Bio 312, Spring 2017 Exam 3 ( 1 ) Name:

Size: px
Start display at page:

Download "Bio 312, Spring 2017 Exam 3 ( 1 ) Name:"

Transcription

1 Bio 312, Spring 2017 Exam 3 ( 1 ) Name: Please write the first letter of your last name in the box; 5 points will be deducted if your name is hard to read or the box does not contain the correct letter. Written answers should be concise and precise; answers typically have short correct answers. Regrade requests cannot be made for exams completed in pencil for any reason. The exam has 100 points total 1. MUTATION:SELECTION BALANCE. Genetic diseases arise from the segregation of deleterious alleles. These are usually recessive, but in rare cases they are co-dominant or dominant. Consider a hypothetical genetic variant, "a", which researchers find is associated with reduced rates of fertility compared to individuals with the wildtype "A" allele. Studies show that individuals that are homozygous for this allele have only 90% the normal rate of reproduction due to decreased fertility. Assume for the questions below that the per generation mutation rate that creates this deleterious allele is 10-6 (approximately correct for single locus) and that the population of the world is approximately 6,000,000,000. (a, 3 pts) If the deleterious allele is recessive, what is the predicted frequency of this allele in the population? (Provide answer to 3 significant figures) (b, 3 pts) If the deleterious allele is recessive, what is the expected number of people experiencing this disorder (i.e., homozygotes) in the world? (c, 3 pts) If the deleterious allele is recessive, what is the expected number of "carriers" for this disorder (i.e., heterozygotes) in the world? (d, 3 pts) If the deleterious allele is dominant, what is the predicted frequency of this allele in the population? (Provide answer to 3 significant figures) (e, 3 pts) If the deleterious allele is dominant, what is the expected number of people homozygous people experiencing this disorder in the world? (f, 3 pts) If the deleterious allele is dominant, what is the expected number of people heteroozygous people experiencing this disorder in the world? f(a) = # affected = # carriers = f(a) = # affected = # carriers =

2 Bio 312, Spring 2017 Exam 3 ( 2 ) Name: 2. EFFECTIVE POPULATION SIZE. (provide answers to nearest 0.01) (a, 3 pts) What is the mean census population size of a population that cycles between 400, 500 and 600 members on alternate years? N= (b, 3 pts) What is the effective population size of a population that cycles between 400, 500 and 600 members on alternate years? Ne= (c, 3 pts) What is the census population size of a population that has 200 males and 700 females? N= (d, 3 pts) What is the effective population size of a population that has 200 males and 700 females? Ne= 3. EVOLUTIONARY RATES. (provide answers to nearest ) Consider a situation in which the homozygote for an advantageous allele (AA) experiences a 4% fitness advantage over the other homozygote (aa) and the frequency of the advantageous allele is p=0.3. (a, 3 pts) If the "A" allele is dominant, what is the frequency of the allele in the next generation? p' = (b, 3 pts) If the "A" allele is co-dominant (h=1/2), what is the frequency of the allele in the next generation? p' = (c, 3 pts) If the "A" allele is recessive, what is the frequency of the allele in the next generation? p' =

3 Bio 312, Spring 2017 Exam 3 ( 3 ) Name: 4. POPULATION GENETICS. Consider a population of 5000 cats at Hardy-weinberg equilibrium with two polymorphic loci that each have two alleles: - One locus controls how much the tongue sticks out and the population possesses two alleles; one dominant allele that confers a "blep" effect whereby the tongue sticks out (see picture below) and a recessive one that confers a normal "non-blep" tongue. - One locus controls pelage pattern and the population possesses two co-dominant alleles; Homozygotes for the "solid" allele have a solid pattern, homozygotes for the "stripe" allele have a striped pattern and heterozygotes have a patchy pattern. (a, 3 pts each) If a " blep" cat with a solid color pattern is mated with a "non-blep" cat with a patchy pattern, what proportion of the offspring have a patchy pattern? (provide answer to nearest whole percent) % patchy = Now assume that the two loci are in linkage equilibrium and the number of individuals of each penotype are as follows: Blep & solid pelage = 408 Blep & patchy pelage = 1224 Blep & striped pelage = 918 Non-blep & solid pelage = 392 Non-blep & patchy pelage = 1176 Non-blep & striped pelage = 882 (b, 3 pts each) What are the frequencies of each of the alleles? (provide answers to nearest 0.001) Freq. of "blep" allele = Freq. of "non-blep" allele = Freq. of "solid" allele = Freq. of "stripe" allele =

4 Bio 312, Spring 2017 Exam 3 ( 4 ) Name: 5. MOLECULAR EVOLUTION FILL IN THE BLANKS (1 pt each = 18 pts total) Consider the evolutionary process from a molecular perspective. Thinking about a single locus, initially every individual in the population has the same allele so each individual is and we would say that the population is at that locus. If, due to random factors, a mutation changes an adenine to a cytosine at the locus we would call it a mutation and that individual is now heterozygous. If that mutation would result in lower fitness for homozygotes, but not heterozygotes we would call it and. If the allele isn't lost due to genetic drift it may increase in frequency and become common; at that point we would refer to it as a. In time the allele may even increase in frequency and in the population, creating a new population in which all individuals have two copies of the new allele at the locus. When this change in the entire population occurs we term this change a. If the nucleotide change alters an amino acid we say the nucleotide change is and if the new amino acid is very different in size or charge from the original we would say that the amino acid change is a one. If this process is driven by positive selection, then the nearby loci are likely to experience a in their ; identifying such regions in genomes can therefore be used to locate regions of recent selection. If this process is driven entirely by genetic drift then the scenario fits the one described in the theory of molecular evolution as proposed by Motoo which predicts A constant rate of evolution per. This theory was later amended by his protégé Tomoko Ohta because data showed that evolutionary rates were constant per instead. Whatever the details, this constant rate allows us to develop something called the which can be used to date evolutionary events using molecular data.

