Two-Point Threshold Experiment

Size: px
Start display at page:

Download "Two-Point Threshold Experiment"

Transcription

1 Two-Point Threshold Experiment Neuroscience Class Activity Handout An informative experiment adapted by Don Hood, Dave Krantz, Jen Blanck, and Elizabeth Cottrell This activity provides a review of the real estate and magnification principles as well as random and systematic errors, standard deviation, and Gaussian distributions (Habits of Mind, Ch. 5). Introduction In hearing, sounds are converted into neural signals and acoustic information is processed within the brain. How do the real estate and magnification principles apply to the organization of auditory information within the ear and in the brain? Specific regions of the basilar membrane and auditory cortex are responsive to specific sound frequencies, illustrating the real estate principle. The magnification principle is demonstrated by the fact that a disproportionate amount of cortical space is devoted to the frequencies that characterize human speech ( Hz; see Figure 1). Figure 1. The mechanical tuning of the basilar membrane creates a spatial map of sound frequency carried all the way up to auditory cortex. Frontiers of Science Online The Trustees of Columbia University. The real estate and magnification principles also apply to the organization of other regions of the brain, including the sensory cortex that receives information on touch (a.k.a. the post central gyrus). Within the sensory cortex, different parts of the body are mapped onto the surface of the frontiersofsci.org 1

2 brain (see Figure 2). When neurons in specific regions of the sensory cortex fire action potentials, the sensation of touch in different parts of the body is created. Figure 2. Schematic of the sensory cortex. Adapted from Penfield W and Rasmussen T, Frontiers of Science Online The Trustees of Columbia University. The two-point threshold demonstration will be used to show how the real estate and magnification principles apply to the organization of the sensory cortex. Two-point threshold demonstration The two-point threshold: The two-point threshold is the minimum distance at which two distinct tactile (touch) stimuli feel like two distinct points. In other words, at any separation smaller than the two-point threshold, the subject will feel only a single stimulus. The procedure below allows for a fairly quick and rough estimate of the two-point threshold on the forearms and thumbs. 1. Each pair of students should obtain a divider and ruler. 2. One student should choose to go first. One student (the experimenter) should apply the points of the divider to the arm of the other (the subject) while the subject watches. This allows the subject to see how the stimuli will feel, and the experimenter to get used to applying the stimuli properly (pressed quickly and evenly). The two points of the divider should be applied simultaneously and firmly but not so vigorously as to break the skin. 3. Now measure the two-point threshold for the thumb. The subject should close his/her eyes. When the stimuli are applied, the subject should say one or two to indicate the number of stimuli that he/she feels. 4. The experimenter should separate the divider to at least 1 cm and apply the stimuli to the middle of the thumb, perpendicular to the long axis. The subject should say two. If not, frontiersofsci.org 2

3 then open the divider wider until the subject feels two stimuli. 5. The experimenter should decrease the separation of the two stimuli and reapply. Continue until the subject feels only one stimulus. Record the distance of this threshold. 6. Repeat steps 4 and 5 for the forearm, applying the stimuli roughly 1 inch below the crease in the arm and perpendicular to the long axis. Start with the dividers at least 4 cm apart. Analysis/discussion of results Share your results in class discussion. You will probably notice that the two-point threshold is smaller on the thumb than the forearm. In order to address possible reasons, it may be useful to review the anatomical and physiological steps between the stimulus (pressure on the skin) and activity in the cortex. If your left thumb or forearm is tapped, nerve receptors in the skin will be stimulated. The endings of nerve cells will generate action potentials, which then travel in peripheral nerves and enter the central nervous system. After several synapses, information on touch crosses to the other side of the brain (via crossing axons). Action potentials originating on the left side of the body end up activating the right thalamus, and then the right sensory cortex, specifically a region devoted to the area of the body that was touched (the thumb or forearm). If you examine Figure 2 carefully, you will notice that the area of the sensory cortex devoted to the thumb is practically the same size as the region devoted to the entire forearm, leading to finer detailed information for the fingers. The magnification principle is clearly evident. More cortical space is devoted to the thumb area because fine touch information from the hands is important. Discussion questions Two-point threshold experiments for the thumb and forearm (described above) were carried out during Frontiers of Science seminars at Columbia University in the Fall of 2004 and Spring of Two-point threshold data for the thumb and forearm from four of these seminar sections (two from Fall 2004 and two from Spring 2005) were collected and analyzed. Below is a series of questions based on these data, which involve random/systematic error, Gaussian distributions, and standard deviations all of which are reviewed in Chapter 5 of Habits of Mind. 1. Below are two histograms of data from a student, Phil, collected during the twopoint threshold experiment. Calculate the mean of these data. frontiersofsci.org 3

