Inbreeding and Outbreeding Depression. Nov. 20, 2018 ( ) HIDE, Ikumi

Size: px
Start display at page:

Download "Inbreeding and Outbreeding Depression. Nov. 20, 2018 ( ) HIDE, Ikumi"

Transcription

1 Inbreeding and Outbreeding Depression Nov. 20, 2018 ( ) HIDE, Ikumi

2 Review: Inbreeding/Outbreeding Depression? What is inbreeding depression? When inbred individuals have lower fitness than others, it is called inbreeding depression. What is outbreeding depression? The opposite of inbreeding depression When outbred individuals have lower fitness than others, it is called outbreeding depression.

3 How does inbreeding depression happen? In an inbred population, it is more likely for each individual to have homozygote More likely to have recessive deleterious homozygote Lower fitness than outbreeding individuals : Recessive deleterious allele pf + p 2 (1-f) 2pq (1-f) qf + q 2 (1-f) This frequency increases as f increases

4 How does outbreeding depression happen? Assume one parent is from population A and another is from population B Not adaptive to either in population A or B Due to recombination, some adaptive gene combination might be lost. Effects seen in F 2 generation ~ Hufford et al. (2012) Ecol Evol.

5 How does outbreeding depression happen? Example: Not adaptive to either in population A or B Adaptive Population A Adaptive Population B

6 How does outbreeding depression happen? Example: Not adaptive to either in population A or B Adaptive Population A Not adaptive to either!! Outbred individual Adaptive Population B

7 How does outbreeding depression happen? Example: Some adaptive gene combination might be lost. Considering epistasis In this example, pair of Blue-Green or Red-Yellow is needed for high fitness

8 How does outbreeding depression happen? Example: Some adaptive gene combination might be lost. F 1 Possible gametes

9 How does outbreeding depression happen? Example: Some adaptive gene combination might be lost. Examples of F 2 Yellow-Red pair is absent, so it has only 1 fit pair This effect is seen after 2 generations

10 Considering both Intermediate outcrossing distance yields the highest fitness Model research Distance - Fitness Field research Distance Grain yield (Lynch 1991)

11 What inbreeding depression can cause Sometimes, inbreeding can lead to higher fitness Purging (Hedrick 1994) Recessive deleterious alleles are lost faster in inbreeding population Inbreeding load drops faster as well

12 If inbreeding does not happen : Recessive lethal allele p 2 2pq q 2 die Small quantity of deleterious allele is lost each generation It takes long time to lose deleterious allele

13 If inbreeding DOES happen : Recessive lethal allele pf + p 2 (1-f) 2pq (1-f) qf + q 2 (1-f) die Larger quantity of deleterious allele is lost each generation It s much faster to lose deleterious allele (Fisher s fundamental theorem)

14 Effect of purging w/ purging w/ purging w/o purging w/o purging When effective size is suddenly decreased With purging, fitness can recover (Hedrick & Garcia-Dorado 2016)

15 Problems in purging Is it worth to deliberately introduce inbreeding? It s risky Inbreeding leads to lower effective size, it can decrease genetic diversity With higher drift effect, fit alleles might be lost too It is hard to measure how much purging is occurring (Even within similar taxa, purging is seen in some of them)

16 What inbreeding depression can cause Genetic rescue (Tallmon 2004) Introducing individuals from other populations, beneficial alleles or genetic variance might be increased.

17 What inbreeding depression can cause Example : allele with lower fitness With lower effective size, strong inbreeding and drift, this fit allele might be lost

18 What inbreeding depression can cause Example : allele with lower fitness After inbreeding & drift, lower fitness

19 What inbreeding depression can cause Example : allele with lower fitness Another genotype is introduced

20 What inbreeding depression can cause Example etc : allele with lower fitness Increase in genetic variance Recovery in fitness

21 Potential problems in genetic rescue In natural, it can happen in isolated populations (e.g. islands) Is it worth to deliberately introduce inbreeding? There are several cases in succeeding fitness recovery, but there are still risks. Outbreeding depression: if an introduced individual is genetically too different, it can cause the decrease in average fitness

22 Potential problems in genetic rescue There are several cases in succeeding fitness recovery, but there are still risks. Sudden increase in individuals with deleterious alleles: it is possible an introduced individual has much higher reproductive success. Later, in the F2 population, inbreeding coefficient increases. (Hedrick & Garcia-Dorado 2016)

23 Potential problems in genetic rescue Example Inbreds Introduced individual

24 Potential problems in genetic rescue Example F 1

25 Potential problems in genetic rescue Example F 2 Because of the highly reproductive introduced individual, genetic variance rather decreased.

26 Summary Inbreeding depression (How?) Outbreeding depression (How?) Optimal outcrossing distance for the highest fitness What is derived from inbreeding Purging Risks: Lower effective size Genetic rescue Risks: Outbreeding depression Risks: Burst in deleterious alleles

Roadmap. Inbreeding How inbred is a population? What are the consequences of inbreeding?

Roadmap. Inbreeding How inbred is a population? What are the consequences of inbreeding? 1 Roadmap Quantitative traits What kinds of variation can selection work on? How much will a population respond to selection? Heritability How can response be restored? Inbreeding How inbred is a population?

