EXERCISE: HOW TO DO POWER CALCULATIONS IN OPTIMAL DESIGN SOFTWARE

Size: px
Start display at page:

Download "EXERCISE: HOW TO DO POWER CALCULATIONS IN OPTIMAL DESIGN SOFTWARE"

Transcription

1 EXERCISE: HOW TO DO POWER CALCULATIONS IN OPTIMAL DESIGN SOFTWARE TABLE OF CONTENTS 73TKey Vocabulary37T TIntroduction37T... 73TUsing the Optimal Design Software37T... 73TEstimating Sample Size for a Simple Experiment 37T 9 73TSome Wrinkles: Limited Resources and Imperfect Compliance 37T 1 73TClustered Designs37T KEY VOCABULARY 1. POWER: The likelihood that, when a program/treatment has an effect, you will be able to distinguish the effect from zero i.e. from a situation where the program has no effect, given the sample size.. SIGNIFICANCE: The likelihood that the measured effect did not occur by chance. Statistical tests are performed to determine whether one group (e.g. the experimental group) is different from another group (e.g. comparison group) on certain outcome indicators of interest (for instance, test scores in an education program.) 3. STANDARD DEVIATION: For a particular indicator, a measure of the variation (or spread) of a sample or population. Mathematically, this is the square root of the variance. 4. STANDARDIZED EFFECT SIZE: A standardized (or normalized) measure of the [expected] magnitude of the effect of a program. Mathematically, it is the difference between the treatment and control group (or between any two treatment arms) for a particular outcome, divided by the standard deviation of that outcome in the control (or comparison) group. 5. CLUSTER: The unit of observation at which a sample size is randomized (e.g. school), each of which typically contains several units of observation that are measured (e.g. students). Generally, observations that are highly correlated with each other should be clustered and the estimated sample size required should be measured with an adjustment for clustering.

2 6. INTRA-CLUSTER CORRELATION COEFFICIENT (ICC): A measure of the correlation between observations within a cluster. For instance, if your experiment is clustered at the school level, the ICC would be the level of correlation in test scores for children in a given school relative to the overall correlation of students in all schools. INTRODUCTION This exercise will help explain the trade-offs to power when designing a randomized trial. Should we sample every student in just a few schools? Should we sample a few students from many schools? How do we decide? We will work through these questions by determining the sample size that allows us to detect a specific effect with at least 80 percent power, which is a commonly accepted level of power. Remember that power is the likelihood that when a program/treatment has an effect, you will be able to distinguish it from zero in your sample. Therefore at 80% power, if an intervention s impact is statistically significant at exactly the 5% level, then for a given sample size, we are 80% likely to detect an impact (i.e. we will be able to reject the null hypothesis.) In going through this exercise, we will use the example of an education intervention that seeks to raise test scores. This exercise will demonstrate how the power of our sample changes with the number of school children, the number of children in each classroom, the expected magnitude of the change in test scores, and the extent to which children within a classroom behave more similarly than children across classrooms. We will use a software program called Optimal Design, developed by Stephen Raudenbush et al. with funding from the William T. Grant Foundation. Additional resources on research designs can be found on their web site. USING THE OPTIMAL DESIGN SOFTWARE Optimal Design produces a graph that can show a number of comparisons: Power versus sample size (for a given effect), effect size versus sample size (for a given desired power), with many other options. The chart on the next page shows power on the y-axis and sample size on the x-axis. In this case, we inputted an effect size of 0.18 standard deviations (explained in the example that follows) and we see that we need a sample size of 97 to obtain a power of 80%.

3 T73U E X E R C I S E C P O W E R C A L C U L A T I O N S W I T H O P T I M A L D E S I G N A B D U L L A T I F J A M E E L P O V E R T Y A C T I O N L A B We will now go through a short example demonstrating how the OD software can be used to perform power calculations. If you haven t downloaded a copy of the OD software yet, you can do so from the following website (where a software manual is also available): Running the HLM software file od should give you a screen which looks like the one below: The various menu options under Design allow you to perform power calculations for randomized trials of various designs.

4 Let s work through an example that demonstrates how the sample size for a simple experiment can be calculated using OD. Follow the instructions along as you replicate the power calculations presented in this example, in OD. On the next page we have shown a sample OD graph, highlighting the various components that go into power calculations. These are: Significance level (α): For the significance level, typically denoted by α, the default value of 0.05 (i.e. a significance level of 95%) is commonly accepted. Standardized effect size (δ): Optimal Design (OD) requires that you input the standardized effect size, which is the effect size expressed in terms of a normal distribution with mean 0 and standard deviation 1. This will be explained in further detail below. The default value for δ is set to 0.00 in OD. Proportion of explained variation by level 1 covariate (RP P): This is the proportion of variation that you expect to be able to control for by including covariates (i.e. other explanatory variables other than the treatment) in your design or your specification. The default value for RP Pis set to 0 in OD. Range of axes ( x and y ): Changing the values here allows you to view a larger range in the resulting graph, which you will use to determine power.

5 Proportion of explained variation by level 1 covariate Range of axes Significance level Inputted parameters; in this case, α was set to 0.05 and δ was set to Standardized effect size Graph showing power (on y-axis) vs. total number of subjects (n) on x-axis

6 We will walk through each of these parameters below and the steps involved in doing a power calculation. Prior to that though, it is worth taking a step back to consider what one might call the paradox of power. Put simply, in order to perfectly calculate the sample size that your study will need, it is necessary to know a number of things: the effect of the program, the mean and standard deviation of your outcome indicator of interest for the control group, and a whole host of other factors that we deal with further on in the exercise. However, we cannot know or observe these final outcomes until we actually conduct the experiment! We are thus left with the following paradox: In order to conduct the experiment, we need to decide on a sample size a decision that is contingent upon a number of outcomes that we cannot know without conducting the experiment in the first place. It is in this regard that power calculations involve making careful assumptions about what the final outcomes are likely to be for instance, what effect you realistically expect your program to have, or what you anticipate the average outcome for the control group being. These assumptions are often informed by real data: from previous studies of similar programs, pilot studies in your population of interest, etc. The main thing to note here is that to a certain extent, power calculations are more of an art than a science. However, making wrong assumptions will not affect accuracy (i.e, will not bias the results). It simply affects the precision with which you will be able to estimate your impact. Either way, it is useful to justify your assumptions, which requires carefully thinking through the details of your program and context. With that said, let us work through the steps for a power calculation using an example. Say your research team is interested in looking at the impact of providing students a tutor. These tutors work with children in grades, 3 and 4 who are identified as falling behind their peers. Through a pilot survey, we know that the average test scores of students before receiving tutoring is 6 out of 100, with a standard deviation of 0. We are interested in evaluating whether tutoring can cause a 10 percent increase in test scores. 1) Let s find out the minimum sample that you will need in order to be able to detect whether the tutoring program causes a 10 percent increase in test scores. Assume that you are randomizing at the school level i.e. there are treatment schools and control schools. I. What will be the mean test score of members of the control group? What will the standard deviation be? Answer: 0To get the mean and standard deviation of the control group, we use the mean and standard deviation from our pilot survey i.e. mean = 6 and standard deviation = 0. Since we do not know how the control group s scores will change, we assume that the control group s scores will not increase absent the tutoring program and will correspond to the scores from our pilot data. II. If the intervention is supposed to increase test scores by 10%, what should you expect the mean and standard deviation of the treatment group to be after the intervention? Remember, in this case we are considering a 10% increase in scores over the scores of the control group, which we calculated in part I. Answer: 0TGiven that the mean of the control group is 6, the mean with a 10% increase would be 6*1.10 = 8.6. With no information about the sample distribution of the treatment group after the intervention, we have no reason for thinking that there is a higher amount of variability within the treatment group than the control group (i.e. we assume homogeneous treatment impacts across the population). In reality, the treatment is likely to have heterogeneous i.e. differential impacts across the population, yielding a different standard deviation for the treatment group. For now, we assume the standard deviation of the treatment group to be the same as that of the control group i.e. 0. III. Optimal Design (OD) requires that you input the standardized effect size, which is the effect size expressed in terms of a normal distribution with mean 0 and standard deviation 1. Two of the most important ingredients in determining power are the effect size and the variance (or standard deviation). The standardized effect size basically combines these two ingredients

