The passing of traits from parents to offspring. The scientific study of the inheritance

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "The passing of traits from parents to offspring. The scientific study of the inheritance"

Transcription

1 Inheritance The passing of traits from parents to offspring Genetics The scientific study of the inheritance Gregor Mendel -Father of modern genetics -Used peas to successfully identify the laws of heredity Why use Peas as an Experimental Organism? -Short life span -Bisexual -Cross- and self- pollinating so can have purebred (homozygous) and hybrid (heterozygous) -Many traits known

2 Mendel s Work -Studied crosses of seven characters, each with two expressions or traits Ex.: Character- Height Traits- Tall or short Monohybrid or Mendelian Crosses -Crosses that work with a single character at a time Ex.: Tall or short P Generation The Parental generation or the first two individuals (true breeding= homozygous parents) used in a cross Offspring -F1: first filial (brother) generation ( offspring of the P generation) -F2: second filial generation, bred by crossing two F1 plants together or allowing a F1 to selfpollinate

3 Another Sample Cross P1- Tall x short (TT x tt) F1- All tall (Tt) F2- Three tall to one short (1TT:2Tt:1tt) Result Summary: -In all crosses, the F1 generation showed only one of the traits (Dominant) regardless of which male or female -The other trait (Recessive) reappeared in the F2 at 25% (3:1 rate) Mendel s Hypothesis explaining the 3:1 inheritance pattern in the F2 offspring Homozygous 1.Genes can have alternate versions called alleles 2.Each offspring inherits two alleles, one from each parent 3.If the two alleles differ, the dominant allele is expressed. The recessive allele remains hidden unless the dominant allele is absent 4.The two alleles for each trait separate during gamete formation. This is called: Mandel s Law of Segregation When organisms have two of the same alleles for a particular trait (dominant traits are usually capitalized (TT) and recessive traits are usually lower case (tt). Heterozygous When the two alleles for that trait are different (Tt). In complete dominance, the dominant allele will be expressed.

4 Phenotype vs Genotype -The physical appearance of the organism: Phenotype -The genetic makeup of the organism, usually shown in a code: Genotype Ex.: -P allele= Purple -p allele= White Monohybrid Cross -A cross involving only one character Ex.: What happens when you cross two pea plants heterozygous for flower color? -Genotype of parents? Pp xpp -Results: Genotype ratio: 1:2:1 Phenotype ratio: 3:1 6 Mendelian Crosses are Possible Cross Genotype Phenotype TT x tt All Tt All Don Tt xtt 1TT:2Tt:1tt 3 Dom: 1 Res TT x TT All TT All Dom ttxtt All tt All Res TT x Tt 1TT:1Tt All Dom Tt x tt 1Tt:1 tt 1 Dom: 1 Res Test Cross -Purpose: Done to determine if an individual showing a dominant phenotype has a homozygous or heterozygous genotype -How to: Cross of an unknown dominant parent with a homozygous recessive parent Ex.: T_ x tt If TT- all dominant offspring If Tt- 1 dominant: I recessive offspring

5 Dihybrid Cross -Cross intended to study two genetic traits Ex.: Tall (T) or Short (t) and Red (R) or White (r) -Need four letters to code for the cross Ex.: TtRr -Each gamete must get one letter for each trait -Use the FOIL method to figure out the possible gamete combinations from a parent Ex.: A parent TtRr can produce TR, Tr, tr, tr offspring due to independent assortment Dihybrid Cross: TtRr x TtRr -Each parent can produce 4 types of gametes -Cross is a 4x4 with 16 possible offspring -Parent genotype: TtRr -Possible offspring: TR, Tr, tr, tr -Results: Genotype ratio: Tall red=9, Tall white=3, Short red=3, Short white=1 Phenotype ratio: 9:3:3:1 Law of Independent Assortment -The inheritance of 1 st genetic traits is NOT dependent on the inheritance of the 2 nd trait -Inheritance of height is independent of the inheritance of flower color Probability -Genetics is a specific application of the rules of probability -The chance that an event will occur out of the total number of possible events

6 Genetic Ratios -The monohybrid ratios are actually the probabilities of the results of random fertilization Ex.: 3:1 75% chance of the dominant ¾ 25% chance of the recessive ¼ Rule of Multiplication Other than complete dominance -The probability that two alleles will come together at fertilization, is equal to the product of their separate probabilities Ex.: TtRr x TtRr -the probability of getting a tall offspring is ¾ -the probability of getting a red offspring is ¾ -the probability of getting a tall red offspring is ¾ x ¾ =9/16 Comment -Use the Product Rule to calculate the results of complex crosses rather than the Punnett square Inheritance patterns are often more complex than predicted by simple Mendelian Genetics which demonstrates complete dominance Incomplete Dominance -When the F1 hybrids show a phenotype somewhere between the phenotypes of the two parents -Unlike complete dominance problems, where only the allel letter is used, for these problems, the character is the letter we use and the allele is written as a superscript Ex.: Red (C R C R ) x White (C W x C W ) F1= all pink F2= 1 red: 2pink: 1 white -No hidden recessive