More information

The plant of the day Pinus longaeva Pinus aristata

The plant of the day Pinus longaeva Pinus aristata The plant of the day Pinus longaeva Pinus aristata Today s Topics Non-random mating Genetic drift Population structure Big Questions What are the causes and evolutionary consequences of non-random mating?

More information

Any inbreeding will have similar effect, but slower. Overall, inbreeding modifies H-W by a factor F, the inbreeding coefficient.

Any inbreeding will have similar effect, but slower. Overall, inbreeding modifies H-W by a factor F, the inbreeding coefficient. Effect of finite population. Two major effects 1) inbreeding 2) genetic drift Inbreeding Does not change gene frequency; however, increases homozygotes. Consider a population where selfing is the only

More information

SEX. Genetic Variation: The genetic substrate for natural selection. Sex: Sources of Genotypic Variation. Genetic Variation

SEX. Genetic Variation: The genetic substrate for natural selection. Sex: Sources of Genotypic Variation. Genetic Variation Genetic Variation: The genetic substrate for natural selection Sex: Sources of Genotypic Variation Dr. Carol E. Lee, University of Wisconsin Genetic Variation If there is no genetic variation, neither

More information

Lecture 7: Introduction to Selection. September 14, 2012

Lecture 7: Introduction to Selection. September 14, 2012 Lecture 7: Introduction to Selection September 14, 2012 Announcements Schedule of open computer lab hours on lab website No office hours for me week. Feel free to make an appointment for M-W. Guest lecture

More information

Lecture 5 Inbreeding and Crossbreeding. Inbreeding

Lecture 5 Inbreeding and Crossbreeding. Inbreeding Lecture 5 Inbreeding and Crossbreeding Bruce Walsh lecture notes Introduction to Quantitative Genetics SISG, Seattle 16 18 July 018 1 Inbreeding Inbreeding = mating of related individuals Often results

More information

EXPERIMENTAL EVOLUTION OF THE GENETIC LOAD AND ITS IMPLICATIONS FOR THE GENETIC BASIS OF INBREEDING DEPRESSION

EXPERIMENTAL EVOLUTION OF THE GENETIC LOAD AND ITS IMPLICATIONS FOR THE GENETIC BASIS OF INBREEDING DEPRESSION ORIGINAL ARTICLE doi:10.1111/j.1558-5646.2008.00441.x EXPERIMENTAL EVOLUTION OF THE GENETIC LOAD AND ITS IMPLICATIONS FOR THE GENETIC BASIS OF INBREEDING DEPRESSION Charles W. Fox, 1,2 Kristy L. Scheibly,

More information

Inbreeding and Inbreeding Depression

Inbreeding and Inbreeding Depression Inbreeding and Inbreeding Depression Inbreeding is mating among relatives which increases homozygosity Why is Inbreeding a Conservation Concern: Inbreeding may or may not lead to inbreeding depression,

More information

When the deleterious allele is completely recessive the equilibrium frequency is: 0.9

When the deleterious allele is completely recessive the equilibrium frequency is: 0.9 PROBLEM SET 2 EVOLUTIONARY BIOLOGY FALL 2016 KEY Mutation, Selection, Migration, Drift (20 pts total) 1) A small amount of dominance can have a major effect in reducing the equilibrium frequency of a harmful

More information

Bio 1M: Evolutionary processes

Bio 1M: Evolutionary processes Bio 1M: Evolutionary processes Evolution by natural selection Is something missing from the story I told last chapter? Heritable variation in traits Selection (i.e., differential reproductive success)

More information

Beef Cattle Handbook

Beef Cattle Handbook Beef Cattle Handbook BCH-1400 Product of Extension Beef Cattle Resource Committee The Genetic Principles of Crossbreeding David S. Buchanan, Oklahoma State University Sally L. Northcutt, Oklahoma State

More information

Ch. 23 The Evolution of Populations

Ch. 23 The Evolution of Populations Ch. 23 The Evolution of Populations 1 Essential question: Do populations evolve? 2 Mutation and Sexual reproduction produce genetic variation that makes evolution possible What is the smallest unit of

More information

EVOLUTION. Hardy-Weinberg Principle DEVIATION. Carol Eunmi Lee 9/20/16. Title goes here 1

EVOLUTION. Hardy-Weinberg Principle DEVIATION. Carol Eunmi Lee 9/20/16. Title goes here 1 Hardy-Weinberg Principle Hardy-Weinberg Theorem Mathematical description of Mendelian inheritance In a non-evolving population, frequency of alleles and genotypes remain constant over generations Godfrey

More information

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail.

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Author(s): Pekkala, Nina; Knott, Emily; Kotiaho, Janne Sakari; Nissinen,

More information

Will now consider in detail the effects of relaxing the assumption of infinite-population size.