7 into one number. The standardized effect size is typically denoted using the symbol δ (delta), and can be calculated using the following formula: δ = (Treatment Mean Control Mean) (Standard Deviation) Using this formula, what is δ? Answer0T: δ = (8.6 6) 0 = IV. Now use OD to calculate the sample size that you need in order to detect a 10% increase in test scores. You can do this by navigating in OD as follows: Design Person Randomized Trials Single Level Trial Power vs. Total number of people (n) There are various parameters that you will be asked to fill in: You can do this by clicking on the button with the symbol of the parameter. To reiterate, the parameters are: Significance level (α): For the significance level, typically denoted by α, the default value of 0.05 (i.e. a significance level of 95%) is commonly accepted. Standardized effect size (δ): The default value for δ is set to 0.00 in OD. However, you will want to change this to the value that we computed for δ in part C. Proportion of explained variation by level 1 covariate (RP P): This is the proportion of variation that you expect to be able to control for by including covariates (i.e. other explanatory variables other than the treatment) in your design or your specification. We will leave this at the default value of 0 for now and return to it later on. Range of axes ( x and y ): Changing the values here allows you to view a larger range in the resulting graph, which you will use to determine power; we will return to this later, but can leave them at the default values for now. What will your total sample size need to be in order to detect a 10% increase in test scores at 80% power?

8 Answer: Once you input the various values above into the appropriate cells, you will get a plot with power on the y- axis and the total number of subjects on the x-axis. Click your mouse on the plot to see the power and sample size for any given point on the line. Power of 80% (0.80 on the y-axis of your chart) is typically considered an acceptable threshold. This is the level of power that you should aim for while performing your power calculations. You will notice that just inputting the various values above does not allow you to see the number of subjects required for 80% power. You will thus need to increase the range of your x-axis; set the maximum value at This will yield a plot that looks the one on the following page. To determine the sample size for a given level of power, click your mouse cursor on the graph line at the appropriate point. While this means that arriving at exactly a given level of power (say power of exactly 0.80) is difficult, a very good approximate (i.e. within a couple of decimal places) is sufficient for our purposes. Clicking your mouse cursor on the line at the point where Power ~ 0.8 tells us that the total number of subjects, called N, is approximately U1,850U. OD assumes that the sample will be balanced between the treatment and control groups. UThus, the treatment group will have 1850/ = 95 students and the control group will have 1850/ = 95 students as well.

9 P value P at E X E R C I S E C P O W E R C A L C U L A T I O N S W I T H O P T I M A L D E S I G N A B D U L L A T I F J A M E E L P O V E R T Y A C T I O N L A B ESTIMATING SAMPLE SIZE FOR A SIMPLE EXPERIMENT All right, now it is your turn! For the parts A I below, leave the value of RP the default of 0 whenever you use OD; we will experiment with changes in the RP a little later. You decide that you would like your study to be powered to measure an increase in test scores of 0% rather than 10%. Try going through the steps that we went through in the example above. Let s find out the minimum sample you will need in order to detect whether the tutoring program can increase test scores by 0%. A. What is the mean test score for the control group? What is the standard deviation? Remember, the mean and standard deviation of the control group are simply the mean and standard deviation from the pilot survey. Mean: 0T60T Standard deviation: 0T0 B. If the intervention is supposed to increase test scores by 0%, what should you expect the mean and standard deviation of the treatment group to be after the intervention? Mean=6*1. = 31.. With no other information, we assume the standard deviation of the treatment group to be the same as that of the control group i.e. 0. Mean: 0T31. Standard deviation: 0T0 C. What is the desired standardized effect size δ? Remember, the formula for calculating δ is: δ = (Treatment Mean Control Mean) (Standard Deviation) δ: (31. 6) (0) = 0. 6 D. Now use OD to calculate the sample size that you need in order to detect a 0% increase in test scores. Sample size (n): 0T~470 students Treatment: 0Tn/ = 35 students Control: 0Tn/ = 35 students E. Is the minimum sample size required to detect a 10% increase in test scores larger or smaller than the minimum sample size required to detect a 0% increase in test scores? Intuitively, will you need larger or smaller samples to measure smaller effect sizes? Answer: Larger. While we required a sample of at least 1,850 students to detect a 10% increase, we only needed a sample of 470 students to detect a 0% increase in test scores. Intuitively, smaller effect sizes will require larger samples

10 (as we see here) since there is a greater chance that the true effect will be masked by variance in the sample/ the sampling distributions of control and treatment groups are more likely to overlap. [Sketch out for participants two overlapping bell curves representing control and treatment sampling distributions; in one scenario, show the control distribution overlapping with the treatment distribution more than in the other scenario (representing a smaller effect size in the scenario with more overlap and a larger effect size when there is less overlap.) Use these two scenarios to explain why a smaller effect size would require a larger sample, since larger samples are more likely to give you narrower sampling distributions (remind them of the Law of Large Numbers from the previous lecture), which will overlap less and thus increase your power.] F. Your research team has been thrown into a state of confusion! While one prior study led you to believe that a 0% increase in test scores is possible, a recently published study suggests that a more conservative 10% increase is more plausible. What sample size should you pick for your study? Answer: 0TYou should pick the more conservative/larger sample size of 1,850 students. While a sample of this size would still allow you to measure an increase of 0% should that happen, a smaller sample would not allow you to detect increases of less than 00T%. G. Both the studies mentioned in part F found that although average test scores increased after the tutoring intervention, the standard deviation of test scores also increased i.e. there was a larger spread of test scores across the treatment groups. To account for this, you posit that instead of 0, the standard deviation of test scores may now be 5 after the tutoring program. Calculate the new δ for an increase of 10% in test scores. δ: (8. 6 6) (5) = H. For an effect of 10% on test scores, does the corresponding standardized effect size increase, decrease, or remain the same if the standard deviation is 5 versus 0? Without plugging the values into OD, all other things being equal, what impact does a higher standard deviation of your outcome of interest have on your required sample size? Answer: The standardized effect size when the standard deviation is 5 is (as calculated in part G, which is smaller than the value of 0.13 (as calculated in the example case.) As we saw in part E, measuring a smaller effect size will necessitate a larger sample, thus a larger standard deviation of the outcome of interest in this case test scores will necessitate a larger sample. [Sketch out for participants two overlapping bell curves representing control and treatment sampling distributions; in one scenario, show the control distribution overlapping with a narrower treatment distribution than in the other (representing sampling distributions with smaller and larger variances respectively.) Use these two scenarios to explain why a larger variance implies a smaller standardized effect size, which would require a larger sample for similar reasons to those explained in part E. Remind participants that the standard error of the sampling distribution is a function of the standard deviation of the population (σ/ n) and since the standard error is increasing in the standard deviation, a higher standard deviation is intuitively likely to lead to more noise, thereby decreasing your power.] I. Having gone through the intuition, now use OD to calculate the sample size required in order to detect a 10% increase in test scores, if the pre-intervention mean test scores are 6, with a standard deviation of 5.

