Microevolution Changing Allele Frequencies

Size: px
Start display at page:

Download "Microevolution Changing Allele Frequencies"

Transcription

1 Microevolution Changing Allele Frequencies

2 Evolution Evolution is defined as a change in the inherited characteristics of biological populations over successive generations. Microevolution involves the change in allele frequencies that occur over time within a population. This change is due to four different processes: mutation, selection (natural and artificial), gene flow, and genetic drift. 2

3 Determining Allele Frequency Examine the frog population presented here. Their color is determined by a single gene, which has two alleles and phenotypically exhibits incomplete dominance. C G C G is green, C G C R is blue, and C R C R is red Calculate the allele frequency of the gene pool in the diagram. 3

4 Determining Allele Frequency These frogs are diploid, thus have two copies of their genes for color. Allele: C G C R Green (11) 22 0 Blue (2) 2 2 Red (3) 0 6 Total: 24 8 Frequency: p = p = ¾ = 0.75 q = 8 32 q = ¼ = 0.25 If allelic frequencies change, then evolution is occurring. Let s suppose 4 green frogs enter the population (immigration). How do the frequencies change? 4

5 Immigration: Determining Allele Frequency Recall that currently: C G = 0.75 & C R = 0.25 Allele: C G C R Green (15) 30 0 Blue (2) 2 2 Red (3) 0 6 Total: 32 8 Frequency: p = p = 8/10 = 0.80 q = 8 40 q = 2/10 =

6 Determining Allele Frequency How do the allelic frequencies change if 4 green frogs leave the population instead of enter the population? (emigration) 6

7 Emigration: Determining Allele Frequency Recall that originally: C G = 0.75 & C R = 0.25 Allele: C G C R Green (7) 14 0 Blue (2) 2 2 Red (3) 0 6 Total: 16 8 Frequency: p = p = 2/3 = 0.67 q = 8 24 q = 1/3 =

8 Impact On Small vs. Large Population Before 4 frogs joined After 4 frogs joined Compare the effect on the small population to 4 frogs joining a much larger population. 8

9 Impact Large Population Before 4 frogs joined larger population Allele: C G C R Green (22) 44 0 Blue (4) 4 4 Red (6) 0 12 Total: After 4 green frogs joined larger population Allele: C G C R Green (26) 52 0 Blue (4) 4 4 Red (6) 0 12 Total: Frequency: p = p = 3/4 = 0.75 q = q = 1/4 = 0.25 Frequency: p = 5 72 p = 56/72 = 0.78 q = q = 16/72 =

10 Impact Small Population Before 4 frogs joined After 4 green frogs joined Allele: C G C R Green (11) 22 0 Blue (2) 2 2 Red (3) 0 6 Total: 24 8 Frequency: p = p = ¾ = 0.75 q = 8 32 q = ¼ = 0.25 Allele: C G C R Green (15) 30 0 Blue (2) 2 2 Red (3) 0 6 Total: 32 8 Frequency: p = p = 8/10 = 0.80 q = 8 40 q = 2/10 = 0.20 In both cases the allele frequency for C G increases but it has a bigger impact on the smaller population. 10

11 Genetic Drift Small populations can experience changes in allele frequencies more dramatically than large populations. In very large populations the effect can be insignificant. Also in small populations genes can be lost more easily. When there is only one allele left for a particular gene in a gene pool, that gene is said to be fixed, thus there is no genetic diversity. 11

12 Genetic Drift Genetic drift or allelic drift is the change in the frequency of a gene variant (allele) in a population due to random sampling in the absence of a selection pressure. Genetic drift is important when populations are dramatically reduced. Genes are lost and deleterious genes can also increase. When there are few copies of an allele (small population), the effect of genetic drift is larger, and when there are many copies the effect is smaller. 12

13 Genetic Drift Genetic drift can be most profound in populations that are dramatically reduced (bottle neck populations) usually due to some environmental catastrophe. Also genetic drift occurs when a small population arrives at a new habitat such as an island. 13

14 Bottleneck Example In 1900, the population of prairie chickens in Illinois was 100 million but by 1995, the population was reduced to around 50 in Jasper County due to over hunting and habitat destruction which caused the bottleneck to occur. A comparison of the DNA from the 1995 bird population indicated the birds had lost most of their genetic diversity. 14

15 Bottleneck Example Additionally, less than 50% of the eggs laid actually hatched in Populations outside IL do not experience the egg hatching problem. Bottleneck populations generally experience a severe reduction in genetic diversity within the population. 15

16 Founder Effect The founder effect is the loss of genetic variation that occurs when a new population is established by a very small number of individuals from a larger population and is a special case of genetic drift. Founder effects are very hard to study! 16

17 Founder Effect Biologist got their chance after a hurricane wiped out all the lizard species on certain islands in the Bahamas, scientists repopulated the small islands with two lizard pairs, one having long limbs and one having short limbs. 17

18 Founder Effect Before the hurricane, these islands supported populations of a Caribbean lizard, the brown anole, Anolis sagrei. After the hurricane, seven of the islands were thoroughly searched. No lizards were found. 18

19 Founder Effect In May 2005, the researchers randomly selected one male and one female brown anole from lizards collected on a nearby larger island to found new anole populations on seven small islands. They then sat back and watched how those lizards evolved to get an up-close look at the Founder Effect. 19

20 Founder Effect During the next four years, the researchers repeatedly sampled lizards from the source island, from the seven experimental founder islands, and from 12 nearby islands that served as a control. The team found that all lizard populations adapted to their environment, yet retained characteristics from their founders. 20

21 A Human Founder Effect Example The Amish community was founded by a small number of colonist. The founding group possessed the gene for polydactyly (extra toes or fingers). The Amish population has increased in size but has remained genetically isolated as few outsiders become a part of the population. As a result polydactyly is much more frequent in the Amish community than it is in other communities. 21

22 Impact of Nonrandom Mating Nonrandom mating also changes allele frequency. Let s revisit our adorable frogs and suppose that 4 frogs migrate to a pond a small distance from the main pond. It is likely that these 4 frogs will mate with one another, leaving the rest of the population in the main pond behind to also mate with one another. Nonrandom mating implies a choice of mates which is more prevalent in animals. 22