4 Figure 3: Histograms representing two-point threshold data from a Frontiers of Science student. Elizabeth Cottrell, Frontiers of Science The Trustees of Columbia University 2. State two reasons why Phil s data do not perfectly approximate a Gaussian distribution. (Hint: See Habits of Mind Chapter 5, sections for a discussion of Gaussian distributions.) 3. Below are two histograms of data collected from several seminar sections. Estimate the mean and standard deviation of these data by fitting a Gaussian curve to each distribution. (Hint: Use Habits of Mind Chapter 5, sections for a guide on what a Gaussian curve should look like.) frontiersofsci.org 4

5 Figure 4: Histograms representing two-point threshold data from several seminar sections. Elizabeth Cottrell, Frontiers of Science The Trustees of Columbia University 4. Calculate the standard error for the forearm and thumb data above. Based on the standard error of the means, does it appear that the two-point threshold of the forearm is truly greater than the two-point threshold of the thumb? Explain. (Hint: See Habits of Mind Chapter 5, section 29 for a discussion of standard error.) 5. How do random errors affect the mean and standard deviation of normallydistributed data? How do systematic errors affect the mean and the standard deviation of normally-distributed data? (You may wish to refer to Habits of Mind, Chapter 5, sections for a discussion of error.) 6. Suppose a few groups mistakenly reported their data in cm instead of mm (i.e., they frontiersofsci.org 5

6 reported a 2-point threshold of 2.5 cm on the thumb instead of 2.5 mm) Describe where on the figures in part B these data would appear. Is this a systematic or random error? Explain. frontiersofsci.org 6

Neurobiology Biomed 509 Sensory transduction References: Luo , ( ), , M4.1, M6.2

Neurobiology Biomed 509 Sensory transduction References: Luo , ( ), , M4.1, M6.2 Neurobiology Biomed 509 Sensory transduction References: Luo 4.1 4.8, (4.9 4.23), 6.22 6.24, M4.1, M6.2 I. Transduction The role of sensory systems is to convert external energy into electrical signals

More information

Spectrograms (revisited)

Spectrograms (revisited) Spectrograms (revisited) We begin the lecture by reviewing the units of spectrograms, which I had only glossed over when I covered spectrograms at the end of lecture 19. We then relate the blocks of a

More information

Sound Waves. Sensation and Perception. Sound Waves. Sound Waves. Sound Waves

Sound Waves. Sensation and Perception. Sound Waves. Sound Waves. Sound Waves Sensation and Perception Part 3 - Hearing Sound comes from pressure waves in a medium (e.g., solid, liquid, gas). Although we usually hear sounds in air, as long as the medium is there to transmit the

More information

A. Acuity B. Adaptation C. Awareness D. Reception E. Overload

A. Acuity B. Adaptation C. Awareness D. Reception E. Overload Unit 4 Review #1 The longer an individual is exposed to a strong odor, the less aware of the odor the individual becomes. This phenomenon is known as sensory A. Acuity B. Adaptation C. Awareness D. Reception

More information

The How of Tactile Sensation

The How of Tactile Sensation The How of Tactile Sensation http://neuroscience.uth.tmc.edu/s2/chapter02.html Chris Cohan, Ph.D. Dept. of Pathology/Anat Sci University at Buffalo Objectives 1. Understand how sensory stimuli are encoded

More information

Episode One Debriefing: Teacher Guide

Episode One Debriefing: Teacher Guide Activity 3: IT S ALL IN YOUR MIND The brain has the ability to accurately perceive what is going on in the body and in the environment. However, drugs can alter this perception and make what is fiction

More information

Observing Nervous Responses

Observing Nervous Responses Lab #15H Observing Nervous Responses Introduction The nervous system is a series of conducting tissues that carries impulses to all parts of the body. Your nervous system initiates many types of reflex

More information

Modeling Effects of Drugs on Neuron Communication

Modeling Effects of Drugs on Neuron Communication Modeling Effects of Drugs on Neuron Communication How do neurons communicate? Your nervous system is made of nerve cells called neurons. Neurons do not touch each other. They are separated by a small gap

More information

PHGY 210,2,4 - Physiology SENSORY PHYSIOLOGY. Martin Paré

PHGY 210,2,4 - Physiology SENSORY PHYSIOLOGY. Martin Paré PHGY 210,2,4 - Physiology SENSORY PHYSIOLOGY Martin Paré Associate Professor of Physiology & Psychology pare@biomed.queensu.ca http://brain.phgy.queensu.ca/pare PHGY 210,2,4 - Physiology SENSORY PHYSIOLOGY

More information

Prof. Greg Francis 7/31/15

Prof. Greg Francis 7/31/15 s PSY 200 Greg Francis Lecture 06 How do you recognize your grandmother? Action potential With enough excitatory input, a cell produces an action potential that sends a signal down its axon to other cells

More information

Sound Localization PSY 310 Greg Francis. Lecture 31. Audition

Sound Localization PSY 310 Greg Francis. Lecture 31. Audition Sound Localization PSY 310 Greg Francis Lecture 31 Physics and psychology. Audition We now have some idea of how sound properties are recorded by the auditory system So, we know what kind of information

More information

The Nervous System. Nerves, nerves everywhere!

