Zoology Exercise #13: Chelicerata Lab Guide

Size: px
Start display at page:

Download "Zoology Exercise #13: Chelicerata Lab Guide"

Transcription

1 Zoology Exercise #13: Chelicerata Lab Guide Arthropods are diverse phylum that includes chelicerates (spiders, scorpions, mites, ticks), crustaceans, myriapods (millipedes & centipedes), and hexapods (insects). These animals have jointed appendages. Similar to annelids, their body is considered an extended series of repeated segments. Remember, this design is called metamerism. But, unlike annelids, this design has been, through fusion, reduced and specialized. Now we have distinct, functional units called tagmata. Ex. Insects have a head, thorax, and abdomen while spiders and ticks have a cephalothorax and abdomen. They also share, with the previous phylum, features such as they are triploblastic (made up of 3 distinct tissues), have a true coelom, have bilateral symmetry, cephalization, and all organ systems are accounted for. They have striated muscle for rapid movement, an exoskeleton or cuticle containing a tough polysaccharide called chitin for support and protection. Gills and a very efficient tracheal system for gas exchange and greater specialization of body organs. Especially the appendages. They now have a hemocoel filled with blood, called hemolymph, which circulates through their open circulatory system. Exercise 13A Chelicerate Arthropods (Horseshoe crab and Garden spider) The chelicerates include horseshoe crabs, sea spiders, spiders, scorpions, mites, and ticks. They do not possess mandibles (jaws) for chewing. Instead, their first pair of appendages, called chelicerae, are feeding appendages adapted for seizing and tearing. Most have a two part body which consists of a cephalothorax (prosoma) and abdomen (opisthosoma). There are no antennae. Horseshoe Crabs Horseshoe crabs are not really crabs. They are marine, bottom dwellers that feed on molluscs, worms, and dead fish. They live along the Atlantic coast from Nova Scotia to Mexico s Yucatan peninsula. Their eggs are a very important food source for migratory shore birds. External Features The entire body is covered with a tough, leathery exoskeleton that contains chitin, a tough polysaccharide. As a horseshoe crab grows, it must shed (molt) its exoskeleton through a process called ecdysis. The cephalothorax (prosoma) is covered by a hard, horseshoe shaped carapace which is concave below and convex above. A pair of lateral compound eyes and a pair of median simple eyes are on the dorsal side. On the ventral side are 6 pairs of appendages, located around the mouth. The first pair called chelicerae are small and used to detect and manipulate food. The second pair are called pedipalps. The next four pairs are walking legs. All appendages except the last pair of walking legs and the pedipalps of the male are chelate (means to bear pincers or chelae). All, except the chelicerae, have spiny masticatory structures called gnathobases on the basal segments. Imagine how these gnathobases would tear up food and move it toward the mouth. The chelae of the appendages pick up food and pass it to the gnathobases. Remember, the last pair of walking legs does not have chelae, instead each has four, movable, bladelike structures, one of which is tipped with a pair of spines. These legs are used to push against the sand to help in forward movement and in burrowing. Between the last pair of walking legs is a small pair of rudimentary appendages called chilaria. The abdomen (opisthosoma) bears six pair of spines along the sides and, on its ventral side, six pair of flat, plate like appendages. The first of these forms the genital operculum, on the underside of which are two genital pores. The other five abdominal appendages are modified as gills. Because of their arrangement, they are often called book gills. Exchange of gases between blood and water takes place in the lamellae. Movement of the gills not only circulates water over them but also pumps blood in and out of the lamellae. The blood contains hemocyanin, which in addition to carrying oxygen, also contains a powerful amebocyte to kill bacteria. Beating of the abdominal flaps can also be used in swimming and may aide the animal in burrowing by creating a water current that washes out mud and sand posteriorly. There is a long, slender telson or tail spine. This is used to anchor the animal when it is burrowing or plowing through the sand. Or, in righting itself when turned over. The anus is located under the proximal (center of the body) end of the telson.

2 These animals will congregate in shallow water to reproduce. A male will clasp a female s carapace with his larger, modified pedipalps and be carried around by the female while she lays eggs in a depression she creates in the sand. He sprays sperm on the eggs as she lays them. After several weeks, the eggs will hatch as trilobite larvae. This larvae looks like the adult, but lacks the tail spine and has only two of the five pairs of book gills. As it molts, it will add appendages until the young animal reaches adult form. Garden Spider Spiders are distributed in all kinds of habitats, such as forests, deserts, mountains, swamps, land and water. The garden spider will build its orb web in sunny places in gardens and tall grass. It is found throughout the United States. In most cases, the males will be about ¼ the size of the female. They are rarely seen. This spider will spin a symmetrical orb web and prefers to hang head downward in the center, holding its forelegs and hind legs close together. They will capture insects in its web net and bite the prey to paralyze it, securing it with a silken thread. Spiders secrete enzymes to begin digestion outside of the body. Most spiders have poor vision (except jumping spiders), but are covered with sensory hairs and are very sensitive to touch and vibration. External Features The chitinous exoskeleton is hard, thin, and somewhat flexible. Sensory hairs project from all parts of the body. The tagmata of the arachnid include the anterior cephalothorax and the posterior abdomen joined by a slender waist (pedicel). Its cephalothorax has 6-8 eyes on its anterior, dorsal surface. Spiders do not have compound eyes, all are simple ocelli. Look for the paired chelicerae, which are vertically oriented on the front of the face. The terminal segment of a chelicerae is a fang. This is how the spider injects poison from its poison glands. The pedipalps are six jointed and used for gripping prey.