23 Two Types of Sexual Selection Darwin wrote: The sexual struggle is of two kinds; in the one it is between individuals of the same sex, generally the males, in order to drive away or kill their rivals, the females remaining passive; whilst in the other, the struggle is likewise between the individuals of the same sex, in order to excite or charm those of the opposite sex, generally the females, which no longer remain passive, but select the more agreeable partners. 23

24 Sexual Selection Sexual selection of mates also affects allele frequency. The peacock provides a particularly well known example of intersexual selection, where ornate males compete to be chosen by females. The result is a stunning feathered display, which is large and unwieldy enough to pose a significant survival disadvantage. 24

25 Sexual Selection Female birds of many species choose the male. Males that are showier will better attract females. These males have a selective advantage even though they are more susceptible to predators. 25

26 Sexual Selection Females that are drab, blend in to their surroundings and as a result, avoid predators which giving females a survival advantage. Sexual selection can lead to sexual dimorphism where there is a distinct difference between males and females. 26

27 Hardy-Weinberg Equilibrium So, when is there no change in the allele frequency? When the population is said to be in Hardy-Weinberg Equilibrium, thus no evolution is occurring. FIVE Conditions of Hardy-Weinberg Equilibrium: 1. Population must be large so chance is not a factor. (No genetic drift). 2. Population must be isolated to prevent gene flow. (No immigration or emigration) 3. No mutations occur. 4. Mating is completely random with respect to time and space. 5. Every offspring has an equal chance of survival without regard to phenotypes. (No natural selection) 27

28 Hardy-Weinberg Equilibrium Condition #1 can be met. It is important to have large populations in order that the loss or addition of genes is not a factor. By contrast, small populations experience genetic drift. Additionally, if a small population moves to another area or becomes isolated, the gene pool will be different from the original gene pool. And the founder effect comes into play. Condition #2 can only be met if the population is isolated. If individuals immigrate or emigrate from the population, the allele frequencies change and evolution occurs. Condition #3 cannot ever be met since mutations always occur. Thus mutational equilibrium can never be met. 28

29 Hardy-Weinberg Equilibrium Condition #4 can never be met. Mating is never random. Pollen from an apple tree in Ohio is more likely to pollinate a tree in Ohio than one in Washington state. Condition #5 can never be met. There will always be variation. Variation can help organisms survive longer and/or reproduce more effectively. Since 3 out of the 5 H-W conditions can never be met, evolution DOES occur and allele frequencies do indeed change. 29

30 Applying the H-W Model Here we go with our frogs again! Let s suppose that in a population of 100 frogs, 36 were green (C G C G ), 48 were blue (C G C R ) and 16 were red (C R C R ) and there was total random mating. Allele: C G C R Green (36) 72 0 Blue (48) Red (16) 0 32 Total: Frequency: p = p = 3/5 = 0.60 q = q = 2/5 = 0.40 Thus, it can be assumed that 60% of all the gametes (eggs and sperm) should carry the C G allele and 40% of the gametes should carry the C R allele. 30

31 Applying the H-W Model C G 0.60 C G C G 0.36 C R 0.40 C G C R 0.24 C G 0.60 C R 0.40 C G C R 0.24 C R C R 0.16 A population Punnett square is shown above. It indicates that the next generation should have the following offspring distribution: 36% green (C G C G ), 48% blue(c G C R ), 16% red (C R C R ). When the second generation gets ready to reproduce, the results will be the same as before. Allele: C G C R Green (36) 72 0 Blue (48) Red (16) 0 32 Total: Frequency: p = p = 3/5 = 0.60 q = q = 2/5 =

32 Applying the H-W Model So, the allele frequency remains at 0.40 C G and 0.60 C R thus no evolution is taking place. Let s suppose that there is an environmental change that makes red frogs more obvious to predators. How is the population affected and now the population consists of 36 green, 48 blue, and 6 red frogs? Allele: C G C R Green (36) 72 0 Blue (48) Red (6) 0 12 Total: Frequency: p = p = 2/3 = 0.66 q = q = 1/3 = 0.33 Now, allele frequencies are changing and there is an advantage to being green or blue but NOT red. Evolution is indeed occurring. 32

33 Deriving the H-W Model C G 0.60 C G C G 0.36 C R 0.40 C G C R 0.24 C G 0.60 C R 0.40 Examine this Punnett square again. If p represents the allele frequency of C G (dominant) and q represents the allele frequency of C R (recessive) then two equations for a population in Hardy-Weinberg equilibrium can be derived where the following genotypes are represented by: C G C G = p 2 C R C R = q 2 C G C R = 2pq Mathematically then p + q = 1 (1 st H-W equation) So, the Punnett square effectively crossed (p + q ) (p + q ) which gives p 2 + 2pq + q 2 = 1 (2 nd H-W equation) C G C R 0.24 C R C R

34 Natural Selection Natural Selection is the only mechanism that consistently causes adaptive evolution. Evolution by natural selection is a blend of chance and sorting. Chance in the context of mutations causing new genetic variations Sorting in the context of natural selection favoring some alleles over others This favoring process causes the outcome of natural selection to be anything but random! Natural Selection consistently increases the frequencies of alleles that provide reproductive advantage and thus leads to adaptive evolution.

35 Relative Fitness There are animal species in which individuals, usually males, lock horns or otherwise compete through combat for mating privileges. Reproductive success is usually far more subtle! Relative fitness is defined as the contribution an individual makes to the gene pool of the next generation relative to the contributions of other individuals.

36 Three Modes of Natural Selection Natural selection can alter the frequency distribution of heritable traits in three ways depending on which phenotype is favored: Directional Selection Disruptive Selection Stabilizing Selection

37 Directional Selection Directional selection occurs when conditions favor individuals exhibiting one extreme of a phenotypic range. Commonly occurs when the population s environment changes or when members of a population migrate to a new (and different) habitat.