The Nervous System. Nerves, nerves everywhere! The Nervous System Nerves, nerves everywhere! Purpose of the Nervous System The information intake and response system of the body. Coordinates all body functions, voluntary and involuntary! Responds to

More information

Chapter 14: The Cutaneous Senses

Chapter 14: The Cutaneous Senses Chapter 14: The Cutaneous Senses Somatosensory System There are three parts Cutaneous senses - perception of touch and pain from stimulation of the skin Proprioception - ability to sense position of the

More information

PHGY Physiology. SENSORY PHYSIOLOGY Sensory Receptors. Martin Paré

PHGY Physiology. SENSORY PHYSIOLOGY Sensory Receptors. Martin Paré PHGY 212 - Physiology SENSORY PHYSIOLOGY Sensory Receptors Martin Paré Assistant Professor of Physiology & Psychology pare@biomed.queensu.ca http://brain.phgy.queensu.ca/pare Sensory Systems Question:

More information

Reaction time MATERIALS. - Pencil - Chair - Ruler

Reaction time MATERIALS. - Pencil - Chair - Ruler Reaction time NAME DATE A hand accidentally touches the hot plate of an oven and is withdrawn immediately. A young child runs out in front of your car and you hammer on the brakes. A lottery ball falls

More information

BCS 221: Auditory Perception BCS 521 & PSY 221

BCS 221: Auditory Perception BCS 521 & PSY 221 BCS 221: Auditory Perception BCS 521 & PSY 221 Time: MW 10:25 11:40 AM Recitation: F 10:25 11:25 AM Room: Hutchinson 473 Lecturer: Dr. Kevin Davis Office: 303E Meliora Hall Office hours: M 1 3 PM kevin_davis@urmc.rochester.edu

More information

Lesson 14. The Nervous System. Introduction to Life Processes - SCI 102 1

Lesson 14. The Nervous System. Introduction to Life Processes - SCI 102 1 Lesson 14 The Nervous System Introduction to Life Processes - SCI 102 1 Structures and Functions of Nerve Cells The nervous system has two principal cell types: Neurons (nerve cells) Glia The functions

More information

How We Grow & Change

How We Grow & Change How We Grow & Change Neural Development What makes up nerves? Neurons! (single cells) Interesting Facts About Neurons: Average brain has approx 100 billion neurons and we only use 10% (10 billion neurons)!

More information

Neurobiology of Hearing (Salamanca, 2012) Auditory Cortex (2) Prof. Xiaoqin Wang

Neurobiology of Hearing (Salamanca, 2012) Auditory Cortex (2) Prof. Xiaoqin Wang Neurobiology of Hearing (Salamanca, 2012) Auditory Cortex (2) Prof. Xiaoqin Wang Laboratory of Auditory Neurophysiology Department of Biomedical Engineering Johns Hopkins University web1.johnshopkins.edu/xwang

More information

Introduction. Chapter The Perceptual Process

Introduction. Chapter The Perceptual Process Chapter 1 Introduction Most of us take for granted our ability to perceive the external world. However, this is no simple deed at all. Imagine being given a task of designing a machine that can perceive,

More information

Loudness. Loudness is not simply sound intensity!

Loudness. Loudness is not simply sound intensity! is not simply sound intensity! Sound loudness is a subjective term describing the strength of the ear's perception of a sound. It is intimately related to sound intensity but can by no means be considered

More information

Chapter 5 Test Review. Try the practice questions in the Study Guide and on line

Chapter 5 Test Review. Try the practice questions in the Study Guide and on line Chapter 5 Test Review Try the practice questions in the Study Guide and on line Printing game plan Put six slides on a page Select pure black and white as the printing option Okay, now wade into the answers>>>>

More information

Auditory System & Hearing

Auditory System & Hearing Auditory System & Hearing Chapters 9 and 10 Lecture 17 Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Spring 2015 1 Cochlea: physical device tuned to frequency! place code: tuning of different

More information

Brain, Anatomical Structures & their Functions. Lesson 1 (REACH Psychology, week 3)

Brain, Anatomical Structures & their Functions. Lesson 1 (REACH Psychology, week 3) Brain, Anatomical Structures & their Functions Lesson 1 (REACH Psychology, week 3) Overview of the week The brain s anatomy and basic physiological processes Functions of different brain structures Lesions

More information

Guess: Correct or Incorrect. Trial (perform in random order)

Guess: Correct or Incorrect. Trial (perform in random order) AP Biology Senses Lab Names Per. Our senses are constantly bombarded with various stimuli from the environment, which are relayed to the central nervous system where the information is interpreted. In

More information

PSY 310: Sensory and Perceptual Processes 1

PSY 310: Sensory and Perceptual Processes 1 Touch PSY 310 Greg Francis Lecture 33 Why is the Braille system better? Vision and audition involve perception of objects from a distance Safe and dependent on the transfer of energy (light, air pressure)