11 P to P in P parameter, P of P set E X E R C I S E C P O W E R C A L C U L A T I O N S W I T H O P T I M A L D E S I G N A B D U L L A T I F J A M E E L P O V E R T Y A C T I O N L A B Sample size (n): 0T~,900 students Treatment: 0Tn/ = 1,450 students Control: 0Tn/ = 1,450 students J. One way by which you can increase your power is to include covariates i.e. control variables that you expect will explain some part of the variation in your outcome of interest. For instance, baseline, pre-intervention test scores may be a strong predictor of a child s post-intervention test scores; including baseline test scores in your eventual regression specification would help you to isolate the variation in test scores attributable to the tutoring intervention more precisely. You can account for the presence of covariates in your power calculations using the R P in which you specify what proportion of the eventual variation in your outcome of interest is attributable to your treatment condition. Say that you have access to the pre-intervention test scores of children in your sample for the tutoring study. Moreover, you expect that pre-intervention test scores explain 50% of the variation in post-intervention scores. What size sample will you require in order to measure an increase in test scores of 10%, assuming standard deviation in test scores of 5, with a preintervention mean of 6. Is this more or less than the sample size that you calculated in part I? As you calculated in part H, the δ is Using this value for δ, you get an n of ~1,450. This is less than the sample size calculated in part I. [Note to TAs: OD has a bug in it where plotting multiple graphs for differing values of the R P Pyields different results than plotting a single graph at a time. The answers given here are when you just plot a single graph, with R P to ] Sample size (n): 0T~1,450 students Treatment: 0Tn/ = 75 students Control: 0Tn/ = 75 students K. One of your colleagues on the research team thinks that 50% may be too ambitious an estimate of how much of the variation in test scores post-intervention is attributable to baseline scores. She suggests that 0% may be a better estimate. What happens to your required sample size when you run the calculations from part J with an RP 0.00 instead of 0.500? What happens if you set RP be 1.000? Tip: You can enter up to 3 separate values on the same graph for the R P OD; if you do, you will end up with a figure like the one below:

12 P is P to P of P from P from E X E R C I S E C P O W E R C A L C U L A T I O N S W I T H O P T I M A L D E S I G N A B D U L L A T I F J A M E E L P O V E R T Y A C T I O N L A B Answer: Decreasing the RP to 0.00 increases the required sample size, as seen in the graph above. Intuitively, this is because you are now able to explain less of the variation in post-intervention scores using other variables i.e. there is more variation in your outcome of interest (test scores) that you cannot siphon out. For the same reason, increasing the RP 0 to decreased your sample size. Setting the RP 1 does not produce any graph at all (notice that there is no line for that value in the graph above.) This is because an RP 1 essentially means that all of the variation in your outcome of interest is being explained by covariates i.e. none of it is attributable to your intervention. This would be the case regardless of the size of the sample, so a sample size calculation here is meaningless. SOME WRINKLES: LIMITED RESOURCES AND IMPERFECT COMPLIANCE L. You find out that you only have enough funds to survey 1,00 children. Assume that you do not have data on baseline covariates, but know that pre-intervention test scores were 6 on average, with a standard deviation of 0. What standardized effect size (δ) would you need to observe in order to survey a maximum of 1,00 children and still retain 80% power? Assume that the RP 0 for this exercise since you have no baseline covariate data. Hint: You will need to plot Power vs. Effect size (delta) in OD, setting N to 1,00. You can do this by navigating in OD as follows: Design Person Randomized Trials Single Level Trial Power vs. Effect Size (delta). Then, click on the point of your graph that roughly corresponds to power = 0.80 on the y-axis. δ = 0T~0.1630T

13 M. Your research team estimates that you will not realistically see more than a 10% increase in test scores due to the intervention. Given this information, is it worth carrying out the study on just 1,00 children if you are adamant about still being powered at 80%? Answer: 0TRecall from the example above (or run through the calculation again, it won t take very long) that given the parameters noted in part L, a 10% increase in test scores corresponds to a δ of As you saw in part L, at 80% power, you will not be able to detect a standardized effect of less than 0.163, which is more than the effect that you realistically expect to see. Given this, you should think very seriously about whether or not you should carry on with the study given your constraints. N. Your research team is hit with a crisis: You are told that you cannot force people to use the tutors! After some small focus groups, you estimate that only 40% of schoolchildren would be interested in the tutoring services. You realize that this intervention would only work for a very limited number of schoolchildren. You do not know in advance whether students are likely to take up the tutoring service or not. How does this affect your power calculations? Answer: 0TIt affects the mean of the treatment group because only 40% of the group will experience any increase in test scores, if at all. The rest of the treatment group should still have the same test scores. This is similar to saying that the effect size will be smaller. O. You have to adjust the effect size you want to detect by the proportion of individuals that actually gets treated. Based on this, what will be your adjusted effect size and the adjusted standardized effect size (δ) if you originally wanted to measure a 10% increase in test scores? Assume that your pre-intervention mean test score is 6, with a standard deviation of 0, you do not have any data on covariates, and that you can survey as many children as you want. Hint: Keep in mind that we are calculating the average treatment effect for the entire group here. Thus, the lower the number of children that actually receives the tutoring intervention, the lower will be the measured effect size. Answer: The adjusted effect size will simply be: (proportion that takes-up tutoring)*(unadjusted effect size) Adjusted effect size = 0.40*0.10 = 0.04 δ = (0.04*6)/0 = 0.05 P. What sample size will you need in order to measure the effect size that you calculated in part O with 80% power? Is this sample bigger or smaller than the sample required when you assume that 100% of children take up the tutoring intervention (as we did in the example at the start)? Sample size (n): 0T~11,580 students Treatment: 0Tn/ = 5,790 students Control: 0Tn/ = 5,790 students As we see above, the sample adjusted for partial compliance is significantly larger than the sample required with perfect compliance. It is thus critical to account for imperfect compliance with your intervention when calculating your sample size and power.

14 P to E X E R C I S E C P O W E R C A L C U L A T I O N S W I T H O P T I M A L D E S I G N A B D U L L A T I F J A M E E L P O V E R T Y A C T I O N L A B [TAs may additionally want to read the following post on Development Impact and use it to illustrate just how dramatic the effects of partial compliance/incomplete take-up can be: 37TUhttp://blogs.worldbank.org/impactevaluations/powercalculations-101-dealing-with-incomplete-take-upU37T] CLUSTERED DESIGNS Thus far we have considered a simple design where we randomize at the individual-level i.e. school children are either assigned to the treatment (tutoring) or control (no tutoring) condition. However, spillovers could be a major concern with such a design: If treatment and control students are in the same school, let alone the same classroom, students receiving tutoring may affect the outcomes for students not receiving tutoring (through peer learning effects) and vice versa. This would lead us to get a biased estimate of the impact of the tutoring program. In order to preclude this, your research team decides that it would like to run a cluster randomized trial, randomizing at the schoollevel instead of the individual-level. In this case, each school forms a cluster, with all the students in a given school assigned to either the treatment condition, or the control one. Under such a design, the only spillovers that may show up would be across schools, a far less likely possibility than spillovers within schools. Since the behavior of individuals in a given cluster will be correlated, we need to take an intra-cluster or intra-class correlation (denoted by the Greek symbol ρ) into account for each outcome variable of interest. Remember, ρ is a measure of the correlation between children within a given school (see key vocabulary at the start of this exercise.) ρ tells us how strongly the outcomes are correlated for units within the same cluster. If students from the same school were clones (no variation) and all scored the same on the test, then ρ would equal 1. If, on the other hand, students from the same schools were in fact independent and there was zero difference between schools or any other factor that affected those students, then ρ would equal 0. The ρ or ICC of a given variable is typically determined by looking at pilot or baseline data for your population of interest. Should you not have the data, another way of estimating the ρ is to look at other studies examining similar outcomes amongst similar populations. Given the inherent uncertainty with this, it is useful to consider a range of ρs when conducting your power calculations (a sensitivity analysis) to see how sensitive they are to changes in ρ. We will look at this a little further on. While the ρ can vary widely depending on what you are looking at, values of less than 0.05 are typically considered low, values between are considered to be of moderate size, and values above 0.0 are considered fairly high. Again, what counts as a low ρ and what counts as a high ρ can vary dramatically by context and outcome of interest, but these ranges can serve as initial rules of thumb. Based on a pilot study and earlier tutoring interventions, your research team has determined that the ρ is You need to calculate the total sample size to measure a 15% increase in test scores (assuming that test scores at the baseline are 6 on average, with a standard deviation of 0, setting RP 0 for now). You can do this by navigating in OD as follows: Design Cluster Randomized Trials with person-level outcomes Cluster Randomized Trials Treatment at Level Power vs. total number of clusters (J)