3 In males, the pedipalp is modified as an organ for transferring sperm to the female. The base of the pedipalp is used to squeeze and chew food. There are 4 pairs of walking legs, each made up of 7 segments: coxa, trochanter, femur, patella, tibia, metatarsus, and tarsus. The tarsus has claws and a tuft of hair at its terminal end. The abdomen will have two lateral, slit like openings that mark the location of the book lungs. These book lungs are fashioned very much like the book gills of the horseshoe crab except that they are enclosed internally in pockets. The inner walls of these pockets are folded into long, thin plates (leaves of a book) and are held apart by bars, so that there is air spaces between them. Gas exchange occurs between blood circulating inside the lamellae and air flowing in the spaces between the lamellae. These air spaces connect with a small air chamber in each lung that opens to the outside through a slit like opening called a spiracle. Between the spiracles, the epigynum, which conceals the female s genital pore, is visible. Preserved specimens are most likely all female. Posteriorly on the abdomen, just in front of the spinnerets, is a small tracheal spiracle. This is an opening into a small chamber from which tracheal tubes extend into the body. These tracheal systems are similar to those of insects, but are less extensive. Garden spiders have both book lungs and tracheal systems, but some spiders will only have one type of respiratory organ. There are 3 pairs of spinnerets on a raised surface. The middle pair is small, but the other two pairs are rather large, conical, and readily movable. The end of the spinnerets have a variety of tiny silk spouts, each producing a particular kind of silk. The silk is secreted as a fluid by the silk glands and hardens with exposure to air. A small fleshy papilla just posterior to the spinnerets bears the anus.

4 Procedure Exercise 13A 1. Place a preserved horseshoe crab in a dissecting pan. SKETCH and make observations of the following parts: cephalothorax, abdomen, chelicerae, carapace, compound eye, simple eye, pedipalps, walking legs, chelae, gnathobases, chilaria, genital operculum, genital pore (if possible), book gills, telson, anus SKETCH FUNCTION OF EACH PART 2. Place a preserved garden spider in a dissecting pan. SKETCH and make observations of the following parts: sensory hairs, cephalothorax, abdomen, waist (pedicel), simple ocelli, chelicerae, fang, pedipalps, walking legs, coxa, trochanter, femur, patella, tibia, metatarsus, tarsus, spiracle, epigynum, tracheal spiracle, spinnerets, anus SKETCH FUNCTION OF EACH PART Analysis 1. Think carefully about the two animals you observed. What are characteristics would you use to support your claim that both animals should be classified as Arthropods? As both being Chelicerates. (PLEASE address both!)

5 2. The terms bilateral symmetry and cephalization were used in this lab. Explain each and then contrast these two characteristics with an animal you have already studied. 3. Fill in the following classification scheme for both the horseshoe crab and garden spider. Level of Classification Horseshoe Crab Garden Spider Kingdom Phylum Class Order Family Genus Species 4. Horseshoe crabs are often called living fossils. Why? 5. Horseshoe crabs are important for biomedical research. Explain. 6. Garden spiders are often referred to as orb spiders. Explain why. 7. Explain how web building occurs in most spiders. Be specific about the mechanics. There are many parts to a typical web, so there is a method to its madness. 8. Chelicerates, like spiders, will secrete enzymes to begin the digestion of their food. Explain how other members of this group, such as mites, ticks, and scorpions will capture and digest their prey. 9. Most spiders have poor vision. What do they use to compensate for this?

6 10. There are two dangerous spiders in the United States. The Brown Recluse and the Black Widow. Describe how you would recognize each and then discuss the type of venom each will produce as well as the symptoms if you are bitten.

24.1 Arthropod Diversity. KEY CONCEPT Arthropods are the most diverse of all animals.

24.1 Arthropod Diversity. KEY CONCEPT Arthropods are the most diverse of all animals. KEY CONCEPT Arthropods are the most diverse of all animals. Arthropod features are highly adapted. Arthropods are invertebrates that share several features. exoskeleton (cuticle) made of chitin jointed

More information

Arthropods & Echinoderms

Arthropods & Echinoderms Arthropods & Echinoderms Introduction to the Arthropods Phylum Arthropoda : arthron means joint: poda means foot (jointed foot) Insects, crabs, centipedes & spiders Have a segmented body, a tough exoskeleton

More information

Dorsal simple eye, compound eyes (paired), prosoma, opisthosoma (cephalothorax and abdomen), movable spines, telson (tail)

Dorsal simple eye, compound eyes (paired), prosoma, opisthosoma (cephalothorax and abdomen), movable spines, telson (tail) Phylum Arthropoda Subphylum Cheliceriformes Class Celicerata Subclass Merostomata = smallest living group of chelicerates, only 4 species are known, most ancient arthropods (Ordovician) Limulus polyphemus

More information

Arthropods have segmented bodies and tough exoskeletons with jointed appendages.

Arthropods have segmented bodies and tough exoskeletons with jointed appendages. Section 1: Arthropods have segmented bodies and tough exoskeletons with jointed appendages. K What I Know W What I Want to Find Out L What I Learned Essential Questions What is the importance of exoskeletons,

More information

Crayfish Observation and Dissection

Crayfish Observation and Dissection Name Period Date Crayfish Observation and Dissection Purpose: In this lab, you will observe the external structures of a crayfish and dissect it to study its internal structures and systems. Materials:

More information

Arthropod phylogeny from the Tree of Life website [

Arthropod phylogeny from the Tree of Life website [ EEB 286 - Lab 5 (Phyllum Arthropoda) 1 Phyllum ARTHROPODA Arthropod phylogeny from the Tree of Life website [http://tolweb.org/arthropoda] This lab will acquaint you with the major orders within the various

More information

Arthropods (pp )

Arthropods (pp ) Arthropods (pp. 434 441) This section describes the characteristics of arthropods and the distinguishing structures of insects, crustaceans, arachnids, centipedes, and millipedes. Use Target Reading Skills

More information

innate learned behaviors Metamorphosis chelicerae mandibles

innate learned behaviors Metamorphosis chelicerae mandibles Arthropods 1) Phylum: Arthropoda a) Arthropods rule the earth! i) They outnumber all other species of animals combined ii) Why are they so diverse? (1) Arthropods have an exoskeleton that is highly protective

More information

Crayfish Dissection. Objectives: Describe the appearance of various organs found in a crayfish. Name the organs that make up systems of the crayfish.

