Institute of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark 2

Size: px
Start display at page:

Download "Institute of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark 2"

Transcription

1 Bioacoustics The International Journal of Animal Sound and its Recording, 2009, Vol. 19, pp AB Academic Publishers CHANGES IN CLICK SOURCE LEVELS WITH DISTANCE TO TARGETS: STUDIES OF FREE-RANGING WHITE-BEAKED DOLPHINS LAGENORHYNCHUS ALBIROSTRIS AND CAPTIVE HARBOUR PORPOISES PHOCOENA PHOCOENA ANA CAROLINA G. ATEM 1, MARIANNE H. RASMUSSEN 1, MAGNUS WAHLBERG 1,2, HANS C. PETERSEN 3 AND LEE A. MILLER 1* 1 Institute of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark 2 Fjord & Bælt, Margrethes Plads 1, DK 5300 Kerteminde, Denmark 3 Department of Statistics, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark ABSTRACT Probably all odontocetes use echolocation for spatial orientation and detection of prey. We used a four hydrophone Y array to record the high frequency clicks from free-ranging White-beaked Dolphins Lagenorhynchus albirostris and captive Harbour Porpoises Phocoena phocoena. From the recordings we calculated distances to the animals and source levels of the clicks. The recordings from White-beaked Dolphins were made in Iceland and those from Harbour Porpoises at Fjord & Bælt, Kerteminde, Denmark during prey capture. We used stringent criteria to determine which clicks could be defined as being on the acoustic axis. Two dolphin and nine porpoise click series could be used to track individual animals, which presumably focused on the array hydrophones or a fish right in front of the array. The apparent source levels of clicks in the individual tracks increased with range. One individual White-beaked Dolphin and three Harbour Porpoises regulate their output signal level to nearly compensate for one-way transmission loss while approaching a target. The other dolphin regulated the output differently. For most of the recordings the sound level at the target remains nearly constant and the echo level at the animal increases as it closes on the target. Keywords: Echolocation, biosonar, source level, apparent source level, prey capture, hydrophone array, White-beaked Dolphin, Lagenorhynchus albirostris, Harbour Porpoise, Phocoena phocoena * Corresponding author. lee@biology.sdu.dk

2 50 INTRODUCTION All odontocetes studied thus far emit brief clicks at varying repetition rates presumably as biosonar or echolocation signals to probe their environment. Some important characteristics of their click signals are the transmission beam pattern, click intervals, and source levels. The click is emitted in a directional beam, which has been measured at vertical and horizontal angles for some species of dolphins. For the White-beaked Dolphin the estimated 3 and 10 db beam widths are 8 and 10 respectively (Rasmussen et al. 2004). This is narrower than the 10.2 and 22.5 beam measured for the Bottlenose Dolphin (Au 1993). Echolocation clicks are sent in pulsed modes. When a click is emitted and the echo is received the next click is transmitted after a certain lag-time (Au 2000). During aggressive communication (burst pulses), pulse intervals can be 1 ms or less (Caldwell & Caldwell 1967; Blomqvist & Amundin 2004). Captive dolphins use decreasing click intervals during prey capture (Morozov et al. 1972) while freeranging dolphins use a wide range of intervals from over 100 ms to very short intervals depending on behaviour (Lammers et al. 2004; Rasmussen & Miller 2004). The sound pressure level of a click at 1 m from the source is defined as the source level (Urick 1983). Source levels of clicks are often expressed in db re 1µPa peak-to-peak (p-p) values. These values, all in db re 1µPa (p-p), vary among species and have been described for many odontocetes such as: the Pygmy Killer Whale Feresa attenuata ranging from db (Madsen et al. 2004b); False Killer Whale Pseudorca crassidens between db, Risso s Dolphin Grampus griseus db (Madsen et al. 2004a); Killer Whales Orcinus orca db (Au et al. 2004, Simon et al. 2007) and White-beaked Dolphins Lagenorhynchus albirostris (Rasmussen et al. 2002). Source levels around 210 db were found for Dusky Dolphins Lagenorhynchus obscurus (Au & Würsig 2004) and for the Atlantic Spotted Dolphin Stenella frontalis (Au & Herzing 2003). Zimmer et al. (2005) reported source levels of up to 214 db for Cuvier s Beaked Whales Ziphius cavirostris. The highest of all source levels are those reported for Sperm Whales Physeter macrocephalus, 240 db re 1 µpa (p-p) (Møhl et al. 2003). There is also great variation in source levels with distance to the target (Au & Benoit Bird 2003) as well as amplitude variation from a single individual depending on the ambient noise level (Au et al. 1985). Echolocation clicks have other properties such as peak frequencies (frequency of maximum amplitude in the spectrum), centroid frequency (the spectrum divided in two parts of equal energy), -3 db bandwidth and rms bandwidth (Au 1993; Madsen et al. 2004a). White-beaked Dolphin clicks have average peak frequencies of 115 khz with a secondary peak of approximately 250 khz, centre frequency at

3 about 82 ± 4 khz, and -3 db and rms bandwidths of 70±12 khz and 36 ± 2 khz respectively (Rasmussen & Miller 2002; 2004). The same values for wild Harbour Porpoises are: peak frequency khz, centre frequency khz, -3 db bandwidth 6-26 khz and rms bandwidth 5-12 khz (Villadsgaard et al. 2007). Localization of a phonating dolphin can be achieved using hydrophone arrays like a symmetrical Y hydrophone array. The Y hydrophone array has one hydrophone in the centre and the other three hydrophones at the ends of plastic pipes spaced at angles of 120 (Schotten et al. 2004). The distance to a sound source can be determined by measuring the time of arrival differences of the signal at the centre hydrophone with respect to the arrival times of the signal at the other three hydrophones (Au & Herzing 2003). This can be done by using the hydrophone array in a Cartesian coordinate system where the distance between the dolphin and the centre hydrophone is R and the horizontal and vertical angles between the dolphin and the centre hydrophone are φ and θ (Schotten et al. 2004). Since the distances to the animals are fairly short (a few tens of meters) the absorption coefficient of sound in water can be neglected. Assuming the animal directs its sonar beam to the centre hydrophone, the source level (at 1 m) can be calculated from the received level and the calculated distance to the animal for each emitted click. If the received level is constant over short distances then the animal is compensating for the one-way transmission loss by halving the emitted sound level for each halving of distance to the target (-20 Log R). Near compensation for one-way transmission loss has been shown for several species of freeranging dolphins (Lagenorhynchus albirostris Rasmussen et al. 2002; Stenella frontalis Au & Herzing 2003; Orcinus orca Au et al. 2004; Lagenorhynchus obscurus Au & Würsig 2004; Tursiops sp Jensen et al. 2009), and for a Harbour Porpoise (Beedholm & Miller 2007). The first purpose of our study was to determine the change in click source levels as a function of distance to a target (our hydrophone array) from individual, free-ranging White-beaked Dolphins Lagenorhynchus albirostris. We used several criteria to judge if a signal was on axis. All previous studies, save one, of source levels of clicks emitted by free-ranging dolphins deal with populations of animals. Our second purpose was to determine the change in click source levels from three captive Harbour Porpoises Phocoena phocoena as a function of distance to fish prey. The data from one Harbour Porpoise blindfolded did not differ from those of the same animal without being blindfolded, underscoring the sole use of biosonar during prey capture. We found that one individual White-beaked Dolphin, presumably focused on our array, and the Harbour Porpoises reduced the source level to nearly adjust for the one-way transmission loss. Determining on-axis signals from free-ranging dolphins presents formidable problems even when applying strict criteria. Also the 51

4 52 source levels from all dolphins at distances between 5 and 15 m nearly compensates for one-way transmission loss, similar to what is reported earlier. MATERIAL AND METHODS Data recording The recordings of White-beaked Dolphin clicks took place in Iceland during the summer of The recording equipment consisted of a hydrophone array (mounted on a three meter long pole) with four matched hydrophones (TC4034, frequency range 1 Hz-350 khz ± 3 db, Reson, Slangerup, Denmark) at the ends of 0.5 m or 1 m plastic pipes arranged as a symmetrical Y connected to a multi channel amplifier (Etec, Copenhagen, Denmark) and from there to a lunch box computer. The sounds were recorded at 800 ksamples/s on each of the four channels simultaneously and stored in the hard drive synchronously with video recordings from an underwater camera mounted about 10 cm above the centre hydrophone (Rasmussen et al. 2004). The output from a Brüel & Kjær (Nærum, Denmark) piston phone (B&K 4223) via a special adaptor was used to check the voltage sensitivity of the hydrophones, which, in each case, did not deviate from the specified sensitivity. Calibration files each representing 163 db re 1 µpa rms with noted amplification were stored for later converting to peak-to-peak (p-p) values by adding 9 db. The recording equipment was calibrated out to 13 m at 0 (in line with the centre hydrophone). A calibration curve of the hydrophone array can be found in Rasmussen et al. (2004). We limited the calculated distances from 1 m to 15 m in this study. Data analysis The sound files were separated into four channels, one for each hydrophone, using the software SigPro (Simon Boel Pedersen, Copenhagen, Denmark) to confirm that clicks were recorded on all hydrophones. The program was mainly used to identify click series from individual animals. An animal was considered clicking towards the array when the highest amplitude was recorded on the centre hydrophone or equally high amplitudes on one or all of the other three hydrophones (criterion 1 in Table 1). To identify if a dolphin was clicking alone towards the array, a sequence should contain only one obvious click train. After selecting individual click trains and making sure none of the clicks had overloaded our equipment, clicks were edited