15 In the bar at the top, you will see the same parameters as before, with an additional option for the intra-cluster correlation. Note that OD uses n to denote the cluster size here, not the total sample size. OD assigns two default values for the effect size (δ) and the intra-cluster correlation (ρ), so do not be alarmed if you see four lines on the chart. Simply delete the default values and replace them with the values for the effect size and intra-cluster correlation that you are using. Q. What is the effect size (δ) that you want to detect here? Remember that the formula for calculating δ is: δ = (Treatment Mean Control Mean) (Standard Deviation) δ: (9. 9 6) (0) = R. Assuming there are 40 children per school, how many schools would you need in your clustered randomized trial? Answer: 0T~160 schools S. Given your answer above, what will the total size of your sample be? Sample size: 0TN = 160*40 = 6,400 Treatment: 0T(J/)*n = 80*40 = 3,00 Control: 0T(J/)*n = 80*40 = 3,00 T. What would the number of schools and total sample size be if you assumed that 0 children from each school were part of the sample? What about if 100 children from each school were part of the sample? 0 children per school 40 children per school 100 children per school Number of schools: Total no. of students: 3,50 6,400 14,900

16 U. As the number of clusters increases, does the total number of students required for your study increase or decrease? Why do you suspect this is the case? What happens as the number of children per school increases? Answer: 0TSample size decreases as the number of clusters increases i.e. you need fewer students in total as the number of clusters increases. This is because a larger number of clusters gives us more variation. Moreover, we notice that the total sample size increases as the number of children per school increases i.e. the decrease in the number of clusters does not make up the increase in the number of children per cluster. Intuitively, with the ICC being moderately high at 0.17, adding more observations per cluster does not buy you as much power as adding more clusters (since there is greater variation across clusters than within clusters.) This will be illustrated with the next question. V. You realize that you had read the pilot data wrong: It turns out that the ρ is actually 0.07 and not Now what would the number of schools and total sample size be if you assumed that 0 children from each school were part of the sample? What about if 40 or 100 children from each school were part of the sample? 0 children per school 40 children per school 100 children per school Number of schools: Total no. of students: 1,960 3,00 7,000 W. How does the total sample size change as you increase the number of individuals per cluster in part V? How do your answers here compare to your answers in part T? Answer: 0TSample size decreases as the number of clusters increases i.e. you need fewer students in total as the number of clusters increases. Moreover, we notice that the total sample size increases as the number of children per school increases i.e. the decrease in the number of clusters does not make up the increase in the number of children per cluster. However, we notice that the increase in sample size is more moderate than in part T; the total sample size for a cluster size of 100 was over 4 times as much as that for a cluster size of 0 in part T, whereas in part V, the sample size for a cluster size of 100 is about 3.5 times as much as that for a cluster size of 0. Intuitively, this is because the intra-cluster correlation in this case is lower than in the previous case, so while adding individuals to clusters is still more inefficient than adding clusters from a power perspective, it is less inefficient when the intra-cluster correlation is not that high. X. Given a choice between offering the tutors to more children in each school (i.e. adding more individuals to the cluster) versus offering tutors in more schools (i.e. adding more clusters), which option is best purely from the perspective of improving statistical power? Can you imagine a situation when there will not be much difference between the two from the perspective of power? Answer: Adding more clusters is generally a more efficient way to gain power than adding more individuals per cluster. By adding more clusters, you gain more variation as opposed to adding more individuals per cluster where you are gaining more observations that are likely to be correlated with the observations you already have. One situation in which it may not make much difference is when the intra-cluster correlation is close to 0. In this case, adding more individuals to a cluster is not too different from adding more clusters since individuals within a cluster are not much more correlated in their behavior than individuals across clusters.

17 [Encourage participants to compare the total sample size for different cluster sizes when the intra-cluster correlation is set to 0 as a way of making this more apparent. On the same chart, you can also try varying the number of individuals per cluster and the number of clusters, for a given standardized effect size, to illustrate how much more power adding clusters rather than individuals to a cluster can buy you when the ICC is non-zero.]

Sampling for Impact Evaluation. Maria Jones 24 June 2015 ieconnect Impact Evaluation Workshop Rio de Janeiro, Brazil June 22-25, 2015

Sampling for Impact Evaluation. Maria Jones 24 June 2015 ieconnect Impact Evaluation Workshop Rio de Janeiro, Brazil June 22-25, 2015 Sampling for Impact Evaluation Maria Jones 24 June 2015 ieconnect Impact Evaluation Workshop Rio de Janeiro, Brazil June 22-25, 2015 How many hours do you expect to sleep tonight? A. 2 or less B. 3 C.

More information

SAMPLING AND SAMPLE SIZE

SAMPLING AND SAMPLE SIZE SAMPLING AND SAMPLE SIZE Andrew Zeitlin Georgetown University and IGC Rwanda With slides from Ben Olken and the World Bank s Development Impact Evaluation Initiative 2 Review We want to learn how a program

More information

Unit 1 Exploring and Understanding Data

Unit 1 Exploring and Understanding Data Unit 1 Exploring and Understanding Data Area Principle Bar Chart Boxplot Conditional Distribution Dotplot Empirical Rule Five Number Summary Frequency Distribution Frequency Polygon Histogram Interquartile

More information

3 CONCEPTUAL FOUNDATIONS OF STATISTICS

3 CONCEPTUAL FOUNDATIONS OF STATISTICS 3 CONCEPTUAL FOUNDATIONS OF STATISTICS In this chapter, we examine the conceptual foundations of statistics. The goal is to give you an appreciation and conceptual understanding of some basic statistical

More information

Abdul Latif Jameel Poverty Action Lab Executive Training: Evaluating Social Programs Spring 2009

Abdul Latif Jameel Poverty Action Lab Executive Training: Evaluating Social Programs Spring 2009 MIT OpenCourseWare http://ocw.mit.edu Abdul Latif Jameel Poverty Action Lab Executive Training: Evaluating Social Programs Spring 2009 For information about citing these materials or our Terms of Use,

More information

PSYCHOLOGY 300B (A01) One-sample t test. n = d = ρ 1 ρ 0 δ = d (n 1) d

PSYCHOLOGY 300B (A01) One-sample t test. n = d = ρ 1 ρ 0 δ = d (n 1) d PSYCHOLOGY 300B (A01) Assignment 3 January 4, 019 σ M = σ N z = M µ σ M d = M 1 M s p d = µ 1 µ 0 σ M = µ +σ M (z) Independent-samples t test One-sample t test n = δ δ = d n d d = µ 1 µ σ δ = d n n = δ