Will now consider in detail the effects of relaxing the assumption of infinite-population size. FINITE POPULATION SIZE: GENETIC DRIFT READING: Nielsen & Slatkin pp. 21-27 Will now consider in detail the effects of relaxing the assumption of infinite-population size. Start with an extreme case: a

More information

HARDY- WEINBERG PRACTICE PROBLEMS

HARDY- WEINBERG PRACTICE PROBLEMS HARDY- WEINBERG PRACTICE PROBLEMS PROBLEMS TO SOLVE: 1. The proportion of homozygous recessives of a certain population is 0.09. If we assume that the gene pool is large and at equilibrium and all genotypes

More information

Example: Colour in snapdragons

Example: Colour in snapdragons Incomplete Dominance this occurs when the expression of one allele does not completely mask the expression of another. the result is that a heterozygous organism has a phenotype that is a blend of the

More information

Codominance. P: H R H R (Red) x H W H W (White) H W H R H W H R H W. F1: All Roan (H R H W x H R H W ) Name: Date: Class:

Codominance. P: H R H R (Red) x H W H W (White) H W H R H W H R H W. F1: All Roan (H R H W x H R H W ) Name: Date: Class: Name: Date: Class: (Exceptions to Mendelian Genetics Continued) Codominance Firstly, it is important to understand that the meaning of the prefix "co is "together" (i.e. cooperate = work together, coexist

More information

Inbreeding and Crossbreeding. Bruce Walsh lecture notes Uppsala EQG 2012 course version 2 Feb 2012

Inbreeding and Crossbreeding. Bruce Walsh lecture notes Uppsala EQG 2012 course version 2 Feb 2012 Inbreeding and Crossbreeding Bruce Walsh lecture notes Uppsala EQG 2012 course version 2 Feb 2012 Inbreeding Inbreeding = mating of related individuals Often results in a change in the mean of a trait

More information

INBREEDING/SELFING/OUTCROSSING

INBREEDING/SELFING/OUTCROSSING 10.13.09 6. INBREEDING/SELFING/OUTCROSSING A. THE QUESTIONS. Is the trait vulnerable to inbreeding depression? What is the selfing or outcrossing rate in the population? How many mating partners are represented

More information

Inbreeding: Its Meaning, Uses and Effects on Farm Animals

Inbreeding: Its Meaning, Uses and Effects on Farm Animals 1 of 10 11/13/2009 4:33 PM University of Missouri Extension G2911, Reviewed October 1993 Inbreeding: Its Meaning, Uses and Effects on Farm Animals Dale Vogt, Helen A. Swartz and John Massey Department

More information

Genetics All somatic cells contain 23 pairs of chromosomes 22 pairs of autosomes 1 pair of sex chromosomes Genes contained in each pair of chromosomes

Genetics All somatic cells contain 23 pairs of chromosomes 22 pairs of autosomes 1 pair of sex chromosomes Genes contained in each pair of chromosomes Chapter 6 Genetics and Inheritance Lecture 1: Genetics and Patterns of Inheritance Asexual reproduction = daughter cells genetically identical to parent (clones) Sexual reproduction = offspring are genetic

More information

Tansley review. Environment-dependent inbreeding depression: its ecological and evolutionary significance. New Phytologist. Review

Tansley review. Environment-dependent inbreeding depression: its ecological and evolutionary significance. New Phytologist. Review Review Tansley review Environment-dependent inbreeding depression: its ecological and evolutionary significance Author for correspondence: Pierre-Olivier Cheptou Tel : +33 () 4 67 61 32 68 Email: pierre-olivier.cheptou@cefe.cnrs.fr

More information

How is genetic taken into account in captive breeding program? Asan Hilal Dubois Anne-Cécile

How is genetic taken into account in captive breeding program? Asan Hilal Dubois Anne-Cécile How is genetic taken into account in captive breeding program? Asan Hilal Dubois Anne-Cécile Content What is captive breeding? Disadvantages of captive breeding Genetic as a solution? How genetic is used?

More information

Evolution of gender Sex ratio how many males and females? Sex determination how did they get to be male/female? Some truly weird animals

Evolution of gender Sex ratio how many males and females? Sex determination how did they get to be male/female? Some truly weird animals 1 Roadmap Finishing up inbreeding Evolution of gender Sex ratio how many males and females? Sex determination how did they get to be male/female? Some truly weird animals 2 Midterm Mean 72.6 Range 35-92

More information

The selfish gene. mitochondrium

The selfish gene. mitochondrium The selfish gene selection acts mostly for the benefit of the individual sometimes selection may act for the benefit of relatives rarely, selection acts for the benefit of the group mitochondrium in asexual

More information

Diallel Analysis and its Applications in Plant Breeding

Diallel Analysis and its Applications in Plant Breeding Diallel Analysis and its Applications in Plant Breeding Madhu Choudhary*, Kana Ram Kumawat and Ravi Kumawat Department of Plant Breeding and Genetics, S.K.N. Agriculture University, Jobner-303329, Jaipur

More information

A test of quantitative genetic theory using Drosophila effects of inbreeding and rate of inbreeding on heritabilities and variance components #

A test of quantitative genetic theory using Drosophila effects of inbreeding and rate of inbreeding on heritabilities and variance components # Theatre Presentation in the Commision on Animal Genetics G2.7, EAAP 2005 Uppsala A test of quantitative genetic theory using Drosophila effects of inbreeding and rate of inbreeding on heritabilities and

More information

Mechanisms of Evolution

Mechanisms of Evolution Mechanisms of Evolution TEKS 7(F) analyze and evaluate the effects of other evolutionary mechanisms, including genetic drift, gene flow, mutation, and recombination Evolution is. For Darwin (1859): Evolution

More information

Assessment Schedule 2015 Biology: Demonstrate understanding of genetic variation and change (91157)

Assessment Schedule 2015 Biology: Demonstrate understanding of genetic variation and change (91157) NCEA Level 2 Biology (91157) 2015 page 1 of 6 Assessment Schedule 2015 Biology: Demonstrate understanding of genetic variation and change (91157) Assessment Criteria Achievement Achievement with Merit

More information

Bio 312, Spring 2017 Exam 3 ( 1 ) Name:

Bio 312, Spring 2017 Exam 3 ( 1 ) Name: Bio 312, Spring 2017 Exam 3 ( 1 ) Name: Please write the first letter of your last name in the box; 5 points will be deducted if your name is hard to read or the box does not contain the correct letter.