5 53 TABLE 1 Five criteria used to select on-axis clicks. Criteria 1 to 4 are from Rasmussen et al ) A maximum apparent source level (p-p) on the centre hydrophone or equal to one of the outer hydrophones 2) Centre frequency on the centre hydrophone should be above 85 khz; 3) The vertical and horizontal angles between the dolphin and the centre hydrophones should be within 35 ; 4) Dolphin should be at least 1 m from the array; 5) Distance swum with continuous on-axis clicks should be more than 1 m. using CoolEdit Pro (version 2, Syntrillium Software, Phoenix, AZ, USA). The edited click trains were then loaded into MatLab (The MathWorks, Inc. Cambridge, MA, USA) to calculate the position of the dolphins, apparent source levels (ASL), angles to the dolphins, and centre frequencies (using a specially written script). The script uses the time of click arrivals at the four hydrophones and the speed of sound in the water to calculate the position of the vocalizing dolphin according to Schotten et al. (2004). In this paper we use the term apparent source level (ASL) back calculated to 1 m instead of source level, which implies that the signal level is reported at 1 m distance, irrespectively of angle to the source. The clicks were selected as being on-axis by sorting them with a set of criteria (see below). All apparent source levels (ASL) given here are expressed in db re. 1 µpa peak-to-peak (p-p). After analyzing each sequence carefully, we realized that clicks in some sequences recorded from free-ranging White-beaked Dolphins could be off-axis. Therefore, we used two more criteria to select presumed on axis clicks for source level analysis (criteria 2 and 3 in Table 1), a criterion to make sure the dolphins were in the far field (criterion 4 in Table 1) and a criterion to assure a single animal was on axis and moving toward our array (criterion 5 in Table 1). The echolocation clicks from three captive Harbour Porpoises (one male, Eigil, and two females, Freja and Sif) were recorded during prey capture trials performed periodically between 2004 and 2008 at Fjord & Bælt, Kerteminde, Denmark. The recording equipment was the same as that used for the White-beaked Dolphin studies. During prey capture trials, the animals were sent from one end to another end of the pool, where a dead fish was thrown into the water 20 to 30 cm directly in front of the array. Fish captures were documented in video recordings. (an example can be seen here- org/press/156th/miller.html). The female porpoise, Freja, performed the task both with and without being blindfolded with suction cups over her eyes.

6 54 The statistical analyses were performed using the procedure for mixed linear models ( proc mixed ) in the SAS system (SAS Institute Inc. 2004). Individuals were considered as random effects, with trials nested within individuals, and meter (distance to target) was considered as a fixed continuous independent variable related to the time of the experiment. The modelling followed standard procedures with F and t-tests, as illustrated in West et al. (2007), chapter 7. RESULTS White-beaked dolphins In total, we analyzed 804 White-beaked Dolphin clicks from 144 click sequences, in which only 10 sequences (134 clicks) fulfilled the first criterion in Table 1; long click sequences from dolphins ensonifying the centre hydrophone with the highest amplitude clicks (or equally high). Clicks from these 10 sequences are plotted in Figure 1 and show that apparent source levels increase with Log range (R). Figure 1 (a) shows all the 134 clicks while Figure 1 (b) shows only those clicks from dolphins at ranges between 5 and 12 m. There is considerable scatter in source levels with the maximum value at about 195 db re. 1 µpa (p-p) and a regression line with a slope of 21 Log R, or nearly the one-way transmission loss. Two click sequences fulfilled all five criteria in Table 1, thus signifying click sequences from two individual dolphins. Table 2 shows the mean values for apparent source levels, maximum distance, distance swum, centre frequencies and the vertical and horizontal angles between the dolphin and the hydrophone. The two sequences are depicted in Figure 2 showing that apparent source levels decrease while the dolphins approach the array. Apparently, dolphin 1 (black triangles in Figure 2) follows rather closely the one-way transmission loss and dolphin 2 does not. The two click sequences were recorded on different days, so they were emitted most likely from two different dolphins. Harbour Porpoises The source levels and distance swam for three Harbour Porpoises performing prey detection and capture tasks are show in Figures 3 to 5, where one Harbour Porpoise, Freja, performed the task blindfolded as well (Figure 5b). Similar to the White-beaked Dolphin graphs, source levels decrease with Log range in all sequences and follow closely the one-way transmission loss. The slopes given in Figure 3 to

7 Figure 1. Apparent Source Levels (ASL) for on axis clicks from 10 free-ranging White-beaked Dolphins as a function of distance. (a) shows all dolphin clicks at ranges from 1 to 15 m. The regression line is given in the figure, n= 134 (b) shows only those clicks from dolphins at distances greater than 5 m. The regression line is given in the figure, n=120. Note the 25 db variation in source levels. 55

8 56 TABLE 2 Apparent Source Levels (ASL), maximum distance (dmax), distance swum (Δd), centre frequency (Cf), vertical angle (θ) and horizontal angle (φ), for sequences 1 and 2. SD is the standard deviation. Click Number ASL dmax Δd Cf θ φ seq. of (db) (m) (m) (khz) (degrees) (degrees) on-axis (average± (average± average± average± clicks SD) SD) (SD) SD) ± ±3.3-27±2 5.9± ± ± ± ±2.7 Figure 2. Apparent source levels (ASL) from two presumably different individual, free-ranging White-beaked Dolphins as a function of range. The regression line for dolphin 1 ( ) is given by y=26 Log R +153 db, n= 16. The regression line for dolphin 2 ( ) is given by y=73 Log (R) +111 db, n= 18. Apparently dolphin 2 is not focusing on the array even though all of the signals were classified by us as being on axis. See text for further details. 5 are not significantly different (p > 0.2) with the common slope being 20.4 Log(R), 95% confidence interval 17.0 to The common slope was not significantly different from the 20 Log(R) slope (p > 0.5), but was significantly different from the zero and 40 Log(R) slopes (p < for each). However, the db values at the y-intercepts shown in Figures 3 to 5 are significantly different (p = ) with an average y-intercept of 147 db. Freja emitted the most intense clicks with an average y-intercept of 149 db. The average y-intercept for Sif was 147 db and that for Eigil was 146 db.

9 57 Figure 3. Apparent source level (ASL) as a function of range during prey capture by a male Harbour Porpoise, Eigil. The data cover three different tracks recorded during three different years (symbols). The regression line is given in the figure, n= 45. Figure 4. Apparent source level (ASL) as a function of range during prey capture by a young female Harbour Porpoise, Sif. The data cover two tracks made during different years (symbols). The regression line is given in the figure, n= 15.

10 58 Figure 5. Apparent source level (ASL) as a function of range during prey capture by an older female Harbour Porpoise, Freja. The data in (a) cover three tracks made during different years (symbols) and those in (b), with Freja blindfolded, cover two tracks made during different years (symbols). The regression line in (a) is given in the figure, n= 35. The regression line in (b) is given in the figure, n= 39. (See text for more information.)

11 59 DISCUSSION Previous studies on four species of delphinids, including a study of White-beaked Dolphins using different equipment, showed that source levels are higher at greater distances and that they decrease with decreasing range (Rasmussen et al. 2002; Au & Herzing 2003; Au & Benoit-Bird 2003; Au et al. 2004; Au & Würsig 2004). The same is reported in this study (Figure 1). In addition, presumed individual White-beaked Dolphins show the same behaviour (Figure 2). If the emitted signal is constant in amplitude, the echo level at the dolphin will increase with decreasing range since the target strength is constant. Therefore, it is possible that a dolphin approaching a target will compensate for this increase in echo level by decreasing the level of its outgoing echolocation signal as suggested in earlier studies. Similar to the studies cited above, the majority of click amplitudes in our study decrease in accordance with a one-way transmission loss or close to a 20 Log R function. With a decrease in distance, the amplitude of the echoes will double at the dolphin s ear if it attenuates the signal by 6 db per distance halved (-20 Log R), which maintains a constant ensonification level on the target. Au and Benoit-Bird (2003) suggested that this reduction in source level with decrease in range represents a time-varying automatic gain control (AGC). Another possibility would be for the dolphin to compensate for the two-way transmission loss (40 Log R) thus keeping the echo level constant at the ear (Rasmussen et al. 2002; Au & Benoit-Bird 2003). The source levels of White-beaked Dolphin clicks in our study had a maximum of 26 Log R (95% confidence interval) (except for one animal described below) and thus were far from compensating for the two-way transmission loss. Dolphin echolocation signals are emitted in a directional beam, and signals recorded distant from the axis of the beam (off-axis clicks) are distorted, with distorted signal waveforms, attenuation of higher frequencies components, and decreasing peak frequencies (Au 1993; Au & Nachtigall 1997). Simon et al. (2007) suggested that when using only the criteria of highest (or equally high) amplitude at the centre hydrophone, some of the clicks may be off-axis and were recorded from a direction where the apparent source level was not changing with off axis angle. And, as pointed out earlier (Madsen et al. 2004b, Madsen & Wahlberg 2007), there is still no analytical method that can discriminate exactly on and off axis clicks. The highest amplitude at the centre hydrophone is definitely the major indication of on-axis clicks. However, when more conservative criteria were considered, such as centre frequency, angles between dolphin and the equipment and others (Table 1), many clicks that were previously considered on axis were discarded. On the other hand, these conservative criteria will exclude weak on-axis clicks (Madsen & Wahlberg 2007). Spectral

