note: The ratios are presented separately for the first 20 s of the 60-s trials (in which no food was presented) and the entire 60 s. that the demonstrators were more proficient in these eight sessions than they had been during the training sessions; but that their behaviour did not vary as a function of the nature of the observer (same or different). The mean rate of chain pulling during the entire duration of S2 presentations was 1.43 rpm when demonstrators were observed by group same and 1.18 rpm when they were observed by group different. There is no obvious explanation for the finding that the demonstrators performance was superior during the observation phase than it had been during training. For example, it seems unlikely that this finding reflects the fact that they have received additional training or an effect of the additional period for which they had been deprived. It does seem possible, however, that an observer s presence might increase the reluctance of a demonstrator that has just received a food pellet (for pulling the chain during the Sþ) to return to the chain (that is close to the observer) unless the Sþ is still present. This effect of the presence of a conspecific would increase discriminative performance in the demonstrators. Observer behaviour during test sessions The mean chain contact discrimination ratios for groups same and different are shown in Figure 2. Inspection of this figure reveals that, pooled across the four tests during which the observers performance did not vary in any systematic fashion, the chain contact discrimination ratios for rats in group different were higher than those for rats in group same, F(1, 31) ¼ 9.86, p,.01. Further, one-sample t tests revealed that the scores for group different were significantly above.50, t(15)¼2.52, p,.05, but the scores for group same were not significantly below.50, t(15) ¼ 21.88, p ¼.08. The mean rates of contacts during the S were 3.34 rpm and 2.68 rpm for group same and group different, respectively (F, 1). The results of Experiment 2 replicate the central finding from Experiment 1: The effect of observational experience is influenced by the nature of the demonstrator. As in Experiment 1, observers who viewed demonstrators from a different strain were more likely to exhibit THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2006, 59 (11) 1917

10 SAGGERSON AND HONEY Figure 2. Experiment 2. Mean chain contact discrimination ratios (+SEMs) in groups same and different. demonstrator-consistent behaviour than those who observed demonstrators from the same strain. In Experiment 2, however, the effect of demonstrator type was also accompanied by a significant observational learning effect in group different. We now consider the possible bases for the pattern of results observed in Experiments 1 and 2. GENERAL DISCUSSION The conditions under which observation of a demonstrator performing a particular response influences the subsequent behaviour of an observer has received relatively little attention. In this study, we examined whether or not demonstrator type influences the consequences of observational experience in rats. The results of Experiments 1 and 2 indicate that whether the demonstrator is the same or different strain to the observer (and the observer s cage mate) has an impact on the consequences of observational experience. Demonstrator-consistent behaviour was more likely to be observed when the observers and the demonstrators came from different strains than when they came from the same strain. There is a good theoretical reason to suppose that the nature of the demonstrator might play an important role in observational learning that we now consider. One simple way in which manipulating the strain of the demonstrator, relative to that of the observer, could exert an influence on observational learning is through a process of attentional modulation. If one assumes that as a consequence of protracted social housing, observers come to ignore the sensory input provided by their cage mates, then they also might be less inclined to attend to (and learn about) a demonstrator of the same strain during observational training. That is, one could imagine that an effect akin to latent inhibition (Lubow & Moore, 1959) operates in the social domain. 1 If one accepts this form of analysis for the failure to find observational learning in group same, then the obvious question that one needs to address is: What did observers in group different learn as a consequence of their observational experience? There are a number of plausible answers to this question. For example, observers might acquire an association between a representation of the discriminative stimulus and that of either the location in which the demonstrator was active or the stimulus/manipulandum that the demonstrator is interacting with (i.e., the chain). When the observer is later placed in the demonstration chamber the presentation of the discriminative stimulus might then elicit orientation and approach to that location or stimulus (see Honey, Good, & Manser, 1998a; Honey, Watt, & Good, 1998b). This analysis of what the observers learnt represents an elaboration of the notions of local enhancement and stimulus enhancement originally described by Thorpe (1963) and Spence (1937), respectively. Stimulus and local enhancement refer to the ideas that an 1 The fact that the behaviour of the different types of observer did not appear to exert a reciprocal influence on the demonstrators is perhaps a little surprising given this perspective. However, it seems plausible to suppose that the demonstators behaviour might be more resistant to such an influence because it was under the control of the discriminative stimuli and being maintained by reinforcement THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2006, 59 (11)

11 OBSERVATIONAL LEARNING observer might be more likely to interact with a stimulus or location when they have witnessed a demonstrator doing so. The elaboration that we are proposing requires that (the products of) local and stimulus enhancement can become linked to the discriminative stimuli that were present when these processes were operating. It seems reasonable to assume that, like asocial associative learning, such socially mediated forms of associative learning will be influenced by the familiarity of the to-be-associated cues: If the observer is not attending fully to the demonstrator then any association involving the discriminative stimulus and the sequelae of the demonstrator s interaction with its environment will be acquired less readily. To summarize, although the specific form of analysis just summarized is speculative, the findings from Experiments 1 and 2 nevertheless highlight a more general theoretical point namely, theories of observational learning need to incorporate a role for an observer s prior (social) experience when attempting to explain the consequences of observational experience. This role was ascribed central importance in earlier discussions of the origins of imitation in humans (e.g., Miller & Dollard, 1941) and has equivalent significance within some more recent (associative) analyses of observational learning in animals (e.g., Heyes & Ray, 2000; LaLand & Bateson, 2001; Saggerson, George, & Honey, 2005). REFERENCES Original manuscript received 7 June 2005 Accepted revision received 7 February 2006 First published online 4 July 2006 Campbell, F. M., & Heyes, C. M. (2002). Rats smell: Odour-mediated local enhancement, in a vertical movement two-action test. Animal Behaviour, 63, Grindley, G. C. (1932). The formation of a simple habit in guinea pigs. British Journal of Psychology, 23, Heyes, C. M. (2001). Causes and consequences of imitation. Trends in Cognitive Sciences, 5, Heyes, C. M., & Dawson, G. R. (1990). A demonstration of observational learning using a bidirectional control. Quarterly Journal of Experimental Psychology, 42B, Heyes, C. M., Dawson, G. R., & Nokes, T. (1992). Imitation in rats: Initial responding and transfer evidence. Quarterly Journal of Experimental Psychology, 45B, Heyes, C. M., Jaldow, E., & Dawson, G. R. (1994). Imitation in rats: Conditions of occurrence in a bidirectional control procedure. Learning and Motivation, 25, Heyes, C. M., & Ray, E. D. (2000). What is the significance of imitation in animals? Advances in the Study of Behaviour, 29, Honey, R. C., Good, M., & Manser, K. L. (1998a). Negative priming in associative learning: Evidence from a serial-habituation procedure. Journal of Experimental Psychology: Animal Behavior Processes, 24, Honey, R. C., Watt, A., & Good, M. (1998b). Hippocampal lesions disrupt an associative mismatch process. Journal of Neuroscience, 18, Laland, K. N., & Bateson, P. (2001). The mechanisms of imitation. Cybernetics and Systems: An International Journal, 32, Lubow, R. E., & Moore, A. U. (1959). Latent inhibition: The effect of nonreinforced exposure to the conditioned stimulus. Journal of Comparative and Physiological Psychology, 52, Miller, N. E., & Dollard, J. (1941). Social learning and imitation. New Haven, CT: Yale University Press. Mitchell, C. J., Heyes, C. M., Gardner, M. R., & Dawson, G. R. (1999). Limitations of a bidirectional control procedure for the investigation of imitation in rats: Odour cues on the manipulandum. Quarterly Journal of Experimental Psychology, 52B, Ray, E. D., Gardner, M. R., & Heyes, C. M. (2000). Seeing how it s done: Matching conditions for observer rats (Rattus norvegicus) in the bidirectional control. Animal Cognition, 3, Ray, E. D., & Heyes, C. M. (2002). Do rats in a two-action test encode movement egocentrically or allocentrically? Animal Cognition, 5, Reed, P., Skiera, F., Adams, L., & Heyes, C. M. (1996). Effects of isolation rearing and mirror exposure on social and asocial discrimination performance. Learning and Motivation, 27, Romanes, G. J. (1884). Mental evolution in animals. New York: AMS Press. THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2006, 59 (11) 1919