More information

Touch PSY 310 Greg Francis. Lecture 33. Touch perception

Touch PSY 310 Greg Francis. Lecture 33. Touch perception Touch PSY 310 Greg Francis Lecture 33 Why is the Braille system better? Touch perception Vision and audition involve perception of objects from a distance Safe and dependent on the transfer of energy (light,

More information

The activity. A Domino model of nerve impulse

The activity. A Domino model of nerve impulse Teacher Notes Introduction In this activity students review the structure and function of nerve cells (neurones) and synapses using simple practical models. They will need to refer to their textbook or

More information

Mechanosensation. Central Representation of Touch. Wilder Penfield. Somatotopic Organization

Mechanosensation. Central Representation of Touch. Wilder Penfield. Somatotopic Organization Mechanosensation Central Representation of Touch Touch and tactile exploration Vibration and pressure sensations; important for clinical testing Limb position sense John H. Martin, Ph.D. Center for Neurobiology

More information

Yesterday s Picture UNIT 3F

Yesterday s Picture UNIT 3F Warm-Up Create a representation (cartoon, diagram, flow map, et cetera) to show how the vertebrate nervous system detects transmits information from one neuron to another. (LO 3.49) Yesterday s Picture

More information

15-1: How the Nervous System Works. 7 th Grade Life Science

15-1: How the Nervous System Works. 7 th Grade Life Science 7 th Grade Life Science Purpose Students will be able to: 1. Identify the functions of the nervous system. 2. Describe the structure of a neuron and the kinds of neurons found in the body. 3. Explain how

More information

Systems Neuroscience Oct. 16, Auditory system. http:

Systems Neuroscience Oct. 16, Auditory system. http: Systems Neuroscience Oct. 16, 2018 Auditory system http: www.ini.unizh.ch/~kiper/system_neurosci.html The physics of sound Measuring sound intensity We are sensitive to an enormous range of intensities,

More information

HOW DO HUMAN SENSORS WORK? - UNDERSTANDING HUMAN SENSORS AND COMPARING THEM WITH THOSE IN A ROBOT

HOW DO HUMAN SENSORS WORK? - UNDERSTANDING HUMAN SENSORS AND COMPARING THEM WITH THOSE IN A ROBOT HOW DO HUMAN SENSORS WORK? - UNDERSTANDING HUMAN SENSORS AND COMPARING THEM WITH THOSE IN A ROBOT (50 MINUTES) PRE/POST- ASSESSMENT SHEET HOW DO HUMAN SENSORS WORK? 1. What sensors or senses do we humans

More information

ID# Final Exam PS325, Fall 1997

ID# Final Exam PS325, Fall 1997 ID# Final Exam PS325, Fall 1997 Good luck on this exam. Answer each question carefully and completely. Keep your eyes foveated on your own exam, as the Skidmore Honor Code is in effect (as always). Have

More information

Hemispheric Specialization (lateralization) Each lobe of the brain has specialized functions (Have to be careful with this one.)

Hemispheric Specialization (lateralization) Each lobe of the brain has specialized functions (Have to be careful with this one.) Cerebral Cortex Principles contralaterality the right half of your brain controls the left half of your body and vice versa. (contralateral control.) Localization of function Specific mental processes

More information

Hearing Lab. Name. Materials: tuning forks, sterile cotton

Hearing Lab. Name. Materials: tuning forks, sterile cotton Hearing Lab Name Through the sense of hearing we are placed into direct, intimate contact with t surrounding world. Musical, vocal, and other sonic impressions flood us constantly. We possess a wealth

More information

Laboratory Exercise in Sensory Physiology Student Lab Manual

Laboratory Exercise in Sensory Physiology Student Lab Manual Laboratory Exercise in Sensory Physiology Student Lab Manual Introduction Sensory organs allow us to perceive our environment by converting energy sources in the environment, like light or sound, to nerve

More information

Chapter 6. Gathering information; the sensory systems

Chapter 6. Gathering information; the sensory systems Chapter 6 Gathering information; the sensory systems Gathering information the sensory systems The parts of the nervous system that receive and process information are termed sensory systems. There are

More information

Chapter 11: Sound, The Auditory System, and Pitch Perception

Chapter 11: Sound, The Auditory System, and Pitch Perception Chapter 11: Sound, The Auditory System, and Pitch Perception Overview of Questions What is it that makes sounds high pitched or low pitched? How do sound vibrations inside the ear lead to the perception

More information

Unit 4: Sensation and Perception

Unit 4: Sensation and Perception Unit 4: Sensation and Perception Sensation a process by which our sensory receptors and nervous system receive and represent stimulus (or physical) energy and encode it as neural signals. Perception a

More information

Somatic Sensory System I. Background

Somatic Sensory System I. Background Somatic Sensory System I. Background A. Differences between somatic senses and other senses 1. Receptors are distributed throughout the body as opposed to being concentrated at small, specialized locations

