CHAPTER 20 LECTURE SLIDES

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "CHAPTER 20 LECTURE SLIDES"

Transcription

1 CHAPTER 20 LECTURE SLIDES To run the animations you must be in Slideshow View. Use the buttons on the animation to play, pause, and turn audio/text on or off. Please note: once you have used any of the animation functions (such as Play or Pause), you must first click in the white background before you advance the next slide. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

2 Genes Within Populations Chapter 20 2

3 Genetic Variation and Evolution Genetic variation Differences in alleles of genes found within individuals in a population Raw material for natural selection Evolution How an entity changes through time Development of modern concept traced to Darwin Descent with modification 3

4 Through time, species accumulate differences; as a result, descendants differ from their ancestors. In this way, new species arise from existing ones. Charles Darwin 4

5 Darwin was not the first to propose a theory of evolution Unlike his predecessors, however, Darwin proposed natural selection as the mechanism of evolution Rival theory of Jean-Baptiste Lamarck was evolution by inheritance of acquired characteristics 5

6 6

7 7

8 Population genetics Study of properties of genes in a population Evolution results in a change in the genetic composition of a population Genetic variation is the raw material for selection In nature, genetic variation is the rule 8

9 Polymorphic loci More than one allele at frequencies greater than mutation alone Heterozygosity Probability that a randomly selected gene will be heterozygous in a randomly selected individual 9

10 Hardy Weinberg principle Hardy Weinberg equilibrium Proportions of genotypes do not change in a population if 1. No mutation takes place 2. No genes are transferred to or from other sources (no immigration or emigration takes place) 3. Random mating is occurring 4. The population size is very large 5. No selection occurs 10

11 Principle can be written as an equation Used to calculate allele frequencies For 2 alleles, p and q p = B for black coat color Black cat is BB or Bb q = b for white coat color White cats are bb p 2 + 2pq + q 2 = 1 BB + Bb + bb = 1 11

12 12

13 13

14 If all 5 assumptions for equilibrium are true, allele and genotype frequencies do not change from one generation to the next In reality, most populations will not meet all 5 assumptions Look for changes in frequency Suggest hypotheses about what process or processes at work 14

15 5 agents of evolutionary change Mutation Rates generally low Other evolutionary processes usually more important in changing allele frequency Ultimate source of genetic variation Makes evolution possible 15

16 Gene flow Movement of alleles from one population to another Animal physically moves into new population Drifting of gametes or immature stages into an area Mating of individuals from adjacent populations 16

17 Nonrandom mating Assortative mating Phenotypically similar individuals mate Increases proportion of homozygous individuals Disassortative mating Phenotypically different individuals mate Produces excess of heterozygotes 17

18 Genetic drift In small populations, allele frequency may change by chance alone Magnitude of genetic drift is negatively related to population size Founder effect Bottleneck effect 18

19 Genetic drift can lead to the loss of alleles in isolated populations Alleles that initially are uncommon are particularly vulnerable 19

20 Northern Elephant Seal Bottleneck case study Nearly hunted to extinction in 19 th century As a result, species has lost almost all of its genetic variation Population now numbers in tens of thousands 20

21 Please note that due to differing operating systems, some animations will not appear until the presentation is viewed in Presentation Mode (Slide Show view). You may see blank slides in the Normal or Slide Sorter views. All animations will appear after viewing in Presentation Mode and playing each animation. Most animations will require the latest version of the Flash Player, which is available at 21

22 Selection Some individuals leave behind more progeny than others, and the rate at which they do so is affected by phenotype and behavior Artificial selection Natural selection 22

23 3 conditions for natural selection to occur and to result in evolutionary change 1. Variation must exist among individuals in a population 2. Variation among individuals must result in differences in the number of offspring surviving in the next generation 3. Variation must be genetically inherited 23

24 Natural selection and evolution are not the same Natural selection is a process Only one of several processes that can result in evolution Evolution is the historical record, or outcome, of change through time Result of evolution driven by natural selection is that populations become better adapted to their environment 24

25 Common sulphur butterfly Caterpillar usually pale green Excellent camouflage Bright blue color morph rare and kept at low frequency by predation 25

26 Pocket mice come in different colors Population living on rocks favor dark color Populations living on sand favor light color 26

27 Housefly has pesticide resistance alleles at pen gene decreases insecticide uptake kdr and dld-r genes decrease target sites for insecticide 27

28 Fitness and its measurement Fitness Individuals with one phenotype leave more surviving offspring in the next generation than individuals with an alternative phenotype Relative concept; the most fit phenotype is simply the one that produces, on average, the greatest number of offspring 28

29 Fitness has many components Survival Sexual selection some individuals more successful at attracting mates Number of offspring per mating Traits favored for one component may be a disadvantage for others Selection favors phenotypes with the greatest fitness Phenotype with greater fitness usually increases in frequency 29

30 Number of Eggs Laid per Day Life Span of Adult Female (days) Number of Eggs Laid During Lifetime Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display Length of Adult Female Water Strider (mm) Length of Adult Female Water Strider (mm) Length of Adult Female Water Strider (mm) Larger female water striders lay more eggs per day Large females survive for a shorter period of time As a result, intermediate-sized females produce the most offspring over the course of their entire lives and thus have the highest fitness 30

31 Interactions Mutations and genetic drift may counter selection In nature, mutation rates are rarely high enough to counter selection Selection is nonrandom but genetic drift is random Drift may decrease an allele favored by selection Selection usually overwhelms drift except in small populations 31

