Summary The Work of Gregor Mendel Probability and Punnett Squares. Oass

Size: px
Start display at page:

Download "Summary The Work of Gregor Mendel Probability and Punnett Squares. Oass"

Transcription

1 Oass Date Chapter 11 Summary Introduction to Genetics 11-1 The Work of Gregor Mendel The scientific study of heredity is called genetics. Gregor Mendel used purebred pea plants in a series of experiments to understand inheritance. Pea flowers have both male and female parts. Normally, pollen from the male part of the pea flower fertilizes the female egg cells of the same flower. This is called selfpollination. Seeds that come from selfpollination inherit all their characteristics from just one parent. To carry out his experiments, Mendel had to prevent self-pollination. He did this by cutting away the pollen-bearing male parts and then dusting pollen from another plant on the flower. This process is called cross-pollination. The seeds that come from cross-pollination are the offspring of two different parents. Mendel decided to study just a few traits, or characteristics, of the pea plants. He studied seven traits: seed shape, seed color, seed coat color, pod shape, pod color, flower position, and plant height. First, Mendel crossed two plants with different characters, or forms, for the same trait. For example, one plant was tall and the other was short. Mendel used the seeds produced by this cross to grow plants. These plants were hybrids. Hybrids are the offspring of crosses between parents with different traits. To Mendel's surprise, the hybrid plants looked like only one of the parents. He concluded that each trait was controlled by one gene that occurred in two different forms. The different forms of a gene are called alleles. Mendel formed the theory of dominance. He concluded that some alleles are dominant, while others are recessive. Whenever a living thing inherits a dominant allele, that trait is visible. The effects of a recessive allele are not seen if the dominant allele is present. Mendel wanted to know what happened to the recessive allele. He allowed his hybrid plants to self-pollinate. Some of the plants that were produced showed the recessive trait. The alleles responsible for the recessive characters had not disappeared. Before, the dominant allele had masked the recessive allele, so it was not visible. Mendel concluded that the alleles for the same trait can be separated. He called this segregation. Alleles segregate when gametes are formed. Each gamete carries only one copy of each gene Probability and Punnett Squares Mendel used the principles of probability to explain his results. Probability is the likelihood that a particular event will occur. Probability can be used to predict the outcome of genetic crosses because alleles segregate randomly. The gene combinations that might result from a genetic cross can be determined by drawing a Punnett square. In a Punnett square, alleles are represented by letters. A capital letter represents the dominant allele, and a lowercase letter represents the recessive allele. Organisms that have two identical alleles for a particular trait are called homozygous. Homozygous organisms are true-breeding for a particular trait. Organisms that have two different alleles for a particular trait are called heterozygous. Heterozygous organisms are hybrid for a particular trait. The physical traits of an organism make up its phenotype (for example, height). The genetic makeup of an organism is its genotype (for example, IT or Tt). Pearson Education, Inc., publishing as Pearson Prentice Hall. 14

2 Class Date One important rule of probability is that probabilities predict the average outcome of a large number of events. They CaIU10t predict what will happen in a single event. The more organisms examined, the closer the numbers will get to the expected values Exploring Mendelian Genetics Mendel wondered whether genes that determine one trait have anything to do with genes that determine another trait. He wanted to know, for example, whether the gene that determines seed shape affects the gene for seed color. To answer this question, he did an experiment. He crossed plants and recorded two traits-seed shape and seed color. Mendel found that the gene controlling seed shape did not affect the gene controlling seed color. Mendel concluded that genes can segregate independently, or undergo independent assortment, during gamete formation. Not all genes show simple patterns of dominant and recessive alleles. In incomplete dominance, one allele is not completely dominant over another. In codominance, both alleles contribute to the phenotype. Many genes have more than two alleles and are said to have multiple alleles. Polygenic traits are traits controlled by two or more genes. The characteristics of any organism are not caused only by its genes. Instead, characteristics are determined by the interaction between the genes and the environment Meiosis According to Mendel, living things inherit a single copy of each gene from each of their parents. When gametes are formed, these two copies are separated. Gametes are made during meiosis. In a complex process, the number of chromosomes in each cell is cut in half. The chromosomes are different from one another and from the parent cell. There are two stages in meiosis. During the first stage, the DNA in special cells in the reproductive organs is copied. The cells then divide. Two cells are formed. These cells are different from each other and different from the parent cell. In the second stage of meiosis, the cells divide again. This time, their DNA is not copied first. Four daughter cells are produced. Each cell contains half the number of chromosomes of the original parent cell. In male animals, the gametes produced by meiosis are called sperm. Some plants also have sperm cells. In females, meiosis produces one large reproductive cell and three smaller cells. In animals, the larger reproductive cell is called an egg. In some plants, it is called an egg cell. The three smaller cells produced during meiosis are called polar bodies. They do not participate in reproduction. Meiosis is very different from mitosis. Mitosis makes two cells that are exactly alike. The cells are also exactly like the parent cell. Meiosis, however, produces four cells. Each of the cells has only half the number of chromosomes of the parent cell. The cells are genetically different from one another Linkage and Gene Maps Some genes are almost always inherited together. These genes belong to the same linkage group. A chromosome is a group of linked genes. It is actually the chromosomes that assort independently during gamete formation, not single genes. The location of genes can be mapped to a chromosome. The rate of crossover events is used to find the distance between genes on a chromosome. The farther apart two genes are, the more likely they will be separated by a crossover event. Pearson Education, Inc., publishing os Pearson Prentice Holi. 15