More information

Standard Deviation and Standard Error Tutorial. This is significantly important. Get your AP Equations and Formulas sheet

Standard Deviation and Standard Error Tutorial. This is significantly important. Get your AP Equations and Formulas sheet Standard Deviation and Standard Error Tutorial This is significantly important. Get your AP Equations and Formulas sheet The Basics Let s start with a review of the basics of statistics. Mean: What most

More information

Business Statistics Probability

Business Statistics Probability Business Statistics The following was provided by Dr. Suzanne Delaney, and is a comprehensive review of Business Statistics. The workshop instructor will provide relevant examples during the Skills Assessment

More information

Market Research on Caffeinated Products

Market Research on Caffeinated Products Market Research on Caffeinated Products A start up company in Boulder has an idea for a new energy product: caffeinated chocolate. Many details about the exact product concept are yet to be decided, however,

More information

Psychology Research Process

Psychology Research Process Psychology Research Process Logical Processes Induction Observation/Association/Using Correlation Trying to assess, through observation of a large group/sample, what is associated with what? Examples:

More information

Sheila Barron Statistics Outreach Center 2/8/2011

Sheila Barron Statistics Outreach Center 2/8/2011 Sheila Barron Statistics Outreach Center 2/8/2011 What is Power? When conducting a research study using a statistical hypothesis test, power is the probability of getting statistical significance when

More information

Reliability, validity, and all that jazz

Reliability, validity, and all that jazz Reliability, validity, and all that jazz Dylan Wiliam King s College London Introduction No measuring instrument is perfect. The most obvious problems relate to reliability. If we use a thermometer to

More information

1 Simple and Multiple Linear Regression Assumptions

1 Simple and Multiple Linear Regression Assumptions 1 Simple and Multiple Linear Regression Assumptions The assumptions for simple are in fact special cases of the assumptions for multiple: Check: 1. What is external validity? Which assumption is critical

More information

Chapter 7: Descriptive Statistics

Chapter 7: Descriptive Statistics Chapter Overview Chapter 7 provides an introduction to basic strategies for describing groups statistically. Statistical concepts around normal distributions are discussed. The statistical procedures of

More information

Chapter 23. Inference About Means. Copyright 2010 Pearson Education, Inc.

Chapter 23. Inference About Means. Copyright 2010 Pearson Education, Inc. Chapter 23 Inference About Means Copyright 2010 Pearson Education, Inc. Getting Started Now that we know how to create confidence intervals and test hypotheses about proportions, it d be nice to be able

More information

One-Way Independent ANOVA

One-Way Independent ANOVA One-Way Independent ANOVA Analysis of Variance (ANOVA) is a common and robust statistical test that you can use to compare the mean scores collected from different conditions or groups in an experiment.

More information

Two-Way Independent ANOVA

Two-Way Independent ANOVA Two-Way Independent ANOVA Analysis of Variance (ANOVA) a common and robust statistical test that you can use to compare the mean scores collected from different conditions or groups in an experiment. There

More information

CHAPTER ONE CORRELATION

CHAPTER ONE CORRELATION CHAPTER ONE CORRELATION 1.0 Introduction The first chapter focuses on the nature of statistical data of correlation. The aim of the series of exercises is to ensure the students are able to use SPSS to

More information

Planning Sample Size for Randomized Evaluations.

Planning Sample Size for Randomized Evaluations. Planning Sample Size for Randomized Evaluations www.povertyactionlab.org Planning Sample Size for Randomized Evaluations General question: How large does the sample need to be to credibly detect a given

More information

Psychology Research Process

Psychology Research Process Psychology Research Process Logical Processes Induction Observation/Association/Using Correlation Trying to assess, through observation of a large group/sample, what is associated with what? Examples:

More information

Research Methods 1 Handouts, Graham Hole,COGS - version 1.0, September 2000: Page 1:

Research Methods 1 Handouts, Graham Hole,COGS - version 1.0, September 2000: Page 1: Research Methods 1 Handouts, Graham Hole,COGS - version 10, September 000: Page 1: T-TESTS: When to use a t-test: The simplest experimental design is to have two conditions: an "experimental" condition

More information

Chapter 3: Examining Relationships

Chapter 3: Examining Relationships Name Date Per Key Vocabulary: response variable explanatory variable independent variable dependent variable scatterplot positive association negative association linear correlation r-value regression

More information

Reliability, validity, and all that jazz

Reliability, validity, and all that jazz Reliability, validity, and all that jazz Dylan Wiliam King s College London Published in Education 3-13, 29 (3) pp. 17-21 (2001) Introduction No measuring instrument is perfect. If we use a thermometer

More information

Lec 02: Estimation & Hypothesis Testing in Animal Ecology

Lec 02: Estimation & Hypothesis Testing in Animal Ecology Lec 02: Estimation & Hypothesis Testing in Animal Ecology Parameter Estimation from Samples Samples We typically observe systems incompletely, i.e., we sample according to a designed protocol. We then

More information

Name Psychophysical Methods Laboratory

Name Psychophysical Methods Laboratory Name Psychophysical Methods Laboratory 1. Classical Methods of Psychophysics These exercises make use of a HyperCard stack developed by Hiroshi Ono. Open the PS 325 folder and then the Precision and Accuracy

More information

Appendix B Statistical Methods

Appendix B Statistical Methods Appendix B Statistical Methods Figure B. Graphing data. (a) The raw data are tallied into a frequency distribution. (b) The same data are portrayed in a bar graph called a histogram. (c) A frequency polygon

More information

Statistics: Making Sense of the Numbers

Statistics: Making Sense of the Numbers Statistics: Making Sense of the Numbers Chapter 9 This multimedia product and its contents are protected under copyright law. The following are prohibited by law: any public performance or display, including

More information

Student Performance Q&A:

Student Performance Q&A: Student Performance Q&A: 2009 AP Statistics Free-Response Questions The following comments on the 2009 free-response questions for AP Statistics were written by the Chief Reader, Christine Franklin of

More information

10 Intraclass Correlations under the Mixed Factorial Design

10 Intraclass Correlations under the Mixed Factorial Design CHAPTER 1 Intraclass Correlations under the Mixed Factorial Design OBJECTIVE This chapter aims at presenting methods for analyzing intraclass correlation coefficients for reliability studies based on a

More information

CHAPTER - 6 STATISTICAL ANALYSIS. This chapter discusses inferential statistics, which use sample data to

CHAPTER - 6 STATISTICAL ANALYSIS. This chapter discusses inferential statistics, which use sample data to CHAPTER - 6 STATISTICAL ANALYSIS 6.1 Introduction This chapter discusses inferential statistics, which use sample data to make decisions or inferences about population. Populations are group of interest

More information

Chapter 9: Comparing two means

Chapter 9: Comparing two means Chapter 9: Comparing two means Smart Alex s Solutions Task 1 Is arachnophobia (fear of spiders) specific to real spiders or will pictures of spiders evoke similar levels of anxiety? Twelve arachnophobes

More information

Lesson 11.1: The Alpha Value

Lesson 11.1: The Alpha Value Hypothesis Testing Lesson 11.1: The Alpha Value The alpha value is the degree of risk we are willing to take when making a decision. The alpha value, often abbreviated using the Greek letter α, is sometimes

More information

Inferential Statistics

Inferential Statistics Inferential Statistics and t - tests ScWk 242 Session 9 Slides Inferential Statistics Ø Inferential statistics are used to test hypotheses about the relationship between the independent and the dependent

