Breeding Critters More Traits

Size: px
Start display at page:

Download "Breeding Critters More Traits"

Transcription

1 Breeding Critters More Traits to minute sessions ACTIVITY OVERVIEW I N V E S T I O N I G AT SUMMARY Students model the diversity of offspring possible from two parents and discover patterns of inheritance other than strict dominant/recessive traits. KEY CONCEPTS AND PROCESS SKILLS 1. Creating models is one way to understand and communicate scientific information. 2. Sexual reproduction involves the union of two sex cells and produces unique individuals that show a combination of traits inherited from both parents. 3. The ratio of dominant to recessive traits in the third generation of a purebred cross provides an important clue about gene behavior. A statistically random process determines which allele each parent transfers to the offspring. 4. Both heredity and the environment play roles in determining the traits of an organism. 5. The diversity among sexually reproduced organisms results primarily from the many possible combinations of pairs of alleles transferred from parents to offspring. 6. While some traits show a pattern of complete dominance vs. recessive, others show incomplete dominance or co-dominance. KEY VOCABULARY allele characteristic chromosome diversity dominant gene recessive trait Teacher s Guide D-135

2 Activity 65 Breeding Critters More Traits MATERIALS AND ADVANCE PREPARATION For the teacher Transparency 65.1, Breeding Critters More Traits * green, red, blue, and orange overhead transparency pens 9 plastic cups (or more, for setting out critter parts) For the class /2 inch foam balls (for critter body segments) 16 1-inch foam balls (for critter heads) 16 blue pipe cleaners, cut in half 16 orange pipe cleaners, cut in half 100 round head brass fasteners 40 red straws 50 green straws 60 blue straws 50 yellow paper clips 40 blue thumbtacks 100 toothpicks For each group of four students * colored pencils 1 plastic cup For each pair of students 1 Student Sheet 65.1, Critter Breeding Worksheet * 2 pennies *Not supplied in kit Cut each pipe cleaner in half. Cut the green straws into four equal lengths. (The lengths don t need to be perfect quarters. You can cut 3 5 straws at a time.) Cut the red and blue straws into six equal lengths. Decide how you will distribute the materials for the critter assembly. It is probably best to have one or two stations, with each critter component in a separate plastic cup and the foam balls in a box or bag. One student from each table can obtain the critter pieces for the whole group after they finish their coin tossing. Each student group should have a clear plastic cup for their used pieces after they disassemble their critters, and one group member must be responsible for returning used pieces to the central stations. You may prefer to use flat blue thumbtacks or blue sequins and glue for D-136 Science and Life Issues

3 Breeding Critters More Traits Activity 65 the critter eyes, rather than the pushpins provided in the kit. Remember that glue and sequins will be harder to clean up. If the foam balls become damaged as students use them, stale marshmallows can be used instead for the body segments and head. (Make sure students do not eat the marshmallows.) Prepare Transparency 65.1 and use colored transparency markers to color the critters as follows: Color Skye s tail blue and Poppy s orange. Make Skye s legs blue and Poppy s red, and color Skye s spike blue and Poppy s two spikes green. Color the tails, legs, and short spikes of Ocean and Lucy blue, and color their two long spikes green. TEACHING SUMMARY Getting Started 1. Introduce the investigation of more critter traits to learn about variations in the pattern of inheritance discovered by Mendel. Doing the Activity 2. Students conduct the critter-breeding simulation and build the offspring critters. Follow-Up 3. Students observe one another s results and answer the Analysis Questions. BACKGROUND INFORMATION The Critter Simulation This activity provides an enjoyable opportunity for students to observe the variety of offspring that can be produced by two parents. In this case, the Generation Two parents, Ocean and Lucy, are genetically identical. However, a great deal of variety arises in their offspring because Ocean and Lucy are heterozygous for every gene. The model also simulates co-dominance, incomplete dominance, environmental effects on inherited traits, and sex determination. Five of the nine traits (number of body segments, leg color, number of eyes, tail color, and number of antennae) show a dominant vs. recessive mechanism of inheritance. The other traits show interesting deviations from this pattern. These include incomplete dominance, which gives an intermediate appearance in the heterozygote (simulated by nose length) and co-dominance, in which both traits are fully present in the heterozygote (modeled by the blue and green spikes). Teacher s Guide D-137

4 Activity 65 Breeding Critters More Traits The tail-style trait is used to simulate environmental influences. Curly tail is dominant only if the critter s diet includes plenty of the imaginary critter nutrient, crittric acid, during development. This example is intended to be humorous, but it represents the importance of nutrition and other factors in the development of young organisms. The inheritance of sex is unusual in that it is determined by the presence or absence of a particular chromosome. In mammals and many other organisms, the presence of a Y chromosome usually results in a male. Because only males have Y chromosomes, only the male parent can donate this chromosome to the offspring. Sex determination varies in different species; for instance, in birds the female has two different sex chromosomes. D-138 Science and Life Issues