12 SAGGERSON AND HONEY Saggerson, A. L., George, D. N., & Honey, R. C. (2005). Imitative learning of stimulus response and response outcome associations in pigeons. Journal of Experimental Psychology: Animal Behavior Processes, 31, Spence, K. W. (1937). Experimental studies of learning and higher mental processes in infra-human primates. Psychological Bulletin, 34, Thorndike, E. L. (1911). Animal intelligence: Experimental studies. New York: Macmillan. Thorpe, W. H. (1956). The evidence for insight learning and insight. In W. H. Thorpe (Ed.), Learning and instinct in animals (pp ). Cambridge, MA: Harvard University Press. Thorpe, W. H. (1963). Learning and instinct in animals (2nd ed.). Cambridge, MA: Harvard University Press THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2006, 59 (11)

Imitative Learning of Stimulus Response and Response Outcome Associations in Pigeons

Imitative Learning of Stimulus Response and Response Outcome Associations in Pigeons Journal of Experimental Psychology: Animal Behavior Processes 2005, Vol. 31, No. 3, 289 300 Copyright 2005 by the American Psychological Association 0097-7403/05/$12.00 DOI: 10.1037/0097-7403.31.3.289

More information

Within-event learning contributes to value transfer in simultaneous instrumental discriminations by pigeons

Within-event learning contributes to value transfer in simultaneous instrumental discriminations by pigeons Animal Learning & Behavior 1999, 27 (2), 206-210 Within-event learning contributes to value transfer in simultaneous instrumental discriminations by pigeons BRIGETTE R. DORRANCE and THOMAS R. ZENTALL University

More information

Occasion Setting without Feature-Positive Discrimination Training

Occasion Setting without Feature-Positive Discrimination Training LEARNING AND MOTIVATION 23, 343-367 (1992) Occasion Setting without Feature-Positive Discrimination Training CHARLOTTE BONARDI University of York, York, United Kingdom In four experiments rats received

More information

Behavioural Processes

Behavioural Processes Behavioural Processes 90 (2012) 311 322 Contents lists available at SciVerse ScienceDirect Behavioural Processes journa l h omepa g e: www.elsevier.com/locate/behavproc US specificity of occasion setting:

More information

Imitation and Affordance Learning by Pigeons (Columba livia)

Imitation and Affordance Learning by Pigeons (Columba livia) Journal of Comparative Psychology Copyright 2003 by the American Psychological Association, Inc. 2003, Vol. 117, No. 4, 414 419 0735-7036/03/$12.00 DOI: 10.1037/0735-7036.117.4.414 Imitation and Affordance

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/319/5871/1849/dc1 Supporting Online Material for Rule Learning by Rats Robin A. Murphy,* Esther Mondragón, Victoria A. Murphy This PDF file includes: *To whom correspondence

More information

Contextual Effects in Conditioning, Latent Inhibition, and Habituation: Associative and Retrieval Functions of Contextual Cues

Contextual Effects in Conditioning, Latent Inhibition, and Habituation: Associative and Retrieval Functions of Contextual Cues Journal of Experimental Psychology: Animal Behavior Processes 1989, Vol. 15, No. 3, 232-241 Copyright 1989 by the American Psychological Association, Inc. 0097-740389$00.75 Contextual Effects in Conditioning,

More information

KEY PECKING IN PIGEONS PRODUCED BY PAIRING KEYLIGHT WITH INACCESSIBLE GRAIN'

KEY PECKING IN PIGEONS PRODUCED BY PAIRING KEYLIGHT WITH INACCESSIBLE GRAIN' JOURNAL OF THE EXPERIMENTAL ANALYSIS OF BEHAVIOR 1975, 23, 199-206 NUMBER 2 (march) KEY PECKING IN PIGEONS PRODUCED BY PAIRING KEYLIGHT WITH INACCESSIBLE GRAIN' THOMAS R. ZENTALL AND DAVID E. HOGAN UNIVERSITY

More information

Value transfer in a simultaneous discrimination by pigeons: The value of the S + is not specific to the simultaneous discrimination context

Value transfer in a simultaneous discrimination by pigeons: The value of the S + is not specific to the simultaneous discrimination context Animal Learning & Behavior 1998, 26 (3), 257 263 Value transfer in a simultaneous discrimination by pigeons: The value of the S + is not specific to the simultaneous discrimination context BRIGETTE R.