More information

How Populations Evolve

How Populations Evolve Chapter 16: pp. 283-298 BIOLOGY 10th Edition How Populations Evolve 10% of population Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. natural disaster kills five

More information

Systems of Mating: Systems of Mating:

Systems of Mating: Systems of Mating: 8/29/2 Systems of Mating: the rules by which pairs of gametes are chosen from the local gene pool to be united in a zygote with respect to a particular locus or genetic system. Systems of Mating: A deme

More information

Genetics. The study of heredity. Father of Genetics: Gregor Mendel (mid 1800 s) Developed set of laws that explain how heredity works

Genetics. The study of heredity. Father of Genetics: Gregor Mendel (mid 1800 s) Developed set of laws that explain how heredity works Genetics The study of heredity Father of Genetics: Gregor Mendel (mid 1800 s) Developed set of laws that explain how heredity works Father of Genetics: Gregor Mendel original pea plant (input) offspring

More information

Mating Systems. 1 Mating According to Index Values. 1.1 Positive Assortative Matings

Mating Systems. 1 Mating According to Index Values. 1.1 Positive Assortative Matings Mating Systems After selecting the males and females that will be used to produce the next generation of animals, the next big decision is which males should be mated to which females. Mating decisions

More information

BIOL 364 Population Biology Fairly testing the theory of evolution by natural selection with playing cards

BIOL 364 Population Biology Fairly testing the theory of evolution by natural selection with playing cards BIOL 364 Population Biology Fairly testing the theory of evolution by natural selection with playing cards Game I: The Basics Scenario: Our classroom is now a closed population (no immigration or emigration)

More information

p w We can see what happens with various types of selection by substituting explicit values for the fitnesses of the different genotypic classes.

p w We can see what happens with various types of selection by substituting explicit values for the fitnesses of the different genotypic classes. BACK TO THIS EQUATION p pq[ p( w waa ) q( waa w w AA aa )] We can see what happens with various types of selection by substituting explicit values for the fitnesses of the different genotypic classes.

More information

Meiosis and Introduction to Inheritance

Meiosis and Introduction to Inheritance Meiosis and Introduction to Inheritance Instructions Activity 1. Getting Started: Build a Pair of Bead Chromosomes Materials bag labeled diploid human genome (male) bag labeled diploid human genome (female)

More information

GENETIC DRIFT & EFFECTIVE POPULATION SIZE

GENETIC DRIFT & EFFECTIVE POPULATION SIZE Instructor: Dr. Martha B. Reiskind AEC 450/550: Conservation Genetics Spring 2018 Lecture Notes for Lectures 3a & b: In the past students have expressed concern about the inbreeding coefficient, so please

More information

INBREEDING DEPRESSION IN CONSERVATION BIOLOGY

INBREEDING DEPRESSION IN CONSERVATION BIOLOGY Annu. Rev. Ecol. Syst. 2000. 31:139 62 Copyright c 2000 by Annual Reviews. All rights reserved INBREEDING DEPRESSION IN CONSERVATION BIOLOGY Philip W. Hedrick Department of Biology, Arizona State University,

More information

Lecture 9: Hybrid Vigor (Heterosis) Michael Gore lecture notes Tucson Winter Institute version 18 Jan 2013

Lecture 9: Hybrid Vigor (Heterosis) Michael Gore lecture notes Tucson Winter Institute version 18 Jan 2013 Lecture 9: Hybrid Vigor (Heterosis) Michael Gore lecture notes Tucson Winter Institute version 18 Jan 2013 Breaking Yield Barriers for 2050 Phillips 2010 Crop Sci. 50:S-99-S-108 Hybrid maize is a modern

More information

Two hierarchies. Genes Chromosomes Organisms Demes Populations Species Clades

Two hierarchies. Genes Chromosomes Organisms Demes Populations Species Clades Evolution cont d Two hierarchies Genes Chromosomes Organisms Demes Populations Species Clades Molecules Cells Organisms Populations Communities Ecosystems Regional Biotas At its simplest level Evolution

More information

Measuring the effect of inbreeding on reproductive success in a population of fruit flies (Raleigh)

Measuring the effect of inbreeding on reproductive success in a population of fruit flies (Raleigh) Measuring the effect of inbreeding on reproductive success in a population of fruit flies (Raleigh) Sara Mohebbi Degree project in biology, Master of science (2 years), 2012 Examensarbete i biologi 30

More information

Population Genetics Simulation Lab

Population Genetics Simulation Lab Name Period Assignment # Pre-lab: annotate each paragraph Population Genetics Simulation Lab Evolution occurs in populations of organisms and involves variation in the population, heredity, and differential

More information

The potential of double haploid cassava via irradiated pollen

The potential of double haploid cassava via irradiated pollen The potential of double haploid cassava via irradiated pollen Mary Buttibwa 1,2, Robert Kawuki 1, Arthur K. Tugume 2, Yona Baguma 1 1 NaCRRI, Namulonge, Uganda, 2 Makerere Unversity, Uganda World congress