12 60 parameters are influenced by signal level (Au 1993) and choosing a centre frequency above 85 khz could have excluded on-axis clicks with lower intensities from our data set. After using all five criteria in Table 1, only two click sequences were found from presumed single individuals. The first sequence of clicks was short and emitted from a dolphin that swam only 1.3 m. But even so, a slight decrease in source level with decrease in range could be calculated, confirming the tendency observed in our results using a liberal criterion. The clicks from this individual fell close to the one-way transmission loss curve in a similar manner to what was already described for other dolphin species, including White-beaked Dolphin (Rasmussen et al. 2002; Au & Herzing 2003; Au & Benoit- Bird 2003; Au et al. 2004; Au & Würsig 2004). Just because a dolphin s clicks pass all our criteria for being onaxis does not mean the animal is interested in our recording array. The second sequence from an individual dolphin seen in Figure 2 shows that apparent source levels decreased drastically (72 Log R) with decreasing change in range, even though the range was not long ( 3 m). In this case the clicks did not fall anywhere close to the one-way or two-way transmission loss curves, and this pattern does not seem to be from a dolphin interested in our array. This dolphin did not regulate its output level either by 6 or 12 db per distance halved, but by 22 db per distance halved while approaching the array. Nevertheless, the dolphin still reduces its output signal while approaching a target, just like in the first sequence. Either the dolphin was not interested in the array, or there is more plasticity in the source level-to-range regulation than that indicated from analyses of pooled results and from prey capture sequences by individual Harbour Porpoises. The source levels given in Rasmussen et al. (2002) are about 20 db greater than those given here, which is significant. An increase in environmental noise caused an 18 db increase in source levels of a Beluga Delphinapterus leucas (Au et al. 1985). We feel that differences in environmental and recording conditions may have influenced source levels. Data for the Rasmussen et al. (2002) paper were collected in 1998 using a different vessel and different recording system from that used by us in 2003 for this study. However, background noise measurements were not made during recordings made in 1998 or In addition, our criteria are more rigorous for selecting click sequences that could be attributed to a single individual. Rasmussen et al. (2002) used the first criterion from Table 1 to select on-axis clicks and found one sequence of one dolphin looking straight to the underwater video camera. Here we used five criteria to select on-axis clicks and found two sequences from individual dolphins emitting clicks towards the hydrophone array. Therefore, it is more likely that

13 the clicks presented here are on-axis than those shown in Rasmussen et al. (2002). The Harbour Porpoises at Fjord & Bælt were trained to capture dead fish in front of the hydrophone array and, therefore, swam directly towards the array. Even so signals must qualify criterion 1 in Table 1 to be considered on axis. The Harbour Porpoises in our study reduced the level of their outgoing signals while approaching the target (Figures 3-5). The levels of their signals decreased by about 6 db per distance halved, closely following the one-way transmission loss curve (20 Log R), in a similar fashion as described for the Whitebeaked Dolphins mentioned above. The regression lines of the three porpoises were not significantly different and had a common slope of 20.4 Log R. It was clear in our study and documented in another study (Verfuss et al. 2009) that the inter click interval (ICI) decreases (click rate increases) as the amplitude decreases when the Harbour Porpoises approach the fish prey. However, we could not quantify this relationship since not all emitted clicks during a prey capture sequences were on the acoustic axis according to our criteria. However, when one of the porpoises, Eigil, spontaneously changed the rate of his echolocation clicks while stationary at a small plastic square; the amplitude of his signals followed rather closely a 20 Log (ICI) function (Beedholm & Miller 2007). Thus the decrease in amplitude with increasing click rate as the animal closes on the target may reflect limitations imposed by the sound production mechanism at high clicks rates (Beedholm et al. 2006). Some odontocete species do not regulate the source level in the manner observed in the species studied here. Beaked whales Mesoplodon densirostris and Ziphius cavirostris and the Sperm Whale Physeter macrocephalus maintain high output levels until abruptly changing to low levels and high click rates during the buzz indicating prey capture (Madsen et al. 2002, 2005). Besides regulating the output from the sound generator, animals may also control their hearing abilities. Such an auditory controlled AGC system has been described for the False Killer Whale Pseudorca crassidens by recording auditory evoked brain potentials (Supin et al. 2004; 2005; 2007). These authors show that Pseudorca crassidens was capable of regulating its hearing sensitivity, presumably by a forward masking mechanism, thus compensating for the changes in echo level. Pseudorca crassidens did not change the level of transmitted sonar signals with changing target distances (Supin et al. 2007). Two questions arise at this point. Why do some dolphins and the Harbour Porpoise show an apparent motor controlled AGC while approaching a target? Why does the false killer whale apparently have an auditory controlled AGC and keep the transmitted signal level constant? 61

14 62 As the White-beaked Dolphin and the Harbour Porpoise inhabit highly reverberant environments such as near shore and shallow waters, they are forced to find their prey in a cluttered environment. As described by Au and Turl (1983) and Turl et al. (1991), reverberation is the sum of echoes scattered from objects and in-homogeneities in the medium. Reducing the level of the outgoing signal while approaching a target would reduce echoes from uninteresting objects (clutter) smaller than the target and improve the signal-to-clutter ratio. The level of some clutter echoes may actually fall below the auditory threshold and disappear from the animal s auditory image. Why does the level of reduction follow more closely the one-way transmission loss? In this case the ensonification of the target (prey) will be nearly constant and independent of distance. Provided that the echolocation clicks of odontocete predators are sufficiently intense (source level about 200 db re. 1 µpa (p-p) for the Harbour Porpoise, see Villadsgaard et al. 2007), prey that are able to hear these signals, like several fish species in the herring family Alosinae (Wilson et al. 2008), will lack information on proximity of the predator, giving it an advantage over the prey (Verfuss et al. 2009). If clutter is not a problem then keeping the outgoing signal level independent of distance for long ranges, as reported for some beaked whales and the sperm whale (Madsen et al. 2005), will maintain a high signal-to-noise ratio and a better image of the target. Should these species have a central auditory AGC like that reported for the false killer whale (Supin et al. 2007), this, in addition, might improve target identification by providing finer sensory control and reducing specialization for sound production. In conclusion, the present study supports the general tendency shown by some dolphins and the Harbour Porpoise to reduce the apparent source level while closing in on a target. This source level regulation may improve signal-to-clutter ratios, since it would be advantageous to reduce clutter echoes while approaching a target. Since the signal attenuation closely follows the one-way transmission loss, a constant ensonification level is maintained on a prey target and a prey that can hear odontocete signal frequencies cannot sense the change in distance to an approaching porpoise or dolphin. We are only beginning to uncover the biosonar world of freeranging odontocetes. Especially important are comparative studies of species in different habitats to determine the flexibility of their biosonar. For example, are there really differences in biosonar systems of coastal species contra pelagic species and if so how are the biosonar systems adapted to specific environments? Are there odontocete/prey interactions or do odontocetes enjoy unhindered access to prey species? The increasing use of archival tags (Jones et al. 2008) attached to individual odontocete species will profoundly increase our understanding of how these echolocators

15 use their biosonar during orientation and prey capture in different environments. 63 ACKNOWLEDGMENTS We thank the field assistants, and especially Helga Ingimundardóttir for her help in Iceland. Thanks to Dr. Peter T. Madsen, Aarhus University, and anonymous referees for valuable suggestions to improve the manuscript. Data for Harbour Porpoise source levels were obtained during courses in Marine Mammal Biology held at the Marine Biology Research Centre and Fjord & Bælt, Kerteminde, Denmark. The first author would like to thank the Biological Institute for financial support and her family and friends. The Harbour Porpoises are maintained by Fjord & Bælt, Kerteminde, Denmark, under Permit No. J.nr. SN 343/FY-0014 and from the Danish Forest and Nature Agency, Danish Ministry of Environment. We acknowledge the staff at the Fjord & Bælt for their cooperation. REFERENCES Au, W. W. L. & Turl, C. W. (1983). Target detection in reverberation by an echolocating Atlantic bottlenose dolphin (Tursiops truncatus). J. Acoust. Soc. Am., 73, Au, W. W. L., Carder, D. A., Penner, R. H. & Scronce, B. L. (1985). Demonstration of adaptation in beluga whale echolocation signals. J. Acoust. Soc. Am. 77, Au, W. W. L. (1993). The Sonar of Dolphins. New York: Springer-Verlag. Au, W. W. L. & Nachtigall, P. E. (1997). Acoustics of echolocating dolphins and small whales. Mar. Fresh. Behav. Physiol., 29, Au, W. W. L. (2000). Hearing by whales and dolphins: An overview. In Hearing by Whales and Dolphins (Ed. by W. W. L. Au, A. N. Popper & R. R. Fay), pp New York: Springer-Verlag. Au, W. W. L. & Herzing, D. (2003). Echolocation signals of wild Atlantic spotted dolphin (Stenella frontalis). J. Acoust. Soc. Am., 113, Au, W. W. L. & Benoit-Bird, K. J. (2003). Automatic gain control in the echolocation system of dolphins. Nature, 423, Au, W. W. L., Ford, J. K. B., Horne, J. K. & Allman, K. A. N. (2004). Echolocation signals of free-ranging killer whales (Orcinus orca) and modeling of foraging Chinook salmon (Oncorhynchus tshawytscha). J. Acoust. Soc. Am., 115, Au, W. W. L. & Würsig, B. (2004). Echolocation signals of dusky dolphins (Lagenorhynchus obscurus) in Kaikoura, New Zealand. J. Acoust. Soc. Am., 115, Beedholm, K., Miller, L. A. & Blanchet, M. A. (2006). Auditory brainstem response in a harbor porpoise shows lack of automatic gain control for simulated echoes. J. Acoust. Soc. Am., 119, Beedholm, K. & Miller, L. A. (2007). Automatic gain control in harbor porpoises? Central versus peripheral mechanisms. Aquat. Mamm., 33, Blomqvist, C. & Amundin, M. (2004). An acoustic tag for recording directional pulsed ultrasound aimed at free-swimming bottlenose dolphin (Tursiops truncatus) by conspecifics. Aquat. Mamm., 30,