More information

THE NERVOUS SYSTEM III

THE NERVOUS SYSTEM III THE NERVOUS SYSTEM III Small Review Review What is this? A neuron What does it do? Receives and transmits information Sending a signal How are signals sent in the nervous system? Message travels from neuron

More information

How the Brain Works. The Amazing Developing Brain. Presented by Pat Wolfe, Ed.D. LACOE Transitional Kindergarten Conference May 1, 2014

How the Brain Works. The Amazing Developing Brain. Presented by Pat Wolfe, Ed.D. LACOE Transitional Kindergarten Conference May 1, 2014 The Amazing Developing Brain Presented by Pat Wolfe, Ed.D. LACOE Transitional Kindergarten Conference May 1, 2014 How the Brain Works What are some of the common neuromyths concerning the brain? The brain

More information

Sensory Pathways & Somatic Nervous System. Chapter 15

Sensory Pathways & Somatic Nervous System. Chapter 15 Sensory Pathways & Somatic Nervous System Chapter 15 How Does Brain Differentiate Sensations? Pain impulses make brain aware of injuries and infections. Impulses from eye, ear, nose and tongue make brain

More information

Brain & Behavior Syllabus V Instructor Mike Hawken Spring 2006

Brain & Behavior Syllabus V Instructor Mike Hawken Spring 2006 Brain & Behavior Syllabus V55.0306 Instructor Mike Hawken Spring 2006 Week 1 INTRODUCTION 1/17 Lecture 1 Introduction and History of Neuroscience early influences Reading: Chapter 1, pp 2 23 1/19 Lecture

More information

1. Use the following words to complete the text below. Terms may be used more than once.

1. Use the following words to complete the text below. Terms may be used more than once. THE NERVOUS AND MUSCULOSKELETAL SYSTEMS Nervous system, neuron, nerve impulse, peripheral nervous system, nerves STUDENT BOOK Ch. 7, pp. 202 206 1. Use the following words to complete the text below. Terms

More information

Neural Integration I: Sensory Pathways and the Somatic Nervous System

Neural Integration I: Sensory Pathways and the Somatic Nervous System 15 Neural Integration I: Sensory Pathways and the Somatic Nervous System PowerPoint Lecture Presentations prepared by Jason LaPres Lone Star College North Harris An Introduction to Sensory Pathways and

More information

USING AUDITORY SALIENCY TO UNDERSTAND COMPLEX AUDITORY SCENES

USING AUDITORY SALIENCY TO UNDERSTAND COMPLEX AUDITORY SCENES USING AUDITORY SALIENCY TO UNDERSTAND COMPLEX AUDITORY SCENES Varinthira Duangudom and David V Anderson School of Electrical and Computer Engineering, Georgia Institute of Technology Atlanta, GA 30332

More information

SENSATION & PERCEPTION

SENSATION & PERCEPTION SENSATION & PERCEPTION Sensation and perception result from a symphony of sensory receptors and the neurons those receptors communicate with. The receptors and neurons fire in different combinations and

More information

Somatosensation. Recording somatosensory responses. Receptive field response to pressure

Somatosensation. Recording somatosensory responses. Receptive field response to pressure Somatosensation Mechanoreceptors that respond to touch/pressure on the surface of the body. Sensory nerve responds propotional to pressure 4 types of mechanoreceptors: Meissner corpuscles & Merkel discs

More information

Structure and Function of the Auditory and Vestibular Systems (Fall 2014) Auditory Cortex (3) Prof. Xiaoqin Wang

Structure and Function of the Auditory and Vestibular Systems (Fall 2014) Auditory Cortex (3) Prof. Xiaoqin Wang 580.626 Structure and Function of the Auditory and Vestibular Systems (Fall 2014) Auditory Cortex (3) Prof. Xiaoqin Wang Laboratory of Auditory Neurophysiology Department of Biomedical Engineering Johns

More information

Nervous System: Reaction Time Teacher Version

Nervous System: Reaction Time Teacher Version Nervous System: Reaction Time Teacher Version Preparation and Lab Notes: To set up the computer-based reaction timer: 1. Unzip the archive rxntimer.app.zip 2. Open up a terminal window and go into the

More information

Nervous system Reflexes and Senses

Nervous system Reflexes and Senses Nervous system Reflexes and Senses Physiology Lab-4 Wrood Slaim, MSc Department of Pharmacology and Toxicology University of Al-Mustansyria 2017-2018 Nervous System The nervous system is the part of an

More information

Sensation and Perception

Sensation and Perception Sensation and Perception Sensation & Perception The interplay between the external world, physiological systems, and psychological experience How the external world makes impressions on our nervous system

More information

AUDL GS08/GAV1 Signals, systems, acoustics and the ear. Pitch & Binaural listening

AUDL GS08/GAV1 Signals, systems, acoustics and the ear. Pitch & Binaural listening AUDL GS08/GAV1 Signals, systems, acoustics and the ear Pitch & Binaural listening Review 25 20 15 10 5 0-5 100 1000 10000 25 20 15 10 5 0-5 100 1000 10000 Part I: Auditory frequency selectivity Tuning

More information

-The process by which organisms maintain, control, and coordinate their internal environment with a constantly changing external environment

-The process by which organisms maintain, control, and coordinate their internal environment with a constantly changing external environment -The process by which organisms maintain, control, and coordinate their internal environment with a constantly changing external environment -It is all of the activities that help to maintain an organism

More information

1) Drop off in the Bi 150 box outside Baxter 331 or to the head TA (jcolas).