5 Bio 312, Spring 2017 Exam 3 ( 5 ) Name: FOR THE REMAINING QUESTIONS USE YOUR SCANTRON FORM MULTIPLE CHOICE: (2 pts each). For the next two questions consider a large mainland population with two alleles, Bt and Hk, at a locus which are present in equal frequency in a large mainland population. (1) This mainland begins to send migrants to a nearby island on which the Bt allele is present at 25% of the loci. If after the first generation of this process the new frequency of the Bt allele on the island is 27%, which of the following values is closest to the immigration rate to the island? (A) 0.02% (B) 2% (C) 4% (D) 8% (E) 16% (2) If this migration process were to continue for 6 more generations, which of the following values is closest to the frequency of the Bt allele on the island after that amount of time? (A) 27.9% (B) 32.4% (C) 34.8% (D) 40.2% (E) 41.2% (3) The technical term for a population in which any individual can mate with any other, without geographic factors or distance being important, is which of the following (A) Epistatic (C) Overdominant (E) Perturbed (B) Normal (D) Panmictic (4) The Haldane-Muller principle is best paraphrased by which of the following? (A) The rate of mutation is constant over time. (B) The rate of substitution, per year, is constant. (C) The rate of substitution, per generation, is constant. (D) The effects of deleterious mutations on individuals depend only on their rate, not on the fitness effect. (E) The effects of deleterious mutations on population mean fitness depend only on their rate, not on the fitness effect. (5) Which type of genetic data is the best to use for distinguishing individuals within a population from one another? (A) Frameshift polymorphisms (D) Presence or absence of indels (B) Microsatellite repeat variants (E) Radical amino acid polymorphisms (C) Polymorphisms in exons For the next two questions consider a situation in which an isogenic diploid population has 5000 individuals and a generation time of 5 years. Suddenly, a new neutral allele arises by mutation. (6) Which of the following is closest to the probability that it will fix and become the wildtype allele in the future? (A) (C) (E) (B) (D) (7) If this novel alleles fixes and becomes the new wildtype allele, which of the following is closest to how long would this take? (A) 10,000 years (C) 25,000 years (E) 200,000 years (B) 20,000 years (D) 100,000 years

6 Bio 312, Spring 2017 Exam 3 ( 6 ) Name: For the next two questions consider a cross between an AABbccDD and an aabbccdd individual where the alleles at the loci influence a quantitative trait. (8) How many different genotypes can result from the cross? (A) 2 (B) 3 (C) 4 (D) 5 (E) 6 (9) Assume that the effects of the different alleles at each locus are identical with regard to increasing (capital letter) or decreasing (lower case letter) the trait. Assume also that alleles represented with capital letters are dominant to those represented by lower case ones and each locus has the same effect on the phenotype. How many different phenotypes can result from the cross? (A) 1 (B) 2 (C) 3 (D) 4 (E) 5 For the next two questions consider a cross between an AaBbCc and an AaBbCc individual where the alleles at the loci influence a quantitative trait. (10) How many different genotypes can result from the cross? (A) 3 (B) 6 (C) 9 (D) 18 (E) 27 (11) Assume that the effects of the different alleles at each locus are identical with regard to increasing (capital letter) or decreasing (lower case letter) the trait. Assume also that all the alleles are co-dominant and each locus has the same effect on the phenotype. How many different phenotypes can result from the cross? (A) 1 (B) 3 (C) 5 (D) 7 (E) 9 The following 3 questions are based upon the videos you watched in preparation for this exam. (12) Which of the following best describes the worldwide distribution of lactose intolerance? (A) About 33% of all people are lactose intolerant with the highest levels of intolerance in Africa. (B) About 33% of all people are lactose intolerant with the highest levels of intolerance in Asia. (C) About 33% of all people are lactose intolerant with the highest levels of intolerance in Europe. (D) About 66% of all people are lactose intolerant with the highest levels of intolerance in Asia. (E) About 66% of all people are lactose intolerant with the highest levels of intolerance in Europe. (13) Throughout the video "lactose tolerance" is referred to with which of the following phrases? (A) Lactase intolerance (C) Lactose intolerance (E) Milk digestion (B) Lactase persistence (D) Lactose persistence (14) Which of the following statements best describes the type of evolution described in the video? (A) Biological and cultural evolution have acted in opposition. (B) Different molecular adaptations have resulted in analogous phenotypic adaptations. (C) Different molecular adaptations have resulted in homologous phenotypic adaptations. (D) Identical molecular adaptations have resulted in analogous phenotypic adaptations. (E) Identical molecular adaptations have resulted in homologous phenotypic adaptations.

DEFINITIONS: POPULATION: a localized group of individuals belonging to the same species

DEFINITIONS: POPULATION: a localized group of individuals belonging to the same species DEFINITIONS: POPULATION: a localized group of individuals belonging to the same species SPECIES: a group of populations whose individuals have the potential to interbreed and produce fertile offspring

More information

LACTASE PERSISTENCE: EVIDENCE FOR SELECTION

LACTASE PERSISTENCE: EVIDENCE FOR SELECTION LACTASE PERSISTENCE: EVIDENCE FOR SELECTION INTRODUCTION The ability of some human adults to digest lactose the sugar in milk is evidence of recent human evolution. All mammalian babies can digest lactose,

More information

HARDY- WEINBERG PRACTICE PROBLEMS

HARDY- WEINBERG PRACTICE PROBLEMS HARDY- WEINBERG PRACTICE PROBLEMS PROBLEMS TO SOLVE: 1. The proportion of homozygous recessives of a certain population is 0.09. If we assume that the gene pool is large and at equilibrium and all genotypes

More information

(b) What is the allele frequency of the b allele in the new merged population on the island?