16 64 Caldwell, M. C. & Caldwell, D. K. (1967). Intraspecific transfer of information via the pulsed sound in captive odontocetes cetaceans. In Les Systems Sonars Animaux Biologie et Biunique (Ed. by R. G. Busnel), pp Jouy-en-Josas: Laboratoire de Physiologie Acoustique. Jones, B. A. Stanton, T. K. Andone, C. L. Johnson, M. P. Madsen, P. T. & Tyack, P. L. (2008). Classification of broadband echoes from prey of a foraging Blainville s beaked whale. J. Acoust. Soc. Am Jensen, F. H., Beider, L., Wahlberg, M., and Madsen, P. T. (2009) Biosonar adjustments to target range of echolocating bottlenose dolphins (Tursiops sp.) in the wild. J. Exp. Biol. (in press) Lammers, M. O., Au, W. W. L., Aubauer, R. & Nachtigall P. (2004). A comparative analysis of echolocation and burst-pulse click trains in Stenella longirostris. In Echolocation in Bats and Dolphins (Ed. by J. A. Thomas, C. F. Moss & M. Vater), pp Chicago: Univ. of Chicago press. Madsen, P. T., Payne, R., Kristiansen, N. U., Wahlberg, M., Kerr, I. & Møhl, B. (2002). Sperm whale sound production studied with ultrasound time/depth- recording tags. J. Exp. Biol. 205, Madsen, P. T., Kerr, I. & Payne, R. (2004a). Echolocation clicks of two freeranging, oceanic delphinids with different food preferences: false killer whales Pseudorca crassidens and Risso s dolphins Grampus griseus. J. Exp.Biol., 207, Madsen, P. T., Kerr, I. & Payne, R. (2004b). Source parameter estimates of echolocation clicks from wild pygmy killer whales (Feresa attenuata). J. Acoust. Soc. Am., 116, Madsen, P. T., Johnson M., Aguilar DeSoto N., Zimmer W. M. X & Tyack P. (2005). Biosonar performance of foraging beaked whales, Mesoplodon densirostris. J. Exp. Biol., 208, Madsen, P. T. & Wahlberg, M. (2007). Recording and quantification of ultrasonic echolocation clicks from free-ranging toothed whales. Deep-Sea Research I, 54, Morozov, V. P., Akopian, A. I., Burdin, V. I., Zaitseva, K. A. & Sokovykh, Y. A. (1972). Tracking frequency of the location signals of dolphins as a function of distance to the target. Biofizika, 1, Møhl, B., Wahlberg, M., Madsen, P. T., Heerfordt, A. & Lund, A. (2003). The monopulsed nature of sperm whale clicks. J. Acoust. Soc. Am., 114, Rasmussen, M. H. & Miller, L. A. (2002). Whistles and clicks from white-beaked dolphins, Lagenorhynchus albirostris, recorded in Faxafloi Bay, Iceland. Aquat. Mamm., 28, Rasmussen, M. H., Miller, L. A. & Au, W. W. L. (2002). Source levels of clicks from free-ranging white-beaked dolphins (Lagenorhynchus albirostris Gray 1846) recorded in Icelandic waters. J. Acoust. Soc. Am., 111, Rasmussen, M. H., Wahlberg, M. & Miller, L. A. (2004). Estimated transmission beam pattern of clicks recorded from free-ranging white-beaked dolphins (Lagenorhynchus albirostris). J. Acoust. Soc. Am., 116, Rasmussen, M. H. & Miller, L. A. (2004). Echolocation and social signals from whitebeaked dolphins, Lagenorhynchus albirostris, recorded in Icelandic waters. In Echolocation in Bats and Dolphins. (Ed. by J. A. Thomas, C. F. Moss & M. Vater), pp Chicago: University of Chicago press. SAS Institute Inc. (2004). SAS/STAT 9.1 User s Guide. Cary, NC, USA: SAS Institute Inc. Schotten, M., Au, W. W. L., Lammers, M. O. & Aubauer, R. (2004). Echolocation recordings and localization of wild spinner dolphins (Stenella longirostris) and pan tropical spotted dolphins (S. attenuata) using a four hydrophone array. In Echolocation in bats and dolphins. (Ed. by J. A. Thomas, C. F. Moss & M. Vater), pp Chicago: University of Chicago press.

17 Simon, M., Wahlberg, M. & Miller, L. A. (2007). Echolocation clicks from killer whales (Orcinus orca) feeding on herring (Clupea harengus) in Norwegian waters. J. Acoust. Soc. Am., 121, Supin, A. Ya., Nachtigall, P. E., Au, W. W. L & Breese, M. (2004). The interaction of outgoing echolocation pulses and echoes in the false killer whale s auditory system: Evoked potential study. J. Acoust. Soc. Am., 115, Supin, A. Ya., Nachtigall, P. E., Au, W. W. L. & Breese, M. (2005). Invariance of evoked-potential echo-responses to target strength and distance in an echolocating false killer whale. J. Acoust. Soc. Am., 117, Supin, A. Y., Nachtigall, P. E. & Breese, M. (2007). Evoked-potential recovery during double click stimulation in a whale: A possibility of biosonar automatic gain control. J. Acoust. Soc. Am., 121, Turl, C. W., Skaar, D. J. & Au, W. W. L. (1991). The echolocation ability of the beluga (Delphinapterus leucas) to detect targets in clutter. J. Acoust. Soc. Am., 89, Urick, R. J. (1983). Priciples of Underwater Sound. New York: McGraw-Hill. Verfuss, U. K., Miller, L. A., Pilz, P. K. D. & Schnitzler, H.-U. (2009) Echolocation by two foraging harbour porpoises (Phocoena phocoena). J. Exp. Biol. 212 (In Press). Villadsgaard, A., Wahlberg, M. & Tougaard, J. (2007). Echolocation signals of wild harbour porpoises, Phocoena phocoena. J. Exp. Biol., 210, West, B.T.; Welch, K.B. & Gałecki, A.T. (2007). Linear Mixed Models. A Practical Guide Using Statistical Software. Boca Raton: Chapman & Hall/CRC. Wilson, M., Acolas, M.-L., Bégout, M.-L., Madsen, P. T. & Wahlberg, M. (2008). Allis shad (Alosa alosa) exhibit an intensity-graded behavioral response when exposed to ultrasound. J. Acoust. Soc. Am., 243EL, 1-5. Zimmer, W. M. X, Johnson, M. P., Madsen, P. T. & Tyack, P. L. (2005). Echolocation clicks of free-ranging Cuvier s beaked whales (Ziphius cavirostris). J. Acoust. Soc. Am., 117, Received 23 December 2008, revised 18 February 2009 and accepted 27 February

Basic Hearing and Echolocation Mechanisms of Marine Mammals: Measured Auditory Evoked Potential and Behavioral Experiments FY 2008

Basic Hearing and Echolocation Mechanisms of Marine Mammals: Measured Auditory Evoked Potential and Behavioral Experiments FY 2008 Basic Hearing and Echolocation Mechanisms of Marine Mammals: Measured Auditory Evoked Potential and Behavioral Experiments FY 2008 Paul E. Nachtigall Marine Mammal Research Program Hawaii Institute of

More information

Source parameters of echolocation clicks from wild bottlenose dolphins (Tursiops aduncus and Tursiops truncatus)

Source parameters of echolocation clicks from wild bottlenose dolphins (Tursiops aduncus and Tursiops truncatus) Source parameters of echolocation clicks from wild bottlenose dolphins (Tursiops aduncus and Tursiops truncatus) Magnus Wahlberg a),b) Fjord & Bælt and Marine Research Laboratory, University of Southern

More information

Ecological Constraints on Sound Production in Marine Animals: the Importance of Listening

Ecological Constraints on Sound Production in Marine Animals: the Importance of Listening Ecological Constraints on Sound Production in Marine Animals: the Importance of Listening Lance Barrett-Lennard Vancouver Aquarium University of British Columbia Overview. passive vs active use of sound

More information

Asymmetry and dynamics of a narrow sonar beam in an echolocating harbor porpoise

Asymmetry and dynamics of a narrow sonar beam in an echolocating harbor porpoise Asymmetry and dynamics of a narrow sonar beam in an echolocating harbor porpoise Jens C. Koblitz a) Animal Physiology, Institute for Neurobiology, University of Tübingen, Auf der Morgenstelle 28, 72076

More information

Denise L. Herzing b) Department of Biological Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431

Denise L. Herzing b) Department of Biological Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431 Echolocation signals of wild Atlantic spotted dolphin (Stenella frontalis) Whitlow W. L. Au a) Marine Mammal Research Program, Hawaii Institute of Marine Biology, University of Hawaii, P.O. Box 1109, Kailua,

More information

Buzzes and High-Frequency Clicks Recorded from Narwhals (Monodon monoceros) at Their Wintering Ground