1) Drop off in the Bi 150 box outside Baxter 331 or  to the head TA (jcolas). Bi/CNS/NB 150 Problem Set 5 Due: Tuesday, Nov. 24, at 4:30 pm Instructions: 1) Drop off in the Bi 150 box outside Baxter 331 or e-mail to the head TA (jcolas). 2) Submit with this cover page. 3) Use a

More information

PSY 215 Lecture 10 Topic: Hearing Chapter 7, pages

PSY 215 Lecture 10 Topic: Hearing Chapter 7, pages PSY 215 Lecture 10 Topic: Hearing Chapter 7, pages 189-197 Corrections: NTC 09-1, page 3, the Superior Colliculus is in the midbrain (Mesencephalon). Announcements: Movie next Monday: Case of the frozen

More information

Sensory Processes Sensory Systems

Sensory Processes Sensory Systems 9 th Lecture (9b) Wed 04 Feb 2009 Vertebrate Physiology ECOL 437 (MCB/VetSci 437) Univ. of Arizona, spring 2009 Kevin Bonine & Kevin Oh Sensory Processing Chapter 13 1 Sensory Processes Sensory Systems

More information

Sensory Processes Sensory Systems

Sensory Processes Sensory Systems 9 th Lecture (9b) Wed 04 Feb 2009 Vertebrate Physiology ECOL 437 (MCB/VetSci 437) Univ. of Arizona, spring 2009 Kevin Bonine & Kevin Oh Sensory Processes Sensory Systems Ch13 in your text Sensory Processing

More information

Sensation, Part 1 Gleitman et al. (2011), Chapter 4

Sensation, Part 1 Gleitman et al. (2011), Chapter 4 Sensation, Part 1 Gleitman et al. (2011), Chapter 4 Mike D Zmura Department of Cognitive Sciences, UCI Psych 9A / Psy Beh 11A February 11, 2014 T. M. D'Zmura 1 Origins of Knowledge Empiricism knowledge

More information

Can You Hear Me Now?

Can You Hear Me Now? An Introduction to the Mathematics of Hearing Department of Applied Mathematics University of Washington April 26, 2007 Some Questions How does hearing work? What are the important structures and mechanisms

More information

Before we talk about the auditory system we will talk about the sound and waves

Before we talk about the auditory system we will talk about the sound and waves The Auditory System PHYSIO: #3 DR.LOAI ZAGOUL 24/3/2014 Refer to the slides for some photos. Before we talk about the auditory system we will talk about the sound and waves All waves have basic characteristics:

More information

Specific Sulci/Fissures:

Specific Sulci/Fissures: Specific Sulci/Fissures: Central Sulcus Longitudinal Fissure Sylvian/Lateral Fissure Transverse Fissure http://www.bioon.com/book/biology/whole/image/1/1-8.tif.jpg http://www.dalbsoutss.eq.edu.au/sheepbrains_me/human_brain.gif

More information

SENSATION AND PERCEPTION

SENSATION AND PERCEPTION SENSATION AND PERCEPTION CHAPTER 5 1 LEARNING OBJECTIVES Describe transduction, sensation, and perception for the following sensory systems: Vision Audition (hearing) Skin and body Touch Pain Chemical

More information

Chapter 7, Neural Coding

Chapter 7, Neural Coding Chapter 7, Neural Coding We start with a simple proposition: There is no grandmother cell, and there is no yellow Volkswagen cell. That is to say: There is no single neuron signalling: I have detected

More information

The Function of Nervous Tissue *

The Function of Nervous Tissue * OpenStax-CNX module: m46531 1 The Function of Nervous Tissue * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the end of this section,

More information

THE CONTROL SYSTEMS NERVOUS AND ENDOCRINE

THE CONTROL SYSTEMS NERVOUS AND ENDOCRINE THE CONTROL SYSTEMS NERVOUS AND ENDOCRINE Introduction to nervous system There are 3 main parts to your Nervous System 1. Your Nerves 2. Your Brain 3. Your Spinal Cord Your Nerves Your nerves are made

More information

Hearing. istockphoto/thinkstock

Hearing. istockphoto/thinkstock Hearing istockphoto/thinkstock Audition The sense or act of hearing The Stimulus Input: Sound Waves Sound waves are composed of changes in air pressure unfolding over time. Acoustical transduction: Conversion