7 Codominance Multiple Alleles -Both alleles are expressed equally in the phenotype -You get both alleles expressed in the heterozygous form, here a pink flower ( C P x C P ) and a white flower (C W x C W ) form a pink and white flower (C P x C W ) Result: -No hidden recessive -3 phenotypes and 3 genotypes (but not a does effect) -A form of codominace where there are more than two alleles for a trait Ex.: ABO blood group --I A = A type antigen --I B =B type antigen --i= no antigen Result: -Multiple genotypes and phenotypes -Very common event in many traits Alleles and Blood Types Type Genotypes A B AB O I A I A or I A i (AA or Ai) I B I B or I B i (BB or Bi) I A I B ii Blood Type -Rh blood factor is a separate factor from the ABO blood group -Rh+ = Dominant -Rh- = Recessive -A+ blood = Dihybrid Trait

8 Polygenic Inheritance Environment affect -Two or more genes have an addictive effect on a single character in the phenotype -When several genes are involved, the phenotype described by a bell-shaped curve Ex.: Skin color, height Ex.: Skin color is likely controlled the trait by atleast 4 genes, each dominant gives a darker skin color Results: -Traits tend to run in families -Offspring often between parental types -Can affect the expression of genes Ex.: In terms of skin color, although your genes may code for a little melanin production, prolonged exposure to UV radiation may alter the expression rate of the gene and you will produce more as a response to you environment Morgan -Choose to use fruit flies as a test organism in genetics -All owed the first tracing of traits to specific chromosomes Morgan discovered: -Sex linked traits Sex- Linked Genes -Genetic traits whose expression are dependent on the sex of the individual -Are located on the sex chromosomes X and Y -If a gene is located on the X chromosome, fathers pass sex-linked genes on to their daughters but not sons( they get Y) -Females will express a sex-linked trait exactly like any other trait but males will express the allele on the X chromosome from mother -The vast majority of genes on the X chromosome have nothing to do with sex

9 Males -Hemizygouse: one copy of X chromosome -Show all X traits (Dominant or recessive) -More likely to show X linked recessive gene disorders than fermales Several Sex-Linked Disorders have Medical Significance: -Duchenne Muscular Dystrophy: is a sex-linked disorder resulting in progressive loss of muscular coordination until the late 20s when usually lethal -Hemophilia: Also a sex-linked disorder resulting in the inability to clot blood normally b/c of the absence of proteins required to do so -Colorblindness X-Linked Patterns Extranuclear Inheritance -Trait is usually passed from a carrier mother to ½ of sons -Affected father has no affected children, but passes the trait on to all daughters who will be carriers for the trait Comment -Watch how questions with sex linkage are phrased: Chance of children? All Possibilities Chance of males? Male Possibilities -Extranuclear genes are those found in the mitochrondria and chloroplasts. They were discovered in plants in Since then, they have been linked to several rare and severe inherited diseases in humans. Defects in the mitochrondrial DNA reduce the amount of ATP a cell can make, Therefore the organs most affect by these mutations are the ones that require the most energy: the nervous system and muscle

10 Extranuclear Inheritance Cont. -Because the mitochrondria passed to the zygote all come from the cytoplasm of the egg, these dieases are always inherited from the mother and because of this, do not follow Mendelian rules of inheritance Genetic Studies in Humans Pedigree Chart Tips -Often done be pedigree charts -Pedigree: a chart that shows the relationship b/t parent and offspring across two or more generations -Can help determine the genome of individuals that comprise them and also genome of future offspring -Male = square - Female = circle -Person with trait = colored in -Dominant Trait: never skip generations -Recessive Trait: skips generations -Sex linked: Predominant gender -Autosomal: Both genders equally get disorder Human Recessive Disorders -Albinism -Sickle Cell Anemia -Tay-Sachs Disease -Cystic Fibrosis -PKU -Galactosemia

11 Sickle-cell Disease -Caused by an allele that codes for a mutant hemoglobin molecule that forms long rods when O 2 in the blood is low -Reduced O 2 carrying capacity -Codominant inheritance Tay-Sachs -Caused by an allele that codes for a dysfunctional enzyme that breaks down certain lipids in the brain -Brain cells unable to metabolize type if lipid accumulation and causes brain damage -Death in infancy or early childhood Cystic Fibrosis -Most common lethal genetic disease in U.S -Most frequent in Caucasian populations (1/20 a carrier) -Produces defective chloride channels in membranes causing high levels of chloride outside cells that make muclus thick and heavy leading to organ damage Recessive Pattern -Usually rare -Skips generations -Often an enzyme defect

12 Human Lethal Dominant Disorders -Less common than recessive. Require only one copy of the dominant allele in order for the disorder to be expressed Ex.: -Huntingtons Disease(progressive degeneration of brain cells) -Achondroplasia (Dwarfism) -Famllial Hyperchlosteroemia (High cholesterol) Inheritance Pattern -Each affected individuals had one affected parent -Doesn t skip generations -Homozygous causes show worse phenotype symptoms -May have post-maturity onset of symptons Genetic Screening -Risk assessment for an individual inheriting a trait -Uses probability to calculate the risk Carrier Recognition -Fetal Testing --Amiocentesis --Chorionic Villi Sampling -Newborn Screening Fetal Testing -Biochemical testing -Chromosome analysis

13 Amniocentsis -Administrated between weeks -Extract amnionic fluid = cells and fluid -Biochemical tests and karyotype -Requries culture time for cells Chorionic Villi Sampling -Administrated between 8-10 weeks -Extract tissue from chorian (placenta) -Greater risk but no culture time required Newborn Screening -Blood tests for recessive conditions that can have the phenotypes treated at avoid damagegenotypes are not changed Ex.: -PKU Multifactorial Diseases -Where genetic and environmental factors interact to cause the disease -Becoming more widely recognized in medicine Ex. -Genetic -Diet -Exercise -Bacterial infection