5 Breeding Critters More Traits Activity 65 TEACHING SUGGESTIONS GETTING STARTED 1. Introduce the investigation of more critter traits to learn about variations in the pattern of inheritance discovered by Mendel. Tell students that in order to keep the earlier investigation of Skye and Poppy simple, they focused only on tail colors. Skye and Poppy actually have a number of other genetic differences. Because all other critters on Skye s island look like Skye and all other critters on Poppy s island look like Poppy, scientists assume that each critter carries two identical alleles for every trait and that their Generation Two offspring are heterozygous for every gene. Ask, Skye had the dominant tail color. Whose trait was dominant for the other characteristics? Students should notice that Skye and Poppy each had some dominant traits. Use Transparency 65.1 to review Skye s and Poppy s traits, and the outcome of crossing them to produce Ocean and Lucy and their siblings. These results are listed in Table 1 on page D-60 in the Student Book. Point out that all 100 offspring of Skye and Poppy are identical except for their sex and the fact that approximately 50% have curly tails. Tell students that sex determination and straight vs. curly tails are two of the interesting characteristics they will investigate in this activity. Teacher s Note: If students have asked whether Skye and Poppy are mammals, or insects, etc., remind them that they are not in any known group; they are imaginary creatures. Students may also question the breeding of siblings, but in fact this is common in breeding experiments. DOING THE ACTIVITY 2. Students conduct the critter-breeding simulation and build the offspring critters. Distribute Student Sheet 65.1 and review the Procedure thoroughly. Have students look carefully at how the Student Sheet is set up. One student in the pair tosses a penny to determine which allele Ocean contributes, while the other tosses a penny to determine Lucy s contribution. The students should work together and determine one trait at a time. For example, for body segments the first student might toss heads and the second student tails. According to the columns on the Student Sheet, this means that Ocean donates a B body allele and Lucy donates a b body allele. Step 4 of the Procedure directs students to determine the traits, using Table 2 on page D-61 in the Student Book or the information in the first column of the Student Sheet. When students have completed their tosses and filled in the offspring s genes and sex chromosomes on the Student Sheet, they can proceed to Step 7 of the Procedure. This may be a good breaking point if you plan to spend two sessions on this activity. Have each pair of students use Table 3 on page D-62 in the Student Book to determine exactly the number, kind, and color of pieces they will need to make their critters. Then they should obtain the pieces and foam balls and assemble the critters. Remind them to use the smaller foam balls for the critters heads. They should save their critters for other students to observe until the very end of the class session, when you will assign them to clean up and return reusable pieces for the next class. Teacher s Guide D-139

6 Activity 65 Breeding Critters More Traits FOLLOW UP 3. Students observe one another s results and answer the Analysis Questions. Analysis Questions 1, 2, and 3 can be answered by the students working in their groups of four and then discussed by the class. If students then seem to be ready to go on by themselves, they can answer the rest of the questions independently. If not, continue to help them as they complete Questions 4 and 5. Question 8 can be used as an assessment of whether students understand the concept of a recessive trait. Their responses can be scored with the UNDERSTANDING CONCEPTS (UC) scoring guide. Students are usually surprised at the variety of siblings. Point out that only a few traits are considered in this activity. With more traits, the siblings would show even more diversity. Discuss sex determination, which depends primarily on the sex chromosomes in most organisms. A fascinating exception is the Nile crocodile and certain other groups of reptiles. In these organisms, the incubation temperature of the egg during one part of development determines whether the organism will be male or female. In the case of these organisms, sex determination is environmental rather than genetic. SUGGESTED ANSWERS TO ANALYSIS QUESTIONS 1. Look at the other critters made by your classmates. They are all siblings (brothers and sisters). What are their similarities and differences? The critters look different in that most have different combinations of traits. They are similar in that all have similar head and body parts and similar shapes for their legs, eyes, and noses. A few of the offspring resemble each other in many features. 2. Which characteristics show a simple dominant/recessive pattern like tail color? List them in a table and indicate which version is dominant and which is recessive for each trait. Hint: Look at Table 1 to see which traits have this pattern. The number of body segments, leg color, the number of eyes, tail color, and the number of antennae all show a simple dominance vs. recessive pattern. In other words, one trait completely dominates, or masks the other, but the recessive trait reappears in some members of the next generation. The cross between Ocean and Lucy should give an approximately 3:1 ratio for each of these traits, although we do not suggest you have students determine the ratios unless you have plenty of extra time for them to do so. By looking at the class s critter nursery, students will observe more of the dominant traits. See the table below. Characteristic Dominant trait Recessive trait Number of body segments 3 segments 2 segments Leg color blue red Number of eyes 2 3 Tail color blue orange Number of antennae 2 1 Some traits do not show a simple dominant vs. recessive pattern. Look at Table 1 to help you answer Questions 3 5. D-140 Science and Life Issues

7 Breeding Critters More Traits Activity For which characteristic do some offspring have traits in between Skye s and Poppy s traits? Explain. (For example, in some plants, a cross between a red- and white-flowered plant will give pink-flowered offspring. This is called incomplete dominance.) The nose-length characteristic shows an intermediate trait in the offspring: Ocean and Lucy each have a nose in between the lengths of their parents (Skye and Poppy) long and short noses. Neither the short nor the long trait is dominant, despite the Nn notation. 4. For which characteristic do some offspring have both Skye s and Poppy s traits? Explain. (For example, in humans, a person with type A blood and a person with type B blood can have a child with type AB blood. This is called co-dominance, as both traits appear in the offspring.) Ocean and Lucy have both the green spikes from one parent and the blue spike from the other parent. Neither trait is dominant. Teacher s Note: This is analogous to blood typing, with the G and H alleles being similar to A and B blood. This will be discussed in the next activity. 5. Which critter trait is affected by an environmental factor, such as light, temperature, or diet? Explain. The inheritance pattern for tail style represents the role of environmental factors. In this case, the SS critters will have curly tails no matter what, but the Ss critters will develop curly tails only if they receive enough of a nutrient called crittric acid. Teacher s Note: This trait is intended to reinforce the concept that both genes and the environment determine traits. This discussion will prepare students to think about the results they obtain with the seedlings. 6. Consider the pattern for sex determination. a. How is a critter s sex determined? A critter s sex is determined by a pair of chromosomes. For critters (and humans), if the individual has two X chromosomes, it is a female. If the individual has one X and one Y chromosome, it is a male. Teacher s Note: Note that there are exceptions to this generalization that involve individuals with three sex chromosomes, hormonal effects that alter the function of the genes on the sex chromosomes, or mutations in sexdetermining genes. These details can wait for more advanced biology courses. b. Whose genetic contribution Ocean s or Lucy s determines the sex of the offspring? Ocean s genetic contribution determines the sex of the offspring, as Ocean can contribute either an X or Y chromosome. Lucy can contribute only an X chromosome. 7. Who does your critter most look like Skye, Poppy, Ocean, or Lucy? On which traits did you base your choice? Answers will vary widely. This question is intended to get students to compare the critters Teacher s Guide D-141