32 Gene flow can be Constructive Spread beneficial mutation to other populations Constraining Can impede adaptation by continual flow of inferior alleles from other populations 32

33 Slender bent grass at copper mines Resistance allele occurs at intermediate levels in many areas Individuals with resistance gene grow slower on uncontaminated sites Gene flow between sites high enough to counteract selection 33

34 Maintenance of variation Frequency-dependent selection Fitness of a phenotype depends on its frequency within the population Negative frequency-dependent selection Rare phenotypes favored by selection Rare forms may not be in search image Positive frequency-dependent selection Favors common form Tends to eliminate variation Oddballs stand out 34

35 Negative frequencydependent selection In water boatman, fish eat the most common color type more than they would by chance alone 35

36 Positive frequency-dependent selection 36

37 Oscillating selection Selection favors one phenotype at one time and another phenotype at another time Effect will be to maintain genetic variation in the population Medium ground finch of Galapagos Islands Birds with big bills favored during drought Birds with smaller bills favored in wet conditions 37

38 Heterozygote advantage Heterozygotes are favored over homozygotes Works to maintain both alleles in the population Sickle cell anemia Hereditary disease affecting hemoglobin Causes severe anemia Homozygotes for sickle cell allele usually die before reproducing (without medical treatment) 38

39 Why is the sickle cell allele not eliminated? Leading cause of death in central Africa is malaria Heterozygotes for sickle cell allele do not suffer anemia and are much less susceptible to malaria 39

40 Selection Many traits affected by more than one gene Selection operates on all the genes for the trait Changes the population depending on which genotypes are favored Types of selection Disruptive Directional Stabilizing 40

41 Disruptive selection Acts to eliminate intermediate types Different beak sizes of African blackbellied seedcracker finch Available seeds fall into 2 categories Favors bill sizes for one or the other 41

42 Birds with intermediate-sized beaks are at a disadvantage with both seed types they are unable to open large seeds and too clumsy to efficiently process small seeds 42

43 Directional selection Acts to eliminate one extreme Often occurs in nature when the environment changes In Drosophila, artificially selected flies that moved toward the light Now fewer have that behavior 43

44 Directional selection for negative phototropism in Drosophila 44

45 Stabilizing selection Acts to eliminate both extremes Makes intermediate more common by eliminating extremes In humans, infants with intermediate weight at birth have the highest survival rate 45

46 Stabilizing selection for birth weight in humans 46

47 Experimental studies To study evolution, biologists have traditionally investigated what has happened in the past Fossils or DNA evidence Laboratory studies on fruit flies common for more than 50 years Only recently started with lab and field experiments 47

48 Guppy coloration Found in small streams in northeastern South America and Trinidad Some are capable of colonizing portions of streams above waterfalls Different dispersal methods Other species not able to make it upstream Dispersal barriers create 2 different environments Predators rare above waterfall 48

49 Pike cichlid (predator) rare above waterfall Killifish rarely eats guppies Guppy males larger and gaudier Predator common below waterfall Individuals more drab and reproduce earlier 49

50 Guppy lab study Other explanations are possible for field results 10 large pools Added pike cichlids to 4, killifish to 4, and 2 left as controls 14 months and 10 guppy generations later Guppies in killifish and control pool large and colorful Guppies in pike cichlid pools smaller and drab 50

51 51

52 Limits of selection Multiple phenotypic effects of alleles Larger clutch size leads to thinner shelled eggs Lack of genetic variation Gene pool of thoroughbreds limited and performance times have not improved for more than 50 years Phenotypic variation may not have genetic basis Interactions between genes epistasis Selective advantage of an allele at one gene may vary from one genotype to another 52

53 Selection for increased speed in racehorses is no longer effective 53

54 Differences in the number of ommatidia in fly eyes does not have a genetic basis 54

Ch. 23 The Evolution of Populations

Ch. 23 The Evolution of Populations Ch. 23 The Evolution of Populations 1 Essential question: Do populations evolve? 2 Mutation and Sexual reproduction produce genetic variation that makes evolution possible What is the smallest unit of

More information

Microevolution Changing Allele Frequencies

Microevolution Changing Allele Frequencies Microevolution Changing Allele Frequencies Evolution Evolution is defined as a change in the inherited characteristics of biological populations over successive generations. Microevolution involves the

More information

Evolution of Populations

Evolution of Populations Chapter 16 Evolution of Populations Section 16 1 Genes and Variation (pages 393 396) This section describes the main sources of inheritable variation in a population. It also explains how phenotypes are

More information

Name: Date: Period: Unit 1 Test: Microevolution (Original Test) Ms. OK, AP Biology,

Name: Date: Period: Unit 1 Test: Microevolution (Original Test) Ms. OK, AP Biology, Name: Date: Period: Unit 1 Test: Microevolution (Original Test) Ms. OK, AP Biology, 2014-2015 General Directions: Use your time effectively, working as quickly as you can without losing accuracy. Do not

More information

NAME: PID: Group Name: BioSci 110, Fall 08 Exam 3

NAME: PID: Group Name: BioSci 110, Fall 08 Exam 3 For questions 1 and 2 use the phylogeny to the right. 1. With what group of species do rodents share the most traits? a. amphibians b. dinosaurs and birds c. *primates d. ray-finned fish e. sharks 2. Which

More information

HARDY- WEINBERG PRACTICE PROBLEMS

HARDY- WEINBERG PRACTICE PROBLEMS HARDY- WEINBERG PRACTICE PROBLEMS PROBLEMS TO SOLVE: 1. The proportion of homozygous recessives of a certain population is 0.09. If we assume that the gene pool is large and at equilibrium and all genotypes

More information

CHAPTER 16 POPULATION GENETICS AND SPECIATION

CHAPTER 16 POPULATION GENETICS AND SPECIATION CHAPTER 16 POPULATION GENETICS AND SPECIATION MULTIPLE CHOICE 1. Which of the following describes a population? a. dogs and cats living in Austin, Texas b. four species of fish living in a pond c. dogwood

More information

Lecture Outline. Darwin s Theory of Natural Selection. Modern Theory of Natural Selection. Changes in frequencies of alleles

Lecture Outline. Darwin s Theory of Natural Selection. Modern Theory of Natural Selection. Changes in frequencies of alleles 1. Basics of Natural Selection Lecture Outline 2. How to test for the key components of natural selection a. Variation b. Heritability c. Can the trait respond to selection? d. What are the selective forces?