14 Chi-Square -Is a statistical test used to determine how well observed ratios of data that you collect fits expected ratios of data Expected Ratios -Come from a Punnett square -Can count offspring to see how well our observed results match the expected outcomes -In genetic crosses, b/c Mendel s Laws we assume that there is a random assortment of alleles from parents to offspring, so the probability of receiving a particular gene combination in an offspring is due to chance and a punnett square should predict the outcome Null Hypothesis The formula for Chi Square -N 0 : Our observed data should match our expected data -If our data matches the expected ratios of offspring within a reasonable amount, we accept our null hypothesis and our results are statistically significant -If our data does not match the expected ratios within a reasonable amount, we reject the null hypothesis and our data is not statistically significant -Where O is the observed frequency -E is the expected frequency -df is the degree of freedom (n-1) -x 2 is chi square

15 Critcial Value -P =.o5 always -If chi-square results are below the CV we accept the null hypothesis -If chi-square results are above the CV we reject the null hypothesis Use the row based on the df, which is one subtracted from the number of phenotypes possible

You are who you are because of a combination of HEREDITY and ENVIRONMENT. ENVIRONMENT: all outside forces that act on an organism.

You are who you are because of a combination of HEREDITY and ENVIRONMENT. ENVIRONMENT: all outside forces that act on an organism. Unit 6 Genetics 6.1 Genetics You are who you are because of a combination of HEREDITY and ENVIRONMENT. ENVIRONMENT: all outside forces that act on an organism. HEREDITY: traits that are passed from parents

More information

Class *GENETIC NOTES & WORKSHEETS

Class *GENETIC NOTES & WORKSHEETS Name Class *GENETIC NOTES & WORKSHEETS DAY 1: Mendelian Genetics Vocabulary A. Genetics- Study of B. Heredity- The passing on of characteristics (traits) from to C. Trait A particular that can vary from

More information

Extra Review Practice Biology Test Genetics

Extra Review Practice Biology Test Genetics Mendel fill in the blanks: Extra Review Practice Biology Test Genetics Mendel was an Austrian monk who studied genetics primarily using plants. He started with plants that produced offspring with only

More information

Patterns in Inheritance. Chapter 10

Patterns in Inheritance. Chapter 10 Patterns in Inheritance Chapter 10 What you absolutely need to know Punnett Square with monohybrid and dihybrid cross Heterozygous, homozygous, alleles, locus, gene Test cross, P, F1, F2 Mendel and his

More information

Mendelian Genetics. You are who you are due to the interaction of HEREDITY and ENVIRONMENT. ENVIRONMENT: all outside forces that act on an organism.

Mendelian Genetics. You are who you are due to the interaction of HEREDITY and ENVIRONMENT. ENVIRONMENT: all outside forces that act on an organism. Heredity Chapter 3 3:1 Genetics Mendelian Genetics You are who you are due to the interaction of HEREDITY and ENVIRONMENT. ENVIRONMENT: all outside forces that act on an organism. HEREDITY: traits that

More information

Objectives. ! Describe the contributions of Gregor Mendel to the science of genetics. ! Explain the Law of Segregation.

Objectives. ! Describe the contributions of Gregor Mendel to the science of genetics. ! Explain the Law of Segregation. Objectives! Describe the contributions of Gregor Mendel to the science of genetics.! Explain the Law of Segregation.! Explain the Law of Independent Assortment.! Explain the concept of dominance.! Define

More information

Patterns of Inheritance

Patterns of Inheritance 1 Patterns of Inheritance Bio 103 Lecture Dr. Largen 2 Topics Mendel s Principles Variations on Mendel s Principles Chromosomal Basis of Inheritance Sex Chromosomes and Sex-Linked Genes 3 Experimental

More information

B-4.7 Summarize the chromosome theory of inheritance and relate that theory to Gregor Mendel s principles of genetics

B-4.7 Summarize the chromosome theory of inheritance and relate that theory to Gregor Mendel s principles of genetics B-4.7 Summarize the chromosome theory of inheritance and relate that theory to Gregor Mendel s principles of genetics The Chromosome theory of inheritance is a basic principle in biology that states genes

More information

Genetics & Heredity 11/16/2017

Genetics & Heredity 11/16/2017 Genetics & Heredity Biology I Turner College & Career High School 2017 Fertilization is the fusion of an egg and a sperm. Purebred (True breeding plants) are plants that were allowed to selfpollinate and

More information

Genetics: CH9 Patterns of Inheritance

Genetics: CH9 Patterns of Inheritance Genetics: CH9 Patterns of Inheritance o o Lecture note Directions Highlight Key information (10-30% of most slides) My Thoughts: Questions, comments, additional information, connections to prior knowledge,

More information

Chapter 11 introduction to genetics 11.1 The work of Gregor mendel

Chapter 11 introduction to genetics 11.1 The work of Gregor mendel Chapter 11 introduction to genetics 11.1 The work of Gregor mendel What is inheritance? Two uses of the word inheritance Things that are passed down through generations Factors we get from our parents

More information

Mendel. The pea plant was ideal to work with and Mendel s results were so accurate because: 1) Many. Purple versus flowers, yellow versus seeds, etc.