8 Activity 65 Breeding Critters More Traits and notice differences among the offspring and their parents and grandparents. 8. Draw a critter with all recessive traits. UC Assume the recessive trait for spikes is no spikes. Expect a drawing of a critter with a straight orange tail, 2 body segments, red legs, 3 blue eyes, and one antenna. It should have no spikes and a short nose. D-142 Science and Life Issues

9 Breeding Critters More Traits Skye Poppy Ocean Lucy 2006 The Regents of the University of California Science and Life Issues Transparency 65.1 D-143

10

11 Name Date Critter Breeding Worksheet Trait Ocean s Alleles Offspring s Genes Offspring s Trait Lucy s Alleles Heads Tails From Ocean From Lucy (Use Critter Code to fill this in) Heads Tails 1. Body segments B b B b 2. Legs L l L l 3. Eyes E e E e 4. Nose N n N n 5. Tail color T t T t 6. Tail style S s S s 7. Antennas A a A a 2006 The Regents of the University of California 8. Spikes 9. Sex G H Ocean s Sex Chromosomes Heads X Tails Y Offspring s Sex Chromosomes From Ocean From Lucy Offspring s Sex G H Lucy s Sex Chromosomes Heads X Tails X Science and Life Issues Student Sheet 65.1 D-145

12

Activity 65, Breeding Critters! More Traits! Issues & Life Science: Student Book!!

Activity 65, Breeding Critters! More Traits! Issues & Life Science: Student Book!! Activity 65, Breeding Critters! More Traits! from! Issues & Life Science: Student Book!!! 01 The Regents of the University of California! 65 Breeding Critters More Traits Activity 38 I N V E S T I G AT

More information

Critters More Traits

Critters More Traits 9 Breeding Critters More Traits INVESTIGATION 1 2 CLASS SESSIONS ACTIVITY OVERVIEW NGSS CONNECTIONS Students model and explain additional patterns of inheritance as they explore cause-and-effect relationships

More information

Gene Combo SUMMARY KEY CONCEPTS AND PROCESS SKILLS KEY VOCABULARY ACTIVITY OVERVIEW. Teacher s Guide I O N I G AT I N V E S T D-65

Gene Combo SUMMARY KEY CONCEPTS AND PROCESS SKILLS KEY VOCABULARY ACTIVITY OVERVIEW. Teacher s Guide I O N I G AT I N V E S T D-65 Gene Combo 59 40- to 1 2 50-minute sessions ACTIVITY OVERVIEW I N V E S T I O N I G AT SUMMARY Students use a coin-tossing simulation to model the pattern of inheritance exhibited by many single-gene traits,

More information

Chromobugs. Problem: To demonstrate how genes are passed from parent to offspring.

Chromobugs. Problem: To demonstrate how genes are passed from parent to offspring. Chromobug Genetics 1 Name Chromobugs Problem: To demonstrate how genes are passed from parent to offspring. Background Information: Chromobugs are make-believe organisms. You will use these to model how

More information

Beebops Genetics and Evolution Teacher Information

Beebops Genetics and Evolution Teacher Information STO-105 Beebops Genetics and Evolution Teacher Information Summary In Part 1 students model meiosis and fertilization using chromosomes/genes from fictitious Beebop parents. They decode the genes in the

More information

Genes determine inherited traits by carrying the information that is

Genes determine inherited traits by carrying the information that is 58 Creature Features m o d e l i n g Genes determine inherited traits by carrying the information that is passed from parents to offspring. These genes carry information that each cell of an organism needs

More information

Lesson 1. Assessment 1.1 (Preassessment) Name: Per: Date:

Lesson 1. Assessment 1.1 (Preassessment) Name: Per: Date: Lesson 1. Assessment 1.1 Preassessment) Name: Per: Date: This is a PREASSESSMENT. We will use it to find out what you know about the topic we are going to study next. It s OK If you don t know the answer

More information

Patterns in Pedigrees

Patterns in Pedigrees Patterns in Pedigrees 66 40- to 2 50-minute sessions ACTIVITY OVERVIEW P R O B L E M I N G S O LV SUMMARY Students investigate the behavior of genes for human traits. Pedigrees are introduced as another

More information

Alien Life Form (ALF)

Alien Life Form (ALF) Alien Life Form (ALF) Closely related siblings are most often different in both genotype (the actual genes) and phenotype (the appearance of the genes). This is because of the great variety of traits in

More information

Unit D Notebook Directions

Unit D Notebook Directions DO NOT PUT THIS FIRST PAGE IN YOUR NOTEBOOK!! Unit D Notebook Directions Immediately following the last page of Unit C, do the following: (Page numbers are not important, but the order needs to be exact)

More information

Passing It On. QUESTION: How are inherited characteristics passed from parent to offspring? toothpicks - red and green

Passing It On. QUESTION: How are inherited characteristics passed from parent to offspring? toothpicks - red and green Passing It On QUESTION: How are inherited characteristics passed from parent to offspring? MATERIALS: allele sacks allele sets (7) gumdrops - green and black map pins marshmallows push pins - green and

More information

Monday, February 8. Please copy into your agenda:

Monday, February 8. Please copy into your agenda: Monday, February 8 Please copy into your agenda: Monday: Finish Snapchat (due Tuesday) Tuesday: Genetics review (due Wednesday) Wednesday: Genetics quiz Thursday-Friday: Collect data (dues Tues) Reminder:

More information

they determine the offspring s traits? Materials

they determine the offspring s traits? Materials Creature Features g 58 modeli CHALLENGE n G enes determine inherited traits by carrying the information that is passed from parents to offspring. These genes carry information that each cell of an organism

More information

2 Traits and Inheritance

2 Traits and Inheritance CHATER 6 2 Traits and Inheritance SECTION Heredity 7.2.c., 7.2.d California Science Standards BEFORE YOU READ After you read this section, you should be able to answer these questions: What did Mendel

More information

As you now know, genes are inherited and affect the characteristics

As you now know, genes are inherited and affect the characteristics 66 Patterns in Pedigrees P R O B L E M S O LV I N G As you now know, genes are inherited and affect the characteristics of an organism. By growing Nicotiana seedlings, you ve seen how a trait is inherited.