38 Frequency Frequency Frequency Possible Effect of Continual Directional Selection If continued, the variance may decrease. before after before after before after Phenotype (trait) Phenotype (trait) Phenotype (trait) 38

39 Disruptive or Diversifying Selection Disruptive selection occurs when conditions favor individuals at both extremes of a phenotypic range over individuals with intermediate phenotypes. The intermediates in the population have lower relative fitness. 39

40 Disruptive or Diversifying Selection Disruptive selection occurs when conditions favor individuals at both extremes of a phenotypic range over individuals with intermediate phenotypes. The intermediates in the population have lower relative fitness. 40

41 Stabilizing Selection Stabilizing selection removes extreme variants from the population and preserves intermediate types. This reduces variation and tends to maintain the status quo for a particular phenotypic character. 41

42 Sexual Selection A form of selection in which individuals with certain inherited characteristics are more likely than other individuals to obtain mates. Can result in sexual dimorphism which is a difference between the two sexes with regard to secondary sexual characteristics. 42

43 Intrasexual vs. Intersexual Selection How does sexual selection operate? Intrasexual selection within the same sex, individuals of one sex compete directly for mates of the opposite sex. Males are famous for this! 43

44 Intrasexual vs. Intersexual Selection Intersexual selection (mate choice) individuals of one sex are choosy. Often these are females that select mates based on their showiness. 44

45 Preserving Genetic Variation Some of the genetic variation is populations represents neutral variation, differences in DNA sequence that do not confer a selective advantage or disadvantage. There are several mechanisms that counter the tendency for directional and stabilizing selection to reduce variation: Diploidy Balancing Selection Hererzygote Advantage Frequency-Dependent Selection 45

46 Diploidy In diploid eukaryotes each organism has two copies of every gene and a considerable amount of genetic variation is hidden from selection in the form of recessive alleles. Often alleles are recessive and less favorable than their dominant counterparts. By contrast, haploid organisms express every gene that is in their genome. What you see is what you get. It reduces genetic variability. 46

47 Diploidy Recessive alleles persist by propagation in heterozygous individuals. This latent variation is exposed to natural selection only when both parents carry the same recessive allele and two copies end up in the same zygote. As you might expect, this happens rarely if the allelic frequency of the recessive allele is very low. Why is heterozygote protection of potentially negative recessive alleles important to species survival? 47

48 Balancing Selection Balancing selection occurs when natural selection maintains two or more forms in a population. This type of selection includes heterozygote advantage and frequency-dependent selection. Heterozygote advantage involves an individual who is heterozygous at a particular gene locus thus has a greater fitness than a homozygous individual. 48

49 Heterozygote Advantage A well-studied case is that of sickle cell anemia in humans, a hereditary disease that damages red blood cells. Sickle cell anemia is caused by the inheritance of a variant hemoglobin gene (HgbS) from both parents. In these individuals, hemoglobin in red blood cells is extremely sensitive to oxygen deprivation, and this causes shorter life expectancy. 49

50 Heterozygote Advantage A person who inherits the sickle cell gene from one parent, and a normal hemoglobin gene (HgbA) from the other, has a normal life expectancy. However, these heterozygote individuals, known as carriers of the sickle cell trait, may suffer problems from time to time. 50

51 Heterozygote Advantage The heterozygote is resistant to the malarial parasite which kills a large number of people each year in Africa. There exists a balancing selection between fierce selection against homozygous sickle-cell sufferers, and selection against the standard HgbA homozygotes by malaria. The heterozygote has a permanent advantage (a higher fitness) wherever malaria exists. 51

52 Frequency-Dependent Selection The fitness of a phenotype depends on how common it is in the population. In positive frequency-dependent selection the fitness of a phenotype increases as it becomes more common. In negative frequency-dependent selection the fitness of a phenotype increases as it becomes less common. For example in prey switching, rare morphs of prey are actually fitter due to predators concentrating on the more frequent morphs. 52

53 Balanced Polymorphism Balanced polymorphism occurs in a given population when two distinct types (or morphs) exists and the allele frequencies do not change. This may be due to Variation in the environment where one morph may be favored over another. One morph may be better adapted to a certain time of the year over the other. The lady bird beetle has 2 morphs. The red variety is more abundant in the spring and winter, whereas the black morph is more abundant in the summer and fall. 53

54 Why Natural Selection Cannot Fashion Perfect Organisms 1. Selection can act only on existing variations. Natural selection favors only the fittest phenotypes among those in the population, which may not be the ideal traits. New advantageous alleles do not arise on demand. 2. Evolution is limited by historical constraints. Each species has a legacy of descent with modification from ancestral forms. Evolution does not scrap the ancestral anatomy. For example in birds and bats, an existing pair of limbs took on new functions for flight as these organisms evolved from nonflying ancestors. 54

55 Why Natural Selection Cannot Fashion Perfect Organisms 3. Adaptations are often compromises. The loud call that enables a frog to attract mates also attracts predators. 4. Chance, natural selection and the environment interact. Chance can affect the subsequent evolutionary history of populations. A storm can blow birds hundreds of kilometers over an ocean to an island, the wind does not necessarily transport those individuals that are best suited to the environment! 55

Evolution. Determining Allele Frequency These frogs are diploid, thus have two copies of their genes for color. Determining Allele Frequency

Evolution. Determining Allele Frequency These frogs are diploid, thus have two copies of their genes for color. Determining Allele Frequency Evolution Microevolution Changing Allele Frequencies Evolution is defined as a change in the inherited characteristics of biological populations over successive generations. Microevolution involves the

More information

Ch. 23 The Evolution of Populations

Ch. 23 The Evolution of Populations Ch. 23 The Evolution of Populations 1 Essential question: Do populations evolve? 2 Mutation and Sexual reproduction produce genetic variation that makes evolution possible What is the smallest unit of

More information

DEFINITIONS: POPULATION: a localized group of individuals belonging to the same species

DEFINITIONS: POPULATION: a localized group of individuals belonging to the same species DEFINITIONS: POPULATION: a localized group of individuals belonging to the same species SPECIES: a group of populations whose individuals have the potential to interbreed and produce fertile offspring

More information

EVOLUTION MICROEVOLUTION CAUSES OF MICROEVOLUTION. Evolution Activity 2.3 page 1

EVOLUTION MICROEVOLUTION CAUSES OF MICROEVOLUTION. Evolution Activity 2.3 page 1 AP BIOLOGY EVOLUTION ACTIVITY 2.3 NAME DATE HOUR MICROEVOLUTION MICROEVOLUTION CAUSES OF MICROEVOLUTION Evolution Activity 2.3 page 1 QUESTIONS: 1. Use the key provided to identify the microevolution cause

More information

Chapter 23. Population Genetics. I m from the shallow end of the gene pool AP Biology

Chapter 23. Population Genetics. I m from the shallow end of the gene pool AP Biology Chapter 23. Population Genetics I m from the shallow end of the gene pool 1 Essential Questions How can we measure evolutionary change in a population? What produces the variation that makes evolution

More information

Schedule Change! Today: Thinking About Darwinian Evolution. Perplexing Observations. We owe much of our understanding of EVOLUTION to CHARLES DARWIN.