3 Class Date Chapter 11 Introduction to Genetics Section 11-1 The Work of Gregor Mendel (pages ) ~ Key Concepts What is the principle of dominance? What happens during segregation? Gregor Mendel's Peas (pages ) 1. The scientific study of heredity is called 2. Circle the letter of each sentence that is true about Gregor Mendel's peas. a. The male parts of pea flowers produce eggs. b. When pollen fertilizes an egg cell, a seed for a new plant is formed. c. Pea plants normally reproduce by self-pollination. d. Seeds that are produced by self-pollination inherit their characteristics from two different plants. 3. What does it mean when pea plants are described as being true-breeding? 4. To perform his experiments, how did Mendel prevent pea flowers from self-pollinating and control their cross-pollination? Genes and Dominance (pages ) Match the term with its definition. Tenns Definitions 5. genes a. Specific characteristics that vary from one individual 6. hybrids to another 7. traits h. The offspring of crosses between parents with different traits 8. alleles c. Chemical factors that determine traits 9. State the principle of dominance. d. The different forms of a gene 10. Is the following sentence true or false? An organism with a recessive allele for a particular form of a trait will always exhibit that form. 11. Circle the letters of the traits controlled by dominant alleles in Mendel's pea plants. a. tau h. short c. yellow d. green Pearson EducaHon, Inc., publishing as Pearson PrenHce Hall. 16

4 Class Date Segregation (pages ) 12. How did Mendel find out whether the recessive alleles were still present in the F t plants? 13. About one fourth of the F2 plants from Mendel's F t crosses showed the trait controlled by the allele. 14. Circle the letter of each sentence that is true about Mendel's explanation of the results from his F t cross. a. Mendel assumed that a dominant allele had masked the corresponding recessive allele in the F1 generation. b. The trait controlled by the recessive allele never showed up in any F2 plants. c. The allele for shortness was always inherited with the allele for tallness. d. At some point, the allele for shortness was segregated, or separated, from the allele for tallness. 15. What are gametes? 16. Complete the following diagram to show how alleles segregate during the formation of gametes. 17. In the diagram above, the dominant allele is represented by and the recessive allele is represented by Pearson EducoHon, Inc., publishing as Peorson Prentice Hall. 17

5 Class Date Section 11-2 Probability and Punnett Squares (pages ) ~ Key Concepts How do geneticists use the principles of probability? How do geneticists use Punnett squares? Genetics and Probability (page 267) 1. The likelihood that a particular event will occur is called 2. Circle the letter of the probability that a single coin flip will come up heads. a. 100 percent b. 75 percent c. 50 percent d. 25 percent 3. Is the following sentence true or false? The past outcomes of coin flips greatly affect the outcomes of future coin flips. 4. Why can the principles of probability be used to predict the outcomes of genetic crosses? Punnett Squares (page 268) 5. How do geneticists use PlUU1ett squares? 6. Complete the Punnett square to show the possible gene combinations for the F2 offspring. PUNNETI SQUARE FOR TtxTt T t T t Match the terms with the definitions. Terms Definitions 7. genotype a. Organisms that have two identical alleles for a 8. homozygous particular trait (IT or tt) 9. phenotype b. Organisms that have two different alleles for the same trait (It) heterozygous c. Physical characteristic of an organism (tall) d. Genetic makeup of an organism (It) Pearson Education, Inc., publishing os Pearson Prentice Hall. 18