More information

Please copy into your agenda:

Please copy into your agenda: Monday, September 19 Please copy into your agenda: Monday: Finish Snapchat (due Tuesday) Advanced only-project part 2 (due Fri) Tuesday: Vocab bonds (due Wednesday) Wednesday: Human inheritance (due Thur)

More information

In the last activity, you learned that Marfan syndrome is caused by

In the last activity, you learned that Marfan syndrome is caused by 2 Creature Features m o d e l i n g In the last activity, you learned that Marfan syndrome is caused by a gene. A gene carries information that is passed from parents to offspring. This means that if Joe

More information

Cells & Heredity Scavenger Hunt

Cells & Heredity Scavenger Hunt Cells & Heredity Scavenger Hunt Procedure: o Use your Cells & Heredity textbook to find the answers to the following questions. 1) What is life science? (Hint: Use p. xiii to help you answer the answer.)

More information

InGen: Dino Genetics Lab Lab Related Activity: DNA and Genetics

InGen: Dino Genetics Lab Lab Related Activity: DNA and Genetics This activity is meant to extend your students knowledge of the topics covered in our DNA and Genetics lab. Through this activity, pairs of students will play with dominant and recessive alleles to create

More information

KEY CONCEPTS AND PROCESS SKILLS. 1. Genes are the units of information for inherited traits that parents transmit to their offspring.

KEY CONCEPTS AND PROCESS SKILLS. 1. Genes are the units of information for inherited traits that parents transmit to their offspring. Copycat 40- to 1 50-minute sessions ACTIVITY OVERVIEW 57 R EA D I N G SUMMARY Asexual and sexual reproduction are introduced. Differences between the two prepare students to understand the mechanisms of

More information

c. Relate Mendelian principles to modern-day practice of plant and animal breeding.

c. Relate Mendelian principles to modern-day practice of plant and animal breeding. Course: Biology Agricultural Science & Technology Unit: Genetics in Agriculture STATE STANDARD IV: Students will understand that genetic information coded in DNA is passed from parents to offspring by

More information

11B Crazy Traits. What role does chance play in an organism s heredity? 1. Determining the genotype. 2. Stop and Think. Investigation 11B.

11B Crazy Traits. What role does chance play in an organism s heredity? 1. Determining the genotype. 2. Stop and Think. Investigation 11B. 11B Crazy Traits Investigation 11B What role does chance play in an organism s heredity? Your traits are determined by the genes you inherit from your parents. For each gene, you get at least one allele

More information

Mendel and Heredity. Chapter 12

Mendel and Heredity. Chapter 12 Mendel and Heredity Chapter 12 12.1 Objectives: 1.) summarize the importance of Mendel s experiments 2.)Differentiate between genes and alleles. 3.) Explain that alleles determine what physical traits

More information

The Work of Gregor Mendel. Lesson Overview. Lesson Overview The Work of Gregor Mendel

The Work of Gregor Mendel. Lesson Overview. Lesson Overview The Work of Gregor Mendel Lesson Overview 11.1 The Work of Gregor Mendel GENETICS Genetics: The scientific study of heredity Genetics is the key to understanding what makes each organism unique. THINK ABOUT IT What is an inheritance?

More information

Genetics. *** Reading Packet

Genetics. *** Reading Packet Genetics *** Reading Packet 5.4 Mendel and His Peas Learning Objectives Describe Mendel's first genetics experiments. Introduction Why do you look like your family? For a long time people understood that

More information

Family Trees for all grades. Learning Objectives. Materials, Resources, and Preparation

Family Trees for all grades. Learning Objectives. Materials, Resources, and Preparation page 2 Page 2 2 Introduction Family Trees for all grades Goals Discover Darwin all over Pittsburgh in 2009 with Darwin 2009: Exploration is Never Extinct. Lesson plans, including this one, are available

More information

Two copies of each autosomal gene affect phenotype.

Two copies of each autosomal gene affect phenotype. UNIT 3 GENETICS LESSON #34: Chromosomes and Phenotype Objective: Explain how the chromosomes on which genes are located can affect the expression of traits. Take a moment to look at the variety of treats

More information

UNIT III (Notes) : Genetics : Mendelian. (MHR Biology p ) Traits are distinguishing characteristics that make a unique individual.

UNIT III (Notes) : Genetics : Mendelian. (MHR Biology p ) Traits are distinguishing characteristics that make a unique individual. 1 UNIT III (Notes) : Genetics : endelian. (HR Biology p. 526-543) Heredity is the transmission of traits from one generation to another. Traits that are passed on are said to be inherited. Genetics is

More information

Dragon Genetics. Essential Question How does Mendelian genetics explain the variation of expressed traits within a population?

Dragon Genetics. Essential Question How does Mendelian genetics explain the variation of expressed traits within a population? Dragon Genetics Introduction The simplest form of genetic inheritance for a single involves receiving one piece of genetic information (one allele) from the mother and one piece of genetic information

More information

1 eye 1 Set of trait cards. 1 tongue 1 Sheet of scrap paper

1 eye 1 Set of trait cards. 1 tongue 1 Sheet of scrap paper Access prior knowledge Why do offspring often resemble their parents? Yet rarely look exactly alike? Is it possible for offspring to display characteristics that are not apparent in their parents? What

More information

Unit 6.2: Mendelian Inheritance

Unit 6.2: Mendelian Inheritance Unit 6.2: Mendelian Inheritance Lesson Objectives Define probability. Explain how probability is related to inheritance. Describe how to use a Punnett square. Explain how Mendel interpreted the results

More information

NAME: PERIOD: Genetics. Objective 2: Determine the possible outcomes of single crosses using Punnett squares.