More information

Two Kinds of Attention in Pavlovian Conditioning: Evidence for a Hybrid Model of Learning

Two Kinds of Attention in Pavlovian Conditioning: Evidence for a Hybrid Model of Learning Journal of Experimental Psychology: Animal Behavior Processes 2010, Vol. 36, No. 4, 456 470 2010 American Psychological Association 0097-7403/10/$12.00 DOI: 10.1037/a0018528 Two Kinds of Attention in Pavlovian

More information

Acquired Relational Equivalence: Implications for the Nature of Associative Structures

Acquired Relational Equivalence: Implications for the Nature of Associative Structures Journal of Experimental Psychology: Copyright 1998 by the American Psychological Association, Inc. Animal Behavior Processes 0097-7403/98/$3.00 1998, Vol. 24, No, 3,325-334 Acquired Relational Equivalence:

More information

Contextual Control of Chained Instrumental Behaviors

Contextual Control of Chained Instrumental Behaviors Journal of Experimental Psychology: Animal Learning and Cognition 2016 American Psychological Association 2016, Vol. 42, No. 4, 401 414 2329-8456/16/$12.00 http://dx.doi.org/10.1037/xan0000112 Contextual

More information

Increasing the persistence of a heterogeneous behavior chain: Studies of extinction in a rat model of search behavior of working dogs

Increasing the persistence of a heterogeneous behavior chain: Studies of extinction in a rat model of search behavior of working dogs Increasing the persistence of a heterogeneous behavior chain: Studies of extinction in a rat model of search behavior of working dogs Eric A. Thrailkill 1, Alex Kacelnik 2, Fay Porritt 3 & Mark E. Bouton

More information

Encoding Specific Associative Memory: Evidence From Behavioral and Neural Manipulations

Encoding Specific Associative Memory: Evidence From Behavioral and Neural Manipulations Journal of Experimental Psychology: Animal Behavior Processes 2011, Vol. 37, No. 3, 317 329 2011 American Psychological Association 0097-7403/11/$12.00 DOI: 10.1037/a0022497 Encoding Specific Associative

More information

PROBABILITY OF SHOCK IN THE PRESENCE AND ABSENCE OF CS IN FEAR CONDITIONING 1

PROBABILITY OF SHOCK IN THE PRESENCE AND ABSENCE OF CS IN FEAR CONDITIONING 1 Journal of Comparative and Physiological Psychology 1968, Vol. 66, No. I, 1-5 PROBABILITY OF SHOCK IN THE PRESENCE AND ABSENCE OF CS IN FEAR CONDITIONING 1 ROBERT A. RESCORLA Yale University 2 experiments

More information

UNIVERSITY OF WALES SWANSEA AND WEST VIRGINIA UNIVERSITY

UNIVERSITY OF WALES SWANSEA AND WEST VIRGINIA UNIVERSITY JOURNAL OF THE EXPERIMENTAL ANALYSIS OF BEHAVIOR 05, 3, 3 45 NUMBER (JANUARY) WITHIN-SUBJECT TESTING OF THE SIGNALED-REINFORCEMENT EFFECT ON OPERANT RESPONDING AS MEASURED BY RESPONSE RATE AND RESISTANCE

More information

Transitive inference in pigeons: Control for differential value transfer

Transitive inference in pigeons: Control for differential value transfer Psychonomic Bulletin & Review 1997, 4 (1), 113-117 Transitive inference in pigeons: Control for differential value transfer JANICE E. WEAVER University of Kentucky, Lexington, Kentucky JANICE N. STEIRN

More information

Extinction of the Context and Latent Inhibition

Extinction of the Context and Latent Inhibition LEARNING AND MOTIVATION 13, 391-416 (1982) Extinction of the Context and Latent Inhibition A. G. BAKER AND PIERRE MERCIER McGill University The hypothesis that latent inhibition could be reduced by extinguishing

More information

Representations of single and compound stimuli in negative and positive patterning

Representations of single and compound stimuli in negative and positive patterning Learning & Behavior 2009, 37 (3), 230-245 doi:10.3758/lb.37.3.230 Representations of single and compound stimuli in negative and positive patterning JUSTIN A. HARRIS, SABA A GHARA EI, AND CLINTON A. MOORE

More information

Pigeons transfer between conditional discriminations with differential outcomes in the absence of differential-sample-responding cues

Pigeons transfer between conditional discriminations with differential outcomes in the absence of differential-sample-responding cues Animal Learning & Behavior 1995, 23 (3), 273-279 Pigeons transfer between conditional discriminations with differential outcomes in the absence of differential-sample-responding cues LOU M. SHERBURNE and

More information

AMOUNT OF RESPONSE-PRODUCED CHANGE IN THE CS AND AVOIDANCE LEARNING 1

AMOUNT OF RESPONSE-PRODUCED CHANGE IN THE CS AND AVOIDANCE LEARNING 1 Journal of Comparative and Physiological Psychology 1965, Vol. 59, No. 1, 13-17 AMOUNT OF RESPONSE-PRODUCED CHANGE IN THE CS AND AVOIDANCE LEARNING 1 GORDON BOWER, RONALD STARR, AND LEAH LAZAROVITZ Stanford

More information

Signaled reinforcement effects on fixed-interval performance of rats with lever depressing or releasing as a target response 1

Signaled reinforcement effects on fixed-interval performance of rats with lever depressing or releasing as a target response 1 Japanese Psychological Research 1998, Volume 40, No. 2, 104 110 Short Report Signaled reinforcement effects on fixed-interval performance of rats with lever depressing or releasing as a target response

More information

Discrimination of Structure: I. Implications for Connectionist Theories of Discrimination Learning

Discrimination of Structure: I. Implications for Connectionist Theories of Discrimination Learning Journal of Experimental Psychology: Animal Behavior Processes 2001, Vol. 27, No. 3, 206-218 Copyright 2001 by the American Psychological Association, Inc. 0097-7403/01/$5.00 DOI: 10.1037//0097-7403.27.3.206

More information

Contextual Control of Conditioned Responding in Rats With Dorsal Hippocampal Lesions

Contextual Control of Conditioned Responding in Rats With Dorsal Hippocampal Lesions Behavioral Neuroscience 1996, Vol. 110, No. 5, 933-945 Copyright 1996 by the American Psychological Association, Inc. 0735-7044/96/S3.00 Contextual Control of Conditioned Responding in Rats With Dorsal

More information

Relations Between Pavlovian-Instrumental Transfer and Reinforcer Devaluation

Relations Between Pavlovian-Instrumental Transfer and Reinforcer Devaluation Journal of Experimental Psychology: Animal Behavior Processes 2004, Vol. 30, No. 2, 104 117 Copyright 2004 by the American Psychological Association 0097-7403/04/$12.00 DOI: 10.1037/0097-7403.30.2.104