Mendel. The pea plant was ideal to work with and Mendel s results were so accurate because: 1) Many. Purple versus flowers, yellow versus seeds, etc. Mendel A. Mendel: Before Mendel, people believed in the hypothesis. This is analogous to how blue and yellow paints blend to make. Mendel introduced the hypothesis. This deals with discrete units called

More information

Class XII Chapter 5 Principles of Inheritance and Variation Biology

Class XII Chapter 5 Principles of Inheritance and Variation Biology Question 1: Mention the advantages of selecting pea plant for experiment by Mendel. Mendel selected pea plants to carry out his study on the inheritance of characters from parents to offspring. He selected

More information

Genetics and Heredity Notes

Genetics and Heredity Notes Genetics and Heredity Notes I. Introduction A. It was known for 1000s of years that traits were inherited but scientists were unsure about the laws that governed this inheritance. B. Gregor Mendel (1822-1884)

More information

Patterns of Inheritance. { Unit 3

Patterns of Inheritance. { Unit 3 Patterns of Inheritance { Unit 3 Austrian monk, gardener, scientist First acknowledged to study heredity the passing on of characteristics from parents to offspring Traits characteristics that are inherited

More information

Genetics and heredity. For a long time, general ideas of inheritance were known + =

Genetics and heredity. For a long time, general ideas of inheritance were known + = Mendelian Genetics Genetics and heredity For a long time, general ideas of inheritance were known + = + = What was really lacking was a quantitative understanding of how particular traits were passed down

More information

Patterns of Inheritance

Patterns of Inheritance Patterns of Inheritance { Austrian monk, gardener, scientist First acknowledged to study heredity the passing on of characteristics from parents to offspring Traits characteristics that are inherited Father

More information

The Experiments of Gregor Mendel

The Experiments of Gregor Mendel 11.1 The Work of Gregor Mendel 11.2 Applying Mendel s Principles The Experiments of Gregor Mendel Every living thing (plant or animal, microbe or human being) has a set of characteristics inherited from

More information

The Modern Genetics View

The Modern Genetics View Inheritance Mendelian Genetics The Modern Genetics View Alleles are versions of a gene Gene for flower color Alleles for purple or white flowers Two alleles per trait 2 chromosomes, each with 1 gene The

More information

By Mir Mohammed Abbas II PCMB 'A' CHAPTER CONCEPT NOTES

By Mir Mohammed Abbas II PCMB 'A' CHAPTER CONCEPT NOTES Chapter Notes- Genetics By Mir Mohammed Abbas II PCMB 'A' 1 CHAPTER CONCEPT NOTES Relationship between genes and chromosome of diploid organism and the terms used to describe them Know the terms Terms

More information

Section 1 MENDEL S LEGACY

Section 1 MENDEL S LEGACY Chapter 9 Genetics Section 1 MENDEL S LEGACY Genetics is the field of biology devoted to understanding how characteristics are transmitted from parents to offspring Genetics was founded with the work of

More information

Mendel s Law of Heredity. Page 254

Mendel s Law of Heredity. Page 254 Mendel s Law of Heredity Page 254 Define pollination The transfer of pollen grains from a male reproductive organ to a female reproductive organ in a plant is called pollination. Define cross pollination.

More information

Inheritance. What is inheritance? What are genetics? l The genetic characters transmitted from parent to offspring, taken collectively

Inheritance. What is inheritance? What are genetics? l The genetic characters transmitted from parent to offspring, taken collectively Genetics Interest Grabber Look at your classmates. Note how they vary in the shape of the front hairline, the space between the two upper front teeth, and the way in which the ear lobes are attached. Make

More information

He called these new plants hybrids because they received different genetic information, or different alleles, for a trait from each parent.

He called these new plants hybrids because they received different genetic information, or different alleles, for a trait from each parent. /6/204 in a Garden Each time Mendel studied a trait, he crossed two plants with different expressions of the trait and found that the new plants all looked like one of the two parents. He called these

More information

Lecture 13: May 24, 2004

Lecture 13: May 24, 2004 Lecture 13: May 24, 2004 CH14: Mendel and the gene idea *particulate inheritance parents pass on discrete heritable units *gene- unit of inheritance which occupies a specific chromosomal location (locus)

More information

Meiosis and Genetics

Meiosis and Genetics Meiosis and Genetics Humans have chromosomes in each cell What pattern do you notice in the human karyotype (a technique that organizes chromosomes by type and size)? Humans are diploid 1 Gametes are produced

More information

Chapter 28 Modern Mendelian Genetics

Chapter 28 Modern Mendelian Genetics Chapter 28 Modern Mendelian Genetics (I) Gene-Chromosome Theory Genes exist in a linear fashion on chromosomes Two genes associated with a specific characteristic are known as alleles and are located on

More information

Chapter 10 Notes Patterns of Inheritance, Part 1

Chapter 10 Notes Patterns of Inheritance, Part 1 Chapter 10 Notes Patterns of Inheritance, Part 1 I. Gregor Mendel (1822-1884) a. Austrian monk with a scientific background b. Conducted numerous hybridization experiments with the garden pea, Pisum sativum,

More information

Chapter 8 Heredity. Learning Target(s):

Chapter 8 Heredity. Learning Target(s): Chapter 8 Heredity copyright cmassengale 1 Learning Target(s): I Can. A) explain the differences between dominant and recessive traits. B) explain the differences between phenotypes and genotypes. 1 Why

More information

MENDELIAN GENETICS. Punnet Squares and Pea Plants

MENDELIAN GENETICS. Punnet Squares and Pea Plants MENDELIAN GENETICS Punnet Squares and Pea Plants Introduction Mendelian laws of inheritance are statements about the way certain characteristics are transmitted from one generation to another in an organism.