NAME: PERIOD: Genetics. Objective 2: Determine the possible outcomes of single crosses using Punnett squares. NAME: PERIOD: Genetics Objective 1: Explain the importance of DNA in a cell. Objective 2: Determine the possible outcomes of single crosses using Punnett squares. Objective 3: Compare sexual and asexual

More information

Lesson Overview 11.1 The Work of Gregor Mendel

Lesson Overview 11.1 The Work of Gregor Mendel THINK ABOUT IT What is an inheritance? Lesson Overview 11.1 The Work of Gregor Mendel It is something we each receive from our parents a contribution that determines our blood type, the color of our hair,

More information

Essential Question: How do living things inherit their genetic characteristics?

Essential Question: How do living things inherit their genetic characteristics? Essential Question: How do living things inherit their genetic characteristics? Activity 6 Analyzing Genetic Data Purpose: To learn how to predict the outcome of genetic crosses with s Instructions: Follow

More information

Lesson Overview 11.2 Applying Mendel s Principles

Lesson Overview 11.2 Applying Mendel s Principles THINK ABOUT IT Nothing in life is certain. Lesson Overview 11.2 Applying Mendel s Principles If a parent carries two different alleles for a certain gene, we can t be sure which of those alleles will be

More information

DNA Review??? gene???

DNA Review??? gene??? DNA Review??? gene??? Human Chromosomes Humans have 23 pairs of chromosomes; 46 all together Females have 23 matched pairs; males have 22 matched and one unmatched pair Gregor Mendel Born in 1822, Austria

More information

Mendelian Genetics. Activity. Part I: Introduction. Instructions

Mendelian Genetics. Activity. Part I: Introduction. Instructions Activity Part I: Introduction Some of your traits are inherited and cannot be changed, while others can be influenced by the environment around you. There has been ongoing research in the causes of cancer.

More information

Hope you all had a wonderful weekend! Today we are finally getting into Genetics!

Hope you all had a wonderful weekend! Today we are finally getting into Genetics! Hope you all had a wonderful weekend! Today we are finally getting into Genetics! To prepare for class today, please do the following: Grab one of the activity worksheets off the front table. Widow s Peak

More information

Lesson Plan: GENOTYPE AND PHENOTYPE

Lesson Plan: GENOTYPE AND PHENOTYPE Tienne Moriniere-Myers October 1, 2007 Lesson Plan: GENOTYPE AND PHENOTYPE Pacing Two 45- minute class periods RATIONALE: According to the National Science Education Standards, (NSES, pg. 155-156), In

More information

Chapter 6 Heredity The Big Idea Heredity is the passing of the instructions for traits from one generation to the next.

Chapter 6 Heredity The Big Idea Heredity is the passing of the instructions for traits from one generation to the next. Chapter 6 Heredity The Big Idea Heredity is the passing of the instructions for traits from one generation to the next. Section 1 Mendel and His Peas Key Concept The work of Gregor Mendel explains the

More information

PROBABILITY and MENDELIAN GENETICS

PROBABILITY and MENDELIAN GENETICS PROBABILITY and MENDELIAN GENETICS NAME BACKGROUND In 1866 Gregor Mendel, an Austrian monk, published the results of his study of inheritance on garden peas. Although Mendel did not understand the mechanics

More information

Unit 7 Section 2 and 3

Unit 7 Section 2 and 3 Unit 7 Section 2 and 3 Evidence 12: Do you think food preferences are passed down from Parents to children, or does the environment play a role? Explain your answer. One of the most important outcomes

More information

Name Period. Keystone Vocabulary: genetics fertilization trait hybrid gene allele Principle of dominance segregation gamete probability

Name Period. Keystone Vocabulary: genetics fertilization trait hybrid gene allele Principle of dominance segregation gamete probability Name Period BIO B2 GENETICS (Chapter 11) You should be able to: 1. Describe and/or predict observed patterns of inheritance (dominant, recessive, co- dominant, incomplete dominance, sex- linked, polygenic

More information

You are who you are because of a combination of HEREDITY and ENVIRONMENT. ENVIRONMENT: all outside forces that act on an organism.

You are who you are because of a combination of HEREDITY and ENVIRONMENT. ENVIRONMENT: all outside forces that act on an organism. Unit 6 Genetics 6.1 Genetics You are who you are because of a combination of HEREDITY and ENVIRONMENT. ENVIRONMENT: all outside forces that act on an organism. HEREDITY: traits that are passed from parents

More information

Lesson Overview. The Work of Gregor Mendel. Lesson Overview The Work of Gregor Mendel

Lesson Overview. The Work of Gregor Mendel. Lesson Overview The Work of Gregor Mendel Lesson Overview 11.1 The Work of Gregor Mendel The Experiments of Gregor Mendel Where does an organism get its unique characteristics? An individual s characteristics are determined by factors that are

More information

The Experiments of Gregor Mendel

The Experiments of Gregor Mendel 11.1 The Work of Gregor Mendel 11.2 Applying Mendel s Principles The Experiments of Gregor Mendel Every living thing (plant or animal, microbe or human being) has a set of characteristics inherited from

More information

Genetics Test- Mendel, Probablility and Heredity

Genetics Test- Mendel, Probablility and Heredity Genetics Test- Mendel, Probablility and Heredity Multiple Choice Identify the choice that best completes the statement or answers the question. 1. In Mendel s experiments, what percentage of the plants

More information

Mendelian Genetics. KEY CONCEPT Mendel s research showed that traits are inherited as discrete units.

Mendelian Genetics. KEY CONCEPT Mendel s research showed that traits are inherited as discrete units. KEY CONCEPT Mendel s research showed that traits are inherited as discrete units. Mendel laid the groundwork for genetics. Traits are distinguishing characteristics that are inherited. Genetics is the

More information

Inheritance. Children inherit traits from both parents.