More information

The Role of Temporal Relationships in the Transfer of Conditioned Inhibition

The Role of Temporal Relationships in the Transfer of Conditioned Inhibition Denniston, James C., Robert P. Cole, and Ralph R. Miller. (1998). "The role of temporal relationships in the transfer of conditioned inhibition." Journal of Experimental Psychology: Animal Behavior Processes

More information

CAROL 0. ECKERMAN UNIVERSITY OF NORTH CAROLINA. in which stimulus control developed was studied; of subjects differing in the probability value

CAROL 0. ECKERMAN UNIVERSITY OF NORTH CAROLINA. in which stimulus control developed was studied; of subjects differing in the probability value JOURNAL OF THE EXPERIMENTAL ANALYSIS OF BEHAVIOR 1969, 12, 551-559 NUMBER 4 (JULY) PROBABILITY OF REINFORCEMENT AND THE DEVELOPMENT OF STIMULUS CONTROL' CAROL 0. ECKERMAN UNIVERSITY OF NORTH CAROLINA Pigeons

More information

PREFERENCE REVERSALS WITH FOOD AND WATER REINFORCERS IN RATS LEONARD GREEN AND SARA J. ESTLE V /V (A /A )(D /D ), (1)

PREFERENCE REVERSALS WITH FOOD AND WATER REINFORCERS IN RATS LEONARD GREEN AND SARA J. ESTLE V /V (A /A )(D /D ), (1) JOURNAL OF THE EXPERIMENTAL ANALYSIS OF BEHAVIOR 23, 79, 233 242 NUMBER 2(MARCH) PREFERENCE REVERSALS WITH FOOD AND WATER REINFORCERS IN RATS LEONARD GREEN AND SARA J. ESTLE WASHINGTON UNIVERSITY Rats

More information

Stimulus control of foodcup approach following fixed ratio reinforcement*

Stimulus control of foodcup approach following fixed ratio reinforcement* Animal Learning & Behavior 1974, Vol. 2,No. 2, 148-152 Stimulus control of foodcup approach following fixed ratio reinforcement* RICHARD B. DAY and JOHN R. PLATT McMaster University, Hamilton, Ontario,

More information

Acquired Equivalence and Distinctiveness of Cues

Acquired Equivalence and Distinctiveness of Cues Journal of Experimental Psychology: Copyright 1989 by lhe American Psychological Association, Inc. Animal Behavior Processes 0097-740389$00.75 1989, Vol. 15, No. 4, 338-346 Acquired Equivalence and Distinctiveness

More information

STIMULUS FUNCTIONS IN TOKEN-REINFORCEMENT SCHEDULES CHRISTOPHER E. BULLOCK

STIMULUS FUNCTIONS IN TOKEN-REINFORCEMENT SCHEDULES CHRISTOPHER E. BULLOCK STIMULUS FUNCTIONS IN TOKEN-REINFORCEMENT SCHEDULES By CHRISTOPHER E. BULLOCK A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

More information

Amount of training effects in representationmediated food aversion learning: No evidence of a role for associability changes

Amount of training effects in representationmediated food aversion learning: No evidence of a role for associability changes Journal Learning & Behavior 2005,?? 33 (?), (4),???-??? 464-478 Amount of training effects in representationmediated food aversion learning: No evidence of a role for associability changes PETER C. HOLLAND

More information

Interaction of social and individual learning in food preferences of Norway rats

Interaction of social and individual learning in food preferences of Norway rats ANIMAL BEHAVIOUR, 1, 62, 41 46 doi:1.16/anbe..1721, available online at http://www.idealibrary.com on Interaction of social and individual learning in food preferences of Norway rats BENNETT G. GALEF,

More information

Transfer of Control in Ambiguous Discriminations

Transfer of Control in Ambiguous Discriminations Journal of Experimental Psychology: Animal Behavior Processes 1991, Vol. 17, No. 3, 231-248 Copyright 1991 by the Am n Psychological Association, Inc. 0097-7403/91/53.00 Transfer of Control in Ambiguous

More information

The generality of within-session patterns of responding: Rate of reinforcement and session length

The generality of within-session patterns of responding: Rate of reinforcement and session length Animal Learning & Behavior 1994, 22 (3), 252-266 The generality of within-session patterns of responding: Rate of reinforcement and session length FRANCES K. MCSWEENEY, JOHN M. ROLL, and CARI B. CANNON

More information

Phil Reed. Learn Behav (2011) 39:27 35 DOI /s Published online: 24 September 2010 # Psychonomic Society 2010

Phil Reed. Learn Behav (2011) 39:27 35 DOI /s Published online: 24 September 2010 # Psychonomic Society 2010 Learn Behav (211) 39:27 35 DOI 1.17/s1342-1-3-5 Effects of response-independent stimuli on fixed-interval and fixed-ratio performance of rats: a model for stressful disruption of cyclical eating patterns

More information

Occasion Setters: Specificity to the US and the CS US Association

Occasion Setters: Specificity to the US and the CS US Association Learning and Motivation 32, 349 366 (2001) doi:10.1006/lmot.2001.1089, available online at http://www.idealibrary.com on Occasion Setters: Specificity to the US and the CS US Association Charlotte Bonardi

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

Perceptual learning transfer in an appetitive Pavlovian task

Perceptual learning transfer in an appetitive Pavlovian task Learn Behav (2017) 45:115 123 DOI 10.3758/s13420-016-0245-y Perceptual learning transfer in an appetitive Pavlovian task Antonio A. Artigas 1 & Jose Prados 2 Published online: 5 August 2016 # Psychonomic

More information

Feature extinction enhances transfer of occasion setting

Feature extinction enhances transfer of occasion setting Animal Learning & Behavior 1989, 17 (3), 269-279 Feature extinction enhances transfer of occasion setting PETER C. HOLLAND Duke University, Durham, North Carolina In three experiments, transfer effects

More information

Transitive Inference and Commonly Coded Stimuli

Transitive Inference and Commonly Coded Stimuli Georgia Southern University Digital Commons@Georgia Southern Electronic Theses & Dissertations Graduate Studies, Jack N. Averitt College of Summer 2005 Transitive Inference and Commonly Coded Stimuli William

More information

between successive DMTS choice phases.

between successive DMTS choice phases. JOURNAL OF THE EXPERIMENTAL ANALYSIS OF BEHAVIOR 1996, 66, 231 242 NUMBER 2(SEPTEMBER) SEPARATING THE EFFECTS OF TRIAL-SPECIFIC AND AVERAGE SAMPLE-STIMULUS DURATION IN DELAYED MATCHING TO SAMPLE IN PIGEONS