(b) What is the allele frequency of the b allele in the new merged population on the island? 2005 7.03 Problem Set 6 KEY Due before 5 PM on WEDNESDAY, November 23, 2005. Turn answers in to the box outside of 68-120. PLEASE WRITE YOUR ANSWERS ON THIS PRINTOUT. 1. Two populations (Population One

More information

Ch. 23 The Evolution of Populations

Ch. 23 The Evolution of Populations Ch. 23 The Evolution of Populations 1 Essential question: Do populations evolve? 2 Mutation and Sexual reproduction produce genetic variation that makes evolution possible What is the smallest unit of

More information

CHAPTER 16 POPULATION GENETICS AND SPECIATION

CHAPTER 16 POPULATION GENETICS AND SPECIATION CHAPTER 16 POPULATION GENETICS AND SPECIATION MULTIPLE CHOICE 1. Which of the following describes a population? a. dogs and cats living in Austin, Texas b. four species of fish living in a pond c. dogwood

More information

When the deleterious allele is completely recessive the equilibrium frequency is: 0.9

When the deleterious allele is completely recessive the equilibrium frequency is: 0.9 PROBLEM SET 2 EVOLUTIONARY BIOLOGY FALL 2016 KEY Mutation, Selection, Migration, Drift (20 pts total) 1) A small amount of dominance can have a major effect in reducing the equilibrium frequency of a harmful

More information

The plant of the day Pinus longaeva Pinus aristata

The plant of the day Pinus longaeva Pinus aristata The plant of the day Pinus longaeva Pinus aristata Today s Topics Non-random mating Genetic drift Population structure Big Questions What are the causes and evolutionary consequences of non-random mating?

More information

Chapter 10 Notes Patterns of Inheritance, Part 1

Chapter 10 Notes Patterns of Inheritance, Part 1 Chapter 10 Notes Patterns of Inheritance, Part 1 I. Gregor Mendel (1822-1884) a. Austrian monk with a scientific background b. Conducted numerous hybridization experiments with the garden pea, Pisum sativum,

More information

Roadmap. Inbreeding How inbred is a population? What are the consequences of inbreeding?

Roadmap. Inbreeding How inbred is a population? What are the consequences of inbreeding? 1 Roadmap Quantitative traits What kinds of variation can selection work on? How much will a population respond to selection? Heritability How can response be restored? Inbreeding How inbred is a population?

More information

Bio 1M: Evolutionary processes

Bio 1M: Evolutionary processes Bio 1M: Evolutionary processes Evolution by natural selection Is something missing from the story I told last chapter? Heritable variation in traits Selection (i.e., differential reproductive success)

More information

Exam #2 BSC Fall. NAME_Key correct answers in BOLD FORM A

Exam #2 BSC Fall. NAME_Key correct answers in BOLD FORM A Exam #2 BSC 2011 2004 Fall NAME_Key correct answers in BOLD FORM A Before you begin, please write your name and social security number on the computerized score sheet. Mark in the corresponding bubbles

More information

Genetics All somatic cells contain 23 pairs of chromosomes 22 pairs of autosomes 1 pair of sex chromosomes Genes contained in each pair of chromosomes

Genetics All somatic cells contain 23 pairs of chromosomes 22 pairs of autosomes 1 pair of sex chromosomes Genes contained in each pair of chromosomes Chapter 6 Genetics and Inheritance Lecture 1: Genetics and Patterns of Inheritance Asexual reproduction = daughter cells genetically identical to parent (clones) Sexual reproduction = offspring are genetic

More information

Section 8.1 Studying inheritance

Section 8.1 Studying inheritance Section 8.1 Studying inheritance Genotype and phenotype Genotype is the genetic constitution of an organism that describes all the alleles that an organism contains The genotype sets the limits to which

More information

PopGen4: Assortative mating

PopGen4: Assortative mating opgen4: Assortative mating Introduction Although random mating is the most important system of mating in many natural populations, non-random mating can also be an important mating system in some populations.

More information

Trait characteristic (hair color) Gene segment of DNA Allele a variety of a trait (brown hair or blonde hair)

Trait characteristic (hair color) Gene segment of DNA Allele a variety of a trait (brown hair or blonde hair) Evolution Change in DNA to favor certain traits over multiple generations Adaptations happen within a single generations Evolution is the result of adding adaptations together Evolution doesn t have a

More information

Meiosis and Genetics

Meiosis and Genetics Meiosis and Genetics Humans have chromosomes in each cell What pattern do you notice in the human karyotype (a technique that organizes chromosomes by type and size)? Humans are diploid 1 Gametes are produced

More information

Lecture 7: Introduction to Selection. September 14, 2012

Lecture 7: Introduction to Selection. September 14, 2012 Lecture 7: Introduction to Selection September 14, 2012 Announcements Schedule of open computer lab hours on lab website No office hours for me week. Feel free to make an appointment for M-W. Guest lecture

More information

Unit 5 Review Name: Period:

Unit 5 Review Name: Period: Unit 5 Review Name: Period: 1 4 5 6 7 & give an example of the following. Be able to apply their meanings: Homozygous Heterozygous Dominant Recessive Genotype Phenotype Haploid Diploid Sex chromosomes

More information

Any inbreeding will have similar effect, but slower. Overall, inbreeding modifies H-W by a factor F, the inbreeding coefficient.