Inheritance. Children inherit traits from both parents. Have you ever been told you have your mother s eyes or your father s smile? Have you ever noticed you share your grandfather s eye color or possibly your grandmother s curly hair, and yet your parents

More information

biology Slide 1 of 32 End Show Copyright Pearson Prentice Hall

biology Slide 1 of 32 End Show Copyright Pearson Prentice Hall biology 1 of 32 11-1 The Work of Gregor Mendel 2 of 32 Gregor Mendel s Peas Genetics is the scientific study of heredity. Gregor Mendel was an Austrian monk. His work was important to the understanding

More information

Punne% Square Quiz A AP Tes2ng this week 15-Week Grades due next week Note: media center is hos2ng tes2ng Turn in all make-up work

Punne% Square Quiz A AP Tes2ng this week 15-Week Grades due next week Note: media center is hos2ng tes2ng Turn in all make-up work Biology Monday, May 2, 2016 Do-Now: Punne% Square Quiz A 1. Write down today s FLT 2. What do we use Punne@ Squares for? 3. A purple flower (Pp) and a white flower are crossed. What % of the offspring

More information

Chapter 11. Introduction to Genetics

Chapter 11. Introduction to Genetics Chapter 11 Introduction to Genetics A Brief History In the past, people did not understand how traits were inherited, but there were many guesses based on things that could be observed. Two theories emerged.

More information

LABORATORY #8 -- BIOL 111 Genetics and Inheritance

LABORATORY #8 -- BIOL 111 Genetics and Inheritance LABORATORY #8 -- BIOL 111 Genetics and Inheritance You have seen chromosomes in the onion root tip slides we used to examine the cell cycle. What we cannot see are the individual genes on these chromosomes.

More information

biology Slide 1 of 32

biology Slide 1 of 32 biology 1 of 32 11-1 The Work of Gregor 11-1 The Work of Gregor Mendel Mendel 2 of 32 Gregor Mendel s Peas Gregor Mendel s Peas Genetics is the scientific study of heredity. Gregor Mendel was an Austrian

More information

Extra Review Practice Biology Test Genetics

Extra Review Practice Biology Test Genetics Mendel fill in the blanks: Extra Review Practice Biology Test Genetics Mendel was an Austrian monk who studied genetics primarily using plants. He started with plants that produced offspring with only

More information

Genetics. Why do offspring resemble their parents? What role can technology play in genetics? Let s explore the answers to these questions.

Genetics. Why do offspring resemble their parents? What role can technology play in genetics? Let s explore the answers to these questions. In a monastery garden, a curious monk discovered some of the basic principles of genetics. The monk, Gregor Mendel (1822 1884), laid the groundwork for the study of genetics, which has advanced our understanding

More information

Genetic basis of inheritance and variation. Dr. Amjad Mahasneh. Jordan University of Science and Technology

Genetic basis of inheritance and variation. Dr. Amjad Mahasneh. Jordan University of Science and Technology Genetic basis of inheritance and variation Dr. Amjad Mahasneh Jordan University of Science and Technology Segment 1 Hello and welcome everyone. My name is Amjad Mahasneh. I teach molecular biology at Jordan

More information

11-1: Introduction to Genetics

11-1: Introduction to Genetics 11-1: Introduction to Genetics The Work of Gregor Mendel Copyright Pearson Prentice Hall Genetics Vocabulary Genetics The study of heredity. Heredity The passing of physical characteristics from parents

More information

Life #4 Genetics Notebook

Life #4 Genetics Notebook Life #4 Genetics Notebook Life #4 Learning Targets Life #4 Vocabulary: Eye Color what color are your eyes? Brown, Green, Hazel Dominant Blue Recessive Freckles do you have freckles? Say yes only if you

More information

2. Was there a scientific way to predict the outcome of a cross between two parents?

2. Was there a scientific way to predict the outcome of a cross between two parents? Name Date Period Heredity WebQuest DNA from the Beginning Mendelian Genetics Go to http://www.dnaftb.org/dnaftb/1/concept/index.html Children resemble their parents Read the text and answer the following

More information

Introduction to Genetics and Heredity

Introduction to Genetics and Heredity Introduction to Genetics and Heredity Although these dogs have similar characteristics they are each unique! I. Early Ideas About Heredity A. The Theory of Blending Inheritance Each parent contributes

More information

Meiosis and Introduction to Inheritance

Meiosis and Introduction to Inheritance Meiosis and Introduction to Inheritance Instructions Activity 1. Getting Started: Build a Pair of Bead Chromosomes Materials bag labeled diploid human genome (male) bag labeled diploid human genome (female)

More information

Probability and Inheritance PSI Biology

Probability and Inheritance PSI Biology Probability and Inheritance PSI Biology Name Gregor Mendel studied inheritance in garden peas, and although he did not understand the mechanisms of inheritance, his work became the basis for the modern

More information

Mendel explained how a dominant allele can mask the presence of a recessive allele.

Mendel explained how a dominant allele can mask the presence of a recessive allele. Section 2: Mendel explained how a dominant allele can mask the presence of a recessive allele. K What I Know W What I Want to Find Out L What I Learned Essential Questions What is the significance of Mendel

More information

VOCABULARY somatic cell autosome fertilization gamete sex chromosome diploid homologous chromosome sexual reproduction meiosis

VOCABULARY somatic cell autosome fertilization gamete sex chromosome diploid homologous chromosome sexual reproduction meiosis SECTION 6.1 CHROMOSOMES AND MEIOSIS Study Guide KEY CONCEPT Gametes have half the number of chromosomes that body cells have. VOCABULARY somatic cell autosome fertilization gamete sex chromosome diploid

More information

Genetics & Heredity 11/16/2017

Genetics & Heredity 11/16/2017 Genetics & Heredity Biology I Turner College & Career High School 2017 Fertilization is the fusion of an egg and a sperm. Purebred (True breeding plants) are plants that were allowed to selfpollinate and

More information

The Genetics of Parenthood

The Genetics of Parenthood The Genetics of Parenthood Introduction Why do people, even closely related people, look slightly different from each other? The reason for these differences in physical characteristics (called phenotype)

More information

Model of an F 1 and F 2 generation

Model of an F 1 and F 2 generation Mendelian Genetics Casual observation of a population of organisms (e.g. cats) will show variation in many visible characteristics (e.g. color of fur). While members of a species will have the same number

More information

Section 11 1 The Work of Gregor Mendel (pages )

Section 11 1 The Work of Gregor Mendel (pages ) Chapter 11 Introduction to Genetics Section 11 1 The Work of Gregor Mendel (pages 263 266) This section describes how Gregor Mendel studied the inheritance of traits in garden peas and what his conclusions

More information

Unit 4 Genetics. 3. Categorize the following characteristics below as being influenced by genetics or the environment.