More information

Value Transfer in a Simultaneous Discrimination Appears to Result From Within-Event Pavlovian Conditioning

Value Transfer in a Simultaneous Discrimination Appears to Result From Within-Event Pavlovian Conditioning Journal of Experimental Psychology: Animal Behavior Processes 1996, Vol. 22. No. 1, 68-75 Copyright 1996 by the American Psychological Association. Inc. 0097-7403/96/53.00 Value Transfer in a Simultaneous

More information

Transfer of Serial Reversal Learning in the Pigeon

Transfer of Serial Reversal Learning in the Pigeon The Quarterly Journal of Experimental Psychology (1986) 38B, 81-95 Transfer of Serial Reversal Learning in the Pigeon P. J. Durlach and N. J. Mackintosh Department of Experimental Psychology, University

More information

Partial reinforcement effects on learning and extinction of place preferences in the water maze

Partial reinforcement effects on learning and extinction of place preferences in the water maze Learning & Behavior 2008, 36 (4), 311-318 doi: 10.3758/LB.36.4.311 Partial reinforcement effects on learning and extinction of place preferences in the water maze José Prados University of Leicester, Leicester,

More information

Attention shifts during matching-to-sample performance in pigeons

Attention shifts during matching-to-sample performance in pigeons Animal Learning & Behavior 1975, Vol. 3 (2), 85-89 Attention shifts during matching-to-sample performance in pigeons CHARLES R. LEITH and WILLIAM S. MAKI, JR. University ofcalifornia, Berkeley, California

More information

The effects of Pavlovian CSs on two food-reinforced baselineswith and without noncontingent shock

The effects of Pavlovian CSs on two food-reinforced baselineswith and without noncontingent shock Animal Learning & Behavior 1976, Vol. 4 (3), 293-298 The effects of Pavlovian CSs on two food-reinforced baselineswith and without noncontingent shock THOMAS s. HYDE Case Western Reserve University, Cleveland,

More information

Asymmetry in the discrimination of quantity by rats: The role of the intertrial interval

Asymmetry in the discrimination of quantity by rats: The role of the intertrial interval DOI.378/s1342-1-191- Asymmetry in the discrimination of quantity by rats: The role of the intertrial interval R. A. Inman 1 & R. C. Honey 1 & G. L. Eccles 1 & J. M. Pearce 1 # The Author(s) 21. This article

More information

Magazine approach during a signal for food depends on Pavlovian, not instrumental, conditioning.

Magazine approach during a signal for food depends on Pavlovian, not instrumental, conditioning. In Journal of Experimental Psychology: Animal Behavior Processes http://www.apa.org/pubs/journals/xan/index.aspx 2013, vol. 39 (2), pp 107 116 2013 American Psychological Association DOI: 10.1037/a0031315

More information

DISCRIMINATION IN RATS OSAKA CITY UNIVERSITY. to emit the response in question. Within this. in the way of presenting the enabling stimulus.

DISCRIMINATION IN RATS OSAKA CITY UNIVERSITY. to emit the response in question. Within this. in the way of presenting the enabling stimulus. JOURNAL OF THE EXPERIMENTAL ANALYSIS OF BEHAVIOR EFFECTS OF DISCRETE-TRIAL AND FREE-OPERANT PROCEDURES ON THE ACQUISITION AND MAINTENANCE OF SUCCESSIVE DISCRIMINATION IN RATS SHIN HACHIYA AND MASATO ITO

More information

STUDIES OF WHEEL-RUNNING REINFORCEMENT: PARAMETERS OF HERRNSTEIN S (1970) RESPONSE-STRENGTH EQUATION VARY WITH SCHEDULE ORDER TERRY W.

STUDIES OF WHEEL-RUNNING REINFORCEMENT: PARAMETERS OF HERRNSTEIN S (1970) RESPONSE-STRENGTH EQUATION VARY WITH SCHEDULE ORDER TERRY W. JOURNAL OF THE EXPERIMENTAL ANALYSIS OF BEHAVIOR 2000, 73, 319 331 NUMBER 3(MAY) STUDIES OF WHEEL-RUNNING REINFORCEMENT: PARAMETERS OF HERRNSTEIN S (1970) RESPONSE-STRENGTH EQUATION VARY WITH SCHEDULE

More information

Changes in attention to an irrelevant cue that accompanies a negative attending discrimination

Changes in attention to an irrelevant cue that accompanies a negative attending discrimination Learn Behav (2011) 39:336 349 DOI 10.3758/s13420-011-0029-3 Changes in attention to an irrelevant cue that accompanies a negative attending discrimination Jemma C. Dopson & Guillem R. Esber & John M. Pearce

More information

Some determinants of second-order conditioning

Some determinants of second-order conditioning Learn Behav (2011) 39:12 26 DOI 10.1007/s13420-010-0002-6 Some determinants of second-order conditioning James E. Witnauer & Ralph R. Miller Published online: 24 September 2010 # Psychonomic Society 2010

More information

Animal memory: The contribution of generalization decrement to delayed conditional discrimination retention functions

Animal memory: The contribution of generalization decrement to delayed conditional discrimination retention functions Learning & Behavior 2009, 37 (4), 299-304 doi:10.3758/lb.37.4.299 Animal memory: The contribution of generalization decrement to delayed conditional discrimination retention functions REBECCA RAYBURN-REEVES

More information

Common Coding in Pigeons Assessed Through Partial Versus Total Reversals of Many-to-One Conditional and Simple Discriminations

Common Coding in Pigeons Assessed Through Partial Versus Total Reversals of Many-to-One Conditional and Simple Discriminations Journal of Experimental Psycholo Animal Behavior Processes 1991, Vol. 17, No. 2, 194-201 Copyright 1991 by the American Psychological Association, Inc. 0097-7403/91/43.00 Common Coding in Pigeons Assessed

More information

City, University of London Institutional Repository

City, University of London Institutional Repository City Research Online City, University of London Institutional Repository Citation: Jennings, D., Alonso, E., Mondragon, E., Franssen, M. and Bonardi, C. (2013). The Effect of Stimulus Distribution Form

More information

Transfer of memory retrieval cues attenuates the context specificity of latent inhibition

Transfer of memory retrieval cues attenuates the context specificity of latent inhibition Scholarly Commons Psychology Faculty Publications 2015 Transfer of memory retrieval cues attenuates the context specificity of latent inhibition James F. Briggs Timothy A. Toth Brian P. Olson Jacob G.