Crayfish Dissection. Objectives: Describe the appearance of various organs found in a crayfish. Name the organs that make up systems of the crayfish. Crayfish Dissection Objectives: Describe the appearance of various organs found in a crayfish. Name the organs that make up systems of the crayfish. Background: Like all crustaceans, a crayfish has a fairly

More information

In this lab, you will observe the external structures of a crayfish and dissect it to study its internal structures and systems.

In this lab, you will observe the external structures of a crayfish and dissect it to study its internal structures and systems. Crayfish Dissection Objectives: Describe the appearance of various organs found in a crayfish. Name the organs that make up systems of the crayfish. Materials: safety goggles, gloves, magnifying glass,

More information

PHYLUM ARTHROPODA - CHELICERATA

PHYLUM ARTHROPODA - CHELICERATA PHYLUM ARTHROPODA - CHELICERATA Introduction Merostomata The chelicerates have two distinct body regions; the anterior prosoma (cephalothorax) and posterior opisthosoma (abdomen) that may be divided into

More information

Grasshopper Dissection

Grasshopper Dissection Grasshopper Dissection Introduction: Insects are arthropods with jointed appendages, segmented bodies, and an exoskeleton composed of chitin. Insects are in the class Insecta, & are the largest and most

More information

2. What is the difference between a compound eye and your eye?

2. What is the difference between a compound eye and your eye? INTRODUCTION: If numbers alone are used as a measure of success, the jointedlegged animals are the most successful animals. Their body segmentation suggests that they evolved from segmented worms. The

More information

Science. Activities OCTOBER

Science. Activities OCTOBER Science History Holidays Activities OCTOBER All About Spiders Teacher Notes: Reading: Read the passage about Awesome Arachnids. Hands-on Activities: All About Spiders Organizers 1. Read the 10 statements

More information

Game Ranging / Field Guiding Course. Invertebrates

Game Ranging / Field Guiding Course. Invertebrates 1 2 Module # 2 Component # 1 Introduction to Arachnids Objectives: To achieve an understanding of the wide diversity of animals within the Class Arachnida. Expected Outcomes: To be able to recognise all

More information

Subphylum Cheliceriformes. Biology 300 Invertebrates in Film. Spiders, ticks, mites, scorpions, horseshoe crabs. Arachnid Biology

Subphylum Cheliceriformes. Biology 300 Invertebrates in Film. Spiders, ticks, mites, scorpions, horseshoe crabs. Arachnid Biology Biology 300 Invertebrates in Film Subphylum Cheliceriformes Spiders, ticks, mites, scorpions, horseshoe crabs Arachnid Biology General Characteristics Body composed of two tagmata; the prosoma and opisthoma.

More information

Chapter 3 Notes Parts th Grade Science Mrs. Tracy Tomm

Chapter 3 Notes Parts th Grade Science Mrs. Tracy Tomm Chapter 3 Notes Parts 1-2 8 th Grade Science Mrs. Tracy Tomm Section 3.1 Notes - Animal Classification 1. VERTEBRATES have a backbone made of bone or cartilage, while INVERTEBRATES have no backbone. 2.

More information

Chapter 19. Phylum Arthropoda: Trilobites, Chelicerates, and Myriapods. Anthropodization. Exoskeleton. Phylum Arthropoda. Figure 29.

Chapter 19. Phylum Arthropoda: Trilobites, Chelicerates, and Myriapods. Anthropodization. Exoskeleton. Phylum Arthropoda. Figure 29. Chapter 19 Phylum Arthropoda: Trilobites, Chelicerates, and Myriapods Anthropodization The soft cuticle of the ancestors of arthropods was stiffened by deposition of protein and inert polysaccharide chitin.

More information

C. Proteins can be extracted from waste cooking water, providing nutrients for starving nations.

C. Proteins can be extracted from waste cooking water, providing nutrients for starving nations. Biology Review : The Arthropods Complete this assignment using the following resources: Chapters 36 & 37 in your text book, the book Creepy Crawlies (C.C.), articles found in class on the black table (which

More information

Blue Crab Dissection

Blue Crab Dissection Name: Blue Crab Dissection External Anatomy Examine your crab and note that, unlike more primitive decapods such as shrimps and crayfish, the body is very wide and is dorsoventrally flattened. Most of

More information

CRAYFISH DISSECTION. Image from:

CRAYFISH DISSECTION. Image from: CRAYFISH DISSECTION Image from: http://www.mackers.com/crayfish/ ARTHROPODA jointed foot Arthro = joint pod = foot Animal Groups Image from: http://ology.amnh.org/biodiversity/treeoflife/pages/graph.html

More information

CONTENTS INTRODUCTION ARACHNIDS SPIDERS MORPHOLOGICAL DESCRIPTION OF SPIDERS NATURAL HISTORY OF SPIDERS

CONTENTS INTRODUCTION ARACHNIDS SPIDERS MORPHOLOGICAL DESCRIPTION OF SPIDERS NATURAL HISTORY OF SPIDERS CONTENTS 11. INTRODUCTION 12. ARACHNIDS 13. SPIDERS 15. MORPHOLOGICAL DESCRIPTION OF SPIDERS 19. NATURAL HISTORY OF SPIDERS 26. MYGALOMORPHS 28. ARANEOMORPHS 44. SELECTED COMMON SPIDERS IN SRI LANKA 44.

More information

Chapter 18. Phylum Arthropoda. Anthropodization. Exoskeleton. Figure 29.1a. Versatile Exoskeleton

Chapter 18. Phylum Arthropoda. Anthropodization. Exoskeleton. Figure 29.1a. Versatile Exoskeleton Chapter 18 Phylum Arthropoda Anthropodization The soft cuticle of the ancestors of arthropods was stiffened by deposition of protein and inert polysaccharide chitin. Joints had to provide flexibility and

More information

Contents. Glossary 31 Index 32. When a word is printed in bold, click on it to find its meaning.