Any inbreeding will have similar effect, but slower. Overall, inbreeding modifies H-W by a factor F, the inbreeding coefficient. Effect of finite population. Two major effects 1) inbreeding 2) genetic drift Inbreeding Does not change gene frequency; however, increases homozygotes. Consider a population where selfing is the only

More information

UNIT 3 GENETICS LESSON #30: TRAITS, GENES, & ALLELES. Many things come in many forms. Give me an example of something that comes in many forms.

UNIT 3 GENETICS LESSON #30: TRAITS, GENES, & ALLELES. Many things come in many forms. Give me an example of something that comes in many forms. UNIT 3 GENETICS LESSON #30: TRAITS, GENES, & ALLELES Many things come in many forms. Give me an example of something that comes in many forms. Genes, too, come in many forms. Main Idea #1 The same gene

More information

Laws of Inheritance. Bởi: OpenStaxCollege

Laws of Inheritance. Bởi: OpenStaxCollege Bởi: OpenStaxCollege The seven characteristics that Mendel evaluated in his pea plants were each expressed as one of two versions, or traits. Mendel deduced from his results that each individual had two

More information

A. Incorrect! Cells contain the units of genetic they are not the unit of heredity.

A. Incorrect! Cells contain the units of genetic they are not the unit of heredity. MCAT Biology Problem Drill PS07: Mendelian Genetics Question No. 1 of 10 Question 1. The smallest unit of heredity is. Question #01 (A) Cell (B) Gene (C) Chromosome (D) Allele Cells contain the units of

More information

Genes and Inheritance (11-12)

Genes and Inheritance (11-12) Genes and Inheritance (11-12) You are a unique combination of your two parents We all have two copies of each gene (one maternal and one paternal) Gametes produced via meiosis contain only one copy of

More information

Solutions to Genetics Unit Exam

Solutions to Genetics Unit Exam Solutions to Genetics Unit Exam Question 1 You are working with an ornamental fish that shows two color phenotypes, red or white. The color is controlled by a single gene. These fish are hermaphrodites

More information

GENETICS - NOTES-

GENETICS - NOTES- GENETICS - NOTES- Warm Up Exercise Using your previous knowledge of genetics, determine what maternal genotype would most likely yield offspring with such characteristics. Use the genotype that you came

More information

Pedigree Construction Notes

Pedigree Construction Notes Name Date Pedigree Construction Notes GO TO à Mendelian Inheritance (http://www.uic.edu/classes/bms/bms655/lesson3.html) When human geneticists first began to publish family studies, they used a variety

More information

Microevolution Changing Allele Frequencies

Microevolution Changing Allele Frequencies Microevolution Changing Allele Frequencies Evolution Evolution is defined as a change in the inherited characteristics of biological populations over successive generations. Microevolution involves the

More information

Biology. Chapter 13. Observing Patterns in Inherited Traits. Concepts and Applications 9e Starr Evers Starr. Cengage Learning 2015

Biology. Chapter 13. Observing Patterns in Inherited Traits. Concepts and Applications 9e Starr Evers Starr. Cengage Learning 2015 Biology Concepts and Applications 9e Starr Evers Starr Chapter 13 Observing Patterns in Inherited Traits Cengage Learning 2015 Cengage Learning 2015 After completing today s activities, students should

More information

Population Genetics Simulation Lab

Population Genetics Simulation Lab Name Period Assignment # Pre-lab: annotate each paragraph Population Genetics Simulation Lab Evolution occurs in populations of organisms and involves variation in the population, heredity, and differential

More information

What we mean more precisely is that this gene controls the difference in seed form between the round and wrinkled strains that Mendel worked with

What we mean more precisely is that this gene controls the difference in seed form between the round and wrinkled strains that Mendel worked with 9/23/05 Mendel Revisited In typical genetical parlance the hereditary factor that determines the round/wrinkled seed difference as referred to as the gene for round or wrinkled seeds What we mean more

More information

Systems of Mating: Systems of Mating:

Systems of Mating: Systems of Mating: 8/29/2 Systems of Mating: the rules by which pairs of gametes are chosen from the local gene pool to be united in a zygote with respect to a particular locus or genetic system. Systems of Mating: A deme

More information

Computational Systems Biology: Biology X

Computational Systems Biology: Biology X Bud Mishra Room 1002, 715 Broadway, Courant Institute, NYU, New York, USA L#4:(October-0-4-2010) Cancer and Signals 1 2 1 2 Evidence in Favor Somatic mutations, Aneuploidy, Copy-number changes and LOH

More information

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 6 Patterns of Inheritance

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 6 Patterns of Inheritance Chapter 6 Patterns of Inheritance Genetics Explains and Predicts Inheritance Patterns Genetics can explain how these poodles look different. Section 10.1 Genetics Explains and Predicts Inheritance Patterns

More information

Ch 8 Practice Questions

Ch 8 Practice Questions Ch 8 Practice Questions Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What fraction of offspring of the cross Aa Aa is homozygous for the dominant allele?