More information

Overshadowing by fixed and variable duration stimuli. Centre for Computational and Animal Learning Research

Overshadowing by fixed and variable duration stimuli. Centre for Computational and Animal Learning Research Overshadowing by fixed and variable duration stimuli Charlotte Bonardi 1, Esther Mondragón 2, Ben Brilot 3 & Dómhnall J. Jennings 3 1 School of Psychology, University of Nottingham 2 Centre for Computational

More information

Overshadowing not potentiation of illness-based contextual conditioning by a novel taste

Overshadowing not potentiation of illness-based contextual conditioning by a novel taste Animal Learning & Behavior 1999, 27 (4), 379-390 Overshadowing not potentiation of illness-based contextual conditioning by a novel taste MICHELLE SYMONDS and GEOFFREY HALL University of York, York, England

More information

The effects of two different states of food deprivation for 6 roosters was measured with a

The effects of two different states of food deprivation for 6 roosters was measured with a Effects of Food Deprivation on Memory Performance. Jacob. L. Kerewaro Abstract The effects of two different states of food deprivation for 6 roosters was measured with a delayed matching-to-sample (DMTS)

More information

Overshadowing by fixed- and variable-duration stimuli

Overshadowing by fixed- and variable-duration stimuli THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2015 Vol. 68, No. 3, 523 542, http://dx.doi.org/10.1080/17470218.2014.960875 Overshadowing by fixed- and variable-duration stimuli Charlotte Bonardi 1,

More information

Geometrical and Spatial Cues

Geometrical and Spatial Cues The Huron University College Journal of Learning and Motivation Volume 45 Issue 1 Article 20 2007 Geometrical and Spatial Cues Josée Viau Follow this and additional works at: http://ir.lib.uwo.ca/hucjlm

More information

Perceptual Learning in Flavor Aversion: Evidence for Learned Changes in Stimulus Effectiveness

Perceptual Learning in Flavor Aversion: Evidence for Learned Changes in Stimulus Effectiveness Journal of Experimental Psychology: Animal Behavior Processes 2003, Vol. 29, No. 1, 39 48 Copyright 2003 by the American Psychological Association, Inc. 0097-7403/03/$12.00 DOI: 10.1037/0097-7403.29.1.39

More information

PURSUING THE PAVLOVIAN CONTRIBUTIONS TO INDUCTION IN RATS RESPONDING FOR 1% SUCROSE REINFORCEMENT

PURSUING THE PAVLOVIAN CONTRIBUTIONS TO INDUCTION IN RATS RESPONDING FOR 1% SUCROSE REINFORCEMENT The Psychological Record, 2007, 57, 577 592 PURSUING THE PAVLOVIAN CONTRIBUTIONS TO INDUCTION IN RATS RESPONDING FOR 1% SUCROSE REINFORCEMENT JEFFREY N. WEATHERLY, AMBER HULS, and ASHLEY KULLAND University

More information

Cronfa - Swansea University Open Access Repository

Cronfa - Swansea University Open Access Repository Cronfa - Swansea University Open Access Repository This is an author produced version of a paper published in : Learning & Behavior Cronfa URL for this paper: http://cronfa.swan.ac.uk/record/cronfa31054

More information

SUBSTITUTION EFFECTS IN A GENERALIZED TOKEN ECONOMY WITH PIGEONS LEONARDO F. ANDRADE 1 AND TIMOTHY D. HACKENBERG 2

SUBSTITUTION EFFECTS IN A GENERALIZED TOKEN ECONOMY WITH PIGEONS LEONARDO F. ANDRADE 1 AND TIMOTHY D. HACKENBERG 2 JOURNAL OF THE EXPERIMENTAL ANALYSIS OF BEHAVIOR 217, 17, 123 135 NUMBER 1 (JANUARY) SUBSTITUTION EFFECTS IN A GENERALIZED TOKEN ECONOMY WITH PIGEONS LEONARDO F. ANDRADE 1 AND TIMOTHY D. HACKENBERG 2 1

More information

REINFORCEMENT OF PROBE RESPONSES AND ACQUISITION OF STIMULUS CONTROL IN FADING PROCEDURES

REINFORCEMENT OF PROBE RESPONSES AND ACQUISITION OF STIMULUS CONTROL IN FADING PROCEDURES JOURNAL OF THE EXPERIMENTAL ANALYSIS OF BEHAVIOR 1985, 439 235-241 NUMBER 2 (MARCH) REINFORCEMENT OF PROBE RESPONSES AND ACQUISITION OF STIMULUS CONTROL IN FADING PROCEDURES LANNY FIELDS THE COLLEGE OF

More information

ANTECEDENT REINFORCEMENT CONTINGENCIES IN THE STIMULUS CONTROL OF AN A UDITORY DISCRIMINA TION' ROSEMARY PIERREL AND SCOT BLUE

ANTECEDENT REINFORCEMENT CONTINGENCIES IN THE STIMULUS CONTROL OF AN A UDITORY DISCRIMINA TION' ROSEMARY PIERREL AND SCOT BLUE JOURNAL OF THE EXPERIMENTAL ANALYSIS OF BEHAVIOR ANTECEDENT REINFORCEMENT CONTINGENCIES IN THE STIMULUS CONTROL OF AN A UDITORY DISCRIMINA TION' ROSEMARY PIERREL AND SCOT BLUE BROWN UNIVERSITY 1967, 10,

More information

DOES THE TEMPORAL PLACEMENT OF FOOD-PELLET REINFORCEMENT ALTER INDUCTION WHEN RATS RESPOND ON A THREE-COMPONENT MULTIPLE SCHEDULE?