More information

Goals: Be able to. Sexual Dimorphism

Goals: Be able to. Sexual Dimorphism Goals: Be able to Connect sexual dimorphism and sexual selection. Use parental investment arguments to describe why sexual selection occurs. Explain why long male peacock tails are an indicator of good

More information

Roadmap. Inbreeding How inbred is a population? What are the consequences of inbreeding?

Roadmap. Inbreeding How inbred is a population? What are the consequences of inbreeding? 1 Roadmap Quantitative traits What kinds of variation can selection work on? How much will a population respond to selection? Heritability How can response be restored? Inbreeding How inbred is a population?

More information

EVOLUTION. Hardy-Weinberg Principle DEVIATION. Carol Eunmi Lee 9/20/16. Title goes here 1

EVOLUTION. Hardy-Weinberg Principle DEVIATION. Carol Eunmi Lee 9/20/16. Title goes here 1 Hardy-Weinberg Principle Hardy-Weinberg Theorem Mathematical description of Mendelian inheritance In a non-evolving population, frequency of alleles and genotypes remain constant over generations Godfrey

More information

QUARTERLY ASSESSMENT

QUARTERLY ASSESSMENT Eighth Grade Science 1 2 3 4 QUARTERLY ASSESSMENT Zanesville City Schools 1 1. [LS 1] [R3] Scientists found fish fossils in the desert. What do the fossils tell about this environment when the fish were

More information

12.4 Patterns of Selection

12.4 Patterns of Selection 12.4 Patterns of Selection DID YOU KNOW? Selection of Another Hemoglobin Allele? In November 2001, geneticists reported in the journal, Nature, about another mutated form of the hemoglobin gene that provides

More information

When the deleterious allele is completely recessive the equilibrium frequency is: 0.9

When the deleterious allele is completely recessive the equilibrium frequency is: 0.9 PROBLEM SET 2 EVOLUTIONARY BIOLOGY FALL 2016 KEY Mutation, Selection, Migration, Drift (20 pts total) 1) A small amount of dominance can have a major effect in reducing the equilibrium frequency of a harmful

More information

Guppies and Goldilocks: Models and Evidence of Two Types of Speciation. Pieter Spealman

Guppies and Goldilocks: Models and Evidence of Two Types of Speciation. Pieter Spealman Two Types of Speciation 1 Guppies and Goldilocks: Models and Evidence of Two Types of Speciation Title centered. Name. Pieter Spealman Course information, instructor s name, date. Biology 38 Professor

More information

Genetics Practice Questions

Genetics Practice Questions Name: ate: 1. If Jessica has light eyes (bb) and both of her parents have dark eyes (b) which statement is true?. Jessica inherited both genes from her father.. Jessica inherited both genes from her mother..

More information

A. Incorrect! Cells contain the units of genetic they are not the unit of heredity.

A. Incorrect! Cells contain the units of genetic they are not the unit of heredity. MCAT Biology Problem Drill PS07: Mendelian Genetics Question No. 1 of 10 Question 1. The smallest unit of heredity is. Question #01 (A) Cell (B) Gene (C) Chromosome (D) Allele Cells contain the units of

More information

Science 1.9 AS WORKBOOK. Working to Excellence

Science 1.9 AS WORKBOOK. Working to Excellence Science 1.9 AS 90948 Demonstrate understanding of biological ideas relating to genetic variation WORKBOOK Working to Excellence CONTENTS 1. Writing Excellence answers to DNA and Genes questions 2. Writing

More information

Inbreeding and Inbreeding Depression

Inbreeding and Inbreeding Depression Inbreeding and Inbreeding Depression Inbreeding is mating among relatives which increases homozygosity Why is Inbreeding a Conservation Concern: Inbreeding may or may not lead to inbreeding depression,

More information

Figure 1: Transmission of Wing Shape & Body Color Alleles: F0 Mating. Figure 1.1: Transmission of Wing Shape & Body Color Alleles: Expected F1 Outcome

Figure 1: Transmission of Wing Shape & Body Color Alleles: F0 Mating. Figure 1.1: Transmission of Wing Shape & Body Color Alleles: Expected F1 Outcome I. Chromosomal Theory of Inheritance As early cytologists worked out the mechanism of cell division in the late 1800 s, they began to notice similarities in the behavior of BOTH chromosomes & Mendel s

More information

Model of an F 1 and F 2 generation

Model of an F 1 and F 2 generation Mendelian Genetics Casual observation of a population of organisms (e.g. cats) will show variation in many visible characteristics (e.g. color of fur). While members of a species will have the same number

More information

PopGen4: Assortative mating

PopGen4: Assortative mating opgen4: Assortative mating Introduction Although random mating is the most important system of mating in many natural populations, non-random mating can also be an important mating system in some populations.