Contents. Glossary 31 Index 32. When a word is printed in bold, click on it to find its meaning. Contents Mighty minibeasts 4 Spiders 5 What do spiders look like? 6 Different types of spiders 8 Where in the world are spiders found? 10 Habitats of spiders 12 Life cycles of spiders 14 How do spiders

More information

CRAYFISH DISSECTION. Image from:

CRAYFISH DISSECTION. Image from: CRAYFISH DISSECTION Image from: http://www.mackers.com/crayfish/ Animal Groups Image from: http://ology.amnh.org/biodiversity/treeoflife/pages/graph.html ARTHROPODA jointed foot Arthro = joint pod = foot

More information

INSECT RELATIVES - PANARTHROPODA

INSECT RELATIVES - PANARTHROPODA Entomology BIO 3323 INSECT RELATIVES - PANARTHROPODA The Panarthropoda includes today's arthropods and their close relatives the onychophorans and tardigrades. Although they may not look like they are

More information

CHAPTER 29 ARTHROPODS & ECHINODERMS. Miss Loulousis Biology II

CHAPTER 29 ARTHROPODS & ECHINODERMS. Miss Loulousis Biology II CHAPTER 29 ARTHROPODS & ECHINODERMS Miss Loulousis Biology II 29.1 Arthropods Not EVERY species has each feature, but these are features of the phylum as a whole Segmentation Individual segments often

More information

Zoology. Lab Guide. Exercise 16A Class Asteroidea Sea Stars

Zoology. Lab Guide. Exercise 16A Class Asteroidea Sea Stars Zoology Exercise #16: Echinoderms Lab Guide STARFISH ONLY!!! Echinoderms contain the sea stars, brittle stars, sea urchins, sand dollars, and sea cucumbers. The name echinoderm is derived from this group

More information

Spiders. Written By: Seymour Simon

Spiders. Written By: Seymour Simon Spiders Written By: Seymour Simon Page 2: Most of us have seen a spider or a spider web at home or outdoors. Spiders live nearly everywhere around the world-in grasslands, forests, mountains, deserts,

More information

Worksheet for Morgan/Carter Laboratory #19 Animals II Nematoda, Arthropoda, Echinodermata and Chordata

Worksheet for Morgan/Carter Laboratory #19 Animals II Nematoda, Arthropoda, Echinodermata and Chordata Worksheet for Morgan/Carter Laboratory #19 Animals II Nematoda, Arthropoda, Echinodermata and Chordata BE SURE TO CAREFULLY READ THE INTRODUCTION PRIOR TO ANSWERING THE QUESTIONS!!! You will need to refer

More information

Horseshoe crab molt lab: exploring horseshoe crab anatomy through observation of molted shells

Horseshoe crab molt lab: exploring horseshoe crab anatomy through observation of molted shells Horseshoe crab molt lab: exploring horseshoe crab anatomy through observation of molted shells Developed by: Gary Kreamer, Delaware Division of Fish and Wildlife, with ideas and inspiration from: Dr. Carl

More information

About Arachnids A Guide for Children. Cathryn Sill Illustrated by John Sill

About Arachnids A Guide for Children. Cathryn Sill Illustrated by John Sill About Arachnids About Arachnids A Guide for Children Cathryn Sill Illustrated by John Sill For the One who created arachnids. Genesis 1:25 Published by PEACHTREE PUBLISHERS, LTD. 1700 Chattahoochee Avenue

More information

Note: Exercise 1 should be completed before your assigned lab time.

Note: Exercise 1 should be completed before your assigned lab time. Keying and Animal Taxonomy Lab Learning Objectives: 1 - Become familiar with the construction of an identification key 2 - Accurately use a key to identify unknowns 3 - Accurately apply common name, phylum

More information

Zoology Exercise #10: Phylum Nematoda Lab Guide

Zoology Exercise #10: Phylum Nematoda Lab Guide Zoology Exercise #10: Phylum Nematoda Lab Guide All animals with bilateral symmetry, except the acoelomates, have a body cavity. They are either true coelomates (where peritoneum covers both the inner

More information

Entomology: Structure and Life Process 1 Entomology: Structure and Life Processes 2 Insect Facts 3 Insect History 4 Recall Tagmosis

Entomology: Structure and Life Process 1 Entomology: Structure and Life Processes 2 Insect Facts 3 Insect History 4 Recall Tagmosis Entomology 1.oo3 Entomology: Structure and Life Process 1 Entomology: Structure and Life Processes Matthew J. Grieshop MSU Department of Entomology 2 Insect Facts The major consumers of plant biomass 200

More information

Exploring external anatomical features of the American Horseshoe Crab through observation of molt specimens

Exploring external anatomical features of the American Horseshoe Crab through observation of molt specimens Exploring external anatomical features of the American Horseshoe Crab through observation of molt specimens Developed by: Gary Kreamer, Delaware Division of Fish & Wildlife, Aquatic Resources Education

More information

Flatworms, Nematodes, and

Flatworms, Nematodes, and Flatworms, Nematodes, and Arthropods Bởi: OpenStaxCollege The animal phyla of this and subsequent modules are triploblastic and have an embryonic mesoderm sandwiched between the ectoderm and endoderm.