DOES THE TEMPORAL PLACEMENT OF FOOD-PELLET REINFORCEMENT ALTER INDUCTION WHEN RATS RESPOND ON A THREE-COMPONENT MULTIPLE SCHEDULE? The Psychological Record, 2004, 54, 319-332 DOES THE TEMPORAL PLACEMENT OF FOOD-PELLET REINFORCEMENT ALTER INDUCTION WHEN RATS RESPOND ON A THREE-COMPONENT MULTIPLE SCHEDULE? JEFFREY N. WEATHERLY, KELSEY

More information

Some Parameters of the Second-Order Conditioning of Fear in Rats

Some Parameters of the Second-Order Conditioning of Fear in Rats University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers in Behavior and Biological Sciences Papers in the Biological Sciences 1969 Some Parameters of the Second-Order Conditioning

More information

Effect of extended training on generalization of latent inhibition: An instance of perceptual learning

Effect of extended training on generalization of latent inhibition: An instance of perceptual learning Learn Behav (2011) 39:79 86 DOI 10.3758/s13420-011-0022-x Effect of extended training on generalization of latent inhibition: An instance of perceptual learning Gabriel Rodríguez & Gumersinda Alonso Published

More information

Spacing extinction trials alleviates renewal and spontaneous recovery

Spacing extinction trials alleviates renewal and spontaneous recovery L132 NT MJA/cla Learning & Behavior 2009, 37 (1), 60-73 doi:10.3758/lb.37.1.60 Spacing extinction trials alleviates renewal and spontaneous recovery Gonzalo P. Urcelay University of Cambridge, Cambridge,

More information

Timing in pigeons: The choose-short effect may result from pigeons confusion between delay and intertrial intervals

Timing in pigeons: The choose-short effect may result from pigeons confusion between delay and intertrial intervals Psychonomic Bulletin & Review 1998, 5 (3), 516-522 Timing in pigeons: The choose-short effect may result from pigeons confusion between delay and intertrial intervals LOU M. SHERBURNE Wabash College, Crawfordsville,

More information

The Associability Theory vs. The Strategic Re-Coding Theory: The Reverse Transfer Along a Continuum Effect in Human Discrimination Learning

The Associability Theory vs. The Strategic Re-Coding Theory: The Reverse Transfer Along a Continuum Effect in Human Discrimination Learning The Associability Theory vs. The Strategic Re-Coding Theory: The Reverse Transfer Along a Continuum Effect in Human Discrimination Learning Mizue Tachi (MT334@hermes.cam.ac.uk) R.P. McLaren (RPM31@hermes.cam.ac.uk)

More information

TEMPORALLY SPECIFIC BLOCKING: TEST OF A COMPUTATIONAL MODEL. A Senior Honors Thesis Presented. Vanessa E. Castagna. June 1999

TEMPORALLY SPECIFIC BLOCKING: TEST OF A COMPUTATIONAL MODEL. A Senior Honors Thesis Presented. Vanessa E. Castagna. June 1999 TEMPORALLY SPECIFIC BLOCKING: TEST OF A COMPUTATIONAL MODEL A Senior Honors Thesis Presented By Vanessa E. Castagna June 999 999 by Vanessa E. Castagna ABSTRACT TEMPORALLY SPECIFIC BLOCKING: A TEST OF

More information

Investigating the Effects of Sensory Learning in Rats Using Intra and Extra Stimulus Modalities

Investigating the Effects of Sensory Learning in Rats Using Intra and Extra Stimulus Modalities Arcadia University ScholarWorks@Arcadia Faculty Curated Undergraduate Works Undergraduate Research Spring 2018 Investigating the Effects of Sensory Learning in Rats Using Intra and Extra Stimulus Modalities

More information

Memory Systems Interaction in the Pigeon: Working and Reference Memory

Memory Systems Interaction in the Pigeon: Working and Reference Memory Journal of Experimental Psychology: Animal Learning and Cognition 2015 American Psychological Association 2015, Vol. 41, No. 2, 152 162 2329-8456/15/$12.00 http://dx.doi.org/10.1037/xan0000053 Memory Systems

More information

INTRODUCING NEW STIMULI IN FADING

INTRODUCING NEW STIMULI IN FADING JOURNL OF THE EXPERMENTL NLYSS OF BEHVOR 1979, 32, 121-127 NUMBER (JULY) CQUSTON OF STMULUS CONTROL WHLE NTRODUCNG NEW STMUL N FDNG LNNY FELDS THE COLLEGE OF STTEN SLND fter establishing a discrimination

More information

Role of the anterior cingulate cortex in the control over behaviour by Pavlovian conditioned stimuli

Role of the anterior cingulate cortex in the control over behaviour by Pavlovian conditioned stimuli Role of the anterior cingulate cortex in the control over behaviour by Pavlovian conditioned stimuli in rats RN Cardinal, JA Parkinson, H Djafari Marbini, AJ Toner, TW Robbins, BJ Everitt Departments of

More information

Latent inhibition in a navigation task: Evidence for the use of associative processes in spatial memory. José Prados* Universitat de Barcelona

Latent inhibition in a navigation task: Evidence for the use of associative processes in spatial memory. José Prados* Universitat de Barcelona Psicológica (1999) 20, 151-162. ARTICULOS Latent inhibition in a navigation task: Evidence for the use of associative processes in spatial memory José Prados* Universitat de Barcelona Rats were trained

More information

TEMPORALLY SPECIFIC EXTINCTION OF PAVLOVIAN CONDITIONED INHIBITION. William Travis Suits

TEMPORALLY SPECIFIC EXTINCTION OF PAVLOVIAN CONDITIONED INHIBITION. William Travis Suits TEMPORALLY SPECIFIC EXTINCTION OF PAVLOVIAN CONDITIONED INHIBITION Except where reference is made to the works of others, the work described in this dissertation is my own or was done in collaboration

More information

Conditioned Stimulus Familiarity Determines Effects of MK-801 on Fear Extinction

Conditioned Stimulus Familiarity Determines Effects of MK-801 on Fear Extinction Behavioral Neuroscience 2009 American Psychological Association 2009, Vol. 123, No. 2, 303 314 0735-7044/09/$12.00 DOI: 10.1037/a0014988 Conditioned Stimulus Familiarity Determines Effects of MK-801 on

More information

Examining the Constant Difference Effect in a Concurrent Chains Procedure

Examining the Constant Difference Effect in a Concurrent Chains Procedure University of Wisconsin Milwaukee UWM Digital Commons Theses and Dissertations May 2015 Examining the Constant Difference Effect in a Concurrent Chains Procedure Carrie Suzanne Prentice University of Wisconsin-Milwaukee

More information

Predictive Accuracy and the Effects of Partial Reinforcement on Serial Autoshaping

Predictive Accuracy and the Effects of Partial Reinforcement on Serial Autoshaping Journal of Experimental Psychology: Copyright 1985 by the American Psychological Association, Inc. Animal Behavior Processes 0097-7403/85/$00.75 1985, VOl. 11, No. 4, 548-564 Predictive Accuracy and the

More information

Pigeons memory for time: Assessment of the role of subjective shortening in the duration-comparison procedure

Pigeons memory for time: Assessment of the role of subjective shortening in the duration-comparison procedure Learning & Behavior 2009, 37 (1), 74-84 doi:10.3758/lb.37.1.74 Pigeons memory for time: Assessment of the role of subjective shortening in the duration-comparison procedure PATRICK VAN ROOYEN AND ANGELO

More information

Coding of hedonic and nonhedonic samples by pigeons in many-to-one delayed matching

Coding of hedonic and nonhedonic samples by pigeons in many-to-one delayed matching Animal Learning & Behavior 1995, 23 (2), 189 196 Coding of hedonic and nonhedonic samples by pigeons in many-to-one delayed matching THOMAS R. ZENTALL and LOU M. SHERBURNE University of Kentucky, Lexington,

More information

THE EFFECT OF A REMINDER STIMULUS ON THE DECISION STRATEGY ADOPTED IN THE TWO-ALTERNATIVE FORCED-CHOICE PROCEDURE.