More information

Day 11: Measures of Association and ANOVA

Day 11: Measures of Association and ANOVA Day 11: Measures of Association and ANOVA Daniel J. Mallinson School of Public Affairs Penn State Harrisburg mallinson@psu.edu PADM-HADM 503 Mallinson Day 11 November 2, 2017 1 / 45 Road map Measures of

More information

Never P alone: The value of estimates and confidence intervals

Never P alone: The value of estimates and confidence intervals Never P alone: The value of estimates and confidence Tom Lang Tom Lang Communications and Training International, Kirkland, WA, USA Correspondence to: Tom Lang 10003 NE 115th Lane Kirkland, WA 98933 USA

More information

Data and Statistics 101: Key Concepts in the Collection, Analysis, and Application of Child Welfare Data

Data and Statistics 101: Key Concepts in the Collection, Analysis, and Application of Child Welfare Data TECHNICAL REPORT Data and Statistics 101: Key Concepts in the Collection, Analysis, and Application of Child Welfare Data CONTENTS Executive Summary...1 Introduction...2 Overview of Data Analysis Concepts...2

More information

MULTIPLE LINEAR REGRESSION 24.1 INTRODUCTION AND OBJECTIVES OBJECTIVES

MULTIPLE LINEAR REGRESSION 24.1 INTRODUCTION AND OBJECTIVES OBJECTIVES 24 MULTIPLE LINEAR REGRESSION 24.1 INTRODUCTION AND OBJECTIVES In the previous chapter, simple linear regression was used when you have one independent variable and one dependent variable. This chapter

More information

MBios 478: Systems Biology and Bayesian Networks, 27 [Dr. Wyrick] Slide #1. Lecture 27: Systems Biology and Bayesian Networks

MBios 478: Systems Biology and Bayesian Networks, 27 [Dr. Wyrick] Slide #1. Lecture 27: Systems Biology and Bayesian Networks MBios 478: Systems Biology and Bayesian Networks, 27 [Dr. Wyrick] Slide #1 Lecture 27: Systems Biology and Bayesian Networks Systems Biology and Regulatory Networks o Definitions o Network motifs o Examples

More information

Describe what is meant by a placebo Contrast the double-blind procedure with the single-blind procedure Review the structure for organizing a memo

Describe what is meant by a placebo Contrast the double-blind procedure with the single-blind procedure Review the structure for organizing a memo Business Statistics The following was provided by Dr. Suzanne Delaney, and is a comprehensive review of Business Statistics. The workshop instructor will provide relevant examples during the Skills Assessment

More information

Chapter 11. Experimental Design: One-Way Independent Samples Design

Chapter 11. Experimental Design: One-Way Independent Samples Design 11-1 Chapter 11. Experimental Design: One-Way Independent Samples Design Advantages and Limitations Comparing Two Groups Comparing t Test to ANOVA Independent Samples t Test Independent Samples ANOVA Comparing

More information

Chapter 5: Field experimental designs in agriculture

Chapter 5: Field experimental designs in agriculture Chapter 5: Field experimental designs in agriculture Jose Crossa Biometrics and Statistics Unit Crop Research Informatics Lab (CRIL) CIMMYT. Int. Apdo. Postal 6-641, 06600 Mexico, DF, Mexico Introduction

More information

Statistics for Psychology

Statistics for Psychology Statistics for Psychology SIXTH EDITION CHAPTER 3 Some Key Ingredients for Inferential Statistics Some Key Ingredients for Inferential Statistics Psychologists conduct research to test a theoretical principle

More information

Describe what is meant by a placebo Contrast the double-blind procedure with the single-blind procedure Review the structure for organizing a memo

Describe what is meant by a placebo Contrast the double-blind procedure with the single-blind procedure Review the structure for organizing a memo Please note the page numbers listed for the Lind book may vary by a page or two depending on which version of the textbook you have. Readings: Lind 1 11 (with emphasis on chapters 10, 11) Please note chapter

More information

Section 6: Analysing Relationships Between Variables

Section 6: Analysing Relationships Between Variables 6. 1 Analysing Relationships Between Variables Section 6: Analysing Relationships Between Variables Choosing a Technique The Crosstabs Procedure The Chi Square Test The Means Procedure The Correlations

More information

Results & Statistics: Description and Correlation. I. Scales of Measurement A Review

Results & Statistics: Description and Correlation. I. Scales of Measurement A Review Results & Statistics: Description and Correlation The description and presentation of results involves a number of topics. These include scales of measurement, descriptive statistics used to summarize

More information

Section 3.2 Least-Squares Regression

Section 3.2 Least-Squares Regression Section 3.2 Least-Squares Regression Linear relationships between two quantitative variables are pretty common and easy to understand. Correlation measures the direction and strength of these relationships.

More information

Chapter 12: Introduction to Analysis of Variance

Chapter 12: Introduction to Analysis of Variance Chapter 12: Introduction to Analysis of Variance of Variance Chapter 12 presents the general logic and basic formulas for the hypothesis testing procedure known as analysis of variance (ANOVA). The purpose

More information

Something to think about. What happens, however, when we have a sample with less than 30 items?

Something to think about. What happens, however, when we have a sample with less than 30 items? One-Sample t-test Remember In the last chapter, we learned to use a statistic from a large sample of data to test a hypothesis about a population parameter. In our case, using a z-test, we tested a hypothesis

More information

The Logic of Data Analysis Using Statistical Techniques M. E. Swisher, 2016

The Logic of Data Analysis Using Statistical Techniques M. E. Swisher, 2016 The Logic of Data Analysis Using Statistical Techniques M. E. Swisher, 2016 This course does not cover how to perform statistical tests on SPSS or any other computer program. There are several courses

More information

Chapter 1: Exploring Data

Chapter 1: Exploring Data Chapter 1: Exploring Data Key Vocabulary:! individual! variable! frequency table! relative frequency table! distribution! pie chart! bar graph! two-way table! marginal distributions! conditional distributions!

More information

Still important ideas

Still important ideas Readings: OpenStax - Chapters 1 13 & Appendix D & E (online) Plous Chapters 17 & 18 - Chapter 17: Social Influences - Chapter 18: Group Judgments and Decisions Still important ideas Contrast the measurement

More information

To open a CMA file > Download and Save file Start CMA Open file from within CMA

To open a CMA file > Download and Save file Start CMA Open file from within CMA Example name Effect size Analysis type Level Tamiflu Symptom relief Mean difference (Hours to relief) Basic Basic Reference Cochrane Figure 4 Synopsis We have a series of studies that evaluated the effect

More information

You can use this app to build a causal Bayesian network and experiment with inferences. We hope you ll find it interesting and helpful.

You can use this app to build a causal Bayesian network and experiment with inferences. We hope you ll find it interesting and helpful. icausalbayes USER MANUAL INTRODUCTION You can use this app to build a causal Bayesian network and experiment with inferences. We hope you ll find it interesting and helpful. We expect most of our users

More information

Statistical Power Sampling Design and sample Size Determination

Statistical Power Sampling Design and sample Size Determination Statistical Power Sampling Design and sample Size Determination Deo-Gracias HOUNDOLO Impact Evaluation Specialist dhoundolo@3ieimpact.org Outline 1. Sampling basics 2. What do evaluators do? 3. Statistical

More information

Quantitative Evaluation

Quantitative Evaluation Quantitative Evaluation Research Questions Quantitative Data Controlled Studies Experimental Methods Role of Statistics Quantitative Evaluation What is experimental design? What is an experimental hypothesis?