More information

Chapter 12 Multiple Choice

Chapter 12 Multiple Choice Chapter 12 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What did Gregor Mendel do to study different characteristics in his genetics experiments? a.

More information

Heredity. Biology 30i Cooper

Heredity. Biology 30i Cooper Heredity Biology 30i Cooper Early Theories of Inheritance Aristotle (384-322 B.C.E.) l proposed the first widely accepted theory of inheritance called pangenesis egg and sperm consist of particles

More information

Summary The Work of Gregor Mendel Probability and Punnett Squares. Oass

Summary The Work of Gregor Mendel Probability and Punnett Squares. Oass --------------------------- Oass ---------------- Date Chapter 11 Summary Introduction to Genetics 11-1 The Work of Gregor Mendel The scientific study of heredity is called genetics. Gregor Mendel used

More information

COMPLEX INHERITANCE. Indicator 4.7: Summarize the chromosome theory of inheritance & relate that theory to Gregor Mendel s principals of genetics.

COMPLEX INHERITANCE. Indicator 4.7: Summarize the chromosome theory of inheritance & relate that theory to Gregor Mendel s principals of genetics. COMPLEX INHERITANCE Indicator 4.7: Summarize the chromosome theory of inheritance & relate that theory to Gregor Mendel s principals of genetics. Agenda Warm-UP: page 151- what is the difference between

More information

Lab Activity Report: Mendelian Genetics - Genetic Disorders

Lab Activity Report: Mendelian Genetics - Genetic Disorders Name Date Period Lab Activity Report: Mendelian Genetics - Genetic Disorders Background: Sometimes genetic disorders are caused by mutations to normal genes. When the mutation has been in the population

More information

Name 9 Patterns of Inheritance Test Date Study Guide You must know: Terms associated with genetics problems: P, F1, F2, dominant, recessive,

Name 9 Patterns of Inheritance Test Date Study Guide You must know: Terms associated with genetics problems: P, F1, F2, dominant, recessive, Name 9 Patterns of Inheritance Test Date Study Guide You must know: Terms associated with genetics problems: P, F1, F2, dominant, recessive, homozygous, heterozygous, phenotypic, and genotypic. How to

More information

Date Pages Page # 3. Record the color of your beads. Are they homozygous or heterozygous?

Date Pages Page # 3. Record the color of your beads. Are they homozygous or heterozygous? 1 Patterns of Inheritance Process and Procedures Date Pages 645-650 Page # 3. Record the color of your beads. Are they homozygous or heterozygous? 6. Record the colors of the two beads. Are they homozygous

More information

2. Was there a scientific way to predict the outcome of a cross between two parents?

2. Was there a scientific way to predict the outcome of a cross between two parents? Name Date Period Heredity WebQuest DNA from the Beginning Mendelian Genetics Go to http://www.dnaftb.org/dnaftb/1/concept/index.html Children resemble their parents Read the text and answer the following

More information

Unit 3: DNA and Genetics Module 9: Human Genetics

Unit 3: DNA and Genetics Module 9: Human Genetics Unit 3: DNA and Genetics Module 9: Human Genetics NC Essential Standard: 3.2.3 Explain how the environment can influence expression of genetic traits 3.3.3 Evaluate ethical issues surrounding the use of

More information

Part 2: Heredity and Mendelian Genetics

Part 2: Heredity and Mendelian Genetics Part 2: Heredity and Mendelian Genetics The Genetics of Inheritance Traits. Ex. Earlobes, Dimples, Curved Fingers, Rolling Tongue Inheritance The mechanism that between generations. Genetics The branch

More information

Mendel rigorously followed various traits in the pea plants he bred. He analyzed

Mendel rigorously followed various traits in the pea plants he bred. He analyzed 4.2.a Mendelian Genetics Mendel explained how a dominant allele can mask the presence of a recessive allele. Real-World Reading Link There are many different breeds of dogs, such as Labrador retrievers,

More information

The Chromosomal Basis Of Inheritance

The Chromosomal Basis Of Inheritance The Chromosomal Basis Of Inheritance Chapter 15 Objectives Explain the chromosomal theory of inheritance and its discovery. Explain why sex-linked diseases are more common in human males than females.

More information

Laboratory. Mendelian Genetics

Laboratory. Mendelian Genetics Laboratory 9 Mendelian Genetics Biology 171L FA17 Lab 9: Mendelian Genetics Student Learning Outcomes 1. Predict the phenotypic and genotypic ratios of a monohybrid cross. 2. Determine whether a gene is

More information

Mendelian Genetics. Ch. 2

Mendelian Genetics. Ch. 2 Mendelian Genetics Ch. 2 1 The historical puzzle of inheritance! Artificial selection has been an important practice since before recorded history Selection of animals for domestication Selective breeding

More information

Genetics. Why do offspring resemble their parents? What role can technology play in genetics? Let s explore the answers to these questions.