Buzzes and High-Frequency Clicks Recorded from Narwhals (Monodon monoceros) at Their Wintering Ground Aquatic Mammals 215, 41(3), 256-264, DOI 1.1578/AM.41.3.215.256 Buzzes and High-Frequency Clicks Recorded from Narwhals (Monodon monoceros) at Their Wintering Ground Marianne H. Rasmussen, 1 Jens C. Koblitz,

More information

Measurements of the low frequency components of active and passive sounds produced by dolphins

Measurements of the low frequency components of active and passive sounds produced by dolphins Aquatic Mammals 2000, 26.3, 167 174 Measurements of the low frequency components of active and passive sounds produced by dolphins Paul E. Nachtigall 1, Whitlow W. L. Au 1,Jeffrey L. Pawloski 1, Kimberly

More information

RESEARCH ARTICLE Acoustic gaze adjustments during active target selection in echolocating porpoises

RESEARCH ARTICLE Acoustic gaze adjustments during active target selection in echolocating porpoises 4358 The Journal of Experimental Biology 215, 4358-4373 212. Published by The Company of Biologists Ltd doi:1.1242/jeb.7413 RESEARCH ARTICLE Acoustic gaze adjustments during active target selection in

More information

UNDERWATER BEHAVIOUR OF THE HAWAIIAN SPINNER DOLPHIN AND THE ATLANTIC SPOTTED DOLPHIN MAGDALENA BŁASZAK

UNDERWATER BEHAVIOUR OF THE HAWAIIAN SPINNER DOLPHIN AND THE ATLANTIC SPOTTED DOLPHIN MAGDALENA BŁASZAK UNDERWATER BEHAVIOUR OF THE HAWAIIAN SPINNER DOLPHIN AND THE ATLANTIC SPOTTED DOLPHIN MAGDALENA BŁASZAK Adam Mickiewicz University ul. Umultowska 85, Poznań, Poland boksiub@o2.pl To understand the behaviour

More information

The reaction of Southern resident orca to sensitive frequencies produced by nearby vessels

The reaction of Southern resident orca to sensitive frequencies produced by nearby vessels The reaction of Southern resident orca to sensitive frequencies produced by nearby vessels Literature Review Luritta E. Whiting Beam Reach Marine Science and Sustainability School Friday Harbor Labs, University

More information

CALIFORNIA COOPERATIVE OCEANIC FISHERIES INVESTIGATION (CALCOFI) CRUISES:

CALIFORNIA COOPERATIVE OCEANIC FISHERIES INVESTIGATION (CALCOFI) CRUISES: CALIFORNIA COOPERATIVE OCEANIC FISHERIES INVESTIGATION (CALCOFI) CRUISES: 2009-2010 Greg Campbell, Karlina Merkens and John Hildebrand Marine Physical Laboratory, Scripps Institution of Oceanography University

More information

Temporal resolution of the Risso s dolphin, Grampus griseus, auditory system

Temporal resolution of the Risso s dolphin, Grampus griseus, auditory system J Comp Physiol A (6) 9: 373 38 DOI.7/s359-5-75-4 ORIGINAL PAPER T. Aran Mooney Æ Paul E. Nachtigall Michelle M. L. Yuen Temporal resolution of the Risso s dolphin, Grampus griseus, auditory system Received:

More information

MSFD and MEDCIS contribution

MSFD and MEDCIS contribution MSFD and MEDCIS contribution Continuous underwater noise in the Mediterranean Sea with emphasis on modelling of shipping noise Noise Workshop, 23 Feb 2018, Athens, Greece Aristides Prospathopoulos, HCMR

More information

*Author for correspondence Accepted 15 February 2010

*Author for correspondence Accepted 15 February 2010 194 The Journal of Experimental Biology 213, 194-1949 21. Published by The Company of Biologists Ltd doi:1.1242/jeb.4244 Echolocation in sympatric Peale s dolphins (Lagenorhynchus australis) and Commerson

More information

California Cooperative Fisheries Investigation Marine Mammal Surveys for

California Cooperative Fisheries Investigation Marine Mammal Surveys for California Cooperative Fisheries Investigation Marine Mammal Surveys for 2016-2017 John A. Hildebrand, Amanda J. Debich, and Bruce Thayre Marine Physical Laboratory Scripps Institution of Oceanography

More information

The Metabolic Cost of Click Production in Bottlenose Dolphins

The Metabolic Cost of Click Production in Bottlenose Dolphins DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. The Metabolic Cost of Click Production in Bottlenose Dolphins Marla M. Holt & Dawn P. Noren NOAA NMFS Northwest Fisheries

More information

Beaked whales. 1) Zoophysiology, Dept. of Bioscience, Aarhus University, Denmark. 2) BIOECOMAC, La Laguna University, Tenerife, Spain

Beaked whales. 1) Zoophysiology, Dept. of Bioscience, Aarhus University, Denmark. 2) BIOECOMAC, La Laguna University, Tenerife, Spain 1 2 3 4 5 6 7 8 9 Beaked whales Madsen P.T. 1*, Aguilar de Soto N. 2, Tyack P.L. 3, and Johnson M. 3 10 11 12 13 14 15 1) Zoophysiology, Dept. of Bioscience, Aarhus University, Denmark 2) BIOECOMAC, La

More information

Ceteacean Social Behavioral Response to Sonar

Ceteacean Social Behavioral Response to Sonar DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Ceteacean Social Behavioral Response to Sonar Fleur Visser Kelp Marine Research Loniusstraat 9, 1624 CJ Hoorn, the Netherlands

More information

This article was originally published in a journal published by Elsevier, and the attached copy is provided by Elsevier for the author s benefit and for the benefit of the author s institution, for non-commercial

More information

Auditory studies on harbour porpoises in relation to offshore wind turbines

Auditory studies on harbour porpoises in relation to offshore wind turbines Loughborough University Institutional Repository Auditory studies on harbour porpoises in relation to offshore wind turbines This item was submitted to Loughborough University's Institutional Repository

More information

Clicks of dwarf sperm whales (Kogia sima)

Clicks of dwarf sperm whales (Kogia sima) MARINE MAMMAL SCIENCE, 00(00): 00 00 (Month 2018) VC 2018 Society for Marine Mammalogy DOI: 10.1111/mms.12488 Clicks of dwarf sperm whales (Kogia sima) KARLINA MERKENS, 1 Contractor to NOAA NMFS Pacific

More information

Socal Odontoceti (toothed whales) by Patti Schick Hornblower Cruises & Events

Socal Odontoceti (toothed whales) by Patti Schick Hornblower Cruises & Events Socal Odontoceti (toothed whales) by Patti Schick Hornblower Cruises & Events Odontoceti vs. Mysteceti Odontoceti teeth single blowhole Mysteceti baleen double blowhole smaller size larger size (4+ ft.

More information

Auditory Weighting Functions and Frequency-Dependent Effects of Sound in Bottlenose Dolphins (Tursiops truncatus)

Auditory Weighting Functions and Frequency-Dependent Effects of Sound in Bottlenose Dolphins (Tursiops truncatus) DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. Auditory Weighting Functions and Frequency-Dependent Effects of Sound in Bottlenose Dolphins (Tursiops truncatus) James

More information

RESEARCH ACTIVITIES OF CETACEAN IN INDONESIA. Dharmadi Research Centre for Fisheries Management and Conservation

RESEARCH ACTIVITIES OF CETACEAN IN INDONESIA. Dharmadi Research Centre for Fisheries Management and Conservation RESEARCH ACTIVITIES OF CETACEAN IN INDONESIA Dharmadi Research Centre for Fisheries Management and Conservation CETACEAN MANAGEMENT WORKS BY SOME INDONESIAN INSTITUTIONS. WWF (World Wide Foundation) 2.

More information

Hearing measurements from a stranded infant Risso s dolphin, Grampus griseus

Hearing measurements from a stranded infant Risso s dolphin, Grampus griseus The Journal of Experimental Biology 208, 4181-4188 Published by The Company of Biologists 2005 doi:10.1242/jeb.01876 4181 Hearing measurements from a stranded infant Risso s dolphin, Grampus griseus Paul

More information

DETECTION OF INTENSE ULTRASOUND BY THE COD GADUS MORHUA

DETECTION OF INTENSE ULTRASOUND BY THE COD GADUS MORHUA J. exp. Biol. 182, 71 80 (1993) Printed in Great Britain The Company of Biologists Limited 1993 71 DETECTION OF INTENSE ULTRASOUND BY THE COD GADUS MORHUA JENS ASTRUP AND BERTEL MØHL Department of Zoophysiology,

More information

Underwater hearing in California sea lions (Zalophus californianus): Expansion and interpretation of existing data

Underwater hearing in California sea lions (Zalophus californianus): Expansion and interpretation of existing data MARINE MAMMAL SCIENCE, **(*): *** *** (*** 2011) C 2011 by the Society for Marine Mammalogy DOI: 10.1111/j.1748-7692.2011.00473.x Underwater hearing in California sea lions (Zalophus californianus): Expansion

More information

The Metabolic Cost of Click Production in Bottlenose Dolphins

The Metabolic Cost of Click Production in Bottlenose Dolphins DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. The Metabolic Cost of Click Production in Bottlenose Dolphins Marla M. Holt and Dawn P. Noren NOAA NMFS Northwest Fisheries

More information

Notes. Insights into Blainville s beaked whale (Mesoplodon densirostris) echolocation ontogeny from recordings of mother-calf pairs