More information

Hybridization and Conservation Allendorf, Chapter 17

Hybridization and Conservation Allendorf, Chapter 17 1. Overview of Genetic Concerns Anthropogenic Problem Overexploitation Habitat degradation (inc. pollution) Alien species (inc. disease) Climate change Habitat loss Habitat fragmentation Genetic Effect

More information

Terminology. Population Size and Extinction. Terminology. Population Size and Extinction. Population Size and Extinction

Terminology. Population Size and Extinction. Terminology. Population Size and Extinction. Population Size and Extinction Terminology Science is simply common sense at its best that is, rigidly accurate in observation, and merciless to fallacy in logic. Thomas Henry Huxley Locus Allele Gene Chromosome Homozygote Heterozygote

More information

Genetic diagrams show the genotype and phenotype of the offspring of two organisms. The different generation are abbreviated like so:

Genetic diagrams show the genotype and phenotype of the offspring of two organisms. The different generation are abbreviated like so: Genetics 2 Genetic Diagrams and Mendelian Genetics: Genetic diagrams show the genotype and phenotype of the offspring of two organisms. The different generation are abbreviated like so: P parent generation

More information

Objectives. ! Describe the contributions of Gregor Mendel to the science of genetics. ! Explain the Law of Segregation.

Objectives. ! Describe the contributions of Gregor Mendel to the science of genetics. ! Explain the Law of Segregation. Objectives! Describe the contributions of Gregor Mendel to the science of genetics.! Explain the Law of Segregation.! Explain the Law of Independent Assortment.! Explain the concept of dominance.! Define

More information

Environmental conditions during early life determine the consequences of inbreeding in Agrostemma githago (Caryophyllaceae)

Environmental conditions during early life determine the consequences of inbreeding in Agrostemma githago (Caryophyllaceae) doi: 10.1111/jeb.12065 Environmental conditions during early life determine the consequences of inbreeding in Agrostemma githago (Caryophyllaceae) S.H.GOODRICH,C.M.BEANS&D.A.ROACH Department of Biology,

More information

So what is a species?

So what is a species? So what is a species? Evolutionary Forces New Groups Biological species concept defined by Ernst Mayr population whose members can interbreed & produce viable, fertile offspring reproductively compatible

More information

What is genetic rescue and what is its role in conservation??

What is genetic rescue and what is its role in conservation?? What is genetic rescue and what is its role in conservation?? R. Frankham Macquarie University & Australian Museum Sydney, Australia What is genetic rescue? What is genetic rescue? Reversal of inbreeding

More information

LECTURE 32 GENETICS OF INVERSIONS. A. Pairing of inversion genotypes:

LECTURE 32 GENETICS OF INVERSIONS. A. Pairing of inversion genotypes: LECTURE 32 GENETICS OF INVERSIONS A. Pairing of inversion genotypes: 1. Characteristic inversion loops form only in chromosomal heterozygotes of both para- and pericentric inversions. Based on the inversion

More information

DEPARTMENT OF BOTANY Guru Ghasidas Vishwavidyalaya, Bilaspur M. Sc. III Semester LBC 902/LBT 302: Genetics and Breeding Section A

DEPARTMENT OF BOTANY Guru Ghasidas Vishwavidyalaya, Bilaspur M. Sc. III Semester LBC 902/LBT 302: Genetics and Breeding Section A AS 2186 DEPARTMENT OF BOTANY Guru Ghasidas Vishwavidyalaya, Bilaspur M. Sc. III Semester LBC 902/LBT 302: Genetics and Breeding Section A 1 Model Answers Time : 3 hours Maximum marks 60 Multiple choice

More information

Level 2 Biology, 2018

Level 2 Biology, 2018 91157 911570 2SUPERVISOR S Level 2 Biology, 2018 91157 Demonstrate understanding of genetic variation and change 9.30 a.m. Friday 23 November 2018 Credits: Four Achievement Achievement with Merit Achievement

More information

November 4, 2009 Bioe 109 Fall 2009 Lecture 17 The evolution of mating systems. The evolution of sex ratio

November 4, 2009 Bioe 109 Fall 2009 Lecture 17 The evolution of mating systems. The evolution of sex ratio November 4, 2009 Bioe 109 Fall 2009 Lecture 17 The evolution of mating systems The evolution of sex ratio - let us define sex ratio as the proportion of males to females. - in discussing the evolution

More information

DEFINITIONS: POPULATION: a localized group of individuals belonging to the same species

DEFINITIONS: POPULATION: a localized group of individuals belonging to the same species DEFINITIONS: POPULATION: a localized group of individuals belonging to the same species SPECIES: a group of populations whose individuals have the potential to interbreed and produce fertile offspring

More information

The laws of Heredity. Allele: is the copy (or a version) of the gene that control the same characteristics.