More information

Phylum Arthropoda Blue Crabs

Phylum Arthropoda Blue Crabs Phylum Arthropoda Blue Crabs The Decapod Crustaceans Blue crabs (Callinectes sapidus) are members of the phylum Arthropoda; organisms which possess jointed appendages and a non-living exoskeleton made

More information

29-2 Form and Function in Invertebrates Slide 1 of 52

29-2 Form and Function in Invertebrates Slide 1 of 52 29-2 Form and Function in 1 of 52 How do different invertebrate phyla carry out life functions? 2 of 52 Feeding and Digestion Feeding and Digestion The simplest animals break down food primarily through

More information

Flatworms. Phylum Platyhelminthes

Flatworms. Phylum Platyhelminthes Flatworms Phylum Platyhelminthes Characteristics of Flatworms Flatworms are acoelomates, which means they have no coelom. A coelom is a fluid-filled body cavity The digestive cavity is the only body cavity

More information

ARTHROPODS CHAPTER. SECTION 1 Phylum Arthropoda. SECTION 2 Subphylum Crustacea. SECTION 3 Subphyla Chelicerata and Myriapoda

ARTHROPODS CHAPTER. SECTION 1 Phylum Arthropoda. SECTION 2 Subphylum Crustacea. SECTION 3 Subphyla Chelicerata and Myriapoda CHAPTER 36 The jointed appendages and hard exoskeleton of this red reef lobster, Enoplometopus occidentalis, are characteristic of arthropods. SECTION 1 Phylum Arthropoda SECTION 2 Subphylum Crustacea

More information

Spiders An introduction to common of Sri Lanka Authored by Ranil P. Nanayakkara

Spiders An introduction to common of Sri Lanka Authored by Ranil P. Nanayakkara An introduction to common Spiders www.dilmahconservation.org of Sri Lanka Authored by Ranil P. Nanayakkara 1 Declaration of Our Core Commitment to Sustainability Dilmah owes its success to the quality

More information

Grasshopper Dissection

Grasshopper Dissection Grasshopper Dissection 1 Background: GRASSHOPPERS are found almost everywhere. They will eat practically any wild or cultivated plant. In some areas of the United States special contraptions called hopperdozers

More information

Class: Myriapoda Centipedes and Millipedes

Class: Myriapoda Centipedes and Millipedes 1 Module # 2 Component # 5 Class: Myriapoda Centipedes and Millipedes Objectives: To become familiar with Centipedes and Millipedes Expected Outcomes: To gain clarification on the differences between centipedes

More information

Internal Morphology. 1.Cut the legs and wings (if present) off your specimen. 5.Use forceps to pull skeleton apart, exposing internal systems.

Internal Morphology. 1.Cut the legs and wings (if present) off your specimen. 5.Use forceps to pull skeleton apart, exposing internal systems. Internal Morphology Insect Dissections Often the best approach to understanding internal morphology is by way of a dissection. For this reason, the entire chapter should be treated as a laboratory activity.

More information

Morphology: 2 Questions. Morphology. The Insect Bauplan. Secondary Segmentation

Morphology: 2 Questions. Morphology. The Insect Bauplan. Secondary Segmentation Morphology Why do we study morphology? This is how we first encounter anything in the world. It is how we come to know a thing and provides the basis for all other inquiries (e.g. physiology, behavior,

More information

The Arthropods Zoology: Part 2

The Arthropods Zoology: Part 2 Biology Chapter 15 The Arthropods Zoology: Part 2 14A Introduction to Arthropods The Malacostracans arthropods - invertebrates with jointed appendages Greek: arthro - "jointed" & pod - "feet" Make up more

More information

Basic Biology and Anatomy of the Tsetse Fly

Basic Biology and Anatomy of the Tsetse Fly 1 Section 1 Basic Biology and Anatomy of the Tsetse Fly 1.1. Introduction The objective of this section is to provide essential information for the subsequent two sections, which give guidelines for conducting

More information

WHAT IS AN INSECT EXTERNAL ANATOMY GROWTH AND DEVELOPMENT INTERNAL ANATOMY & PHYSIOLOGY

WHAT IS AN INSECT EXTERNAL ANATOMY GROWTH AND DEVELOPMENT INTERNAL ANATOMY & PHYSIOLOGY WHAT IS AN INSECT EXTERNAL ANATOMY GROWTH AND DEVELOPMENT INTERNAL ANATOMY & PHYSIOLOGY Body divided into three regions HEAD the head capsule is a sturdy compartment that houses the brain, a mouth opening,

More information

Starfish Dissection. Sea Stars

Starfish Dissection. Sea Stars Starfish Dissection Echinoderms are radially symmetrical animals that are only found in the sea (there are none on land or in fresh water). Echinoderms mean "spiny skin" in Greek. Many, but not all, echinoderms

More information

Starfish Dissection. Echinoderms are radially symmetrical animals that are only found in the sea (there. Introduction: Sea Stars

Starfish Dissection. Echinoderms are radially symmetrical animals that are only found in the sea (there. Introduction: Sea Stars Starfish Dissection Introduction: Echinoderms are radially symmetrical animals that are only found in the sea (there are none on land or in fresh water). Echinoderms mean "spiny skin" in Greek. Many, but

More information

Learning Goals/Objectives (measurable outcomes)

Learning Goals/Objectives (measurable outcomes) Lesson Title and Summary Spiders The children will make a snack in the shape of a spider, hear a story, learn spider facts including spiders help control garden pests, and do a worksheet/acrostic poem

More information

Diversity. Echinodermata means spiny skin Echinoderms usually inhabit shallow coastal waters and ocean trenches organisms in this class include:

Diversity. Echinodermata means spiny skin Echinoderms usually inhabit shallow coastal waters and ocean trenches organisms in this class include: Echinoderms Diversity Echinodermata means spiny skin Echinoderms usually inhabit shallow coastal waters and ocean trenches organisms in this class include: Sea stars Brittle stars Sand dollars Sea cucumbers

More information

Arachnophobe to Arachnophile. Presented by: Wes Robertson Henrico County Standing Water Initiative

Arachnophobe to Arachnophile. Presented by: Wes Robertson Henrico County Standing Water Initiative Arachnophobe to Arachnophile Presented by: Wes Robertson Henrico County Standing Water Initiative Introducing the Spectacular Spider Found worldwide Found in a variety of climates 42,000 plus species 110

More information

Sponges, Cnidarians, and Worms

Sponges, Cnidarians, and Worms Sponges, Cnidarians, and Worms Section 1: What is an animal? Multicellular that feed on other organisms STRUCTURE- levels of organization of cells 1. Cells- basic unit of animal structure 2. Tissues- many