More information

p and q can be thought of as probabilities of selecting the given alleles by

p and q can be thought of as probabilities of selecting the given alleles by Lecture 26 Population Genetics Until now, we have been carrying out genetic analysis of individuals, but for the next three lectures we will consider genetics from the point of view of groups of individuals,

More information

The Modern Genetics View

The Modern Genetics View Inheritance Mendelian Genetics The Modern Genetics View Alleles are versions of a gene Gene for flower color Alleles for purple or white flowers Two alleles per trait 2 chromosomes, each with 1 gene The

More information

Mendelian Genetics. 7.3 Gene Linkage and Mapping Genes can be mapped to specific locations on chromosomes.

Mendelian Genetics. 7.3 Gene Linkage and Mapping Genes can be mapped to specific locations on chromosomes. 7 Extending CHAPTER Mendelian Genetics GETTING READY TO LEARN Preview Key Concepts 7.1 Chromosomes and Phenotype The chromosomes on which genes are located can affect the expression of traits. 7.2 Complex

More information

Genetics: CH9 Patterns of Inheritance

Genetics: CH9 Patterns of Inheritance Genetics: CH9 Patterns of Inheritance o o Lecture note Directions Highlight Key information (10-30% of most slides) My Thoughts: Questions, comments, additional information, connections to prior knowledge,

More information

Section 4 Genetics and heredity

Section 4 Genetics and heredity 1 Section 4 Genetics and heredity Chapter 21 Cell division, chromosomes and genes Page 182 1. a Gametes are reproductive cells. (i) Plants. The male gametes are the pollen nuclei and are produced in the

More information

Unit 1 Biological Diversity Topic 1.1 Examining Diversity. Text p. 3-15

Unit 1 Biological Diversity Topic 1.1 Examining Diversity. Text p. 3-15 Topic 1.1 Examining Diversity. Text p. 3-15 Variation to the MAX! Biologists have identified over species of animals and over species of plants. The most successful life form is What is Biodiversity? The

More information

The Experiments of Gregor Mendel

The Experiments of Gregor Mendel 11.1 The Work of Gregor Mendel 11.2 Applying Mendel s Principles The Experiments of Gregor Mendel Every living thing (plant or animal, microbe or human being) has a set of characteristics inherited from

More information

Chapter 15 Evolution Lecture Notes

Chapter 15 Evolution Lecture Notes Biology Chapter 15 Evolution Lecture Notes Name Per Quiz #9 o You will be able to answer questions about Darwin s historical voyage on the HMS Beagle o You will be able to explain Darwin s original theory

More information

Natural Selection Simulation: Predation and Coloration

Natural Selection Simulation: Predation and Coloration Name Period Date Natural Selection Simulation: Predation and Coloration This simulation was invented by G. Ledyard Stebbins, a pioneer in the evolution of plants. The purpose of the game is to illustrate

More information

Genetics. by their offspring. The study of the inheritance of traits is called.

Genetics. by their offspring. The study of the inheritance of traits is called. Genetics DNA contains the genetic code for the production of. A gene is a part of DNA, which has enough bases to make for many different proteins. These specific proteins made by a gene decide the of an

More information

Name Class Date. KEY CONCEPT The chromosomes on which genes are located can affect the expression of traits.

Name Class Date. KEY CONCEPT The chromosomes on which genes are located can affect the expression of traits. Section 1: Chromosomes and Phenotype KEY CONCEPT The chromosomes on which genes are located can affect the expression of traits. VOCABULARY carrier sex-linked gene X chromosome inactivation MAIN IDEA:

More information

Genetics Unit Exam. Number of progeny with following phenotype Experiment Red White #1: Fish 2 (red) with Fish 3 (red) 100 0

Genetics Unit Exam. Number of progeny with following phenotype Experiment Red White #1: Fish 2 (red) with Fish 3 (red) 100 0 Genetics Unit Exam Question You are working with an ornamental fish that shows two color phenotypes, red or white. The color is controlled by a single gene. These fish are hermaphrodites meaning they can

More information

Mendel and Heredity. Chapter 12

Mendel and Heredity. Chapter 12 Mendel and Heredity Chapter 12 Objectives: 1.) Differentiate between genotype and phenotype 2.)Differentiate between genes and alleles. 3.) Differentiate between dominant and recessive alleles. 4.) Explain

More information

Sexual selection Introduction. Sexual selection Introduction. Sexual selection Introduction. Sexual selection Classification

Sexual selection Introduction. Sexual selection Introduction. Sexual selection Introduction. Sexual selection Classification Introduction 1 Introduction 2 Individuals rarely mate at random for a number of reasons: Dispersal may be limited Individuals may or may not be able to self Individuals may reproduce asexually Individuals

More information

MENDELIAN GENETICS. Law of Dominance: Law of Segregation: GAMETE FORMATION Parents and Possible Gametes: Gregory Mendel:

MENDELIAN GENETICS. Law of Dominance: Law of Segregation: GAMETE FORMATION Parents and Possible Gametes: Gregory Mendel: MENDELIAN GENETICS Gregory Mendel: Heredity: Cross: X P1 Generation: F1 Generation: F2 Generation: Gametes: Dominant: Recessive: Genotype: Phenotype: Law of Dominance: Genes: Alleles: Law of Segregation:

More information

Beebops Genetics and Evolution Teacher Information

Beebops Genetics and Evolution Teacher Information STO-105 Beebops Genetics and Evolution Teacher Information Summary In Part 1 students model meiosis and fertilization using chromosomes/genes from fictitious Beebop parents. They decode the genes in the

More information

Biology. Slide 1 of 31. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 31. End Show. Copyright Pearson Prentice Hall Biology 1 of 31 11 3 Exploring Mendelian 11-3 Exploring Mendelian Genetics Genetics 2 of 31 Independent Assortment Independent Assortment To determine if the segregation of one pair of alleles affects

More information

What are Dominant and Recessive?