More information

Coding of Sensory Information

Coding of Sensory Information Coding of Sensory Information 22 November, 2016 Touqeer Ahmed PhD Atta-ur-Rahman School of Applied Biosciences National University of Sciences and Technology Sensory Systems Mediate Four Attributes of

More information

SENSES: VISION. Chapter 5: Sensation AP Psychology Fall 2014

SENSES: VISION. Chapter 5: Sensation AP Psychology Fall 2014 SENSES: VISION Chapter 5: Sensation AP Psychology Fall 2014 Sensation versus Perception Top-Down Processing (Perception) Cerebral cortex/ Association Areas Expectations Experiences Memories Schemas Anticipation

More information

COGS 101A: Sensation and Perception

COGS 101A: Sensation and Perception COGS 101A: Sensation and Perception 1 Virginia R. de Sa Department of Cognitive Science UCSD Lecture 5: LGN and V1: Magno and Parvo streams Chapter 3 Course Information 2 Class web page: http://cogsci.ucsd.edu/

More information

The Structure and Function of the Auditory Nerve

The Structure and Function of the Auditory Nerve The Structure and Function of the Auditory Nerve Brad May Structure and Function of the Auditory and Vestibular Systems (BME 580.626) September 21, 2010 1 Objectives Anatomy Basic response patterns Frequency

More information

راما ندى أسامة الخضر. Faisal Muhammad

راما ندى أسامة الخضر. Faisal Muhammad 22 راما ندى أسامة الخضر Faisal Muhammad Revision Last time we started talking about sensory receptors, we defined them and talked about the mechanism of their reaction. Now we will talk about sensory receptors,

More information

Auditory Physiology PSY 310 Greg Francis. Lecture 29. Hearing

Auditory Physiology PSY 310 Greg Francis. Lecture 29. Hearing Auditory Physiology PSY 310 Greg Francis Lecture 29 A dangerous device. Hearing The sound stimulus is changes in pressure The simplest sounds vary in: Frequency: Hertz, cycles per second. How fast the

More information

PSY 310: Sensory and Perceptual Processes 1

PSY 310: Sensory and Perceptual Processes 1 Auditory Physiology PSY 310 Greg Francis Lecture 29 A dangerous device. Hearing The sound stimulus is changes in pressure The simplest sounds vary in: Frequency: Hertz, cycles per second. How fast the

More information

Physiology of Tactile Sensation

Physiology of Tactile Sensation Physiology of Tactile Sensation Objectives: 1. Describe the general structural features of tactile sensory receptors how are first order nerve fibers specialized to receive tactile stimuli? 2. Understand

More information

SOLUTIONS Homework #3. Introduction to Engineering in Medicine and Biology ECEN 1001 Due Tues. 9/30/03

SOLUTIONS Homework #3. Introduction to Engineering in Medicine and Biology ECEN 1001 Due Tues. 9/30/03 SOLUTIONS Homework #3 Introduction to Engineering in Medicine and Biology ECEN 1001 Due Tues. 9/30/03 Problem 1: a) Where in the cochlea would you say the process of "fourier decomposition" of the incoming

More information

Overview of Questions

Overview of Questions Overview of Questions What are the sensors in the skin, what do they respond to and how is this transmitted to the brain? How does the brain represent touch information? What is the system for sensing

More information

Human Anatomy and Physiology - ANAT 14 Sensory System Lab Goals Activities

Human Anatomy and Physiology - ANAT 14 Sensory System Lab Goals Activities Sensory System Human Anatomy and Physiology - ANAT 14 Lab Goals Observe many characteristics of our somatic and special senses. Activity descriptions noted in your lab manual are specified. Activities

More information

EE 791 Lecture 2 Jan 19, 2015

EE 791 Lecture 2 Jan 19, 2015 EE 791 Lecture 2 Jan 19, 2015 Action Potential Conduction And Neural Organization EE 791-Lecture 2 1 Core-conductor model: In the core-conductor model we approximate an axon or a segment of a dendrite

More information

How is the stimulus represented in the nervous system?

How is the stimulus represented in the nervous system? How is the stimulus represented in the nervous system? Eric Young F Rieke et al Spikes MIT Press (1997) Especially chapter 2 I Nelken et al Encoding stimulus information by spike numbers and mean response

More information

PSY 214 Lecture 16 (11/09/2011) (Sound, auditory system & pitch perception) Dr. Achtman PSY 214

PSY 214 Lecture 16 (11/09/2011) (Sound, auditory system & pitch perception) Dr. Achtman PSY 214 PSY 214 Lecture 16 Topic: Sound, auditory system, & pitch perception Chapter 11, pages 268-288 Corrections: None needed Announcements: At the beginning of class, we went over some demos from the virtual

More information

Required Slide. Session Objectives

Required Slide. Session Objectives Auditory Physiology Required Slide Session Objectives Auditory System: At the end of this session, students will be able to: 1. Characterize the range of normal human hearing. 2. Understand the components

More information

Hearing. Juan P Bello

Hearing. Juan P Bello Hearing Juan P Bello The human ear The human ear Outer Ear The human ear Middle Ear The human ear Inner Ear The cochlea (1) It separates sound into its various components If uncoiled it becomes a tapering

More information

Module 5 : Anatomy The nervous system

Module 5 : Anatomy The nervous system Module 5 : Anatomy The nervous system In this module you will learn: The main parts of the nervous system The different sections of the brain and how it functions The structure and function of the spinal

More information

Sound and Hearing. Decibels. Frequency Coding & Localization 1. Everything is vibration. The universe is made of waves.