The laws of Heredity. Allele: is the copy (or a version) of the gene that control the same characteristics. The laws of Heredity 1. Definition: Heredity: The passing of traits from parents to their offspring by means of the genes from the parents. Gene: Part or portion of a chromosome that carries genetic information

More information

Characteristics and Traits

Characteristics and Traits Characteristics and Traits Inquire: Characteristics and Traits Overview Alleles do not always behave in dominant and recessive patterns. Incomplete dominance describes situations in which the heterozygote

More information

When bad things happen to good genes: mutation vs. selection

When bad things happen to good genes: mutation vs. selection When bad things happen to good genes: mutation vs. selection Selection tends to increase the frequencies of alleles with higher marginal fitnesses. Does this mean that genes are perfect? No, mutation can

More information

Figure 1: Transmission of Wing Shape & Body Color Alleles: F0 Mating. Figure 1.1: Transmission of Wing Shape & Body Color Alleles: Expected F1 Outcome

Figure 1: Transmission of Wing Shape & Body Color Alleles: F0 Mating. Figure 1.1: Transmission of Wing Shape & Body Color Alleles: Expected F1 Outcome I. Chromosomal Theory of Inheritance As early cytologists worked out the mechanism of cell division in the late 1800 s, they began to notice similarities in the behavior of BOTH chromosomes & Mendel s

More information

Modeling Chromosome Inheritance

Modeling Chromosome Inheritance Task 2 Modeling Chromosome Inheritance In this task, you will model chromosome inheritance from parent to offspring for the species you created in task 1. You will use the genotypes you developed for the

More information

2017 Version. Key Question types NCEA Science 1.9 Genetic Variation AS 90948

2017 Version. Key Question types NCEA Science 1.9 Genetic Variation AS 90948 2017 Version Key Question types NCEA Science 1.9 Genetic Variation AS 90948 Linking DNA, Alleles and Chromosomes Chromosomes are made up of DNA. DNA is a large molecule that is coiled into a double helix

More information

Lecture 6. Inbreeding and Crossbreeding

Lecture 6. Inbreeding and Crossbreeding Lecture 6 Inbreeding and Crossbreeding Bruce Walsh. jbwalsh@u.arizona.edu. University of Arizona. Notes from a short course taught May 011 at University of Liege Changes in the Mean and Variance Under

More information

7.03 Lecture 26 11/14/01

7.03 Lecture 26 11/14/01 Now we are going to consider how allele frequencies change under the influence of mutation and. First, we will consider mutation. Mutation A µ a µ = q mut = Phenylketonuria (PKU) allele frequency q 0.1

More information

Patterns of Inheritance Review Game Page 1

Patterns of Inheritance Review Game Page 1 Patterns of Inheritance Review Game Page 1 1 The tendency of alleles that are located close together on a chromosome to be inherited together during meiosis is called epistasis. codominance. crossing over.

More information

(b) What is the allele frequency of the b allele in the new merged population on the island?

(b) What is the allele frequency of the b allele in the new merged population on the island? 2005 7.03 Problem Set 6 KEY Due before 5 PM on WEDNESDAY, November 23, 2005. Turn answers in to the box outside of 68-120. PLEASE WRITE YOUR ANSWERS ON THIS PRINTOUT. 1. Two populations (Population One

More information

INBREEDING DEPRESSION AND GENETIC LOAD IN LABORATORY METAPOPULATIONS OF THE BUTTERFLY BICYCLUS ANYNANA

INBREEDING DEPRESSION AND GENETIC LOAD IN LABORATORY METAPOPULATIONS OF THE BUTTERFLY BICYCLUS ANYNANA INBREEDING DEPRESSION AND GENETIC LOAD IN LABORATORY METAPOPULATIONS OF THE BUTTERFLY BICYCLUS ANYNANA Author(s) :Cock van Oosterhout, Wilte G. Zijlstra, Marianne K. van Heuven, and Paul M. Brakefield

More information

Biology of Breeding: Considerations for maximizing genetic diversity of breeding groups

Biology of Breeding: Considerations for maximizing genetic diversity of breeding groups Dillon Damuth 03/01/2015 Biology of Breeding: Considerations for maximizing genetic diversity of breeding groups When a person joins the hobby of reptile keeping and make the decision to breed animals

More information

Essential Questions. Basic Patterns of Human Inheritance. Copyright McGraw-Hill Education

Essential Questions. Basic Patterns of Human Inheritance. Copyright McGraw-Hill Education Essential Questions How can genetic patterns be analyzed to determine dominant or recessive inheritance patterns? What are examples of dominant and recessive disorders? How can human pedigrees be constructed

More information

Genetics and Heredity Notes

Genetics and Heredity Notes Genetics and Heredity Notes I. Introduction A. It was known for 1000s of years that traits were inherited but scientists were unsure about the laws that governed this inheritance. B. Gregor Mendel (1822-1884)

More information

Microevolution Changing Allele Frequencies

Microevolution Changing Allele Frequencies Microevolution Changing Allele Frequencies Evolution Evolution is defined as a change in the inherited characteristics of biological populations over successive generations. Microevolution involves the

More information

Rare male mating advantage in Drosophila melanogaster.

Rare male mating advantage in Drosophila melanogaster. Dros. Inf. Serv. 92 (2009) Teaching Notes 155 Rare male mating advantage in Drosophila melanogaster. Benson, Jennifer L., Adam M. Boulton, Caroline W. Coates, Amanda C. Lyons, Sarah J. Rossiter, and R.C.