More information

RAG Rating Indicator Values

RAG Rating Indicator Values Technical Guide RAG Rating Indicator Values Introduction This document sets out Public Health England s standard approach to the use of RAG ratings for indicator values in relation to comparator or benchmark

More information

Variability. After reading this chapter, you should be able to do the following:

Variability. After reading this chapter, you should be able to do the following: LEARIG OBJECTIVES C H A P T E R 3 Variability After reading this chapter, you should be able to do the following: Explain what the standard deviation measures Compute the variance and the standard deviation

More information

Sample size calculation a quick guide. Ronán Conroy

Sample size calculation a quick guide. Ronán Conroy Sample size calculation a quick guide Thursday 28 October 2004 Ronán Conroy rconroy@rcsi.ie How to use this guide This guide has sample size ready-reckoners for a number of common research designs. Each

More information

Applied Statistical Analysis EDUC 6050 Week 4

Applied Statistical Analysis EDUC 6050 Week 4 Applied Statistical Analysis EDUC 6050 Week 4 Finding clarity using data Today 1. Hypothesis Testing with Z Scores (continued) 2. Chapters 6 and 7 in Book 2 Review! = $ & '! = $ & ' * ) 1. Which formula

More information

Still important ideas

Still important ideas Readings: OpenStax - Chapters 1 11 + 13 & Appendix D & E (online) Plous - Chapters 2, 3, and 4 Chapter 2: Cognitive Dissonance, Chapter 3: Memory and Hindsight Bias, Chapter 4: Context Dependence Still

More information

USING STATCRUNCH TO CONSTRUCT CONFIDENCE INTERVALS and CALCULATE SAMPLE SIZE

USING STATCRUNCH TO CONSTRUCT CONFIDENCE INTERVALS and CALCULATE SAMPLE SIZE USING STATCRUNCH TO CONSTRUCT CONFIDENCE INTERVALS and CALCULATE SAMPLE SIZE Using StatCrunch for confidence intervals (CI s) is super easy. As you can see in the assignments, I cover 9.2 before 9.1 because

More information

Objectives. Quantifying the quality of hypothesis tests. Type I and II errors. Power of a test. Cautions about significance tests

Objectives. Quantifying the quality of hypothesis tests. Type I and II errors. Power of a test. Cautions about significance tests Objectives Quantifying the quality of hypothesis tests Type I and II errors Power of a test Cautions about significance tests Designing Experiments based on power Evaluating a testing procedure The testing

More information

HERITABILITY INTRODUCTION. Objectives

HERITABILITY INTRODUCTION. Objectives 36 HERITABILITY In collaboration with Mary Puterbaugh and Larry Lawson Objectives Understand the concept of heritability. Differentiate between broad-sense heritability and narrowsense heritability. Learn

More information

Examining differences between two sets of scores

Examining differences between two sets of scores 6 Examining differences between two sets of scores In this chapter you will learn about tests which tell us if there is a statistically significant difference between two sets of scores. In so doing you

More information

Readings: Textbook readings: OpenStax - Chapters 1 13 (emphasis on Chapter 12) Online readings: Appendix D, E & F

Readings: Textbook readings: OpenStax - Chapters 1 13 (emphasis on Chapter 12) Online readings: Appendix D, E & F Readings: Textbook readings: OpenStax - Chapters 1 13 (emphasis on Chapter 12) Online readings: Appendix D, E & F Plous Chapters 17 & 18 Chapter 17: Social Influences Chapter 18: Group Judgments and Decisions

More information

STAT 113: PAIRED SAMPLES (MEAN OF DIFFERENCES)

STAT 113: PAIRED SAMPLES (MEAN OF DIFFERENCES) STAT 113: PAIRED SAMPLES (MEAN OF DIFFERENCES) In baseball after a player gets a hit, they need to decide whether to stop at first base, or try to stretch their hit from a single to a double. Does the

More information

Lesson 9: Two Factor ANOVAS

Lesson 9: Two Factor ANOVAS Published on Agron 513 (https://courses.agron.iastate.edu/agron513) Home > Lesson 9 Lesson 9: Two Factor ANOVAS Developed by: Ron Mowers, Marin Harbur, and Ken Moore Completion Time: 1 week Introduction

More information

EPSE 594: Meta-Analysis: Quantitative Research Synthesis

EPSE 594: Meta-Analysis: Quantitative Research Synthesis EPSE 594: Meta-Analysis: Quantitative Research Synthesis Ed Kroc University of British Columbia ed.kroc@ubc.ca March 14, 2019 Ed Kroc (UBC) EPSE 594 March 14, 2019 1 / 39 Last Time Synthesizing multiple

More information

Where does "analysis" enter the experimental process?

Where does analysis enter the experimental process? Lecture Topic : ntroduction to the Principles of Experimental Design Experiment: An exercise designed to determine the effects of one or more variables (treatments) on one or more characteristics (response

More information

Designed Experiments have developed their own terminology. The individuals in an experiment are often called subjects.

Designed Experiments have developed their own terminology. The individuals in an experiment are often called subjects. When we wish to show a causal relationship between our explanatory variable and the response variable, a well designed experiment provides the best option. Here, we will discuss a few basic concepts and

More information

Political Science 15, Winter 2014 Final Review

Political Science 15, Winter 2014 Final Review Political Science 15, Winter 2014 Final Review The major topics covered in class are listed below. You should also take a look at the readings listed on the class website. Studying Politics Scientifically

More information

An informal analysis of multilevel variance

An informal analysis of multilevel variance APPENDIX 11A An informal analysis of multilevel Imagine we are studying the blood pressure of a number of individuals (level 1) from different neighbourhoods (level 2) in the same city. We start by doing

More information

Readings: Textbook readings: OpenStax - Chapters 1 11 Online readings: Appendix D, E & F Plous Chapters 10, 11, 12 and 14

Readings: Textbook readings: OpenStax - Chapters 1 11 Online readings: Appendix D, E & F Plous Chapters 10, 11, 12 and 14 Readings: Textbook readings: OpenStax - Chapters 1 11 Online readings: Appendix D, E & F Plous Chapters 10, 11, 12 and 14 Still important ideas Contrast the measurement of observable actions (and/or characteristics)

More information

Learning with Rare Cases and Small Disjuncts

Learning with Rare Cases and Small Disjuncts Appears in Proceedings of the 12 th International Conference on Machine Learning, Morgan Kaufmann, 1995, 558-565. Learning with Rare Cases and Small Disjuncts Gary M. Weiss Rutgers University/AT&T Bell

More information

You can use this app to build a causal Bayesian network and experiment with inferences. We hope you ll find it interesting and helpful.

You can use this app to build a causal Bayesian network and experiment with inferences. We hope you ll find it interesting and helpful. icausalbayes USER MANUAL INTRODUCTION You can use this app to build a causal Bayesian network and experiment with inferences. We hope you ll find it interesting and helpful. We expect most of our users

More information

Statistical Methods Exam I Review

Statistical Methods Exam I Review Statistical Methods Exam I Review Professor: Dr. Kathleen Suchora SI Leader: Camila M. DISCLAIMER: I have created this review sheet to supplement your studies for your first exam. I am a student here at

More information

Statistical Techniques. Masoud Mansoury and Anas Abulfaraj

Statistical Techniques. Masoud Mansoury and Anas Abulfaraj Statistical Techniques Masoud Mansoury and Anas Abulfaraj What is Statistics? https://www.youtube.com/watch?v=lmmzj7599pw The definition of Statistics The practice or science of collecting and analyzing

More information

Problem set 2: understanding ordinary least squares regressions

Problem set 2: understanding ordinary least squares regressions Problem set 2: understanding ordinary least squares regressions September 12, 2013 1 Introduction This problem set is meant to accompany the undergraduate econometrics video series on youtube; covering

More information

Describe what is meant by a placebo Contrast the double-blind procedure with the single-blind procedure Review the structure for organizing a memo