What are Dominant and Recessive? What are Dominant and Recessive? The terms dominant and recessive describe the inheritance patterns of certain traits. That is, they describe how likely it is for a certain phenotype to pass from parent

More information

Genetics and Heredity Notes

Genetics and Heredity Notes Genetics and Heredity Notes I. Introduction A. It was known for 1000s of years that traits were inherited but scientists were unsure about the laws that governed this inheritance. B. Gregor Mendel (1822-1884)

More information

Student Exploration: Microevolution

Student Exploration: Microevolution Name: Date: Student Exploration: Microevolution Vocabulary: allele, cystic fibrosis, deleterious, dominant allele, fitness, genotype, heterozygote superiority, heterozygous, homozygous, incompletely dominant,

More information

Genetics 1 by Drs. Scott Poethig, Ingrid Waldron, and. Jennifer Doherty, Department of Biology, University of Pennsylvania, Copyright, 2011

Genetics 1 by Drs. Scott Poethig, Ingrid Waldron, and. Jennifer Doherty, Department of Biology, University of Pennsylvania, Copyright, 2011 Genetics 1 by Drs. Scott Poethig, Ingrid Waldron, and. Jennifer Doherty, Department of Biology, University of Pennsylvania, Copyright, 2011 We all know that children tend to resemble their parents in appearance.

More information

Genetics. The study of heredity. Father of Genetics: Gregor Mendel (mid 1800 s) Developed set of laws that explain how heredity works

Genetics. The study of heredity. Father of Genetics: Gregor Mendel (mid 1800 s) Developed set of laws that explain how heredity works Genetics The study of heredity Father of Genetics: Gregor Mendel (mid 1800 s) Developed set of laws that explain how heredity works Father of Genetics: Gregor Mendel original pea plant (input) offspring

More information

Genetic diagrams show the genotype and phenotype of the offspring of two organisms. The different generation are abbreviated like so:

Genetic diagrams show the genotype and phenotype of the offspring of two organisms. The different generation are abbreviated like so: Genetics 2 Genetic Diagrams and Mendelian Genetics: Genetic diagrams show the genotype and phenotype of the offspring of two organisms. The different generation are abbreviated like so: P parent generation

More information

A gene is a sequence of DNA that resides at a particular site on a chromosome the locus (plural loci). Genetic linkage of genes on a single

A gene is a sequence of DNA that resides at a particular site on a chromosome the locus (plural loci). Genetic linkage of genes on a single 8.3 A gene is a sequence of DNA that resides at a particular site on a chromosome the locus (plural loci). Genetic linkage of genes on a single chromosome can alter their pattern of inheritance from those

More information

Patterns of Inheritance

Patterns of Inheritance 1 Patterns of Inheritance Bio 103 Lecture Dr. Largen 2 Topics Mendel s Principles Variations on Mendel s Principles Chromosomal Basis of Inheritance Sex Chromosomes and Sex-Linked Genes 3 Experimental

More information

Ch 10 Genetics Mendelian and Post-Medelian Teacher Version.notebook. October 20, * Trait- a character/gene. self-pollination or crosspollination

Ch 10 Genetics Mendelian and Post-Medelian Teacher Version.notebook. October 20, * Trait- a character/gene. self-pollination or crosspollination * Trait- a character/gene shape, * Monk in Austria at age 21 * At 30, went to University of Vienna to study science and math * After graduating he returned to the monastery and became a high school teacher

More information

Solutions to Genetics Unit Exam

Solutions to Genetics Unit Exam Solutions to Genetics Unit Exam Question 1 You are working with an ornamental fish that shows two color phenotypes, red or white. The color is controlled by a single gene. These fish are hermaphrodites

More information

An Augustinian Monk working in Austria (today part of the Czech Republic). Had training in chemistry, physics & mathematics.

An Augustinian Monk working in Austria (today part of the Czech Republic). Had training in chemistry, physics & mathematics. Mendelian genetics At the beginning of the last section, we mentioned that while you may resemble your parents, you're not an exact copy. Knowing what we do about mitosis and meiosis, we're now ready to

More information

8.1 Genes Are Particulate and Are Inherited According to Mendel s Laws 8.2 Alleles and Genes Interact to Produce Phenotypes 8.3 Genes Are Carried on

8.1 Genes Are Particulate and Are Inherited According to Mendel s Laws 8.2 Alleles and Genes Interact to Produce Phenotypes 8.3 Genes Are Carried on Chapter 8 8.1 Genes Are Particulate and Are Inherited According to Mendel s Laws 8.2 Alleles and Genes Interact to Produce Phenotypes 8.3 Genes Are Carried on Chromosomes 8.4 Prokaryotes Can Exchange Genetic

More information

1. (6 pts) a. Can all characteristics of organisms be explained by natural selection? Explain your answer in a sentence (3 pts)

1. (6 pts) a. Can all characteristics of organisms be explained by natural selection? Explain your answer in a sentence (3 pts) Zoology 357 - Evolutionary Ecology - First Exam 1. (6 pts) a. Can all characteristics of organisms be explained by natural selection? Explain your answer in a sentence (3 pts) b. Name two non-selectionist

More information

Section 11 1 The Work of Gregor Mendel (pages )