More information

p and q can be thought of as probabilities of selecting the given alleles by

p and q can be thought of as probabilities of selecting the given alleles by Lecture 26 Population Genetics Until now, we have been carrying out genetic analysis of individuals, but for the next three lectures we will consider genetics from the point of view of groups of individuals,

More information

Guided Notes: Simple Genetics

Guided Notes: Simple Genetics Punnett Squares Guided Notes: Simple Genetics In order to determine the a person might inherit, we use a simple diagram called a o Give us of an offspring having particular traits Pieces of the Punnett

More information

8.1 Genes Are Particulate and Are Inherited According to Mendel s Laws 8.2 Alleles and Genes Interact to Produce Phenotypes 8.3 Genes Are Carried on

8.1 Genes Are Particulate and Are Inherited According to Mendel s Laws 8.2 Alleles and Genes Interact to Produce Phenotypes 8.3 Genes Are Carried on Chapter 8 8.1 Genes Are Particulate and Are Inherited According to Mendel s Laws 8.2 Alleles and Genes Interact to Produce Phenotypes 8.3 Genes Are Carried on Chromosomes 8.4 Prokaryotes Can Exchange Genetic

More information

VOCABULARY somatic cell autosome fertilization gamete sex chromosome diploid homologous chromosome sexual reproduction meiosis

VOCABULARY somatic cell autosome fertilization gamete sex chromosome diploid homologous chromosome sexual reproduction meiosis SECTION 6.1 CHROMOSOMES AND MEIOSIS Study Guide KEY CONCEPT Gametes have half the number of chromosomes that body cells have. VOCABULARY somatic cell autosome fertilization gamete sex chromosome diploid

More information

Name: Date: Period: Unit 1 Test: Microevolution (Original Test) Ms. OK, AP Biology,

Name: Date: Period: Unit 1 Test: Microevolution (Original Test) Ms. OK, AP Biology, Name: Date: Period: Unit 1 Test: Microevolution (Original Test) Ms. OK, AP Biology, 2014-2015 General Directions: Use your time effectively, working as quickly as you can without losing accuracy. Do not

More information

Ch 4: Mendel and Modern evolutionary theory

Ch 4: Mendel and Modern evolutionary theory Ch 4: Mendel and Modern evolutionary theory 1 Mendelian principles of inheritance Mendel's principles explain how traits are transmitted from generation to generation Background: eight years breeding pea

More information

Mendel s Methods: Monohybrid Cross

Mendel s Methods: Monohybrid Cross Mendel s Methods: Monohybrid Cross Mendel investigated whether the white-flowered form disappeared entirely by breeding the F1 purple flowers with each other. Crossing two purple F1 monohybrid plants is

More information

SEX. Genetic Variation: The genetic substrate for natural selection. Sex: Sources of Genotypic Variation. Genetic Variation

SEX. Genetic Variation: The genetic substrate for natural selection. Sex: Sources of Genotypic Variation. Genetic Variation Genetic Variation: The genetic substrate for natural selection Sex: Sources of Genotypic Variation Dr. Carol E. Lee, University of Wisconsin Genetic Variation If there is no genetic variation, neither

More information

GENETICS - CLUTCH CH.2 MENDEL'S LAWS OF INHERITANCE.

GENETICS - CLUTCH CH.2 MENDEL'S LAWS OF INHERITANCE. !! www.clutchprep.com CONCEPT: MENDELS EXPERIMENTS AND LAWS Mendel s Experiments Gregor Mendel was an Austrian monk who studied Genetics using pea plants Mendel used pure lines meaning that all offspring

More information

9/25/ Some traits are controlled by a single gene. Selective Breeding: Observing Heredity

9/25/ Some traits are controlled by a single gene. Selective Breeding: Observing Heredity Chapter 7 Learning Outcomes Explain the concept of a single-gene trait Describe Mendel s contributions to the field of genetics Be able to define the terms gene, allele, dominant, recessive, homozygous,

More information

Chapter 1 Heredity. Prepared by: GOAD s Team

Chapter 1 Heredity. Prepared by: GOAD s Team Chapter 1 Heredity Prepared by: GOAD s Team IMPORTANT VOCABULARY WORDS Traits Character Genes Allele Genotype homozygote heterozygote Dominant recessive phenotype WHAT IS HEREDITY? HEREDITY - is a passing

More information

Genetics Unit Exam. Number of progeny with following phenotype Experiment Red White #1: Fish 2 (red) with Fish 3 (red) 100 0

Genetics Unit Exam. Number of progeny with following phenotype Experiment Red White #1: Fish 2 (red) with Fish 3 (red) 100 0 Genetics Unit Exam Question You are working with an ornamental fish that shows two color phenotypes, red or white. The color is controlled by a single gene. These fish are hermaphrodites meaning they can

More information

When bad things happen to good genes: mutation vs. selection

When bad things happen to good genes: mutation vs. selection When bad things happen to good genes: mutation vs. selection Selection tends to increase the frequencies of alleles with higher marginal fitnesses. Does this mean that genes are perfect? No, mutation can

More information

Laboratory. Mendelian Genetics

Laboratory. Mendelian Genetics Laboratory 9 Mendelian Genetics Biology 171L FA17 Lab 9: Mendelian Genetics Student Learning Outcomes 1. Predict the phenotypic and genotypic ratios of a monohybrid cross. 2. Determine whether a gene is

More information

Mendelian Genetics and Beyond Chapter 4 Study Prompts

Mendelian Genetics and Beyond Chapter 4 Study Prompts Mendelian Genetics and Beyond Chapter 4 Study Prompts 1. What is a mode of inheritance? 2. Can you define the following? a. Autosomal dominant b. Autosomal recessive 3. Who was Gregor Mendel? 4. What did

More information

Chapter 23. Population Genetics. I m from the shallow end of the gene pool AP Biology

Chapter 23. Population Genetics. I m from the shallow end of the gene pool AP Biology Chapter 23. Population Genetics I m from the shallow end of the gene pool 1 Essential Questions How can we measure evolutionary change in a population? What produces the variation that makes evolution

More information

Complex Traits Activity INSTRUCTION MANUAL. ANT 2110 Introduction to Physical Anthropology Professor Julie J. Lesnik