Schedule Change! Today: Thinking About Darwinian Evolution. Perplexing Observations. We owe much of our understanding of EVOLUTION to CHARLES DARWIN. Schedule Change! Film and activity next Friday instead of Lab 8. (No need to print/read the lab before class.) Today: Thinking About Darwinian Evolution Part 1: Darwin s Theory What is evolution?? And

More information

CHAPTER 20 LECTURE SLIDES

CHAPTER 20 LECTURE SLIDES CHAPTER 20 LECTURE SLIDES To run the animations you must be in Slideshow View. Use the buttons on the animation to play, pause, and turn audio/text on or off. Please note: once you have used any of the

More information

How Organisms Evolve Chapters The Theory of Evolution. The Theory of Evolution. Evolution can be traced through the fossil record.

How Organisms Evolve Chapters The Theory of Evolution. The Theory of Evolution. Evolution can be traced through the fossil record. How Organisms Evolve Chapters 14-15 The Theory of Evolution Evolution is the process of change in the inherited traits of a population of organisms from one generation to the next. The inherited traits

More information

MECHANISMS AND PATTERNS OF EVOLUTION

MECHANISMS AND PATTERNS OF EVOLUTION MECHANISMS AND PATTERNS OF EVOLUTION Evolution What is it again? Evolution is the change in allele frequencies of a population over generations Mechanisms of Evolution what can make evolution happen? 1.

More information

So what is a species?

So what is a species? So what is a species? Evolutionary Forces New Groups Biological species concept defined by Ernst Mayr population whose members can interbreed & produce viable, fertile offspring reproductively compatible

More information

11.1 Genetic Variation Within Population. KEY CONCEPT A population shares a common gene pool.

11.1 Genetic Variation Within Population. KEY CONCEPT A population shares a common gene pool. KEY CONCEPT A population shares a common gene pool. Genetic variation in a population increases the chance that some individuals will survive. Genetic variation leads to phenotypic variation. Phenotypic

More information

Bio 1M: Evolutionary processes

Bio 1M: Evolutionary processes Bio 1M: Evolutionary processes Evolution by natural selection Is something missing from the story I told last chapter? Heritable variation in traits Selection (i.e., differential reproductive success)

More information

Name: Date: Period: Unit 1 Test: Microevolution (Original Test) Ms. OK, AP Biology,

Name: Date: Period: Unit 1 Test: Microevolution (Original Test) Ms. OK, AP Biology, Name: Date: Period: Unit 1 Test: Microevolution (Original Test) Ms. OK, AP Biology, 2014-2015 General Directions: Use your time effectively, working as quickly as you can without losing accuracy. Do not

More information

Microevolution: The Forces of Evolutionary Change Part 2. Lecture 23

Microevolution: The Forces of Evolutionary Change Part 2. Lecture 23 Microevolution: The Forces of Evolutionary Change Part 2 Lecture 23 Outline Conditions that cause evolutionary change Natural vs artificial selection Nonrandom mating and sexual selection The role of chance

More information

HARDY- WEINBERG PRACTICE PROBLEMS

HARDY- WEINBERG PRACTICE PROBLEMS HARDY- WEINBERG PRACTICE PROBLEMS PROBLEMS TO SOLVE: 1. The proportion of homozygous recessives of a certain population is 0.09. If we assume that the gene pool is large and at equilibrium and all genotypes

More information

Evidence for evolution in Darwin s time came from several sources: 1. Fossils 2. Geography 3. Embryology 4. Anatomy

Evidence for evolution in Darwin s time came from several sources: 1. Fossils 2. Geography 3. Embryology 4. Anatomy Evidence for evolution in Darwin s time came from several sources: 1. Fossils 2. Geography 3. Embryology 4. Anatomy 1 Fossils in different layers of rock (sedimentary rock strata) have shown: Evidence

More information

Population Genetics Simulation Lab

Population Genetics Simulation Lab Name Period Assignment # Pre-lab: annotate each paragraph Population Genetics Simulation Lab Evolution occurs in populations of organisms and involves variation in the population, heredity, and differential

More information

THE EVOLUTION OF POPULATIONS

THE EVOLUTION OF POPULATIONS THE EVOLUTION OF POPULATIONS HOW DOES A POPULATION OF PENGUINS EVOLVE? Every year, king penguins return to breed in the same colony in which they are born. These colonies help penguins to guard, protect

More information

Trait characteristic (hair color) Gene segment of DNA Allele a variety of a trait (brown hair or blonde hair)

Trait characteristic (hair color) Gene segment of DNA Allele a variety of a trait (brown hair or blonde hair) Evolution Change in DNA to favor certain traits over multiple generations Adaptations happen within a single generations Evolution is the result of adding adaptations together Evolution doesn t have a

More information

Meiotic Mistakes and Abnormalities Learning Outcomes

Meiotic Mistakes and Abnormalities Learning Outcomes Meiotic Mistakes and Abnormalities Learning Outcomes 5.6 Explain how nondisjunction can result in whole chromosomal abnormalities. (Module 5.10) 5.7 Describe the inheritance patterns for strict dominant

More information

Evolutionary Processes

Evolutionary Processes Evolutionary Processes MICROEVOLUTION Population -- all the members of a single species Population genetics studies variations in gene pools *Basically, microevolution studies small changes in alleles

More information

Ch 4: Mendel and Modern evolutionary theory

Ch 4: Mendel and Modern evolutionary theory Ch 4: Mendel and Modern evolutionary theory 1 Mendelian principles of inheritance Mendel's principles explain how traits are transmitted from generation to generation Background: eight years breeding pea

More information

Mechanisms of Evolution

Mechanisms of Evolution Mechanisms of Evolution Mutation Gene Flow (migration) Non-random mating Genetic Drift Natural Selection...individuals don t evolve, populations do 1. Mutation The ultimate source of genetic variation.

More information

Evolutionary Forces. What changes populations?