Section 11 1 The Work of Gregor Mendel (pages ) Chapter 11 Introduction to Genetics Section 11 1 The Work of Gregor Mendel (pages 263 266) This section describes how Gregor Mendel studied the inheritance of traits in garden peas and what his conclusions

More information

TODAY:! Lecture: Sources of variation! (Chapter 2, Textbook)!!! NEXT TUESDAY:! Lecture: Speciation (Chapter 3: Textbook)! Lab: Morphological

TODAY:! Lecture: Sources of variation! (Chapter 2, Textbook)!!! NEXT TUESDAY:! Lecture: Speciation (Chapter 3: Textbook)! Lab: Morphological TODAY:! Lecture: Sources of variation! (Chapter 2, Textbook)!!! NEXT TUESDAY:! Lecture: Speciation (Chapter 3: Textbook)! Lab: Morphological variation in natural populations (Chap. 2: Textbook)! !!Sources

More information

Laboratory. Mendelian Genetics

Laboratory. Mendelian Genetics Laboratory 9 Mendelian Genetics Biology 171L FA17 Lab 9: Mendelian Genetics Student Learning Outcomes 1. Predict the phenotypic and genotypic ratios of a monohybrid cross. 2. Determine whether a gene is

More information

Mendel and Heredity. Chapter 12

Mendel and Heredity. Chapter 12 Mendel and Heredity Chapter 12 12.1 Objectives: 1.) summarize the importance of Mendel s experiments 2.)Differentiate between genes and alleles. 3.) Explain that alleles determine what physical traits

More information

Essential Question: How do living things inherit their genetic characteristics?

Essential Question: How do living things inherit their genetic characteristics? Essential Question: How do living things inherit their genetic characteristics? Activity 6 Analyzing Genetic Data Purpose: To learn how to predict the outcome of genetic crosses with s Instructions: Follow

More information

Chapter 28 Modern Mendelian Genetics

Chapter 28 Modern Mendelian Genetics Chapter 28 Modern Mendelian Genetics (I) Gene-Chromosome Theory Genes exist in a linear fashion on chromosomes Two genes associated with a specific characteristic are known as alleles and are located on

More information

Pedigree Analysis Why do Pedigrees? Goals of Pedigree Analysis Basic Symbols More Symbols Y-Linked Inheritance

Pedigree Analysis Why do Pedigrees? Goals of Pedigree Analysis Basic Symbols More Symbols Y-Linked Inheritance Pedigree Analysis Why do Pedigrees? Punnett squares and chi-square tests work well for organisms that have large numbers of offspring and controlled mating, but humans are quite different: Small families.

More information

Genetics, Analysis & Principles/5e ANSWERS TO PROBLEM SETS CHAPTER 1

Genetics, Analysis & Principles/5e ANSWERS TO PROBLEM SETS CHAPTER 1 Genetics, Analysis & Principles/5e ANSWERS TO PROBLEM SETS CHAPTER 1 Note: the answers to the Comprehension questions are at the end of the textbook. Concept check questions (in figure legends) FIGURE

More information

2. What happens to the bunny population if a friend is never added? What happens when you add a friend?

2. What happens to the bunny population if a friend is never added? What happens when you add a friend? Name: Natural Selection Simulation at PHET http://phet.colorado.edu/simulations/sims.php?sim=natural_selection (link is also posted on Evolution Unit page at www.biologybynapier.com ) Exploration: Access

More information

Class XII Chapter 5 Principles of Inheritance and Variation Biology

Class XII Chapter 5 Principles of Inheritance and Variation Biology Question 1: Mention the advantages of selecting pea plant for experiment by Mendel. Mendel selected pea plants to carry out his study on the inheritance of characters from parents to offspring. He selected

More information

Mutation Effects Survival and Environmental Factors. Beneficial Harmful Neutral. Colorblindness. Beneficial Harmful Neutral. Hemophilia.

Mutation Effects Survival and Environmental Factors. Beneficial Harmful Neutral. Colorblindness. Beneficial Harmful Neutral. Hemophilia. Skill Development/Guided Practice Mutation is a change made to the DNA of an organism. Mutations in the DNA may result in an organism making different proteins or stopping a protein from being made. New

More information

This question is taken directly from the list of second test study questions (#6) it should not be a surprise...

This question is taken directly from the list of second test study questions (#6) it should not be a surprise... 1. Female choice of males that have exaggerated characters has been explained by female choice of males that have better genes. Explain how female choice of higher quality males might lead to exaggerated

More information

Agro/ANSC/Biol/Gene/Hort 305 Fall, 2017 MENDELIAN INHERITANCE Chapter 2, Genetics by Brooker (Lecture outline) #2

Agro/ANSC/Biol/Gene/Hort 305 Fall, 2017 MENDELIAN INHERITANCE Chapter 2, Genetics by Brooker (Lecture outline) #2 Agro/ANSC/Biol/Gene/Hort 305 Fall, 2017 MENDELIAN INHERITANCE Chapter 2, Genetics by Brooker (Lecture outline) #2 MENDEL S LAWS OF INHERITANCE Gregor Johann Mendel (1822-1884) is considered the father

More information

Diploma in Equine Science

Diploma in Equine Science The process of meiosis is summarised in the diagram below, but it involves the reduction of the genetic material to half. A cell containing the full number of chromosomes (two pairs) is termed diploid,

More information

Inheritance. What is inheritance? What are genetics? l The genetic characters transmitted from parent to offspring, taken collectively

Inheritance. What is inheritance? What are genetics? l The genetic characters transmitted from parent to offspring, taken collectively Genetics Interest Grabber Look at your classmates. Note how they vary in the shape of the front hairline, the space between the two upper front teeth, and the way in which the ear lobes are attached. Make

More information

Extra Review Practice Biology Test Genetics

Extra Review Practice Biology Test Genetics Mendel fill in the blanks: Extra Review Practice Biology Test Genetics Mendel was an Austrian monk who studied genetics primarily using plants. He started with plants that produced offspring with only

More information

3. c.* Students know how to predict the probable mode of inheritance from a pedigree diagram showing phenotypes.