More information

Chapter 3 Notes Parts th & 8 th Grade Science Mrs. Tracy Tomm

Chapter 3 Notes Parts th & 8 th Grade Science Mrs. Tracy Tomm Chapter 3 Notes Parts 1-2 7 th & 8 th Grade Science Mrs. Tracy Tomm Directions: Glue the note worksheet on page 11 FAF Right Find the link for the Animals Ch 3 Textbook on mrstomm.com Assignments Complete

More information

Biology 164 Laboratory

Biology 164 Laboratory Biology 164 Laboratory Transmission Genetics: Inheritance of Mutant Traits in Drosophila Fruit Flies Introduction To reinforce your understanding of basic eukaryotic genetic principles, you will study

More information

Contribution of Animals. Many provide food for us and other animals. Clothing and shoes are sometimes made from animal products

Contribution of Animals. Many provide food for us and other animals. Clothing and shoes are sometimes made from animal products 1 2 Contribution of Animals Many provide food for us and other animals Clothing and shoes are sometimes made from animal products Research shows that holding or petting a cat or dog slows the heartbeat

More information

STD.6 (2015) MOVEMENT IN THE BODY. When an organism moves from one place to another, it is termed as locomotion. locomotion.

STD.6 (2015) MOVEMENT IN THE BODY. When an organism moves from one place to another, it is termed as locomotion. locomotion. STD.6 (2015) MOVEMENT IN THE BODY Q.1 Define Locomotion. When an organism moves from one place to another, it is termed as locomotion. Ex.A jump, hop, walk and swim. Q.2 Differentiate between movement

More information

ANIMAL UNIT *All Weebly Materials are located in the following tabs.

ANIMAL UNIT *All Weebly Materials are located in the following tabs. ANIMAL UNIT *All Weebly Materials are located in the following tabs. 6-3.1 Vertebrates and Invertebrates/6-1.3 Dichotomous Keys 6-3.3 Endothermic and Ectothermic List as many animals as you can in the

More information

Chapter Guided Notes

Chapter Guided Notes Chapter 34-35 Guided Notes 34.1 Phylum Platyhelminthes Flatworms Invertebrates w/ soft, symmetry 3 tissue layers organized into organs & systems Exhibit Planaria Freshwater -shaped anterior and a posterior

More information

a Mud Puddles to Meteors mini-lesson

a Mud Puddles to Meteors mini-lesson spiders a Mud Puddles to Meteors mini-lesson spiders Although many people think of spiders as being a type of insect, they are actually their own animal, so to speak. In other words, despite having many

More information

Biology of Animals ZOO Topic 11.1 Arthropods I: Trilobites, chelicerates, and uniramians. Phylum Arthropoda ( jointed legs )

Biology of Animals ZOO Topic 11.1 Arthropods I: Trilobites, chelicerates, and uniramians. Phylum Arthropoda ( jointed legs ) Biology of Animals ZOO 2040 Topic 11.1 Phylum Arthropoda ( jointed legs ) Alternative Arthropod Phylogenies Their abundance and wide ecological distribution makes this the most diverse animal group (3/4

More information

Observing the Structure of a Squid

Observing the Structure of a Squid Name Class Date Chapter 27 Worms and Mollusks Observing the Structure of a Squid Introduction You are probably familiar with clams, snails, slugs, squids, and octupuses, and you probably have noticed how

More information

3 Invertebrate Structure

3 Invertebrate Structure 3 Invertebrate Structure INTRODUCTION TO DISSECTIONS This is the first of two labs of dissections. The vast majority of the next lab practical will come from these labs. This part of the lab manual contains

More information

Unit 11 Mollusks and Echinoderms Guided Notes

Unit 11 Mollusks and Echinoderms Guided Notes Unit 11 Mollusks and Echinoderms Guided Notes Molluks General Characteristics of Mollusks are a very diverse group of animals that. They contain members that are. However, all have. These body parts are

More information

SEXING TARANTULAS REVISITED

SEXING TARANTULAS REVISITED SEXING TARANTULAS REVISITED Dr. Robert Gale Breene III College of the Southwest, Carlsbad, New Mexico USA Every couple of years, enough new ATS members haven t heard the latest on sexing immature tarantulas.

More information

Discover the microscopic world

Discover the microscopic world Discover the microscopic world Objectives: Become familiar with microscopes and how to use them - Grades 1-3: Work on fine motor skills, encourage curiosity and observation Grade 4+: Observe and discuss

More information

Asteroideas are the true sea stars and sun stars. Ophiuroideas are brittle stars and basket stars.

Asteroideas are the true sea stars and sun stars. Ophiuroideas are brittle stars and basket stars. Starfish Dissection Introduction: Echinoderms are radially symmetrical animals that are only found in the sea (there are none on land or in fresh water). Echinoderms mean "spiny skin" in Greek. Many, but

More information

KIDSPIRATION by Riedell

KIDSPIRATION by Riedell WORM DISSECTION KIDSPIRATION by Riedell CLASSIFICATION Kingdom: Phylum: ANIMALIA Annelida little rings Class: OLIGOCHAETA few bristles SETA (plural: setae) BRISTLES on VENTRAL surface http://www.pgjr.alpine.k12.ut.us/science/whitaker/animal_kingdom/earthworm/earthworm.html

More information

WESTERN BLACK WIDOW SPIDER Class Order Family Genus Species Arachnida Araneae Theridiidae Latrodectus hesperus

WESTERN BLACK WIDOW SPIDER Class Order Family Genus Species Arachnida Araneae Theridiidae Latrodectus hesperus WESTERN BLACK WIDOW SPIDER Arachnida Araneae Theridiidae Latrodectus hesperus Warmer regions of the world to a latitude of about 45 degrees N. and S. Occur throughout all four deserts of SW U.S. On the