Evolutionary Forces. What changes populations? Evolutionary Forces What changes populations? Forces of evolutionary change Natural selection traits that improve survival or reproduction accumulate in the population ADAPTIVE change Genetic drift frequency

More information

How Populations Evolve

How Populations Evolve Chapter 16: pp. 283-298 BIOLOGY 10th Edition How Populations Evolve 10% of population Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. natural disaster kills five

More information

CHAPTER 16 POPULATION GENETICS AND SPECIATION

CHAPTER 16 POPULATION GENETICS AND SPECIATION CHAPTER 16 POPULATION GENETICS AND SPECIATION MULTIPLE CHOICE 1. Which of the following describes a population? a. dogs and cats living in Austin, Texas b. four species of fish living in a pond c. dogwood

More information

The plant of the day Pinus longaeva Pinus aristata

The plant of the day Pinus longaeva Pinus aristata The plant of the day Pinus longaeva Pinus aristata Today s Topics Non-random mating Genetic drift Population structure Big Questions What are the causes and evolutionary consequences of non-random mating?

More information

Bio 312, Spring 2017 Exam 3 ( 1 ) Name:

Bio 312, Spring 2017 Exam 3 ( 1 ) Name: Bio 312, Spring 2017 Exam 3 ( 1 ) Name: Please write the first letter of your last name in the box; 5 points will be deducted if your name is hard to read or the box does not contain the correct letter.

More information

13.17 Natural selection cannot fashion perfect organisms

13.17 Natural selection cannot fashion perfect organisms 13.17 Natural selection cannot fashion perfect organisms 1. Selection can only act on existing variation Natural selection cannot conjure up new beneficial alleles 2. Evolution is limited by historical

More information

Introduction to Genetics and Heredity

Introduction to Genetics and Heredity Introduction to Genetics and Heredity Although these dogs have similar characteristics they are each unique! I. Early Ideas About Heredity A. The Theory of Blending Inheritance Each parent contributes

More information

Student Exploration: Microevolution

Student Exploration: Microevolution Name: Date: Student Exploration: Microevolution Vocabulary: allele, cystic fibrosis, deleterious, dominant allele, fitness, genotype, heterozygote superiority, heterozygous, homozygous, incompletely dominant,

More information

NAME: PID: Group Name: BioSci 110, Fall 08 Exam 3

NAME: PID: Group Name: BioSci 110, Fall 08 Exam 3 For questions 1 and 2 use the phylogeny to the right. 1. With what group of species do rodents share the most traits? a. amphibians b. dinosaurs and birds c. *primates d. ray-finned fish e. sharks 2. Which

More information

Bio 1B Lecture Outline (please print and bring along) Fall, 2006

Bio 1B Lecture Outline (please print and bring along) Fall, 2006 Bio 1B Lecture Outline (please print and bring along) Fall, 2006 B.D. Mishler, Dept. of Integrative Biology, 2-6810, bmishler@berkeley.edu Evolution lecture #12 -- Selection -- Oct. 27 th, 2006 464-470

More information

A. Incorrect! Cells contain the units of genetic they are not the unit of heredity.

A. Incorrect! Cells contain the units of genetic they are not the unit of heredity. MCAT Biology Problem Drill PS07: Mendelian Genetics Question No. 1 of 10 Question 1. The smallest unit of heredity is. Question #01 (A) Cell (B) Gene (C) Chromosome (D) Allele Cells contain the units of

More information

Section 8.1 Studying inheritance

Section 8.1 Studying inheritance Section 8.1 Studying inheritance Genotype and phenotype Genotype is the genetic constitution of an organism that describes all the alleles that an organism contains The genotype sets the limits to which

More information

Darwin s dilemma 8/14/2014. Meiosis & Inheritance Lecture 18 Summer Mitosis & Meiosis. The Modern Synthesis

Darwin s dilemma 8/14/2014. Meiosis & Inheritance Lecture 18 Summer Mitosis & Meiosis. The Modern Synthesis Darwin s dilemma 1 Meiosis & Inheritance Lecture 18 Summer 2014 How do organisms pass heritable traits to their offspring? The Modern Synthesis 2 Mitosis & Meiosis 3 1844 - Darwin essay on Natural Selection

More information

Model of an F 1 and F 2 generation

Model of an F 1 and F 2 generation Mendelian Genetics Casual observation of a population of organisms (e.g. cats) will show variation in many visible characteristics (e.g. color of fur). While members of a species will have the same number

More information

Chapter 6 Heredity The Big Idea Heredity is the passing of the instructions for traits from one generation to the next.

Chapter 6 Heredity The Big Idea Heredity is the passing of the instructions for traits from one generation to the next. Chapter 6 Heredity The Big Idea Heredity is the passing of the instructions for traits from one generation to the next. Section 1 Mendel and His Peas Key Concept The work of Gregor Mendel explains the

More information

Mechanisms of Evolution

Mechanisms of Evolution Mechanisms of Evolution TEKS 7(F) analyze and evaluate the effects of other evolutionary mechanisms, including genetic drift, gene flow, mutation, and recombination Evolution is. For Darwin (1859): Evolution

More information

Will now consider in detail the effects of relaxing the assumption of infinite-population size.

Will now consider in detail the effects of relaxing the assumption of infinite-population size. FINITE POPULATION SIZE: GENETIC DRIFT READING: Nielsen & Slatkin pp. 21-27 Will now consider in detail the effects of relaxing the assumption of infinite-population size. Start with an extreme case: a

More information

Assessment Schedule 2015 Biology: Demonstrate understanding of genetic variation and change (91157)

Assessment Schedule 2015 Biology: Demonstrate understanding of genetic variation and change (91157) NCEA Level 2 Biology (91157) 2015 page 1 of 6 Assessment Schedule 2015 Biology: Demonstrate understanding of genetic variation and change (91157) Assessment Criteria Achievement Achievement with Merit

More information

SEX. Genetic Variation: The genetic substrate for natural selection. Sex: Sources of Genotypic Variation. Genetic Variation

SEX. Genetic Variation: The genetic substrate for natural selection. Sex: Sources of Genotypic Variation. Genetic Variation Genetic Variation: The genetic substrate for natural selection Sex: Sources of Genotypic Variation Dr. Carol E. Lee, University of Wisconsin Genetic Variation If there is no genetic variation, neither

More information

Genes and Inheritance (11-12)