3. c.* Students know how to predict the probable mode of inheritance from a pedigree diagram showing phenotypes. 3. A multicellular organism develops from a single zygote, and its phenotype depends on its genotype, which is established at fertilization. As a basis for understanding this concept: 3a. Students know

More information

Mendelian Genetics. Ch. 2

Mendelian Genetics. Ch. 2 Mendelian Genetics Ch. 2 1 The historical puzzle of inheritance! Artificial selection has been an important practice since before recorded history Selection of animals for domestication Selective breeding

More information

ELIMINATION OF MUTANT TYPES IN SELECTION EXPERIMENT BETWEEN WILD TYPE AND MUTANT EYE COLOUR IN DROSOPHILA ANANASSAE

ELIMINATION OF MUTANT TYPES IN SELECTION EXPERIMENT BETWEEN WILD TYPE AND MUTANT EYE COLOUR IN DROSOPHILA ANANASSAE 73 Journal of Scientific Research Banaras Hindu University, Varanasi Vol. 56, 2012 : 73-79 ISSN : 0447-9483 ELIMINATION OF MUTANT TYPES IN SELECTION EXPERIMENT BETWEEN WILD TYPE AND MUTANT EYE COLOUR IN

More information

Human Genetic Diseases (Ch. 15)

Human Genetic Diseases (Ch. 15) Human Genetic Diseases (Ch. 15) 1 2 2006-2007 3 4 5 6 Genetic counseling Pedigrees can help us understand the past & predict the future Thousands of genetic disorders are inherited as simple recessive

More information

EEB 122b FIRST MIDTERM

EEB 122b FIRST MIDTERM EEB 122b FIRST MIDTERM Page 1 1 Question 1 B A B could have any slope (pos or neg) but must be above A for all values shown The axes above relate individual growth rate to temperature for Daphnia (a water

More information

Drosophila melanogaster. Introduction. Drosophila melanogaster is a kind of flies fruit fly that is widely used in genetic

Drosophila melanogaster. Introduction. Drosophila melanogaster is a kind of flies fruit fly that is widely used in genetic Jessie Tran Mrs. Lajoie Honors Biology Date of Experiment: 4 May 2015 Due Date: 12 May 2015 Determining the Inheritance Patterns of Purple Eyes, Lobe Eyes, and Yellow Body Genes of Drosophila melanogaster

More information

Linkage Mapping in Drosophila Melanogaster

Linkage Mapping in Drosophila Melanogaster Linkage Mapping in Drosophila Melanogaster Genetics: Fall 2012 Joshua Hanau Introduction: An experiment was performed in order to determine the presence and degree of gene linkage in Drosophila Melanogaster.

More information

Introduction to Genetics

Introduction to Genetics Introduction to Genetics Remember DNA RNA Protein Traits DNA contains the code for proteins (protein synthesis remember?) Proteins determine our traits Gregor Mendel 1822-1884 Father of Genetics Studied

More information

Asingle inherited mutant gene may be enough to

Asingle inherited mutant gene may be enough to 396 Cancer Inheritance STEVEN A. FRANK Asingle inherited mutant gene may be enough to cause a very high cancer risk. Single-mutation cases have provided much insight into the genetic basis of carcinogenesis,

More information

SPECIATION THE CLASSIC VIEW OF SPECIATION THE CLASSIC VIEW OF SPECIATION

SPECIATION THE CLASSIC VIEW OF SPECIATION THE CLASSIC VIEW OF SPECIATION SPECIATION Provides the link between evolutionary change within lineages (anagenesis/microevolution) and the macroevolutionary patterns that result from cladogenesis. Is a process (degree of reproductive

More information

Chapter 02 Mendelian Inheritance

Chapter 02 Mendelian Inheritance Chapter 02 Mendelian Inheritance Multiple Choice Questions 1. The theory of pangenesis was first proposed by. A. Aristotle B. Galen C. Mendel D. Hippocrates E. None of these Learning Objective: Understand

More information

How do genes influence our characteristics?

How do genes influence our characteristics? Genetics Supplement 1 This activity will focus on the question: How do genes contribute to the similarities and differences between parents and their children? This question can be divided into two parts:

More information

UNIT III (Notes) : Genetics : Mendelian. (MHR Biology p ) Traits are distinguishing characteristics that make a unique individual.