More information

Course Information. Course Website. Biology 300 Invertebrates in Film Summer I 2009 Spiders! Stephen M. Shuster Professor of Invertebrate Zoology

Course Information. Course Website. Biology 300 Invertebrates in Film Summer I 2009 Spiders! Stephen M. Shuster Professor of Invertebrate Zoology Biology 300 Invertebrates in Film Summer I 2009 Spiders! Course Information Stephen M. Shuster Professor of Invertebrate Zoology Office: BS 302 Office Hrs: Th 12:30-1:30 Phone: 523-9302, 523-4641, 523-2381

More information

Sponges, Cnidarians, and Worms

Sponges, Cnidarians, and Worms Sponges, Cnidarians, and Worms Section 1: What is an animal? that feed on other organisms STRUCTURE- levels of organization of cells 1. Cells- basic unit of animal structure 2. Tissues- many cells make

More information

Biology Earthworm Dissection

Biology Earthworm Dissection Biology 521 - Earthworm Dissection Kingdom Phylum Class Order Genus Species Animalia Annelida Oligochaeta Haplotaxida Lumbricus L. terrestris PRELAB: The earthworm is an excellent organism to study as

More information

2 Arthropods. section. nab zonediscover Activity. Reading Preview

2 Arthropods. section. nab zonediscover Activity. Reading Preview section 2 Arthropods Reading Preview Concepts Key What are the four major groups of arthropods and what are their characteristics? HOW do crustaceans, arachnids, and centipedes and millipedes differ? Key

More information

ARTHROPOD LABORATORY. Subclass Merostomata 1. Limulus polyphemus horseshoe crab, identify external characteristics (see lecture notes)

ARTHROPOD LABORATORY. Subclass Merostomata 1. Limulus polyphemus horseshoe crab, identify external characteristics (see lecture notes) ARTHROPOD LABORATORY Phylum Arthropoda Subphylum Cheliceriformes Class Celicerata Subclass Merostomata 1. Limulus polyphemus horseshoe crab, identify external characteristics (see lecture notes) Subclass

More information

Name Date Per. HANDOUT Frog Dissection Lab

Name Date Per. HANDOUT Frog Dissection Lab Name Date Per UNIT 6 HANDOUT Frog Dissection Lab Purpose: To observe the anatomy of an amphibian To discover characteristics of complex vertebrates To compare anatomy of the frog to that of other organisms

More information

ì<(sk$m)=bdibdf< +^-Ä-U-Ä-U

ì<(sk$m)=bdibdf< +^-Ä-U-Ä-U Genre Comprehension Skill Text Features Science Content Nonfiction Sequence Captions Labels Glossary Animals Scott Foresman Science 3.2 ì

More information

New record of the jumping spider Epeus exdomus from Nepal (Araneae: Salticidae: Plexippina)

New record of the jumping spider Epeus exdomus from Nepal (Araneae: Salticidae: Plexippina) PECKHAMIA 5., 5 September 07, 5 urn:lsid:zoobank.org:pub:8bcf7-60-5f-adc-d9db9ddf68b (registered SEP 07) ISSN 6 856 (print) ISSN 9 80 (online) New record of the jumping spider (Araneae: Salticidae: Plexippina)

More information

Zoology Exercise #16: Echinoderms Lab Guide

Zoology Exercise #16: Echinoderms Lab Guide Zoology Exercise #16: Echinoderms Lab Guide Echinoderms contain the sea stars, brittle stars, sea urchins, sand dollars, and sea cucumbers. The name echinoderm is derived from this group s dermal endoskeleton

More information

Blastocoelomates, Continued

Blastocoelomates, Continued Blastocoelomates, Continued General Characteristics 1. Triploblastic, bilaterally symmetrial, unsegmented animals. 2. Microscopic a. 400-500 spp b. marine, freshwater, primarily interstitial. a. Elongate,

More information

Week Phylum/Dissection Page Overview of Animals Porifera (Sponges) Cnidaria (Jellyfish and Anemones) Platyhelminthes (Flatworms)

Week Phylum/Dissection Page Overview of Animals Porifera (Sponges) Cnidaria (Jellyfish and Anemones) Platyhelminthes (Flatworms) 1 Table of Contents Week Phylum/Dissection 1 Overview of Animals Phyla Preview Rotation Lab 2a 2b 3a 3b Porifera (Sponges) Sponge Dissection Cnidaria (Jellyfish and Anemones) Hydra Observation Platyhelminthes

More information

Purpose: To observe the different structures of a male and female Ascaris lumbricoides.

Purpose: To observe the different structures of a male and female Ascaris lumbricoides. Biology 1 Name: Pre-lab Discussion: There are over 15,000 species in the Phylum Nematoda. They are round, unsegmented worms. Members of this phylum are free-living or parasitic. The parasitic species can

More information

Lateral Margin. Branchial. Gastric. Frontal. Cardiac. Carpus

Lateral Margin. Branchial. Gastric. Frontal. Cardiac. Carpus 4. External Anatomy 4. External Anatomy King crab bodies are composed of a cephalothorax (fused head and thorax) and an abdomen. Dorsally and laterally, the covering of the cephalothorax is referred to

More information

Animal Phylogeny. Phylum Arthropoda

Animal Phylogeny. Phylum Arthropoda Animal Phylogeny sponges Cnidaria Echinodermata & Chordata Platyhelminthes Molluska & Annelida Nematoda & Arthropoda tissues Deuterostomes Protostomes molting Phylum Arthropoda Insects, crustaceans, spiders,

More information

HONEY BEE BIOLOGY Apprentice Level Training Texas Master Beekeeper Program

HONEY BEE BIOLOGY Apprentice Level Training Texas Master Beekeeper Program HONEY BEE BIOLOGY Apprentice Level Training Texas Master Beekeeper Program Anatomy Overview Three tagmata 1. Head Sensory 2. Thorax Locomotion 3. Abdomen Digestion and reproduction Anatomy Overview O =