Notes. Insights into Blainville s beaked whale (Mesoplodon densirostris) echolocation ontogeny from recordings of mother-calf pairs Notes MARINE MAMMAL SCIENCE, **(*): *** *** (*** 2016) 2016 Society for Marine Mammalogy DOI: 10.1111/mms.12351 Insights into Blainville s beaked whale (Mesoplodon densirostris) echolocation ontogeny from

More information

Marine Mammal Monitoring on Navy Ranges (M3R)- Southern California Offshore Anti-submarine Warfare Range (SOAR) FY12 Test Summary

Marine Mammal Monitoring on Navy Ranges (M3R)- Southern California Offshore Anti-submarine Warfare Range (SOAR) FY12 Test Summary Marine Mammal Monitoring on Navy Ranges (M3R)- Southern California Offshore Anti-submarine Warfare Range (SOAR) FY12 Test Summary POC: David J. Moretti Naval Undersea Warfare Center Division Newport: Marine

More information

Sonar induced temporary hearing loss in dolphins

Sonar induced temporary hearing loss in dolphins Sonar induced temporary hearing loss in dolphins T. Aran Mooney 1*+, Paul E. Nachtigall 1 and Stephanie Vlachos 1 1 Department of Zoology and HIMB, University of Hawaii, Kaneohe, HI, 96734, USA *Author

More information

Increased Number of Whistles of Bottlenose Dolphins, Tursiops truncatus, Arising from Interaction with People

Increased Number of Whistles of Bottlenose Dolphins, Tursiops truncatus, Arising from Interaction with People FULL PAPER Ethology Increased Number of Whistles of Bottlenose Dolphins, Tursiops truncatus, Arising from Interaction with People Junko AKIYAMA 1) and Mitsuaki OHTA 1) 1) Laboratory of Animal and Human

More information

Underwater noise from three types of offshore wind turbines: Estimation of impact zones for harbor porpoises and harbor seals

Underwater noise from three types of offshore wind turbines: Estimation of impact zones for harbor porpoises and harbor seals Underwater noise from three types of offshore wind turbines: Estimation of impact zones for harbor porpoises and harbor seals Jakob Tougaard a and Oluf Damsgaard Henriksen Department of Arctic Environment,

More information

Notes. Nocturnal feeding of Atlantic spotted dolphins (Stenella frontalis) in the Bahamas

Notes. Nocturnal feeding of Atlantic spotted dolphins (Stenella frontalis) in the Bahamas Notes MARINE MAMMAL SCIENCE, **(*): *** *** (*** 2013) 2013 by the Society for Marine Mammalogy DOI: 10.1111/mms.12016 Nocturnal feeding of Atlantic spotted dolphins (Stenella frontalis) in the Bahamas

More information

Annual National Reports c) Denmark

Annual National Reports c) Denmark 15 th ASCOBANS Advisory Committee Meeting Document AC15/Doc.15 (P) UN Campus, Bonn, Germany, 31 March-3 April 2008 Dist. 6 March 2008 Agenda Item 13 Annual National Reports 2007 Document 15 Annual National

More information

SfWAR. Annotated Bibliography of Publications from the U. S. Navy's Marine Mammal Program. Systems Center San Diego

SfWAR. Annotated Bibliography of Publications from the U. S. Navy's Marine Mammal Program. Systems Center San Diego SfWAR Systems Center San Diego TECHNICAL DOCUMENT 627 Revision D May 1998 Annotated Bibliography of Publications from the U. S. Navy's Marine Mammal Program Approved for public release; distribution is

More information

Acoustic basis for fish prey discrimination by echolocating dolphins and porpoises

Acoustic basis for fish prey discrimination by echolocating dolphins and porpoises Acoustic basis for fish prey discrimination by echolocating dolphins and porpoises Whitlow W. L. Au Marine Mammal Research Program, Hawaii Institute of Marine Biology, University of Hawaii, P.O. Box 116,

More information

Whose Line Sound is it Anyway? Identifying the Vocalizer on Underwater Video by Localizing with a Hydrophone Array

Whose Line Sound is it Anyway? Identifying the Vocalizer on Underwater Video by Localizing with a Hydrophone Array Animal Behavior and Cognition Attribution 3.0 Unported (CC BY 3.0) ABC 2016, 3(4): 288-298 DOI: 10.12966/abc.07.11.2016 Whose Line Sound is it Anyway? Identifying the Vocalizer on Underwater Video by Localizing

More information

Hearing and Echolocation in Stranded and Captive Odontocete Cetaceans

Hearing and Echolocation in Stranded and Captive Odontocete Cetaceans University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School January 2013 Hearing and Echolocation in Stranded and Captive Odontocete Cetaceans Danielle Greenhow University

More information

Sightings! Secac Secac. Secac horas miles. sightings. Sailing ( km) hours Watching

Sightings! Secac Secac. Secac horas miles. sightings. Sailing ( km) hours Watching Sightings! There s evidence of 30 species of cetaceans belonging to 7 families in the Canary Archipel, which is a 34.5 % of the 87 species described in the whole planet; this makes The Canary Islands one

More information

Cetaceans and Naval Sonar: Behavioral Response as a Function of Sonar Frequency

Cetaceans and Naval Sonar: Behavioral Response as a Function of Sonar Frequency DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. Cetaceans and Naval Sonar: Behavioral Response as a Function of Sonar Frequency Patrick Miller Sea Mammal Research Unit,

More information

Seismic testing and the impacts of high intensity sound on whales. Lindy Weilgart Department of Biology Dalhousie University Halifax, Nova Scotia

Seismic testing and the impacts of high intensity sound on whales. Lindy Weilgart Department of Biology Dalhousie University Halifax, Nova Scotia Seismic testing and the impacts of high intensity sound on whales Lindy Weilgart Department of Biology Dalhousie University Halifax, Nova Scotia Marine Seismic Surveys Main technique for finding and monitoring

More information

FY14 Summary. Contact: David J. Moretti Robin W. Baird Naval Undersea Warfare Center Cascadia Research Collective

FY14 Summary. Contact: David J. Moretti Robin W. Baird Naval Undersea Warfare Center Cascadia Research Collective Marine Mammal Monitoring on Navy Ranges (M3R) An Opportunistic Study of the Effect of Sonar on Marine Mammals on the Pacific Missile Range Facility PMRF FY14 Summary Contact: David J. Moretti Robin W.

More information

The Vocal Behavior of Mammal-Eating Killer Whales: Communicating with Costly Calls. Cayenne, Angela, Yiru, and Kyra

The Vocal Behavior of Mammal-Eating Killer Whales: Communicating with Costly Calls. Cayenne, Angela, Yiru, and Kyra The Vocal Behavior of Mammal-Eating Killer Whales: Communicating with Costly Calls Cayenne, Angela, Yiru, and Kyra Objective of study To quantify how often resident and transient killer whales produced

More information

SEVENTH REGULAR SESSION

SEVENTH REGULAR SESSION SEVENTH REGULAR SESSION Honolulu, Hawaii, USA 6-10 December 2010 SUMMARY INFORMATION ON WHALE SHARK AND CETACEAN INTERACTIONS IN THE TROPICAL WCPFC PURSE SEINE FISHERY WCPFC7-2010-IP/01 10 November 2010

More information

Conserving cetaceans and manatees in the western African region

Conserving cetaceans and manatees in the western African region CMS Technical Series No. 26 Conserving cetaceans and manatees in the western African region Bonn, 2012 (WATCH) Compilation of articles based on the Scientific Symposium of the Western African Talks on

More information

Psychophysical Studies of Auditory Masking in Marine Mammals: Key Concepts and New Directions

Psychophysical Studies of Auditory Masking in Marine Mammals: Key Concepts and New Directions Psychophysical Studies of Auditory Masking in Marine Mammals: Key Concepts and New Directions Colleen Reichmuth 1 Introduction In recent years, growing awareness of the potentially harmful effects of human-generated

More information

Cetacean Distribution & Relative Abundance Survey

Cetacean Distribution & Relative Abundance Survey R.V. Celtic Explorer Rockall Trough Oceanographic Survey Cetacean Distribution & Relative Abundance Survey 24 January 2 February 2007 Surveyor: Dave Wall Ship Surveys Unit Irish Whale and Dolphin Group

More information

Deep-Sea Research II

Deep-Sea Research II Deep-Sea Research II 88 89 (2013) 97 10 Contents lists available at SciVerse ScienceDirect Deep-Sea Research II journal homepage: www.elsevier.com/locate/dsr2 Biosonar, diving and movements of two tagged

More information

ACOUSTIC VOCALIZATIONS OF DOLPHINS AND EFFECTS OF ANTHROPOGENIC NOISE

ACOUSTIC VOCALIZATIONS OF DOLPHINS AND EFFECTS OF ANTHROPOGENIC NOISE ACOUSTIC VOCALIZATIONS OF DOLPHINS AND EFFECTS OF ANTHROPOGENIC NOISE Undergraduate Research Scholars Thesis by JOCLYN DESTINY BOSQUEZ Submitted to Honors and Undergraduate Research Texas A&M University

More information

Journal of FisheriesSciences.com

Journal of FisheriesSciences.com (3): 9-6 () Journal of FisheriesSciences.com E-ISSN 37-4X Research Article www.fisheriessciences.com ORIGINAL ARTICLE Spectral Analysis Using Haar Wavelet (Original Signal, Denoised Signal, Residual Signal)