More information

EVIDENCE FOR OVERDOMINANT SELECTION MAINTAINING X-LINKED FITNESS VARIATION IN DROSOPHILA MELANOGASTER

EVIDENCE FOR OVERDOMINANT SELECTION MAINTAINING X-LINKED FITNESS VARIATION IN DROSOPHILA MELANOGASTER Evolution, 60(7), 006, pp. 445 453 EVIDENCE FOR OVERDOMINANT SELECTION MAINTAINING X-LINKED FITNESS VARIATION IN DROSOPHILA MELANOGASTER TIM CONNALLON AND L. LACEY KNOWLES Department of Ecology and Evolutionary

More information

Case Studies in Ecology and Evolution

Case Studies in Ecology and Evolution 2 Genetics of Small Populations: the case of the Laysan Finch In 1903, rabbits were introduced to a tiny island in the Hawaiian archipelago called Laysan Island. That island is only 187 ha in size, in

More information

EVOLUTION MICROEVOLUTION CAUSES OF MICROEVOLUTION. Evolution Activity 2.3 page 1

EVOLUTION MICROEVOLUTION CAUSES OF MICROEVOLUTION. Evolution Activity 2.3 page 1 AP BIOLOGY EVOLUTION ACTIVITY 2.3 NAME DATE HOUR MICROEVOLUTION MICROEVOLUTION CAUSES OF MICROEVOLUTION Evolution Activity 2.3 page 1 QUESTIONS: 1. Use the key provided to identify the microevolution cause

More information

SEXUAL TRAITS ARE SENSITIVE TO GENETIC STRESS AND PREDICT EXTINCTION RISK IN THE STALK-EYED FLY, DIASEMOPSIS MEIGENII

SEXUAL TRAITS ARE SENSITIVE TO GENETIC STRESS AND PREDICT EXTINCTION RISK IN THE STALK-EYED FLY, DIASEMOPSIS MEIGENII ORIGINAL ARTICLE doi:10.1111/evo.12135 SEXUAL TRAITS ARE SENSITIVE TO GENETIC STRESS AND PREDICT EXTINCTION RISK IN THE STALK-EYED FLY, DIASEMOPSIS MEIGENII Lawrence Bellamy, 1 Nadine Chapman, 1 Kevin

More information

Labrador Coat Color Similar to coat color in mice: Black lab is BxEx Yellow lab is xxee Chocolate lab is bbex Probable pathway:

Labrador Coat Color Similar to coat color in mice: Black lab is BxEx Yellow lab is xxee Chocolate lab is bbex Probable pathway: Honors Genetics 1. Gregor Mendel (1822-1884) German monk at the Augustine Abbey of St. Thomas in Brno (today in the Czech Republic). He was a gardener, teacher and priest. Mendel conducted experiments

More information

AS90163 Biology Describe the transfer of genetic information Part 1 - DNA structure & Cell division

AS90163 Biology Describe the transfer of genetic information Part 1 - DNA structure & Cell division AS90163 Biology Describe the transfer of genetic information Part 1 - DNA structure & Cell division This achievement standard involves the description of the transfer of genetic information. Achievement

More information

Genetics: field of biology that studies heredity, or the passing of traits from parents to offspring Trait: an inherited characteristic, such as eye

Genetics: field of biology that studies heredity, or the passing of traits from parents to offspring Trait: an inherited characteristic, such as eye Genetics: field of biology that studies heredity, or the passing of traits from parents to offspring Trait: an inherited characteristic, such as eye colour or hair colour Gregor Mendel discovered how traits

More information

INBREEDING, DEVELOPMENTAL STABILITY, AND CANALIZATION IN THE SAND CRICKET GRYLLUS FIRMUS

INBREEDING, DEVELOPMENTAL STABILITY, AND CANALIZATION IN THE SAND CRICKET GRYLLUS FIRMUS Evolution, 57(), 00, pp. 597 05 INBREEDING, DEVELOPMENTAL STABILITY, AND CANALIZATION IN THE SAND CRICKET GRYLLUS FIRMUS DENIS RÉALE 1, AND DEREK A. ROFF,4 1 Department of Biology, McGill University, Montreal,

More information

Mendel s Law of Heredity. Page 254

Mendel s Law of Heredity. Page 254 Mendel s Law of Heredity Page 254 Define pollination The transfer of pollen grains from a male reproductive organ to a female reproductive organ in a plant is called pollination. Define cross pollination.

More information

DRAGON GENETICS Understanding Inheritance 1

DRAGON GENETICS Understanding Inheritance 1 DRAGON GENETICS Understanding Inheritance 1 INTRODUCTION In this activity, you and a partner will work together to produce a baby dragon. You will simulate meiosis and fertilization, the biological processes

More information

What we mean more precisely is that this gene controls the difference in seed form between the round and wrinkled strains that Mendel worked with

What we mean more precisely is that this gene controls the difference in seed form between the round and wrinkled strains that Mendel worked with 9/23/05 Mendel Revisited In typical genetical parlance the hereditary factor that determines the round/wrinkled seed difference as referred to as the gene for round or wrinkled seeds What we mean more

More information

The fitness consequences of inbreeding in natural populations and their implications for species conservation a systematic map

The fitness consequences of inbreeding in natural populations and their implications for species conservation a systematic map Neaves et al. Environmental Evidence (2015) 4:5 DOI 10.1186/s13750-015-0031-x SYSTEMATIC REVIEW Open Access The fitness consequences of inbreeding in natural populations and their implications for species