Describe what is meant by a placebo Contrast the double-blind procedure with the single-blind procedure Review the structure for organizing a memo Please note the page numbers listed for the Lind book may vary by a page or two depending on which version of the textbook you have. Readings: Lind 1 11 (with emphasis on chapters 5, 6, 7, 8, 9 10 & 11)

More information

Module 28 - Estimating a Population Mean (1 of 3)

Module 28 - Estimating a Population Mean (1 of 3) Module 28 - Estimating a Population Mean (1 of 3) In "Estimating a Population Mean," we focus on how to use a sample mean to estimate a population mean. This is the type of thinking we did in Modules 7

More information

SAMPLE SIZE AND POWER

SAMPLE SIZE AND POWER SAMPLE SIZE AND POWER Craig JACKSON, Fang Gao SMITH Clinical trials often involve the comparison of a new treatment with an established treatment (or a placebo) in a sample of patients, and the differences

More information

Further Mathematics 2018 CORE: Data analysis Chapter 3 Investigating associations between two variables

Further Mathematics 2018 CORE: Data analysis Chapter 3 Investigating associations between two variables Chapter 3: Investigating associations between two variables Further Mathematics 2018 CORE: Data analysis Chapter 3 Investigating associations between two variables Extract from Study Design Key knowledge

More information

15.301/310, Managerial Psychology Prof. Dan Ariely Recitation 8: T test and ANOVA

15.301/310, Managerial Psychology Prof. Dan Ariely Recitation 8: T test and ANOVA 15.301/310, Managerial Psychology Prof. Dan Ariely Recitation 8: T test and ANOVA Statistics does all kinds of stuff to describe data Talk about baseball, other useful stuff We can calculate the probability.

More information

Research Methods in Forest Sciences: Learning Diary. Yoko Lu December Research process

Research Methods in Forest Sciences: Learning Diary. Yoko Lu December Research process Research Methods in Forest Sciences: Learning Diary Yoko Lu 285122 9 December 2016 1. Research process It is important to pursue and apply knowledge and understand the world under both natural and social

More information

CHAPTER 3 DATA ANALYSIS: DESCRIBING DATA

CHAPTER 3 DATA ANALYSIS: DESCRIBING DATA Data Analysis: Describing Data CHAPTER 3 DATA ANALYSIS: DESCRIBING DATA In the analysis process, the researcher tries to evaluate the data collected both from written documents and from other sources such

More information

Chi Square Goodness of Fit

Chi Square Goodness of Fit index Page 1 of 24 Chi Square Goodness of Fit This is the text of the in-class lecture which accompanied the Authorware visual grap on this topic. You may print this text out and use it as a textbook.

More information

Psy201 Module 3 Study and Assignment Guide. Using Excel to Calculate Descriptive and Inferential Statistics

Psy201 Module 3 Study and Assignment Guide. Using Excel to Calculate Descriptive and Inferential Statistics Psy201 Module 3 Study and Assignment Guide Using Excel to Calculate Descriptive and Inferential Statistics What is Excel? Excel is a spreadsheet program that allows one to enter numerical values or data

More information

Statistics 2. RCBD Review. Agriculture Innovation Program

Statistics 2. RCBD Review. Agriculture Innovation Program Statistics 2. RCBD Review 2014. Prepared by Lauren Pincus With input from Mark Bell and Richard Plant Agriculture Innovation Program 1 Table of Contents Questions for review... 3 Answers... 3 Materials

More information

Getting the Design Right Daniel Luna, Mackenzie Miller, Saloni Parikh, Ben Tebbs

Getting the Design Right Daniel Luna, Mackenzie Miller, Saloni Parikh, Ben Tebbs Meet the Team Getting the Design Right Daniel Luna, Mackenzie Miller, Saloni Parikh, Ben Tebbs Mackenzie Miller: Project Manager Daniel Luna: Research Coordinator Saloni Parikh: User Interface Designer

More information

Simple Sensitivity Analyses for Matched Samples Thomas E. Love, Ph.D. ASA Course Atlanta Georgia https://goo.

Simple Sensitivity Analyses for Matched Samples Thomas E. Love, Ph.D. ASA Course Atlanta Georgia https://goo. Goal of a Formal Sensitivity Analysis To replace a general qualitative statement that applies in all observational studies the association we observe between treatment and outcome does not imply causation

More information

Risk Aversion in Games of Chance

Risk Aversion in Games of Chance Risk Aversion in Games of Chance Imagine the following scenario: Someone asks you to play a game and you are given $5,000 to begin. A ball is drawn from a bin containing 39 balls each numbered 1-39 and

More information

Research Questions, Variables, and Hypotheses: Part 2. Review. Hypotheses RCS /7/04. What are research questions? What are variables?

Research Questions, Variables, and Hypotheses: Part 2. Review. Hypotheses RCS /7/04. What are research questions? What are variables? Research Questions, Variables, and Hypotheses: Part 2 RCS 6740 6/7/04 1 Review What are research questions? What are variables? Definition Function Measurement Scale 2 Hypotheses OK, now that we know how

More information

Binary Diagnostic Tests Two Independent Samples

Binary Diagnostic Tests Two Independent Samples Chapter 537 Binary Diagnostic Tests Two Independent Samples Introduction An important task in diagnostic medicine is to measure the accuracy of two diagnostic tests. This can be done by comparing summary

More information

Doing Quantitative Research 26E02900, 6 ECTS Lecture 6: Structural Equations Modeling. Olli-Pekka Kauppila Daria Kautto

Doing Quantitative Research 26E02900, 6 ECTS Lecture 6: Structural Equations Modeling. Olli-Pekka Kauppila Daria Kautto Doing Quantitative Research 26E02900, 6 ECTS Lecture 6: Structural Equations Modeling Olli-Pekka Kauppila Daria Kautto Session VI, September 20 2017 Learning objectives 1. Get familiar with the basic idea

More information

Fixed-Effect Versus Random-Effects Models

Fixed-Effect Versus Random-Effects Models PART 3 Fixed-Effect Versus Random-Effects Models Introduction to Meta-Analysis. Michael Borenstein, L. V. Hedges, J. P. T. Higgins and H. R. Rothstein 2009 John Wiley & Sons, Ltd. ISBN: 978-0-470-05724-7

More information

t-test for r Copyright 2000 Tom Malloy. All rights reserved

t-test for r Copyright 2000 Tom Malloy. All rights reserved t-test for r Copyright 2000 Tom Malloy. All rights reserved This is the text of the in-class lecture which accompanied the Authorware visual graphics on this topic. You may print this text out and use

More information

Statistics: Bar Graphs and Standard Error

Statistics: Bar Graphs and Standard Error www.mathbench.umd.edu Bar graphs and standard error May 2010 page 1 Statistics: Bar Graphs and Standard Error URL: http://mathbench.umd.edu/modules/prob-stat_bargraph/page01.htm Beyond the scatterplot

More information

What can go wrong.and how to fix it!

What can go wrong.and how to fix it! What can go wrong.and how to fix it! Megha Pradhan Policy and Training Manager, J-PAL South Asia Kathmandu, Nepal 29 March 2017 Introduction Conception phase is important and allows to design an evaluation

More information

Simple Linear Regression the model, estimation and testing

Simple Linear Regression the model, estimation and testing Simple Linear Regression the model, estimation and testing Lecture No. 05 Example 1 A production manager has compared the dexterity test scores of five assembly-line employees with their hourly productivity.

More information

Why do Psychologists Perform Research?

Why do Psychologists Perform Research? PSY 102 1 PSY 102 Understanding and Thinking Critically About Psychological Research Thinking critically about research means knowing the right questions to ask to assess the validity or accuracy of a

More information