Genes and Inheritance (11-12) Genes and Inheritance (11-12) You are a unique combination of your two parents We all have two copies of each gene (one maternal and one paternal) Gametes produced via meiosis contain only one copy of

More information

Patterns of Inheritance

Patterns of Inheritance Patterns of Inheritance Mendel the monk studied inheritance keys to his success: he picked pea plants he focused on easily categorized traits he used true-breeding populations parents always produced offspring

More information

Genetics All somatic cells contain 23 pairs of chromosomes 22 pairs of autosomes 1 pair of sex chromosomes Genes contained in each pair of chromosomes

Genetics All somatic cells contain 23 pairs of chromosomes 22 pairs of autosomes 1 pair of sex chromosomes Genes contained in each pair of chromosomes Chapter 6 Genetics and Inheritance Lecture 1: Genetics and Patterns of Inheritance Asexual reproduction = daughter cells genetically identical to parent (clones) Sexual reproduction = offspring are genetic

More information

Selection at one locus with many alleles, fertility selection, and sexual selection

Selection at one locus with many alleles, fertility selection, and sexual selection Selection at one locus with many alleles, fertility selection, and sexual selection Introduction It s easy to extend the Hardy-Weinberg principle to multiple alleles at a single locus. In fact, we already

More information

Some observations. Some traits are difficult to view as adaptations, because they appear to provide a disadvantage to the organism

Some observations. Some traits are difficult to view as adaptations, because they appear to provide a disadvantage to the organism Some traits are difficult to view as adaptations, because they appear to provide a disadvantage to the organism Darwin asked: Can natural selection explain these differences? Structural traits: cumbersome

More information

Biology Teach Yourself Series Topic 14: Population genetics

Biology Teach Yourself Series Topic 14: Population genetics Biology Teach Yourself Series Topic 14: Population genetics A: Level 14, 474 Flinders Street Melbourne VIC 3000 T: 1300 134 518 W: tssm.com.au E: info@tssm.com.au TSSM 2011 Page 1 of 24 Contents Population

More information

Chapter 10 Notes Patterns of Inheritance, Part 1

Chapter 10 Notes Patterns of Inheritance, Part 1 Chapter 10 Notes Patterns of Inheritance, Part 1 I. Gregor Mendel (1822-1884) a. Austrian monk with a scientific background b. Conducted numerous hybridization experiments with the garden pea, Pisum sativum,

More information

Sexual Reproduction & Inheritance

Sexual Reproduction & Inheritance Sexual Reproduction & Sexual Reproduction & Overview Asexual vs Sexual Reproduction Meiosis Genetic Diversity Mendel & The Laws of Sexual Reproduction Sexual Reproduction Asexual Reproduction Prokaryotes

More information

Natural Selection In Humans (Sickle Cell Anemia)

Natural Selection In Humans (Sickle Cell Anemia) Natural Selection In Humans (Sickle Cell Anemia) Background Information Hemoglobin is a protein found in red blood cells Transports oxygen to body tissues Individuals homozygous for the sickle cell allele

More information

TEST NAME:review TEST ID: GRADE:07 Seventh Grade SUBJECT:Life and Physical Sciences TEST CATEGORY: My Classroom

TEST NAME:review TEST ID: GRADE:07 Seventh Grade SUBJECT:Life and Physical Sciences TEST CATEGORY: My Classroom TEST NAME:review TEST ID:1070005 GRADE:07 Seventh Grade SUBJECT:Life and Physical Sciences TEST CATEGORY: My Classroom review Page 1 of 18 Student: Class: Date: 1. There are four blood types: A, B, AB,

More information

The Evolution of Darwin s Theory Pt 2. Chapter 16-17

The Evolution of Darwin s Theory Pt 2. Chapter 16-17 The Evolution of Darwin s Theory Pt 2 { Chapter 16-17 Natural Selection If an individual has an allele that allows them to survive better in an environment than another allele, they will have a better

More information

Gregor Mendel. What is Genetics? the study of heredity

Gregor Mendel. What is Genetics? the study of heredity Gregor Mendel What is Genetics? the study of heredity Gregor Mendel s Peas Pollen: plant s sperm Egg Cells: plants reproductive cells Fertilization: joining of pollen + egg cells develops into embryo in

More information

11.1 Genetic Variation

11.1 Genetic Variation 11.1 Genetic Variation Within Populations KEY CONCEPT A population shares a common gene pool. Genetic variation in a population increases the chance that some individuals will survive. Genetic variation

More information

2017 Version. Key Question types NCEA Science 1.9 Genetic Variation AS 90948

2017 Version. Key Question types NCEA Science 1.9 Genetic Variation AS 90948 2017 Version Key Question types NCEA Science 1.9 Genetic Variation AS 90948 Linking DNA, Alleles and Chromosomes Chromosomes are made up of DNA. DNA is a large molecule that is coiled into a double helix

More information

Evolution of Populations

Evolution of Populations Chapter 16 Evolution of Populations Section 16 1 Genes and Variation (pages 393 396) This section describes the main sources of inheritable variation in a population. It also explains how phenotypes are

More information

Genes in a Population

Genes in a Population Population Genetics Genes in a Population Population genetics is the study of allele behavior in a population. A population is a group of local interbreeding individuals of a single species Example: ABO

More information

Any variation that makes an organism better suited to its environment so it can survive is called a what?

Any variation that makes an organism better suited to its environment so it can survive is called a what? A change of an organism over time is also called. Chapters 10 & 11 Evolution Any variation that makes an organism better suited to its environment so it can survive is called a what? 1 Adaptation James

More information

UNIT 1-History of life on earth! Big picture biodiversity-major lineages, Prokaryotes, Eukaryotes-Evolution of Meiosis

UNIT 1-History of life on earth! Big picture biodiversity-major lineages, Prokaryotes, Eukaryotes-Evolution of Meiosis Where are we in this course??? UNIT 1-History of life on earth! Big picture biodiversity-major lineages, Prokaryotes, Eukaryotes-Evolution of Meiosis Today we will start with UNIT 2 A. Mendel and the Gene

More information

p and q can be thought of as probabilities of selecting the given alleles by

p and q can be thought of as probabilities of selecting the given alleles by Lecture 26 Population Genetics Until now, we have been carrying out genetic analysis of individuals, but for the next three lectures we will consider genetics from the point of view of groups of individuals,