More information

Unit 2. Lesson 2. Sound Production and Reception

Unit 2. Lesson 2. Sound Production and Reception Unit 2. Lesson 2. Sound Production and Reception Lesson Objectives: After completing this lesson and the activities, students will be able to grasp the basic ideas of how sound is generated and how it

More information

Report on the research activities with Orcinus orca in Loro Parque

Report on the research activities with Orcinus orca in Loro Parque Report on the research activities with Orcinus orca in Loro Parque Date: May 23rd 2013 Author: F. Javier Almunia Portolés, Ph.D. Deputy Director of Loro Parque Fundación Report on research activities 1

More information

Acoustic Behavior, Baseline Ecology and Habitat Use of Pelagic Odontocete Species of Concern

Acoustic Behavior, Baseline Ecology and Habitat Use of Pelagic Odontocete Species of Concern DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Acoustic Behavior, Baseline Ecology and Habitat Use of Pelagic Odontocete Species of Concern T. Aran Mooney Woods Hole

More information

Auditory Weighting Functions and Frequency-Dependent Effects of Sound in Bottlenose Dolphins (Tursiops Truncatus)

Auditory Weighting Functions and Frequency-Dependent Effects of Sound in Bottlenose Dolphins (Tursiops Truncatus) Auditory Weighting Functions and Frequency-Dependent Effects of Sound in Bottlenose Dolphins (Tursiops Truncatus) James J. Finneran Space and Naval Warfare Systems Center Pacific, Biosciences Division,

More information

Marine Mammal Conservation Corridor for Northern South America (MaMa CoCo Sea) Follow-Up Workshop March Paramaribo, Suriname

Marine Mammal Conservation Corridor for Northern South America (MaMa CoCo Sea) Follow-Up Workshop March Paramaribo, Suriname Marine Mammal Conservation Corridor for Northern South America (MaMa CoCo Sea) Follow-Up Workshop 18-20 March 2013 - Paramaribo, Suriname 1. New data on marine mammal populations in French Guiana and regional

More information

Cetaceans and Naval Sonar: Behavioral Response as a Function of Sonar Frequency

Cetaceans and Naval Sonar: Behavioral Response as a Function of Sonar Frequency DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Cetaceans and Naval Sonar: Behavioral Response as a Function of Sonar Frequency Patrick Miller Sea Mammal Research Unit

More information

Sonar characteristics of the harbour porpoise (Phocoena phocoena): source levels and spectrum

Sonar characteristics of the harbour porpoise (Phocoena phocoena): source levels and spectrum ICES Journal of Marine Science, 53: 465 472. 1996 Sonar characteristics of the harbour porpoise (Phocoena phocoena): source levels and spectrum A. D. Goodson and C. R. Sturtivant Goodson, A. D. and Sturtivant,

More information

RESEARCH ARTICLE A false killer whale reduces its hearing sensitivity when a loud sound is preceded by a warning

RESEARCH ARTICLE A false killer whale reduces its hearing sensitivity when a loud sound is preceded by a warning 3062 The Journal of Experimental iology 216, 3062-3070 2013. Published by The Company of iologists Ltd doi:10.1242/jeb.085068 RESERCH RTICLE false killer whale reduces its hearing sensitivity when a loud

More information

Auditory Masking Patterns in Bottlenose Dolphins from Anthropogenic and Natural Sound Sources

Auditory Masking Patterns in Bottlenose Dolphins from Anthropogenic and Natural Sound Sources DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Auditory Masking Patterns in Bottlenose Dolphins from Anthropogenic and Natural Sound Sources Brian K. Branstetter National

More information

Assessing Beaked Whale Reproduction and Stress Response Relative to Sonar Activity at the Atlantic Undersea Test and Evaluation Center (AUTEC)

Assessing Beaked Whale Reproduction and Stress Response Relative to Sonar Activity at the Atlantic Undersea Test and Evaluation Center (AUTEC) DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Assessing Beaked Whale Reproduction and Stress Response Relative to Sonar Activity at the Atlantic Undersea Test and Evaluation

More information

Course evaluation submission:

Course evaluation submission: Course evaluation submission: 1. Forms to pick up today: a) one yellow form for overall course comments; b) one form A to evaluate Glenn; c) one form H to evaluate your TA. 2. Return forms to Sophie: At

More information

Behavioural Response Study 2008

Behavioural Response Study 2008 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Behavioural Response Study 2008 I. L. Boyd Sea Mammal Research Unit, Scottish Oceans Institute University of St. Andrews,

More information

Audiogram of a formerly stranded long-finned pilot whale (Globicephala melas) measured using auditory evoked potentials

Audiogram of a formerly stranded long-finned pilot whale (Globicephala melas) measured using auditory evoked potentials 3138 The Journal of Experimental Biology 213, 3138-3143 21. Published by The Company of Biologists Ltd doi:1.1242/jeb.44636 Audiogram of a formerly stranded long-finned pilot whale (Globicephala melas)

More information

Term Paper. Midterm Exam

Term Paper. Midterm Exam Term Paper Outline due on Thursday (paper copy) See website for details and example 1 outline paragraph, title, 2 references Goals Read and cite scientific papers Learn about a specific topic of marine

More information

The rapidly increasing pressure of human activity in coastal and pelagic marine environments has led to

The rapidly increasing pressure of human activity in coastal and pelagic marine environments has led to Sound production and reception in southern sea otters (Enhydra lutris nereis) Asila Ghoul 1, Colleen Reichmuth 2 1 Department of Ocean Sciences, Long Marine Laboratory, University of California Santa Cruz,

More information

Marine Mammals and Sound

Marine Mammals and Sound Marine Mammals and Sound Acoustics Why sound? Light attenuates rapidly Sound travels farther & faster (higher density of fluid) Over large spatial scales in water, visual communication is not practical

More information

Effect of seismic operations on cetaceans sightings off-shore Akwa Ibom State, south-south, Nigeria

Effect of seismic operations on cetaceans sightings off-shore Akwa Ibom State, south-south, Nigeria Available online at http://ajol.info/index.php/ijbcs Int. J. Biol. Chem. Sci. 8(4): 1570-1580, August 2014 ISSN 1997-342X (Online), ISSN 1991-8631 (Print) Original Paper http://indexmedicus.afro.who.int

More information

The effects of seismic operations in UK waters: analysis of Marine Mammal Observer data

The effects of seismic operations in UK waters: analysis of Marine Mammal Observer data J. CETACEAN RES. MANAGE. 16: 71 85, 2017 71 The effects of seismic operations in UK waters: analysis of Marine Mammal Observer data CAROLYN J. STONE, KAREN HALL, SÓNIA MENDES AND MARK L. TASKER Joint Nature

More information

Auditory Weighting Functions and Frequency-Dependent Effects of Sound in Bottlenose Dolphins (Tursiops truncatus)

Auditory Weighting Functions and Frequency-Dependent Effects of Sound in Bottlenose Dolphins (Tursiops truncatus) DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. Auditory Weighting Functions and Frequency-Dependent Effects of Sound in Bottlenose Dolphins (Tursiops truncatus) James

More information

I nterspecific interactions across multiple scales (species, population, individual) remain a central question in

I nterspecific interactions across multiple scales (species, population, individual) remain a central question in SUBJECT AREAS: BEHAVIOURAL ECOLOGY ZOOLOGY ANIMAL BEHAVIOUR ECOLOGY Received 14 December 2012 Accepted 28 February 2013 Published 2 April 2013 Correspondence and requests for materials should be addressed

More information

Evidence that sperm whale (Physeter macrocephalus) calves suckle through their mouth

Evidence that sperm whale (Physeter macrocephalus) calves suckle through their mouth MARINE MAMMAL SCIENCE, 26(4): 990 996 (October 2010) C 2010 by the Society for Marine Mammalogy DOI: 10.1111/j.1748-7692.2010.00385.x Evidence that sperm whale (Physeter macrocephalus) calves suckle through

More information

NAVAL POSTGRADUATE SCHOOL

NAVAL POSTGRADUATE SCHOOL NPS-OC-08-002 NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA Marine Mammal Acoustic Monitoring and Habitat Investigation, Southern California Offshore Region by John Hildebrand November 2007 Approved for

More information

Remote Monitoring of Dolphins and Whales in the High Naval Activity Areas in Hawaiian Waters

Remote Monitoring of Dolphins and Whales in the High Naval Activity Areas in Hawaiian Waters DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Remote Monitoring of Dolphins and Whales in the High Naval Activity Areas in Hawaiian Waters Whitlow W. L. Au & Marc O.