Unit 4 Genetics. 3. Categorize the following characteristics below as being influenced by genetics or the environment. Unit 4 Genetics TEKS 7.14A and 7.14C 1. Define heredity 1.Heredity = the passing of traits from parents to offspring 2. In some countries there is high population of individuals with straight hair verses

More information

REPRODUCTION AND GENETICS

REPRODUCTION AND GENETICS REPRODUCTION AND GENETICS TEKS 7.14A Define heredity as the passage of genetic instructions from one generation to the next generation 7.14B Compare the results of uniform or diverse offspring from sexual

More information

Mendel and Heredity. Chapter 12

Mendel and Heredity. Chapter 12 Mendel and Heredity Chapter 12 Objectives: 1.) Differentiate between genotype and phenotype 2.)Differentiate between genes and alleles. 3.) Differentiate between dominant and recessive alleles. 4.) Explain

More information

Dragon Genetics, pt. VI: Making a dragon

Dragon Genetics, pt. VI: Making a dragon Lesson 6.11 Dragon Genetics, pt. VI: Making a dragon Name Date Period Engage I Dragons are an extremely endangered species and researchers are interested in documenting the genetics of the species and

More information

1/9/2014. Introduction to Genetics. The Work of Gregor Mendel THE WORK OF GREGOR MENDEL. Some Definitions:

1/9/2014. Introduction to Genetics. The Work of Gregor Mendel THE WORK OF GREGOR MENDEL. Some Definitions: Introduction to Genetics Chapter 11 Chapter 11 Section 1 THE WORK OF GREGOR MENDEL The Work of Gregor Mendel Some Definitions: Genetics the study of biological inheritance and variation Chromosomes hereditary

More information

Genetics. The study of heredity. Father of Genetics: Gregor Mendel (mid 1800 s) Developed set of laws that explain how heredity works

Genetics. The study of heredity. Father of Genetics: Gregor Mendel (mid 1800 s) Developed set of laws that explain how heredity works Genetics The study of heredity Father of Genetics: Gregor Mendel (mid 1800 s) Developed set of laws that explain how heredity works Father of Genetics: Gregor Mendel original pea plant (input) offspring

More information

Genetics and Heredity Notes

Genetics and Heredity Notes Genetics and Heredity Notes I. Introduction A. It was known for 1000s of years that traits were inherited but scientists were unsure about the laws that governed this inheritance. B. Gregor Mendel (1822-1884)

More information

Mendel. The pea plant was ideal to work with and Mendel s results were so accurate because: 1) Many. Purple versus flowers, yellow versus seeds, etc.

Mendel. The pea plant was ideal to work with and Mendel s results were so accurate because: 1) Many. Purple versus flowers, yellow versus seeds, etc. Mendel A. Mendel: Before Mendel, people believed in the hypothesis. This is analogous to how blue and yellow paints blend to make. Mendel introduced the hypothesis. This deals with discrete units called

More information

HEREDITY BASKETBALL CHALLENGE!!!! WHO IS UP FOR A LITTLE COMPETITION!!??!?

HEREDITY BASKETBALL CHALLENGE!!!! WHO IS UP FOR A LITTLE COMPETITION!!??!? October 18, 2013 HEREDITY BASKETBALL CHALLENGE!!!! WHO IS UP FOR A LITTLE COMPETITION!!??!? James Brady Instructions for Editing Create a new Text box for the answer to the question. Click the basketball

More information

Genetics and Diversity Punnett Squares

Genetics and Diversity Punnett Squares Genetics and Diversity Punnett Squares 1 OUTCOME QUESTION(S): S1-1-12: How are the features of the parents inherited to create unique offspring? Vocabulary & Concepts Allele Dominant Recessive Genotype

More information

UNIT 6 GENETICS 12/30/16

UNIT 6 GENETICS 12/30/16 12/30/16 UNIT 6 GENETICS III. Mendel and Heredity (6.3) A. Mendel laid the groundwork for genetics 1. Traits are distinguishing characteristics that are inherited. 2. Genetics is the study of biological

More information

Mendelian Genetics. 7.3 Gene Linkage and Mapping Genes can be mapped to specific locations on chromosomes.

Mendelian Genetics. 7.3 Gene Linkage and Mapping Genes can be mapped to specific locations on chromosomes. 7 Extending CHAPTER Mendelian Genetics GETTING READY TO LEARN Preview Key Concepts 7.1 Chromosomes and Phenotype The chromosomes on which genes are located can affect the expression of traits. 7.2 Complex

More information

ASSESSING THREE DIMENSIONS OF THE NGSS IN MIDDLE SCHOOL GENETICS. NSTA Chicago March, 2015 Barbara Nagle Maia Willcox

ASSESSING THREE DIMENSIONS OF THE NGSS IN MIDDLE SCHOOL GENETICS. NSTA Chicago March, 2015 Barbara Nagle Maia Willcox ASSESSING THREE DIMENSIONS OF THE NGSS IN MIDDLE SCHOOL GENETICS NSTA Chicago March, 2015 Barbara Nagle Maia Willcox Next Generation Science Standards Performance Expectations Science and Engineering Practices