More information

Unit 7 Section 2 and 3

Unit 7 Section 2 and 3 Unit 7 Section 2 and 3 Evidence 12: Do you think food preferences are passed down from Parents to children, or does the environment play a role? Explain your answer. One of the most important outcomes

More information

8.1 Genes Are Particulate and Are Inherited According to Mendel s Laws 8.2 Alleles and Genes Interact to Produce Phenotypes 8.3 Genes Are Carried on

8.1 Genes Are Particulate and Are Inherited According to Mendel s Laws 8.2 Alleles and Genes Interact to Produce Phenotypes 8.3 Genes Are Carried on Chapter 8 8.1 Genes Are Particulate and Are Inherited According to Mendel s Laws 8.2 Alleles and Genes Interact to Produce Phenotypes 8.3 Genes Are Carried on Chromosomes 8.4 Prokaryotes Can Exchange Genetic

More information

Goals: Be able to. Sexual Dimorphism

Goals: Be able to. Sexual Dimorphism Goals: Be able to Connect sexual dimorphism and sexual selection. Use parental investment arguments to describe why sexual selection occurs. Explain why long male peacock tails are an indicator of good

More information

Roadmap. Inbreeding How inbred is a population? What are the consequences of inbreeding?

Roadmap. Inbreeding How inbred is a population? What are the consequences of inbreeding? 1 Roadmap Quantitative traits What kinds of variation can selection work on? How much will a population respond to selection? Heritability How can response be restored? Inbreeding How inbred is a population?

More information

9/25/ Some traits are controlled by a single gene. Selective Breeding: Observing Heredity

9/25/ Some traits are controlled by a single gene. Selective Breeding: Observing Heredity Chapter 7 Learning Outcomes Explain the concept of a single-gene trait Describe Mendel s contributions to the field of genetics Be able to define the terms gene, allele, dominant, recessive, homozygous,

More information

GENETICS - NOTES-

GENETICS - NOTES- GENETICS - NOTES- Warm Up Exercise Using your previous knowledge of genetics, determine what maternal genotype would most likely yield offspring with such characteristics. Use the genotype that you came

More information

Genetic basis of inheritance and variation. Dr. Amjad Mahasneh. Jordan University of Science and Technology

Genetic basis of inheritance and variation. Dr. Amjad Mahasneh. Jordan University of Science and Technology Genetic basis of inheritance and variation Dr. Amjad Mahasneh Jordan University of Science and Technology Segment 1 Hello and welcome everyone. My name is Amjad Mahasneh. I teach molecular biology at Jordan

More information

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 6 Patterns of Inheritance

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 6 Patterns of Inheritance Chapter 6 Patterns of Inheritance Genetics Explains and Predicts Inheritance Patterns Genetics can explain how these poodles look different. Section 10.1 Genetics Explains and Predicts Inheritance Patterns

More information

(b) What is the allele frequency of the b allele in the new merged population on the island?

(b) What is the allele frequency of the b allele in the new merged population on the island? 2005 7.03 Problem Set 6 KEY Due before 5 PM on WEDNESDAY, November 23, 2005. Turn answers in to the box outside of 68-120. PLEASE WRITE YOUR ANSWERS ON THIS PRINTOUT. 1. Two populations (Population One

More information

Essential Question: How do living things inherit their genetic characteristics?

Essential Question: How do living things inherit their genetic characteristics? Essential Question: How do living things inherit their genetic characteristics? Activity 6 Analyzing Genetic Data Purpose: To learn how to predict the outcome of genetic crosses with s Instructions: Follow

More information

Genetics and Diversity Punnett Squares

Genetics and Diversity Punnett Squares Genetics and Diversity Punnett Squares 1 OUTCOME QUESTION(S): S1-1-12: How are the features of the parents inherited to create unique offspring? Vocabulary & Concepts Allele Dominant Recessive Genotype

More information

Cell Division and Inheritance Revision 7

Cell Division and Inheritance Revision 7 Cell Division and Inheritance Revision 7 65 minutes 65 marks Page of 20 Q. Cystic fibrosis is a disease which affects in 600 babies. (a) What are the symptoms of cystic fibrosis? (3) Two parents with normal

More information

Population Genetics *

Population Genetics * OpenStax-CNX module: m44584 1 Population Genetics * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 By the end of this section, you will be

More information

Genetics and Heredity Notes

Genetics and Heredity Notes Genetics and Heredity Notes I. Introduction A. It was known for 1000s of years that traits were inherited but scientists were unsure about the laws that governed this inheritance. B. Gregor Mendel (1822-1884)

More information

Human Chromosomes. Lesson Overview. Lesson Overview Human Chromosomes

Human Chromosomes. Lesson Overview. Lesson Overview Human Chromosomes Lesson Overview 14.1 THINK ABOUT IT If you had to pick an ideal organism for the study of genetics, would you choose one that produced lots of offspring, was easy to grow in the lab, and had a short life

More information

Diploma in Equine Science

Diploma in Equine Science The process of meiosis is summarised in the diagram below, but it involves the reduction of the genetic material to half. A cell containing the full number of chromosomes (two pairs) is termed diploid,

More information

Labrador Coat Color Similar to coat color in mice: Black lab is BxEx Yellow lab is xxee Chocolate lab is bbex Probable pathway:

Labrador Coat Color Similar to coat color in mice: Black lab is BxEx Yellow lab is xxee Chocolate lab is bbex Probable pathway: Honors Genetics 1. Gregor Mendel (1822-1884) German monk at the Augustine Abbey of St. Thomas in Brno (today in the Czech Republic). He was a gardener, teacher and priest. Mendel conducted experiments

More information

Genetic Variation Junior Science

Genetic Variation Junior Science 2018 Version Genetic Variation Junior Science http://img.publishthis.com/images/bookmarkimages/2015/05/d/5/c/d5cf017fb4f7e46e1c21b874472ea7d1_bookmarkimage_620x480_xlarge_original_1.jpg Sexual Reproduction

More information

Mendel. The pea plant was ideal to work with and Mendel s results were so accurate because: 1) Many. Purple versus flowers, yellow versus seeds, etc.