More information

Investigation into the possible role of dolphins teeth in sound reception

Investigation into the possible role of dolphins teeth in sound reception Investigation into the possible role of dolphins teeth in sound reception S. Graf a, W. M Megill a, P. Blondel b and S. E. Clift a a University of Bath, Dept. Mechanical Engineering, Claverton Down, BA2

More information

DolphinWatch: Dolphins in the Chesapeake Bay. Amber Fandel Faculty Research Assistant

DolphinWatch: Dolphins in the Chesapeake Bay. Amber Fandel Faculty Research Assistant DolphinWatch: Dolphins in the Chesapeake Bay Amber Fandel Faculty Research Assistant 1 Lots of dolphins! Philip Yunger Kevin McDonald Carolyn Wilson Chris Moe Chris Bache Dennis DePriest Tania Richardson

More information

The influence of habitat and time of day on the occurrence of odontocete vocalizations in Onslow Bay, North Carolina

The influence of habitat and time of day on the occurrence of odontocete vocalizations in Onslow Bay, North Carolina MARINE MAMMAL SCIENCE, 29(4): E411 E427 (October 213) 212 by the Society for Marine Mammalogy DOI: 1.1111/mms.126 The influence of habitat and time of day on the occurrence of odontocete vocalizations

More information

Dolphins Can Maintain Vigilant Behavior through Echolocation for 15 Days without Interruption or Cognitive Impairment

Dolphins Can Maintain Vigilant Behavior through Echolocation for 15 Days without Interruption or Cognitive Impairment Dolphins Can Maintain Vigilant Behavior through Echolocation for 15 Days without Interruption or Cognitive Impairment Brian K. Branstetter 1 *, James J. Finneran 2, Elizabeth A. Fletcher 3, Brian C. Weisman

More information

Results of Nature Foundation Marine Mammal Monitoring Project Jan-May 2011

Results of Nature Foundation Marine Mammal Monitoring Project Jan-May 2011 NATURE FOUNDATION Results of Nature Foundation Marine Mammal Monitoring Project Jan-May 2011 Mailing address P. O. Box 863 Philipsburg St. Maarten Netherlands Antilles Physical address Wellsberg Street

More information

Acoustic and Visual Survey of Cetaceans at Palmyra Atoll

Acoustic and Visual Survey of Cetaceans at Palmyra Atoll Acoustic and Visual Survey of Cetaceans at Palmyra Atoll Trip report 05/2011 Palmyra, April 29 May 9, 2011 Jason P Larese Marie Hill Contact: sbaumann@ucsd.edu, jhildebrand@ucsd.edu Scripps Institution

More information

Ultra-High Foraging Rates of Harbor Porpoises Make Them Vulnerable to Anthropogenic Disturbance

Ultra-High Foraging Rates of Harbor Porpoises Make Them Vulnerable to Anthropogenic Disturbance Report Ultra-High Foraging Rates of Harbor Porpoises Make Them Vulnerable to Anthropogenic Disturbance Highlights d Harbor porpoises forage nearly continuously day and night to meet energy needs d Porpoises

More information

Male sperm whale (Physeter macrocephalus) acoustics in a high-latitude habitat: implications for echolocation and communication

Male sperm whale (Physeter macrocephalus) acoustics in a high-latitude habitat: implications for echolocation and communication Behav Ecol Sociobiol (2002) 53:31 41 DOI 10.1007/s00265-002-0548-1 ORIGINAL ARTICLE P. T. Madsen M. Wahlberg B. Møhl Male sperm whale (Physeter macrocephalus) acoustics in a high-latitude habitat: implications

More information

Hearing Loss in Stranded Odontocete Dolphins and Whales

Hearing Loss in Stranded Odontocete Dolphins and Whales RESEARCH ARTICLE Hearing Loss in Stranded Odontocete Dolphins and Whales David Mann 1,2*, Mandy Hill-Cook 3, Charles Manire 2 a, Danielle Greenhow 1, Eric Montie 1, Jessica Powell 1,2 b, Randall Wells

More information

Cetacean Social & Reproductive Systems

Cetacean Social & Reproductive Systems Cetacean Social & Reproductive Systems Group Living Benefits Reduced predation risk Enhanced detection/ capture of prey Improved reproduction Reduced harassment Larger prey Costs Share food Increased competition

More information

Hearing Loss in Stranded Odontocete Dolphins and Whales

Hearing Loss in Stranded Odontocete Dolphins and Whales Hearing Loss in Stranded Odontocete Dolphins and Whales David Mann 1,2 *, Mandy Hill-Cook 3, Charles Manire 2 a, Danielle Greenhow 1, Eric Montie 1, Jessica Powell 1,2 b, Randall Wells 1,4, Gordon Bauer

More information

Acoustic and Visual Survey of Cetaceans at Palmyra Atoll

Acoustic and Visual Survey of Cetaceans at Palmyra Atoll Acoustic and Visual Survey of Cetaceans at Atoll Trip report 09/2007, Simone Baumann Yeo Kian Peen Contact: sbaumann@ucsd.edu, jhildebrand@ucsd.edu John Hildebrand Lab Contents: Summary Tables Sightings

More information

Walls of Sound: The acoustic field of multiple vessels hammering on metal pipes

Walls of Sound: The acoustic field of multiple vessels hammering on metal pipes Walls of Sound: The acoustic field of multiple vessels hammering on metal pipes 3/17/2013 - draft Val Veirs Beam Reach Marine Science and Sustainability School www.orcasound.net The following document

More information

Answer to DG Environment request on scientific information concerning impact of sonar activities on cetacean populations

Answer to DG Environment request on scientific information concerning impact of sonar activities on cetacean populations International Council for the Exploration of the Sea Conseil International pour l Exploration de la Mer JUNE 2001 FEBRUARY 2005 Answer to DG Environment request on scientific information concerning impact

More information

3S2 Behavioral Response Studies of Cetaceans to Naval Signals in Norwegian Waters

3S2 Behavioral Response Studies of Cetaceans to Naval Signals in Norwegian Waters DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. 3S2 Behavioral Response Studies of Cetaceans to Naval Signals in Norwegian Waters Peter L. Tyack Woods Hole Oceanographic

More information

THE JOURNAL OF EXPERIMENTAL BIOLOGY

THE JOURNAL OF EXPERIMENTAL BIOLOGY 4144 The Journal of Experimental Biology 216, 4144-4153 213. Published by The Company of Biologists Ltd doi:1.1242/jeb.9154 RESEARCH ARTICLE Possible age-related hearing loss (presbycusis) and corresponding

More information

Benjamin Ford, Jian Jiang *, Victoria L. G. Todd * and Ian B. Todd*

Benjamin Ford, Jian Jiang *, Victoria L. G. Todd * and Ian B. Todd* MEASUREMENTS OF UNDERWATER PILING NOISE DUR- ING NEARSHORE WINDFARM CONSTRUCTION IN THE UK: POTENTIAL IMPACT ON MARINE MAMMALS IN COMPLI- ANCE WITH GERMAN UBA LIMIT Benjamin Ford, Jian Jiang *, Victoria

More information

Marine Mammals in Scottish Waters

Marine Mammals in Scottish Waters MASTS Renewable Energy Forum Undergraduate Summer Internships 2017 Marine Mammals in Scottish Waters Natalie Ward Photo credits to the University of Aberdeen Introduction The coastal waters around Scotland

More information

Off-axis effects on the multi-pulse structure of sperm whale coda clicks

Off-axis effects on the multi-pulse structure of sperm whale coda clicks Off-axis effects on the multi-pulse structure of sperm whale coda clicks Tyler M. Schulz a and Hal Whitehead Department of Biology, Dalhousie University, Halifax, Nova Scotia B3H 4J, Canada Luke Rendell

More information

The Cook Islands Whale Sanctuary

The Cook Islands Whale Sanctuary The Cook Islands Whale Sanctuary Nan Hauser' and Phil Clapham^ Cook Islands Whale Research, Avarua, Rarotonga, Cook Islands ^Northeast Fisheries Science Center, 166 Water Street, Woods Hole, MA 02543,

More information

MBA Education. For non profit use only.

MBA Education. For non profit use only. Underwater noise and marine mammals - Teacher Notes AIM: To introduce the effects on marine species of noise associated with building and operating wind farms, with specific reference to marine mammals

More information

ABSTRACT. 1. i n t r o d u c t i o n

ABSTRACT. 1. i n t r o d u c t i o n Overview article / Exposé sommaire O v e r v ie w o f t h e 3 rd I n t e r n a t io n a l w o r k s h o p o n t h e d e t e c t io n a n d c l a s s if ic a t io n OF MARINE MAMMALS USING PASSIVE ACOUSTICS

More information

New Stereo Acoustic Data Logger for Free-ranging Dolphins and Porpoises

New Stereo Acoustic Data Logger for Free-ranging Dolphins and Porpoises PAPER New Stereo Acoustic Data Logger for Free-ranging Dolphins and Porpoises AUTHORS Tomonari Akamatsu Akihiko Matsuda Shiro Suzuki National Research Institute of Fisheries Engineering, Fisheries Research

More information

2012 Annual National Report Denmark

2012 Annual National Report Denmark 20 th ASCOBANS Advisory Committee Meeting AC20/Doc.13.b (P) Warsaw, Poland, 27-29 August 2013 Dist. 5 July 2013 Agenda Item 13 National Reporting Document 13.b 2012 Annual National Report Denmark Action

More information

Title (Cephalorhynchus commersonii) Masahiko; Akamatsu, Tomonari; Kohsh. Citation Behavioural Processes (2014), 108:

Title (Cephalorhynchus commersonii) Masahiko; Akamatsu, Tomonari; Kohsh. Citation Behavioural Processes (2014), 108: Title Sound variation and function in cap (Cephalorhynchus commersonii) Yoshida, Yayoi M.; Morisaka, Tadami Author(s) Mari; Wakabayashi, Ikuo; Seko, Atsu Masahiko; Akamatsu, Tomonari; Kohsh Citation Behavioural

More information

Hawaii Institute of Marine Biology, Kailua, HI 96734, USA. *Author for correspondence

Hawaii Institute of Marine Biology, Kailua, HI 96734, USA. *Author for correspondence 491 The Journal of Experimental iology 216, 491-412 213. Published by The Company of iologists Ltd doi:1.1242/jeb.9136 RESERCH RTICLE Nasal sound production in echolocating delphinids (Tursiops truncatus

More information