Sound and Hearing. Decibels. Frequency Coding & Localization 1. Everything is vibration. The universe is made of waves. Frequency Coding & Localization 1 Sound and Hearing Everything is vibration The universe is made of waves db = 2log(P1/Po) P1 = amplitude of the sound wave Po = reference pressure =.2 dynes/cm 2 Decibels

More information

How strong is it? What is it? Where is it? What must sensory systems encode? 9/8/2010. Spatial Coding: Receptive Fields and Tactile Discrimination

How strong is it? What is it? Where is it? What must sensory systems encode? 9/8/2010. Spatial Coding: Receptive Fields and Tactile Discrimination Spatial Coding: Receptive Fields and Tactile Discrimination What must sensory systems encode? How strong is it? What is it? Where is it? When the brain wants to keep certain types of information distinct,

More information

Spatial Coding: Receptive Fields and Tactile Discrimination

Spatial Coding: Receptive Fields and Tactile Discrimination Spatial Coding: Receptive Fields and Tactile Discrimination What must sensory systems encode? How strong is it? What is it? Where is it? When the brain wants to keep certain types of information distinct,

More information

Lab # 7 Movement, stimulus and response

Lab # 7 Movement, stimulus and response Lab # 7 Movement, stimulus and response QEP Essential Knowledge Living Things: Forces and Motion How animals move Characteristics of living things Movement Respond to environment Stimulus and response

More information

Unit IV Sensation Perception

Unit IV Sensation Perception Unit IV Sensation Perception Module 16: Basic Principles of Sensation and Perception Module 17: Influences of Perception Module 18: Vision Module 19: Visual Organization and Interpretation Module 20: Hearing

More information

9.01 Introduction to Neuroscience Fall 2007

9.01 Introduction to Neuroscience Fall 2007 MIT OpenCourseWare http://ocw.mit.edu 9.01 Introduction to Neuroscience Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 9.01 Recitation (R02)

More information

Auditory Perception: Sense of Sound /785 Spring 2017

Auditory Perception: Sense of Sound /785 Spring 2017 Auditory Perception: Sense of Sound 85-385/785 Spring 2017 Professor: Laurie Heller Classroom: Baker Hall 342F (sometimes Cluster 332P) Time: Tuesdays and Thursdays 1:30-2:50 Office hour: Thursday 3:00-4:00,

More information

Part III Taking Chances for Fun and Profit

Part III Taking Chances for Fun and Profit Part III Taking Chances for Fun and Profit Chapter 8 Are Your Curves Normal? Probability and Why it Counts What You Will Learn in Chapter 8 How probability relates to statistics Characteristics of the

More information

Cellular Bioelectricity

Cellular Bioelectricity ELEC ENG 3BB3: Cellular Bioelectricity Notes for Lecture 24 Thursday, March 6, 2014 8. NEURAL ELECTROPHYSIOLOGY We will look at: Structure of the nervous system Sensory transducers and neurons Neural coding

More information

Introduction to Computational Neuroscience

Introduction to Computational Neuroscience Introduction to Computational Neuroscience Lecture 5: Data analysis II Lesson Title 1 Introduction 2 Structure and Function of the NS 3 Windows to the Brain 4 Data analysis 5 Data analysis II 6 Single

More information

Neural Encoding. Naureen Ghani. February 10, 2018

Neural Encoding. Naureen Ghani. February 10, 2018 Neural Encoding Naureen Ghani February 10, 2018 Introduction Neuroscientists are interested in knowing what neurons are doing. More specifically, researchers want to understand how neurons represent stimuli

More information

Neural circuits PSY 310 Greg Francis. Lecture 05. Rods and cones

Neural circuits PSY 310 Greg Francis. Lecture 05. Rods and cones Neural circuits PSY 310 Greg Francis Lecture 05 Why do you need bright light to read? Rods and cones Photoreceptors are not evenly distributed across the retina 1 Rods and cones Cones are most dense in

More information

The Nervous System. We have covered many different body systems which automatically control and regulate our bodies.

The Nervous System. We have covered many different body systems which automatically control and regulate our bodies. The Nervous System The Nervous System We have covered many different body systems which automatically control and regulate our bodies. There is one master system which controls all of these other systems.

More information