Mendel. The pea plant was ideal to work with and Mendel s results were so accurate because: 1) Many. Purple versus flowers, yellow versus seeds, etc. Mendel A. Mendel: Before Mendel, people believed in the hypothesis. This is analogous to how blue and yellow paints blend to make. Mendel introduced the hypothesis. This deals with discrete units called

More information

The Experiments of Gregor Mendel

The Experiments of Gregor Mendel 11.1 The Work of Gregor Mendel 11.2 Applying Mendel s Principles The Experiments of Gregor Mendel Every living thing (plant or animal, microbe or human being) has a set of characteristics inherited from

More information

What we mean more precisely is that this gene controls the difference in seed form between the round and wrinkled strains that Mendel worked with

What we mean more precisely is that this gene controls the difference in seed form between the round and wrinkled strains that Mendel worked with 9/23/05 Mendel Revisited In typical genetical parlance the hereditary factor that determines the round/wrinkled seed difference as referred to as the gene for round or wrinkled seeds What we mean more

More information

Chapter 21.2 Mechanisms of Evolutionary Change

Chapter 21.2 Mechanisms of Evolutionary Change Beak depth of Beak depth Colonie High AP Biology Chapter 21.2 Mechanisms of Evolutionary Change Populations Evolve! Natural selection acts on individuals differential survival survival of the fittest differential

More information

Genetics. The study of heredity. Father of Genetics: Gregor Mendel (mid 1800 s) Developed set of laws that explain how heredity works

Genetics. The study of heredity. Father of Genetics: Gregor Mendel (mid 1800 s) Developed set of laws that explain how heredity works Genetics The study of heredity Father of Genetics: Gregor Mendel (mid 1800 s) Developed set of laws that explain how heredity works Father of Genetics: Gregor Mendel original pea plant (input) offspring

More information

UNIT III (Notes) : Genetics : Mendelian. (MHR Biology p ) Traits are distinguishing characteristics that make a unique individual.

UNIT III (Notes) : Genetics : Mendelian. (MHR Biology p ) Traits are distinguishing characteristics that make a unique individual. 1 UNIT III (Notes) : Genetics : endelian. (HR Biology p. 526-543) Heredity is the transmission of traits from one generation to another. Traits that are passed on are said to be inherited. Genetics is

More information

Evolutionary Forces. What changes populations?

Evolutionary Forces. What changes populations? Evolutionary Forces What changes populations? 2007-2008 Forces of evolutionary change Natural selection traits that improve survival or reproduction will accumulate in the population adaptive change Genetic

More information

Sexual selection and the evolution of sex differences

Sexual selection and the evolution of sex differences Sexual selection and the evolution of sex differences Males and females have the same genes. Why do the sexes often look and act so differently? Why is the male often insanely ornamented? (Or simply insane?)

More information

Inheritance. Children inherit traits from both parents.

Inheritance. Children inherit traits from both parents. Have you ever been told you have your mother s eyes or your father s smile? Have you ever noticed you share your grandfather s eye color or possibly your grandmother s curly hair, and yet your parents

More information

Evolution II.2 Answers.

Evolution II.2 Answers. Evolution II.2 Answers. 1. (4 pts) Contrast the predictions of blending inheritance for F1 and F2 generations with those observed under Mendelian inheritance. Blending inheritance predicts both F1 and

More information

Unit 3.4 Mechanisms of Evolution Notes Outline

Unit 3.4 Mechanisms of Evolution Notes Outline Name Period Date Unit 3.4 Mechanisms of Evolution Notes Outline Learning Objectives: discuss patterns observed in evolution. Describe factors that influence speciation. Compare gradualism with punctuated

More information

Laws of Inheritance. Bởi: OpenStaxCollege

Laws of Inheritance. Bởi: OpenStaxCollege Bởi: OpenStaxCollege The seven characteristics that Mendel evaluated in his pea plants were each expressed as one of two versions, or traits. Mendel deduced from his results that each individual had two

More information

Mendelian Genetics. KEY CONCEPT Mendel s research showed that traits are inherited as discrete units.

Mendelian Genetics. KEY CONCEPT Mendel s research showed that traits are inherited as discrete units. KEY CONCEPT Mendel s research showed that traits are inherited as discrete units. Mendel laid the groundwork for genetics. Traits are distinguishing characteristics that are inherited. Genetics is the

More information

Evolutionary Forces. What changes populations?

Evolutionary Forces. What changes populations? Evolutionary Forces What changes populations? 2007-2008 Forces of evolutionary change Natural selection traits that improve survival or reproduction will accumulate in the population adaptive change Genetic

More information

Family Trees for all grades. Learning Objectives. Materials, Resources, and Preparation

Family Trees for all grades. Learning Objectives. Materials, Resources, and Preparation page 2 Page 2 2 Introduction Family Trees for all grades Goals Discover Darwin all over Pittsburgh in 2009 with Darwin 2009: Exploration is Never Extinct. Lesson plans, including this one, are available

More information

Patterns in Inheritance. Chapter 10

Patterns in Inheritance. Chapter 10 Patterns in Inheritance Chapter 10 What you absolutely need to know Punnett Square with monohybrid and dihybrid cross Heterozygous, homozygous, alleles, locus, gene Test cross, P, F1, F2 Mendel and his

More information

NOTES: Exceptions to Mendelian Genetics!

NOTES: Exceptions to Mendelian Genetics! NOTES: 11.3 Exceptions to Mendelian Genetics! Beyond Dominant and Recessive Alleles Some alleles are neither dominant nor recessive, and many traits are controlled by multiple alleles OR multiple genes.

More information

Chapter 9: Heredity And Evolution

Chapter 9: Heredity And Evolution Chapter 9: Heredity And Evolution Q1. If a trait X exists in 10% of a population of an asexually reproducing species and trait Y exists in 60% of the same population, which trait would have come earlier?

More information

GENETIC EQUILIBRIUM. Chapter 16

GENETIC EQUILIBRIUM. Chapter 16 GENETIC EQUILIBRIUM Chapter 16 16-1 Population Genetics Population= number of organisms of the same species in a particular place at a point in time Gene pool= total genetic information of a population

More information

Chapter 28 Modern Mendelian Genetics

Chapter 28 Modern Mendelian Genetics Chapter 28 Modern Mendelian Genetics (I) Gene-Chromosome Theory Genes exist in a linear fashion on chromosomes Two genes associated with a specific characteristic are known as alleles and are located on

More information