Complex Traits Activity INSTRUCTION MANUAL. ANT 2110 Introduction to Physical Anthropology Professor Julie J. Lesnik Complex Traits Activity INSTRUCTION MANUAL ANT 2110 Introduction to Physical Anthropology Professor Julie J. Lesnik Introduction Human variation is complex. The simplest form of variation in a population

More information

EVOLUTION. Hardy-Weinberg Principle DEVIATION. Carol Eunmi Lee 9/20/16. Title goes here 1

EVOLUTION. Hardy-Weinberg Principle DEVIATION. Carol Eunmi Lee 9/20/16. Title goes here 1 Hardy-Weinberg Principle Hardy-Weinberg Theorem Mathematical description of Mendelian inheritance In a non-evolving population, frequency of alleles and genotypes remain constant over generations Godfrey

More information

Lab Activity Report: Mendelian Genetics - Genetic Disorders

Lab Activity Report: Mendelian Genetics - Genetic Disorders Name Date Period Lab Activity Report: Mendelian Genetics - Genetic Disorders Background: Sometimes genetic disorders are caused by mutations to normal genes. When the mutation has been in the population

More information

Characteristics and Traits

Characteristics and Traits Characteristics and Traits Inquire: Characteristics and Traits Overview Alleles do not always behave in dominant and recessive patterns. Incomplete dominance describes situations in which the heterozygote

More information

Name Class Date. KEY CONCEPT The chromosomes on which genes are located can affect the expression of traits.

Name Class Date. KEY CONCEPT The chromosomes on which genes are located can affect the expression of traits. Section 1: Chromosomes and Phenotype KEY CONCEPT The chromosomes on which genes are located can affect the expression of traits. VOCABULARY carrier sex-linked gene X chromosome inactivation MAIN IDEA:

More information

Genetics Test Review

Genetics Test Review Name: Period: Heterozygous a genotype with 2 different alleles ex:(a) Homozygous a genotype with 2 of the same alleles ex:(, or aa) Dominant lleles that are expressed more often and can cover up another

More information

Genetic basis of inheritance and variation. Dr. Amjad Mahasneh. Jordan University of Science and Technology

Genetic basis of inheritance and variation. Dr. Amjad Mahasneh. Jordan University of Science and Technology Genetic basis of inheritance and variation Dr. Amjad Mahasneh Jordan University of Science and Technology Segment 1 Hello and welcome everyone. My name is Amjad Mahasneh. I teach molecular biology at Jordan

More information

Bio 102 Practice Problems Mendelian Genetics and Extensions

Bio 102 Practice Problems Mendelian Genetics and Extensions Bio 102 Practice Problems Mendelian Genetics and Extensions Short answer (show your work or thinking to get partial credit): 1. In peas, tall is dominant over dwarf. If a plant homozygous for tall is crossed

More information

Genetic Variation Junior Science

Genetic Variation Junior Science 2018 Version Genetic Variation Junior Science http://img.publishthis.com/images/bookmarkimages/2015/05/d/5/c/d5cf017fb4f7e46e1c21b874472ea7d1_bookmarkimage_620x480_xlarge_original_1.jpg Sexual Reproduction

More information

Welcome Back! 2/6/18. A. GGSS B. ggss C. ggss D. GgSs E. Ggss. 1. A species of mice can have gray or black fur

Welcome Back! 2/6/18. A. GGSS B. ggss C. ggss D. GgSs E. Ggss. 1. A species of mice can have gray or black fur Welcome Back! 2/6/18 1. A species of mice can have gray or black fur and long or short tails. A cross between blackfurred, long-tailed mice and gray-furred, shorttailed mice produce all black-furred, long-tailed

More information

Genetics PPT Part 1 Biology-Mrs. Flannery

Genetics PPT Part 1 Biology-Mrs. Flannery Genetics PPT Part Biology-Mrs. Flannery In an Abbey Garden Mendel studied garden peas because they were easy to grow, came in many readily distinguishable varieties, had easily visible traits are easily

More information

THE GENETICAL THEORY OF NATURAL SELECTION

THE GENETICAL THEORY OF NATURAL SELECTION Chapter 12 THE GENETICAL THEORY OF NATURAL SELECTION Important points to remember about natural selection: 1. Natural selection is not the same as evolution. Evolution requires the origin of variation

More information

Got Lactase? The Co-evolution of Genes and Culture

Got Lactase? The Co-evolution of Genes and Culture The Making of the Fittest: Natural The Making Selection of the and Fittest: Adaptation Natural Selection and Adaptation OVERVIEW PEDIGREES AND THE INHERITANCE OF LACTOSE INTOLERANCE This activity serves

More information

Case Studies in Ecology and Evolution

Case Studies in Ecology and Evolution 2 Genetics of Small Populations: the case of the Laysan Finch In 1903, rabbits were introduced to a tiny island in the Hawaiian archipelago called Laysan Island. That island is only 187 ha in size, in

More information

Pedigree Analysis Why do Pedigrees? Goals of Pedigree Analysis Basic Symbols More Symbols Y-Linked Inheritance

Pedigree Analysis Why do Pedigrees? Goals of Pedigree Analysis Basic Symbols More Symbols Y-Linked Inheritance Pedigree Analysis Why do Pedigrees? Punnett squares and chi-square tests work well for organisms that have large numbers of offspring and controlled mating, but humans are quite different: Small families.

More information

Honors Biology Test Chapter 9 - Genetics

Honors Biology Test Chapter 9 - Genetics Honors Biology Test Chapter 9 - Genetics 1. The exceptions to the rule that every chromosome is part of a homologous pair are the a. sex chromosomes. c. linked chromosomes. b. autosomes. d. linked autosomes.