Genetics. Why do offspring resemble their parents? What role can technology play in genetics? Let s explore the answers to these questions. In a monastery garden, a curious monk discovered some of the basic principles of genetics. The monk, Gregor Mendel (1822 1884), laid the groundwork for the study of genetics, which has advanced our understanding

More information

The Making of the Fittest: Natural Selection in Humans

The Making of the Fittest: Natural Selection in Humans MENDELIAN GENETICS, PROBABILITY, PEDIGREES, AND CHI-SQUARE STATISTICS INTRODUCTION Hemoglobin is a protein found in red blood cells that transports oxygen throughout the body. The hemoglobin protein consists

More information

Mendel and Genetics. Mr. Nagel Meade High School

Mendel and Genetics. Mr. Nagel Meade High School Mendel and Genetics Mr. Nagel Meade High School What is inheritance? Question? Inheritance: Passing on traits by transmitting them from parents to offspring How does it relate to you personally? Why does

More information

Traits and Probability

Traits and Probability 6.5 Traits and Probability KEY CONCEPT The inheritance of traits follows the rules of probability. S Punnett squares illustrate genetic crosses. A monohybrid cross involves one trait. A dihybrid cross

More information

Biology. Slide 1 of 31. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 31. End Show. Copyright Pearson Prentice Hall Biology 1 of 31 11 3 Exploring Mendelian 11-3 Exploring Mendelian Genetics Genetics 2 of 31 Independent Assortment Independent Assortment To determine if the segregation of one pair of alleles affects

More information

LAB 10 Principles of Genetic Inheritance

LAB 10 Principles of Genetic Inheritance LAB 10 Principles of Genetic Inheritance Objectives 1. Examine the nature of probability. 2. Solve various types of genetics problems. Overview In this laboratory you will learn about the basic principles

More information

Name Date Class. Main Idea. Human traits are controlled by single genes with two alleles, single genes with... a. b. c.

Name Date Class. Main Idea. Human traits are controlled by single genes with two alleles, single genes with... a. b. c. Modern Genetics Name Date Class Modern Genetics Guided Reading and Study Human Inheritance This section explains some patterns of inheritance in humans. It also describes the functions of the sex chromosomes

More information

Genetic diagrams show the genotype and phenotype of the offspring of two organisms. The different generation are abbreviated like so:

Genetic diagrams show the genotype and phenotype of the offspring of two organisms. The different generation are abbreviated like so: Genetics 2 Genetic Diagrams and Mendelian Genetics: Genetic diagrams show the genotype and phenotype of the offspring of two organisms. The different generation are abbreviated like so: P parent generation

More information

Agro/Ansc/Bio/Gene/Hort 305 Fall, 2017 MEDICAL GENETICS AND CANCER Chpt 24, Genetics by Brooker (lecture outline) #17

Agro/Ansc/Bio/Gene/Hort 305 Fall, 2017 MEDICAL GENETICS AND CANCER Chpt 24, Genetics by Brooker (lecture outline) #17 Agro/Ansc/Bio/Gene/Hort 305 Fall, 2017 MEDICAL GENETICS AND CANCER Chpt 24, Genetics by Brooker (lecture outline) #17 INTRODUCTION - Our genes underlie every aspect of human health, both in function and

More information

Basic Patterns of Human Inheritance. Reading Preview. Recessive Genetic Disorders. Essential Questions

Basic Patterns of Human Inheritance. Reading Preview. Recessive Genetic Disorders. Essential Questions 4.2.a Basic Patterns of Human Inheritance The inheritance of a trait over several generations can be shown in a pedigree. Real-World Reading Link Knowing a purebred dog s ancestry can help the owner know

More information

PRINCIPLES OF INHERITANCE AND VARIATION

PRINCIPLES OF INHERITANCE AND VARIATION PRINCIPLES OF INHERITANCE AND VARIATION PRINCIPLES OF INHERITANCE AND VARIATION Genetics: deals with the inheritance, as well as the variation of characters from parents to offsprings. Inheritance: is

More information

Chapter 15 - The Chromosomal Basis of Inheritance. A. Bergeron +AP Biology PCHS

Chapter 15 - The Chromosomal Basis of Inheritance. A. Bergeron +AP Biology PCHS Chapter 15 - The Chromosomal Basis of Inheritance A. Bergeron +AP Biology PCHS Do Now - Predicting Unpredictable Genotypes As an inexperienced (albeit precocious) gardener, I am always looking to maximize

More information

Name: Period: Date: T F 1. Certain acquired characteristics, such as mechanical or mathematical skill, may be inherited.

Name: Period: Date: T F 1. Certain acquired characteristics, such as mechanical or mathematical skill, may be inherited. Mendelian Genetics Packet Name: Period: Date: GENETIC FACTS & FALLACIES PRE-QUIZ T F 1. Certain acquired characteristics, such as mechanical or mathematical skill, may be inherited. T F 2. Identical twins

More information

Human inherited diseases

Human inherited diseases Human inherited diseases A genetic disorder that is caused by abnormality in an individual's DNA. Abnormalities can range from small mutation in a single gene to the addition or subtraction of a whole

More information

Genetics Mutations 2 Teacher s Guide

Genetics Mutations 2 Teacher s Guide Genetics Mutations 2 Teacher s Guide 1.0 Summary Mutations II is an extension activity, which reviews and enhances the previous Core activities. We recommend that it follow Mutations and X-Linkage. This

More information

2 Traits and Inheritance

2 Traits and Inheritance CHATER 6 2 Traits and Inheritance SECTION Heredity 7.2.c., 7.2.d California Science Standards BEFORE YOU READ After you read this section, you should be able to answer these questions: What did Mendel

More information

Pedigree Analysis Why do Pedigrees? Goals of Pedigree Analysis Basic Symbols More Symbols Y-Linked Inheritance

Pedigree Analysis Why do Pedigrees? Goals of Pedigree Analysis Basic Symbols More Symbols Y-Linked Inheritance Pedigree Analysis Why do Pedigrees? Punnett squares and chi-square tests work well for organisms that have large numbers of offspring and controlled mating, but humans are quite different: Small families.