More information

Invertebrates. Kindergarten - Second. Life Science TEKS. Vocabulary

Invertebrates. Kindergarten - Second. Life Science TEKS. Vocabulary Invertebrates Kindergarten - Second Life Science TEKS Kindergarten: K.9A, K.9B, K.10B First Grade: 1.9A, 1.9B, 1.9C, 1.10A Second Grade: 2.9A, 2.9C, 2.10A Vocabulary antenna, eyes, insects, interdependence,

More information

ANNOTATIONES ZOOLOGICAE JAPONENSES. Volume 55, No. 2-June Published by the Zoological Society of Japan

ANNOTATIONES ZOOLOGICAE JAPONENSES. Volume 55, No. 2-June Published by the Zoological Society of Japan ANNOTATIONES ZOOLOGICAE JAPONENSES Volume 55, No. 2-June 1982 Published by the Zoological Society of Japan AOKI and Mr. H. HARADA, Yokohama National University, in Eastern Kalimantan, Borneo. Included

More information

BIO Lab 18: Dissection of the Earthworm

BIO Lab 18: Dissection of the Earthworm The Earthworm Harken to me, you that know what is just, my people who have My law in their heart: Fear not the reproach of men and be not afraid of their blasphemies. For the worm shall eat them up as

More information

Amazing Arthropods. Third-Fifth. Life Science TEKS. Life Science Vocabulary

Amazing Arthropods. Third-Fifth. Life Science TEKS. Life Science Vocabulary Amazing Arthropods Third-Fifth Third Grade: 3.9A, 3.9B, 3.10A, 3.10B Life Science TEKS Fourth Grade: 4.9A, 4.9B, 4.10A, 4.10B, 4.10C Fifth Grade: 5.9A, 5.9B, 5.9C, 5.9D, 5.10A, 5.10B, Life Science Vocabulary

More information

Polyneoptera. BIO3333 Entomology. Page 1. Insect Diversity: Polyneoptera. Indirect flight muscles. Wing articulation

Polyneoptera. BIO3333 Entomology. Page 1. Insect Diversity: Polyneoptera. Indirect flight muscles. Wing articulation Insect Diversity: Polyneoptera l Univeristé d Ottawa / University of Ottawa 1 Neoptera Flexion of the wing Loss of caudal filaments Wings have anal furrow 3 rd valvula forms sheath around ovipositor Median

More information

31-2. The Earthworm. . Relate the structure of systems. . Demonstrate dissection technique. . Identifythe major advancesof

31-2. The Earthworm. . Relate the structure of systems. . Demonstrate dissection technique. . Identifythe major advancesof Name Class Date INVESTIGATION 31-2 The Earthworm Introduction The earthworm is a segmented worm. It exhibits more complex structures than any of the more primitive animals that you have studied thus far.

More information

Frog Dissection SNC2P Grade 10 Science Applied Biology Tissues, Organs and Systems of Living Things

Frog Dissection SNC2P Grade 10 Science Applied Biology Tissues, Organs and Systems of Living Things Frog Dissection SNC2P Grade 10 Science Applied Biology Tissues, Organs and Systems of Living Things Purpose To identify and examine the external and internal structures of the frog and compare them with

More information

ARCHAEOGNATHA. Bristletails. Classification Life History & Ecology Distribution. Major Families Fact File Hot Links. Life History & Ecology:

ARCHAEOGNATHA. Bristletails. Classification Life History & Ecology Distribution. Major Families Fact File Hot Links. Life History & Ecology: ARCHAEOGNATHA Bristletails The name Archeognatha, derived from the Greek "archeo" meaning ancient and "gnatha" meaning jaw, refers to the primitive (monocondylic) manner in which the mandibles connect

More information

Phylum Echinodermata

Phylum Echinodermata Phylum Echinodermata Spiny Skin Echinodermata Radially symmetrical in five ways (pentamerous) Echinodermata No head, right or left side, or top or bottom, so we refer to the oral surface (mouth side) and

More information

BIO 221 Invertebrate Zoology I Spring Phylum Rotifera. Trunk. Lecture 20. Sensory Structures: 1. Antennae, eye. 2. Brain, retrocerebral organ.

BIO 221 Invertebrate Zoology I Spring Phylum Rotifera. Trunk. Lecture 20. Sensory Structures: 1. Antennae, eye. 2. Brain, retrocerebral organ. BIO 221 Invertebrate Zoology I Spring 2010 Stephen M. Shuster Northern Arizona University http://www4.nau.edu/isopod Lecture 20 Rotifera Sensory Structures: 1. Antennae, eye. 2. Brain, retrocerebral organ.

More information

into the spiders web 9625D503FD14B1A6D810D3F21F Into The Spiders Web

into the spiders web 9625D503FD14B1A6D810D3F21F Into The Spiders Web Into The Spiders Web Thank you very much for downloading. Maybe you have knowledge that, people have look hundreds times for their chosen books like this, but end up in infectious downloads. Rather than

More information

Overview: Life Without a Backbone. Invertebrates are animals that lack a backbone They account for 95% of known animal species

Overview: Life Without a Backbone. Invertebrates are animals that lack a backbone They account for 95% of known animal species Fig. 33-1 Overview: Life Without a Backbone Invertebrates are animals that lack a backbone They account for 95% of known animal species Fig. 33-2 Calcarea and Silicea ANCESTRAL PROTIST Cnidaria Common

More information

This booklet belongs to: Spring Page 1 of 10

This booklet belongs to: Spring Page 1 of 10 This booklet belongs to: Spring 2017 Page 1 of 10 Frog Dissection Background Amphibians are studied in science for a variety of reasons. Amphibians are unique in many ways because their anatomy allows

More information

Introduction in human anatomy

Introduction in human anatomy Introduction in human anatomy Overview of Anatomy Anatomy is the study of the body structure and the relationships of the various parts of the body Gross or macroscopic (visible structures) Microscopic

More information