More information

p and q can be thought of as probabilities of selecting the given alleles by

p and q can be thought of as probabilities of selecting the given alleles by Lecture 26 Population Genetics Until now, we have been carrying out genetic analysis of individuals, but for the next three lectures we will consider genetics from the point of view of groups of individuals,

More information

The Work of Gregor Mendel. Guided Reading

The Work of Gregor Mendel. Guided Reading The Work of Gregor Mendel Guided Reading Gregor Mendel 25 min Mendel (pearson) 6 min The Experiments of Gregor Mendel 1. What is Heredity? The delivery of characteristics from parents to offspring 2. What

More information

Genetics and Heredity

Genetics and Heredity Genetics and Heredity History Genetics is the study of genes. Inheritance is how traits, or characteristics, are passed on from generation to generation. Chromosomes are made up of genes, which are made

More information

Sexual Reproduction and Genetics. Section 1. Meiosis

Sexual Reproduction and Genetics. Section 1. Meiosis Chromosomes and Chromosome Number! Human body cells have 46 chromosomes! Each parent contributes 23 chromosomes! Homologous chromosomes one of two paired chromosomes, one from each parent Chromosomes and

More information

Inbreeding uncovers fundamental differences in the genetic load affecting male and female fertility in a butterfly

Inbreeding uncovers fundamental differences in the genetic load affecting male and female fertility in a butterfly 272, 39 46 doi:10.1098/rspb.2004.2903 Published online 20 December 2004 Inbreeding uncovers fundamental differences in the genetic load affecting male and female fertility in a butterfly Ilik J. Saccheri

More information

Ch 4: Mendel and Modern evolutionary theory

Ch 4: Mendel and Modern evolutionary theory Ch 4: Mendel and Modern evolutionary theory 1 Mendelian principles of inheritance Mendel's principles explain how traits are transmitted from generation to generation Background: eight years breeding pea

More information

Inbreeding reveals stronger net selection on Drosophila melanogaster males: implications for mutation load and the fitness of sexual females

Inbreeding reveals stronger net selection on Drosophila melanogaster males: implications for mutation load and the fitness of sexual females (2011) 106, 994 1002 & 2011 Macmillan Publishers Limited All rights reserved 0018-067X/11 ORIGINAL ARTICLE www.nature.com/hdy Inbreeding reveals stronger net selection on Drosophila melanogaster males:

More information

POPULATION GENETICS OF INCREASED HYBRID PERFORMANCE BETWEEN TWO MAIZE (Zea mays L.) POPULATIONS UNDER RECIPROCAL RECURRENT SELECTION

POPULATION GENETICS OF INCREASED HYBRID PERFORMANCE BETWEEN TWO MAIZE (Zea mays L.) POPULATIONS UNDER RECIPROCAL RECURRENT SELECTION POPULATION GENETICS OF INCREASED HYBRID PERFORMANCE BETWEEN TWO MAIZE (Zea mays L.) POPULATIONS UNDER RECIPROCAL RECURRENT SELECTION Joanne A. Labate,* Kendall R. Lamkey,* Michael Lee and Wendy L. Woodman

More information

Activities to Accompany the Genetics and Evolution App for ipad and iphone

Activities to Accompany the Genetics and Evolution App for ipad and iphone Activities to Accompany the Genetics and Evolution App for ipad and iphone All of the following questions can be answered using the ipad version of the Genetics and Evolution App. When using the iphone

More information

Chromosome Structure & Recombination

Chromosome Structure & Recombination Chromosome Structure & Recombination (CHAPTER 8- Brooker Text) April 4 & 9, 2007 BIO 184 Dr. Tom Peavy Genetic variation refers to differences between members of the same species or those of different

More information

2. A normal human germ cell before meiosis has how many nuclear chromosomes?

2. A normal human germ cell before meiosis has how many nuclear chromosomes? 1 Lesson 5 Transmission/Heredity 1. Each of the following pedigrees represent one of the major modes of inheritance that we learned about for a dominant trait: (1) Autosomal, (2) Sex linked, or (3) Maternal.

More information

Unit 5: Genetics Guided Notes

Unit 5: Genetics Guided Notes 1 Unit 5: Genetics Guided Notes Basic Mendelian Genetics Before Gregor Mendel 1) When Mendel started his work, most people believed in the blending theory of inheritance. (Inheritance, Heredity, and Genetics

More information

Biology Sec+on 9.2. Gene+c Crosses

Biology Sec+on 9.2. Gene+c Crosses Biology Sec+on 9.2 Gene+c Crosses Genotype & Phenotype Genotype gene+c makeup of an organism Consists of alleles that organism inherits from its parents Phenotype appearance of an organism as a result

More information

THE GENETICAL THEORY OF NATURAL SELECTION

THE GENETICAL THEORY OF NATURAL SELECTION Chapter 12 THE GENETICAL THEORY OF NATURAL SELECTION Important points to remember about natural selection: 1. Natural selection is not the same as evolution. Evolution requires the origin of variation

More information

EVOLUTIONARY BIOLOGY BIOS EXAM #2 FALL 2017

EVOLUTIONARY BIOLOGY BIOS EXAM #2 FALL 2017 EVOLUTIONARY BIOLOGY BIOS 30305 EXAM #2 FALL 2017 There are 3 parts to this exam. Use your time efficiently and be sure to put your name on the top of each page. Part I. True (T) or False (F) (2 points

More information