More information

Mendelian Genetics & Inheritance Patterns. Practice Questions. Slide 1 / 116. Slide 2 / 116. Slide 3 / 116

Mendelian Genetics & Inheritance Patterns. Practice Questions. Slide 1 / 116. Slide 2 / 116. Slide 3 / 116 New Jersey Center for Teaching and Learning Slide 1 / 116 Progressive Science Initiative This material is made freely available at www.njctl.org and is intended for the non-commercial use of students and

More information

Progressive Science Initiative. Click to go to website:

Progressive Science Initiative. Click to go to website: Slide 1 / 116 New Jersey Center for Teaching and Learning Progressive Science Initiative This material is made freely available at www.njctl.org and is intended for the non-commercial use of students and

More information

Genetics: field of biology that studies heredity, or the passing of traits from parents to offspring Trait: an inherited characteristic, such as eye

Genetics: field of biology that studies heredity, or the passing of traits from parents to offspring Trait: an inherited characteristic, such as eye Genetics: field of biology that studies heredity, or the passing of traits from parents to offspring Trait: an inherited characteristic, such as eye colour or hair colour Gregor Mendel discovered how traits

More information

Testing for Genetic Disorders that Cause Brain Damage

Testing for Genetic Disorders that Cause Brain Damage STO-132 Testing for Genetic Disorders that Cause Brain Damage Part 1: Newborn Screening Tests Matt is watching his twins, Anna and Cody, in the newborn nursery. The nurse pokes the babies heels, collects

More information

MEIOSIS: Genetic Variation / Mistakes in Meiosis. (Sections 11-3,11-4;)

MEIOSIS: Genetic Variation / Mistakes in Meiosis. (Sections 11-3,11-4;) MEIOSIS: Genetic Variation / Mistakes in Meiosis (Sections 11-3,11-4;) RECALL: Mitosis and Meiosis differ in several key ways: MITOSIS: MEIOSIS: 1 round of cell division 2 rounds of cell division Produces

More information

Name Class Date *PACKET NOTES & WORKSHEETS LAB GRADE

Name Class Date *PACKET NOTES & WORKSHEETS LAB GRADE Name Class Date *PACKET NOTES & WORKSHEETS LAB GRADE MEIOSIS is specialized cell division resulting in cells with the genetic material of the parents Sex cells called have exactly set of chromosomes, this

More information

Gregor Mendel and Genetics Worksheets

Gregor Mendel and Genetics Worksheets Gregor Mendel and Genetics Worksheets Douglas Wilkin, Ph.D. (DWilkin) Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book,

More information

Gregor Mendel. What is Genetics? the study of heredity

Gregor Mendel. What is Genetics? the study of heredity Gregor Mendel What is Genetics? the study of heredity Gregor Mendel s Peas Pollen: plant s sperm Egg Cells: plants reproductive cells Fertilization: joining of pollen + egg cells develops into embryo in

More information

The Work of Gregor Mendel. Guided Reading

The Work of Gregor Mendel. Guided Reading The Work of Gregor Mendel Guided Reading Gregor Mendel 25 min Mendel (pearson) 6 min The Experiments of Gregor Mendel 1. What is Heredity? The delivery of characteristics from parents to offspring 2. What

More information

Monday, September 12

Monday, September 12 Monday, September 12 Please copy into your agenda: Monday: Finish mitosis vs meiosis summary due Tues Tuesday: Finish unique you due Wed Wednesday & Thursday: make sure notebook is complete for NB check

More information

Understanding Inheritance. 3. All inherited traits follow Mendel s patterns of inheritance.

Understanding Inheritance. 3. All inherited traits follow Mendel s patterns of inheritance. Genetics Understanding Inheritance Key Concepts What determines the expression of traits? How can inheritance be modeled? How do some patterns of inheritance differ from Mendel s model? What do you think?

More information

Name Hour. Section 11-1 The Work of Gregor Mendel (pages )

Name Hour. Section 11-1 The Work of Gregor Mendel (pages ) Name Hour Section 11-1 The Work of Gregor Mendel (pages 263-266) Introduction (page 263) 1. The scientific study of heredity is called. Gregor Mendel's Peas (pages 263-264) 2. Circle the letter of each

More information

Who was Gregor Mendel and what did he do?

Who was Gregor Mendel and what did he do? Page 1 of 20 Genetics: Heredity: Trait: The scientific Study of Heredity. The passing of traits from one generation to the next. Any observable characteristic on organism may have. Ex: eye colour, hair

More information

DRAGON GENETICS LAB -- Principles of Mendelian Genetics

DRAGON GENETICS LAB -- Principles of Mendelian Genetics DRAGON GENETICS LAB -- Principles of Mendelian Genetics Dr. Pamela Esprivalo Harrell, University of North Texas, developed an earlier version of "Dragon Genetics" which is described in the January 1997

More information

Natural Selection Simulation: Predation and Coloration

Natural Selection Simulation: Predation and Coloration Name Period Date Natural Selection Simulation: Predation and Coloration This simulation was invented by G. Ledyard Stebbins, a pioneer in the evolution of plants. The purpose of the game is to illustrate

More information

Name Class Date. KEY CONCEPT The chromosomes on which genes are located can affect the expression of traits.

Name Class Date. KEY CONCEPT The chromosomes on which genes are located can affect the expression of traits. Section 1: Chromosomes and Phenotype KEY CONCEPT The chromosomes on which genes are located can affect the expression of traits. VOCABULARY carrier sex-linked gene X chromosome inactivation MAIN IDEA:

More information

Hot Sync. Materials Needed Today. Pencil Pass forward your Genetics Packet

Hot Sync. Materials Needed Today. Pencil Pass forward your Genetics Packet Materials Needed Today Please take these materials out of your backpack. Pencil Pass forward your Genetics Packet Hot Sync Wednesday11/6/13 Answer the following questions in complete sentences on your

More information