More information

How do genes influence our characteristics?

How do genes influence our characteristics? Genetics Supplement 1 This activity will focus on the question: How do genes contribute to the similarities and differences between parents and their children? This question can be divided into two parts:

More information

Genetics, Analysis & Principles/5e ANSWERS TO PROBLEM SETS CHAPTER 1

Genetics, Analysis & Principles/5e ANSWERS TO PROBLEM SETS CHAPTER 1 Genetics, Analysis & Principles/5e ANSWERS TO PROBLEM SETS CHAPTER 1 Note: the answers to the Comprehension questions are at the end of the textbook. Concept check questions (in figure legends) FIGURE

More information

READING ASSIGNMENT GENETIC ANALYSIS OF DROSOPHILA POPULATIONS I. HOW DO MITOSIS AND MEIOSIS COMPARE?

READING ASSIGNMENT GENETIC ANALYSIS OF DROSOPHILA POPULATIONS I. HOW DO MITOSIS AND MEIOSIS COMPARE? READING ASSIGNMENT GENETIC ANALYSIS OF DROSOPHILA POPULATIONS I. HOW DO MITOSIS AND MEIOSIS COMPARE? II. HOW CAN WE DETERMINE EXPECTED RATIOS OF OFFSPRING? What rules can we learn from Mendel s work with

More information

4. A homozygous tall plant and a heterozygous tall plant are crossed. What is the percent probability of short offspring?

4. A homozygous tall plant and a heterozygous tall plant are crossed. What is the percent probability of short offspring? LEVEL ZERO VOICE POP QUIZ (4 minutes, individual work): 1. Define gene: 2. Define phenotype: 3. A heterozygous white rabbit is crossed with a homozygous black rabbit. If they have 160 offspring, how many

More information

Patterns of 9. Focus on the Concepts

Patterns of 9. Focus on the Concepts Patterns of 9 Focus on the Concepts The characteristics of orga_nisms are shaped by genes h~erited from their parents. A few u~damental rules underlie pa~erns of ~erita_nce. ~Ln s~udying t~s chapter; focus

More information

Lecture 17: Human Genetics. I. Types of Genetic Disorders. A. Single gene disorders

Lecture 17: Human Genetics. I. Types of Genetic Disorders. A. Single gene disorders Lecture 17: Human Genetics I. Types of Genetic Disorders A. Single gene disorders B. Multifactorial traits 1. Mutant alleles at several loci acting in concert C. Chromosomal abnormalities 1. Physical changes

More information

p and q can be thought of as probabilities of selecting the given alleles by

p and q can be thought of as probabilities of selecting the given alleles by Lecture 26 Population Genetics Until now, we have been carrying out genetic analysis of individuals, but for the next three lectures we will consider genetics from the point of view of groups of individuals,

More information

Week 4 Day 1 Lab: MENDELIAN TRAITS and INHERITANCE

Week 4 Day 1 Lab: MENDELIAN TRAITS and INHERITANCE Week 4 Day 1 Lab: MENDELIAN TRAITS and INHERITANCE Part 1: Mendelian Traits Alleles are alternative versions of one gene. Alleles are found at the same locus on homologous chromosomes, but may code for

More information

MENDELIAN GENETICS IN HUMANS

MENDELIAN GENETICS IN HUMANS AP BIOLOGY EVOLUTION/HEREDITY UNIT Unit 1 Part 4C Chapter 14.4 Activity #6 NAME DATE PERIOD MENDELIAN GENETICS IN HUMANS P EDIGREES Key: =male = female or = affected or = normal F = free earlobes f = attached

More information

CHAPTER 12.1: Mendel

CHAPTER 12.1: Mendel CHAPTER 12.1: Mendel 1. In what way did the blending hypothesis for the transmission of traits differ from observable patterns of inheritance? 2. Why was Mendel s genetics research so much more valuable

More information

Genetics Lecture 7 More Mendelian Genetics Continued

Genetics Lecture 7 More Mendelian Genetics Continued Genetics Lecture 7 More Mendelian Genetics Continued Novel Phenotypes Other cases of gene interaction yield novel, or new, phenotypes in the F2 generation, in addition to producing modified dihybrid ratios.

More information

Does Mendel s work suggest that this is the only gene in the pea genome that can affect this particular trait?

Does Mendel s work suggest that this is the only gene in the pea genome that can affect this particular trait? Mongenic Traits, Probability and Independent Assortment Genetical Jargon Demystified In typical genetical parlance the hereditary factor that determines the round/wrinkled seed difference as referred to

More information

WHAT S IN THIS LECTURE?