More information

Natural Selection & People. Descendents of colonizers. Natural selection. Jeanne Sept 9/8/04. P200 Lecture 1

Natural Selection & People. Descendents of colonizers. Natural selection. Jeanne Sept 9/8/04. P200 Lecture 1 Natural Selection & People Human impact on evolutionary process Evolutionary process impact on people Ethical questions Descendents of colonizers Natural selection ONE mechanism for evolutionary change

More information

Selection at one locus with many alleles, fertility selection, and sexual selection

Selection at one locus with many alleles, fertility selection, and sexual selection Selection at one locus with many alleles, fertility selection, and sexual selection Introduction It s easy to extend the Hardy-Weinberg principle to multiple alleles at a single locus. In fact, we already

More information

Genetics Review. Alleles. The Punnett Square. Genotype and Phenotype. Codominance. Incomplete Dominance

Genetics Review. Alleles. The Punnett Square. Genotype and Phenotype. Codominance. Incomplete Dominance Genetics Review Alleles These two different versions of gene A create a condition known as heterozygous. Only the dominant allele (A) will be expressed. When both chromosomes have identical copies of the

More information

Activity 15.2 Solving Problems When the Genetics Are Unknown

Activity 15.2 Solving Problems When the Genetics Are Unknown f. Blue-eyed, color-blind females 1 2 0 0 g. What is the probability that any of the males will be color-blind? 1 2 (Note: This question asks only about the males, not about all of the offspring. If we

More information

Example: Colour in snapdragons

Example: Colour in snapdragons Incomplete Dominance this occurs when the expression of one allele does not completely mask the expression of another. the result is that a heterozygous organism has a phenotype that is a blend of the

More information

Lab 5: Testing Hypotheses about Patterns of Inheritance

Lab 5: Testing Hypotheses about Patterns of Inheritance Lab 5: Testing Hypotheses about Patterns of Inheritance How do we talk about genetic information? Each cell in living organisms contains DNA. DNA is made of nucleotide subunits arranged in very long strands.

More information

Genetics: field of biology that studies heredity, or the passing of traits from parents to offspring Trait: an inherited characteristic, such as eye

Genetics: field of biology that studies heredity, or the passing of traits from parents to offspring Trait: an inherited characteristic, such as eye Genetics: field of biology that studies heredity, or the passing of traits from parents to offspring Trait: an inherited characteristic, such as eye colour or hair colour Gregor Mendel discovered how traits

More information

Lecture 17: Human Genetics. I. Types of Genetic Disorders. A. Single gene disorders

Lecture 17: Human Genetics. I. Types of Genetic Disorders. A. Single gene disorders Lecture 17: Human Genetics I. Types of Genetic Disorders A. Single gene disorders B. Multifactorial traits 1. Mutant alleles at several loci acting in concert C. Chromosomal abnormalities 1. Physical changes

More information

HEREDITY SAMPLE TOURNAMENT

HEREDITY SAMPLE TOURNAMENT HEREDITY SAMPLE TOURNAMENT PART 1 - BACKGROUND: 1. Heterozygous means. A. Information about heritable traits B. Unique/ different molecular forms of a gene that are possible at a given locus C. Having

More information

Figure 1: Transmission of Wing Shape & Body Color Alleles: F0 Mating. Figure 1.1: Transmission of Wing Shape & Body Color Alleles: Expected F1 Outcome

Figure 1: Transmission of Wing Shape & Body Color Alleles: F0 Mating. Figure 1.1: Transmission of Wing Shape & Body Color Alleles: Expected F1 Outcome I. Chromosomal Theory of Inheritance As early cytologists worked out the mechanism of cell division in the late 1800 s, they began to notice similarities in the behavior of BOTH chromosomes & Mendel s

More information

EEB 122b FIRST MIDTERM

EEB 122b FIRST MIDTERM EEB 122b FIRST MIDTERM Page 1 1 Question 1 B A B could have any slope (pos or neg) but must be above A for all values shown The axes above relate individual growth rate to temperature for Daphnia (a water

More information

MENDEL S LAWS AND MONOHYBRID CROSSES. Day 1 UNIT 6 : GENETICS

MENDEL S LAWS AND MONOHYBRID CROSSES. Day 1 UNIT 6 : GENETICS MENDEL S LAWS AND MONOHYBRID CROSSES Day 1 UNIT 6 : GENETICS Bell-Ringer One of the accepted scientific theories describing the origin of life on Earth is known as chemical evolution. According to this

More information

Name Period. Keystone Vocabulary: genetics fertilization trait hybrid gene allele Principle of dominance segregation gamete probability

Name Period. Keystone Vocabulary: genetics fertilization trait hybrid gene allele Principle of dominance segregation gamete probability Name Period BIO B2 GENETICS (Chapter 11) You should be able to: 1. Describe and/or predict observed patterns of inheritance (dominant, recessive, co- dominant, incomplete dominance, sex- linked, polygenic

More information

GENETIC EQUILIBRIUM. Chapter 16

GENETIC EQUILIBRIUM. Chapter 16 GENETIC EQUILIBRIUM Chapter 16 16-1 Population Genetics Population= number of organisms of the same species in a particular place at a point in time Gene pool= total genetic information of a population

More information

Genetics and Diversity Punnett Squares

Genetics and Diversity Punnett Squares Genetics and Diversity Punnett Squares 1 OUTCOME QUESTION(S): S1-1-12: How are the features of the parents inherited to create unique offspring? Vocabulary & Concepts Allele Dominant Recessive Genotype

More information

Activities to Accompany the Genetics and Evolution App for ipad and iphone

Activities to Accompany the Genetics and Evolution App for ipad and iphone Activities to Accompany the Genetics and Evolution App for ipad and iphone All of the following questions can be answered using the ipad version of the Genetics and Evolution App. When using the iphone

More information

Genes and Inheritance

Genes and Inheritance Genes and Inheritance Variation Causes of Variation Variation No two people are exactly the same The differences between people is called VARIATION. This variation comes from two sources: Genetic cause

More information

The laws of Heredity. Allele: is the copy (or a version) of the gene that control the same characteristics.