THE EFFECT OF A REMINDER STIMULUS ON THE DECISION STRATEGY ADOPTED IN THE TWO-ALTERNATIVE FORCED-CHOICE PROCEDURE. THE EFFECT OF A REMINDER STIMULUS ON THE DECISION STRATEGY ADOPTED IN THE TWO-ALTERNATIVE FORCED-CHOICE PROCEDURE. Michael J. Hautus, Daniel Shepherd, Mei Peng, Rebecca Philips and Veema Lodhia Department

More information

Supplemental Data: Capuchin Monkeys Are Sensitive to Others Welfare. Venkat R. Lakshminarayanan and Laurie R. Santos

Supplemental Data: Capuchin Monkeys Are Sensitive to Others Welfare. Venkat R. Lakshminarayanan and Laurie R. Santos Supplemental Data: Capuchin Monkeys Are Sensitive to Others Welfare Venkat R. Lakshminarayanan and Laurie R. Santos Supplemental Experimental Procedures Subjects Seven adult capuchin monkeys were tested.

More information

Contingent Versus Incidental Context Processing During Conditioning: Dissociation After Excitotoxic Hippocampal Plus Dentate Gyrus Lesions

Contingent Versus Incidental Context Processing During Conditioning: Dissociation After Excitotoxic Hippocampal Plus Dentate Gyrus Lesions Contingent Versus Incidental Context Processing During Conditioning: Dissociation After Excitotoxic Hippocampal Plus Dentate Gyrus Lesions M. Good,* L. de Hoz, and R.G.M. Morris Centre for Neuroscience,

More information

Temporal-Difference Prediction Errors and Pavlovian Fear Conditioning: Role of NMDA and Opioid Receptors

Temporal-Difference Prediction Errors and Pavlovian Fear Conditioning: Role of NMDA and Opioid Receptors Behavioral Neuroscience Copyright 2007 by the American Psychological Association 2007, Vol. 121, No. 5, 1043 1052 0735-7044/07/$12.00 DOI: 10.1037/0735-7044.121.5.1043 Temporal-Difference Prediction Errors

More information

Some effects of short-term immediate prior exposure to light change on responding for light change*

Some effects of short-term immediate prior exposure to light change on responding for light change* Animal Learning & Behavior 1974, Vol. 2 (4), 262-266 Some effects of short-term immediate prior exposure to light change on responding for light change* ALAN RUSSELLt and PETER H. GLOW University ofadelaide,

More information

Selective importance of the rat anterior thalamic nuclei for configural learning involving distal spatial cues

Selective importance of the rat anterior thalamic nuclei for configural learning involving distal spatial cues European Journal of Neuroscience European Journal of Neuroscience, Vol. 39, pp. 241 256, 2014 doi:10.1111/ejn.12409 BEHAVIORAL NEUROSCIENCE Selective importance of the rat anterior thalamic nuclei for

More information

The effect of controllable and uncontrollable neonatal preshocks on adult escape/avoidance behavior in the guinea pig (Cavia porcellus)

The effect of controllable and uncontrollable neonatal preshocks on adult escape/avoidance behavior in the guinea pig (Cavia porcellus) Animal Learning & Behavior 1979, 7 (3),372-376 The effect of controllable and uncontrollable neonatal preshocks on adult escape/avoidance behavior in the guinea pig (Cavia porcellus) FRED FENTON, ANNE

More information

The influence ofbrief stimuli uncorrelated with reinforcement on choice between variable-ratio schedules

The influence ofbrief stimuli uncorrelated with reinforcement on choice between variable-ratio schedules Animal Learning & Behavior /993. 2/ (2). /59-/67 The influence ofbrief stimuli uncorrelated with reinforcement on choice between variable-ratio schedules PHIL REED and VAL SZZUDLO University ollege London

More information

Pattern Memory Involves Both Elemental and Configural Processes: Evidence From the Effects of Hippocampal Lesions

Pattern Memory Involves Both Elemental and Configural Processes: Evidence From the Effects of Hippocampal Lesions Behavioral Neuroscience 2011 American Psychological Association 2011, Vol. 125, No. 4, 567 577 0735-7044/11/$12.00 DOI: 10.1037/a0023762 Pattern Memory Involves Both Elemental and Configural Processes:

More information

Excitation and Inhibition in Unblocking

Excitation and Inhibition in Unblocking Journal of Experimental Psychology: Animal Behavior Processes 1988, Vol. 14, No. 3, 261-279 Copyright 1988 by the American Psychological Association, Inc. 0097-7403/88/S00.75 Excitation and Inhibition

More information

Pigeons' memory for number of events: EVects of intertrial interval and delay interval illumination

Pigeons' memory for number of events: EVects of intertrial interval and delay interval illumination Learning and Motivation 35 (2004) 348 370 www.elsevier.com/locate/l&m Pigeons' memory for number of events: EVects of intertrial interval and delay interval illumination Chris Hope and Angelo Santi Wilfrid

More information

What is Learned? Lecture 9

What is Learned? Lecture 9 What is Learned? Lecture 9 1 Classical and Instrumental Conditioning Compared Classical Reinforcement Not Contingent on Behavior Behavior Elicited by US Involuntary Response (Reflex) Few Conditionable

More information

Oddity learning in the pigeon: Effect of negative instances, correction, and number of incorrect alternatives

Oddity learning in the pigeon: Effect of negative instances, correction, and number of incorrect alternatives Animal Learning & Behavior 1980,8(4),621-629 Oddity learning in the pigeon: Effect of negative instances, correction, and number of incorrect alternatives THOMAS R. ZENTALL University ofkentucky, Lexington,

More information