WHAT S IN THIS LECTURE? What is meant by the term monogenic? WHAT S IN THIS LECTURE? WHAT S MENDEL S PRINCIPLE OF SEGREGATION? What s probability got to do with this? WHAT S MENDEL S PRINCIPLE OF INDEPENDENT ASSORTMENT? 1 FROM

More information

Chapter 15 The Chromosomal Basis of Inheritance. Fig. 15-1

Chapter 15 The Chromosomal Basis of Inheritance. Fig. 15-1 Chapter 15 The Chromosomal Basis of Inheritance Fig. 15-1 Overview: Locating Genes Along Chromosomes Mendel s hereditary factors were genes, though this wasn t known at the time Today we can show that

More information

Collated questions Demonstrate understanding of biological ideas relating to genetic variation DNA STRUCTURE

Collated questions Demonstrate understanding of biological ideas relating to genetic variation DNA STRUCTURE Collated questions Demonstrate understanding of biological ideas relating to genetic variation DNA STRUCTURE THE ROLE OF DNA IN INHERITANCE (2013:2) Use the diagram above to help you explain the relationship

More information

Unit D Notebook Directions

Unit D Notebook Directions DO NOT PUT THIS FIRST PAGE IN YOUR NOTEBOOK!! Unit D Notebook Directions Immediately following the last page of Unit C, do the following: (Page numbers are not important, but the order needs to be exact)

More information

Chapter 7: Pedigree Analysis B I O L O G Y

Chapter 7: Pedigree Analysis B I O L O G Y Name Date Period Chapter 7: Pedigree Analysis B I O L O G Y Introduction: A pedigree is a diagram of family relationships that uses symbols to represent people and lines to represent genetic relationships.

More information

Single-Gene Inheritance

Single-Gene Inheritance Single-Gene Inheritance Importance of Family History Understanding the past is the key to predicting the future. OBJECTIVES Construct and interpret pedigrees using standard nomenclature Describe the general

More information

Single Gene Disorders - Student Edition (Human Biology)

Single Gene Disorders - Student Edition (Human Biology) Single Gene Disorders - Student Edition (Human Biology) The Program in Human Biology, Stanford Univ- ersity, (HumBio) CK12 Editor Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign

More information

Name Date Per. Vocabulary Crossword - Chapter 6: Genetics and Heredity M 2 3 D S 11 L P Y 30 L 38 E 45

Name Date Per. Vocabulary Crossword - Chapter 6: Genetics and Heredity M 2 3 D S 11 L P Y 30 L 38 E 45 Name Date Per. Vocabulary Crossword - Chapter 6: enetics and Heredity 1 2 3 D 5 6 7 4 8 9 10 S 11 12 D 13 16 19 20 21 14 X 17 18 15 P E 22 H D 23 24 25 N 31 32 33 29 26 C B Z 28 I P Y 30 34 V 27 38 T 41

More information

Name Biology I Date: PUNNETT SQUARE PRACTICE

Name Biology I Date: PUNNETT SQUARE PRACTICE 1 Name_ Biology I Date: PUNNETT SQUARE PRACTICE Use a Punnett Square to show the possible offspring from the crosses given and answer the questions: IN PEAS: R = round T = tall Y = yellow peas P = purple

More information

Heredity By Cindy Grigg

Heredity By Cindy Grigg Name: Heredity By Cindy Grigg What makes children look like their parents? Sometimes people who are related look very much alike. For example, parents who are tall and red- headed will have children who

More information

Blood Types and Genetics

Blood Types and Genetics Blood Types and Genetics Human blood type is determined by codominant alleles. An allele is one of several different forms of genetic information that is present in our DNA at a specific location on a

More information

DRAGON GENETICS LAB -- Principles of Mendelian Genetics

DRAGON GENETICS LAB -- Principles of Mendelian Genetics DRAGON GENETICS LAB -- Principles of Mendelian Genetics Dr. Pamela Esprivalo Harrell, University of North Texas, developed an earlier version of "Dragon Genetics" which is described in the January 1997

More information

Question #1. How many different kinds of gametes could the following individuals produce? 1. aabb 2. CCDdee 3. AABbCcDD 4. MmNnOoPpQq 5.

Question #1. How many different kinds of gametes could the following individuals produce? 1. aabb 2. CCDdee 3. AABbCcDD 4. MmNnOoPpQq 5. GENETIC PROBLEMS Question #1 How many different kinds of gametes could the following individuals produce? 1. aabb 2. CCDdee 3. AABbCcDD 4. MmNnOoPpQq 5. UUVVWWXXYYZz Question #1 Remember the formula 2

More information

Complications in single gene analysis

Complications in single gene analysis Complications in single gene analysis A. Lethals In chickens creeper X creeper 2/3 creeper : 1/3 normal But: 1/4th of the eggs never hatched and were found to have grossly deformed chicks Legend: C'C'

More information

Mendelian Genetics patterns of Inheritance

Mendelian Genetics patterns of Inheritance CHAPTER 5 Mendelian Genetics patterns of Inheritance KEY CONCEPTS After completing this chapter you will be able to describe the early experiments of Gregor Mendel and relate his conclusions to modern

More information

Driving Question: What difference does it make if a gene is part of the X Chromosome?

Driving Question: What difference does it make if a gene is part of the X Chromosome? Genetics - X-linkage Teacher s Guide 1.0 Summary The X-Linkage Activity is the sixth core Genetics activity. This activity is comprised of three sections and designed to last one class period of approximately

More information

The Chromosomal Basis of Inheritance

The Chromosomal Basis of Inheritance Chapter 15 The Chromosomal Basis of Inheritance PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

Lecture 1 Mendelian Inheritance

Lecture 1 Mendelian Inheritance Genes Mendelian Inheritance Lecture 1 Mendelian Inheritance Jurg Ott Gregor Mendel, monk in a monastery in Brünn (now Brno in Czech Republic): Breeding experiments with the garden pea: Flower color and

More information