The laws of Heredity. Allele: is the copy (or a version) of the gene that control the same characteristics. The laws of Heredity 1. Definition: Heredity: The passing of traits from parents to their offspring by means of the genes from the parents. Gene: Part or portion of a chromosome that carries genetic information

More information

Principles of Genetics Biology 204 Marilyn M. Shannon, M.A.

Principles of Genetics Biology 204 Marilyn M. Shannon, M.A. Principles of Genetics Biology 204 Marilyn M. Shannon, M.A. Introduction Nature versus nurture is a topic often informally discussed. Are world-class musicians that good because they inherited the right

More information

Genetics & The Work of Mendel

Genetics & The Work of Mendel Genetics & The Work of Mendel 2006-2007 Gregor Mendel Modern genetics began in the mid-1800s in an abbey garden, where a monk named Gregor Mendel documented inheritance in peas used experimental method

More information

BIOL 364 Population Biology Fairly testing the theory of evolution by natural selection with playing cards

BIOL 364 Population Biology Fairly testing the theory of evolution by natural selection with playing cards BIOL 364 Population Biology Fairly testing the theory of evolution by natural selection with playing cards Game I: The Basics Scenario: Our classroom is now a closed population (no immigration or emigration)

More information

Pre-AP Biology Unit 7 Genetics Review Outline

Pre-AP Biology Unit 7 Genetics Review Outline Unit 7 Genetics Review Outline Pre-AP Biology 2017-2018 LT 1 - I can explain the relationships among alleles, genes, chromosomes, genotypes, and phenotypes. This target covers application of the vocabulary

More information

Mendelian Genetics. Gregor Mendel. Father of modern genetics

Mendelian Genetics. Gregor Mendel. Father of modern genetics Mendelian Genetics Gregor Mendel Father of modern genetics Objectives I can compare and contrast mitosis & meiosis. I can properly use the genetic vocabulary presented. I can differentiate and gather data

More information

Biology 105: Introduction to Genetics Midterm EXAM. Part1. Definitions. 1 Recessive allele. Name. Student ID. 2 Homologous chromosomes

Biology 105: Introduction to Genetics Midterm EXAM. Part1. Definitions. 1 Recessive allele. Name. Student ID. 2 Homologous chromosomes Biology 105: Introduction to Genetics Midterm EXAM Part1 Definitions 1 Recessive allele Name Student ID 2 Homologous chromosomes Before starting, write your name on the top of each page Make sure you have

More information

Gregor Mendel and Genetics Worksheets

Gregor Mendel and Genetics Worksheets Gregor Mendel and Genetics Worksheets Douglas Wilkin, Ph.D. (DWilkin) Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book,

More information

Introduction to Genetics and Heredity

Introduction to Genetics and Heredity Introduction to Genetics and Heredity Although these dogs have similar characteristics they are each unique! I. Early Ideas About Heredity A. The Theory of Blending Inheritance Each parent contributes

More information

Lecture 18 Basics: Genes and Alleles

Lecture 18 Basics: Genes and Alleles Lecture 18 Basics: Genes and Alleles Basic vocabulary Gene: Allele: Homologous chromosomes: Homozygous vs heterozygous Genotype: Phenotype: Lecture 18 Page 1 More vocabulary: P (Parental) generation: Gamete:

More information

Genetics & The Work of Mendel

Genetics & The Work of Mendel Genetics & The Work of Mendel 2006-2007 Gregor Mendel Modern genetics began in the mid-1800s in an abbey garden, where a monk named Gregor Mendel documented inheritance in peas used experimental method

More information

The Biology and Genetics of Cells and Organisms The Biology of Cancer

The Biology and Genetics of Cells and Organisms The Biology of Cancer The Biology and Genetics of Cells and Organisms The Biology of Cancer Mendel and Genetics How many distinct genes are present in the genomes of mammals? - 21,000 for human. - Genetic information is carried

More information

Patterns of Inheritance

Patterns of Inheritance Patterns of Inheritance Mendel the monk studied inheritance keys to his success: he picked pea plants he focused on easily categorized traits he used true-breeding populations parents always produced offspring

More information

Mendelian Genetics Chapter 11

Mendelian Genetics Chapter 11 Mendelian Genetics Chapter 11 Starts on page 308 Roots, Prefixes & Suffixes: homo = hetero = geno = pheno = zyg = co = poly = Section 11-1: Mendel & His Peas I. Vocabulary Words: A. Gene - a small section

More information

Evolution. Determining Allele Frequency These frogs are diploid, thus have two copies of their genes for color. Determining Allele Frequency

Evolution. Determining Allele Frequency These frogs are diploid, thus have two copies of their genes for color. Determining Allele Frequency Evolution Microevolution Changing Allele Frequencies Evolution is defined as a change in the inherited characteristics of biological populations over successive generations. Microevolution involves the

More information

Genetics and Heredity Notes

Genetics and Heredity Notes Genetics and Heredity Notes I. Introduction A. It was known for 1000s of years that traits were inherited but scientists were unsure about the laws that governed this inheritance. B. Gregor Mendel (1822-1884)

More information