UNIT III (Notes) : Genetics : Mendelian. (MHR Biology p ) Traits are distinguishing characteristics that make a unique individual. 1 UNIT III (Notes) : Genetics : endelian. (HR Biology p. 526-543) Heredity is the transmission of traits from one generation to another. Traits that are passed on are said to be inherited. Genetics is

More information

Understanding the Basic Principles of Population Genetics and its Application

Understanding the Basic Principles of Population Genetics and its Application Understanding the Basic Principles of Population Genetics and its Application O.R. Ugwuadu Ph.D Department of Science Education, School of Technology and Science Education, Modibbo Adama University of

More information

Human Genetic Diseases. AP Biology

Human Genetic Diseases. AP Biology Human Genetic Diseases 1 3 4 2 5 2006-2007 6 Pedigree analysis n Pedigree analysis reveals Mendelian patterns in human inheritance u data mapped on a family tree = male = female = male w/ trait = female

More information

Trackstar Genetics Pre/Post Test

Trackstar Genetics Pre/Post Test Name Date Period Olson/Trackstar Genetics Trackstar Genetics Pre/Post Test Directions: On the computer type in the following address: http://trackstar.4teachers.org/trackstar/ Once you are on the Trackstar

More information

Lecture 13: May 24, 2004

Lecture 13: May 24, 2004 Lecture 13: May 24, 2004 CH14: Mendel and the gene idea *particulate inheritance parents pass on discrete heritable units *gene- unit of inheritance which occupies a specific chromosomal location (locus)

More information

By Mir Mohammed Abbas II PCMB 'A' CHAPTER CONCEPT NOTES

By Mir Mohammed Abbas II PCMB 'A' CHAPTER CONCEPT NOTES Chapter Notes- Genetics By Mir Mohammed Abbas II PCMB 'A' 1 CHAPTER CONCEPT NOTES Relationship between genes and chromosome of diploid organism and the terms used to describe them Know the terms Terms

More information

2/10/2015. Adaptation and Natural Selection. Natural Selection

2/10/2015. Adaptation and Natural Selection. Natural Selection We ve been talking a lot about adaptations and strategies : Water storage Drought tolerance Pollinator/plant matches Does this mean plants plan and have strategies? Does this mean plants strive to live

More information

Non-Mendelian Genetics

Non-Mendelian Genetics Non-Mendelian Genetics Complete dominance Law of segregation Law of independent assortment One gene one trait Mendelian Genetics Codominance Incomplete dominance Multiple alleles Pleiotropy Epistasis Polygenic

More information

Mendel. The pea plant was ideal to work with and Mendel s results were so accurate because: 1) Many. Purple versus flowers, yellow versus seeds, etc.

Mendel. The pea plant was ideal to work with and Mendel s results were so accurate because: 1) Many. Purple versus flowers, yellow versus seeds, etc. Mendel A. Mendel: Before Mendel, people believed in the hypothesis. This is analogous to how blue and yellow paints blend to make. Mendel introduced the hypothesis. This deals with discrete units called

More information

Chapter 10 Notes Patterns of Inheritance, Part 1

Chapter 10 Notes Patterns of Inheritance, Part 1 Chapter 10 Notes Patterns of Inheritance, Part 1 I. Gregor Mendel (1822-1884) a. Austrian monk with a scientific background b. Conducted numerous hybridization experiments with the garden pea, Pisum sativum,

More information

2. By breeding the pea plants he was growing in the monastery s garden, he discovered the

2. By breeding the pea plants he was growing in the monastery s garden, he discovered the Name: _ Date: Directions: Navigate to https://goo.gl/tcd8l4 to view the corresponding PowerPoint. Be sure to click PRESENT in the upper right hand corner! Answer the following questions from the PowerPoint.

More information

The Chromosomal Basis of Inheritance

The Chromosomal Basis of Inheritance The Chromosomal Basis of Inheritance Factors and Genes Mendel s model of inheritance was based on the idea of factors that were independently assorted and segregated into gametes We now know that these

More information

Reproduction. Ground rules. Ohio Content Standards

Reproduction. Ground rules. Ohio Content Standards Reproduction Mr. Gluckin 01-14-2013 http://www.cellsalive.com/puzzles/index.htm Ground rules Please close all other apps & web pages. No Facebook, games, music, etc. No off topic chat Be respectful of

More information

Unit 5: Genetics Guided Notes

Unit 5: Genetics Guided Notes 1 Unit 5: Genetics Guided Notes Basic Mendelian Genetics Before Gregor Mendel 1) When Mendel started his work, most people believed in the blending theory of inheritance. (Inheritance, Heredity, and Genetics

More information

Genetics & The Work of Mendel. AP Biology

Genetics & The Work of Mendel. AP Biology Genetics & The Work of Mendel Gregor Mendel Modern genetics began in the mid-1800s in an abbey garden, where a monk named Gregor Mendel documented inheritance in peas u used experimental method u used

More information

Lecture 7. Chapter 5: Extensions and Modifications of Basic Principles, Part 2. Complementation Test. white squash x white squash WwYy x WwYy

Lecture 7. Chapter 5: Extensions and Modifications of Basic Principles, Part 2. Complementation Test. white squash x white squash WwYy x WwYy Lecture 7 white squash x white squash WwYy x WwYy Chapter 5: Extensions and Modifications of Basic Principles, Part 2 Problem Set 1B due on Monday Genotype W_Y_ 9/16 W_yy 3/16 wwy_ 3/16 wwyy 1/16 Phenotype

More information

Sickle Cell Anemia. Sickle cell anemia is an inherited disorder of the blood which occurs when just one base pair substitution

Sickle Cell Anemia. Sickle cell anemia is an inherited disorder of the blood which occurs when just one base pair substitution Rose Farrington and Rachel Nash BIOL 362 Lab M. Bulgarella Genetic Diseases 10/14/2008 Sickle Cell Anemia Introduction Sickle cell anemia is an inherited disorder of the blood which occurs when just one

More information

Guided Notes: Simple Genetics

Guided Notes: Simple Genetics Punnett Squares Guided Notes: Simple Genetics In order to determine the a person might inherit, we use a simple diagram called a o Give us of an offspring having particular traits Pieces of the Punnett

More information