6 Class Da te 11. Is the following sentence true or false? Homozygous organisms are true-breeding for a particular trait. 12. Is the following sentence true or false? Plants with the same phenotype always have the same genotype. Probability and Segregation (page 269) 13. Circle the letter of each sentence that is true about probability and segregation. a. In an F1 cross between two hybrid tall pea plants (Tt), ~ of the F2 plants will have two alleles for tallness em. b. The F2 ratio of tall plants to short plants produced in a cross between two hybrid tall pea plants (Tt) is 3 tall plants for every 1 short plant. c. Mendel observed that about %of the F2 offspring showed the dominant trait. d. Segregation occurs according to Mendel's model. 14. In Mendel's model of segregation, what was the ratio of tall plants to short plants in the F2 generation? Probabilities Predict Averages (page 269) 15. Is the following sentence true or false? Probabilities predict the precise outcome of an individual event. 16. How can you be sure of getting the expected 50 : 50 ratio from flipping a coin? 17. The the number of offspring from a genetic cross, the closer the resulting numbers wiil get to expected values. 18. Is the following sentence true or false? The ratios of an F1 generation are more likely to match Mendelian predicted ratios if the F1 generation contains hundreds or thousands of individuals. Reading Skill Practice Taking notes helps the reader focus on the main ideas and the vocabulary of the reading. Take notes while rereading Section Note the main ideas and the highlighted, boldface terms in the order in which they are presented. You may copy the ideas word for word or summarize them using your own words. Do your work on a separate sheet of paper. Pearson Educo~on, Inc., publishing os Pearson Pren~ce Hall. 19

7 Class Date Section 11-3 Exploring Mendelian Genetics (pages ) ~ Key Concepts What is the principle of independent assortment? What inheritance patterns exist aside from simple dominance? Independent Assortment (pages ) 1. In a two-factor cross, Mendel followed different genes as they passed from one generation to the next. 2. Write the genotypes of the true-breecling plants that Mendel used in his two-factor cross. Phenotype a. round yellow peas b. wrinkled green peas Genotype 3. Circle the letter that best describes the F) offspring of Mendel's two-factor cross. a. Homozygous dominant with round yellow peas b. Homozygous recessive with wrinkled green peas c. Heterozygous dominant with round yellow peas d. Heterozygous recessive with wrinkled green peas 4. Is the following sentence true or false? The genotypes of the F) offspring inclicated to Mendel that genes assort independently. 5. How clid Mendel produce the F2 offspring? 6. Circle the letter of the phenotypes that Mendel would expect to see if genes segregated independently. a. round and yellow b. wrinkled and green c. round and green d. wrinkled and yellow 7. What did Mendel observe in the F2 offspring that showed him that the alleles for seed shape segregate independently of those for seed color? 8. What were the phenotypes of the F2 generation that Mendel observed? Pearson Educo~on, Inc., publishing os Pearson Pren~(e Holi. 20

8 Class Da te 9. What was the ratio of Mendel's F2 generation for the two-factor cross? 10. Complete the Punnett square below to show the predicted results of Mendel's twofactor cross. MENDEL'S TWO-FACTOR CROSS RrYyx RrYy RY Ry ry ry RY Ry ry ry 11. State Mendel's principle of independent assortment. A Summary of Mendel's Principles (page 272) 12. Circle the letter of each sentence that is true about Mendel's principles. a. The inheritance of biological characteristics is determined by genes that are passed from parents to their offspring. h. Two or more forms of the gene for a single trait can never exist. c. The copies of genes are segregated from each other when gametes are formed. d. The alleles for different genes usually segregate independently of one another. 13. When two or more forms of the gene for a single trait exist, some forms of the gene may be and others may be Beyond Dominant and Recessive Alleles (pages ) 14. Is the following sentence true or false? All genes show simple patterns of dominant and recessive alleles. Peorson Educo~on, Inc., publishing os Peorson Prentice Holi. 21

9 Class Date Complete the table of the different patterns of inheritance. PATTERNS OF INHERITANCE Type Description Examples One allele is not completely dominant over another. The heterozygous phenotype is somewhere in between the two homozygous phenotypes. Both alleles contribute to the phenotype of the organism. Genes have more than two alleles. Two or more genes control a trait. Applying Mendel's Principles (page 274) 16. List three criteria Thomas Hunt Morgan was looking for in a model organism for genetic studies. a. b. c. 17. Is the following sentence true or false? Mendel's principles apply not just to pea plants but to other organisms as well. Genetics and the Environment (page 274) 18. Characteristics are determined by interaction between genes and the Pearson EduCllHon, Inc., publishing as Pearson Prenfice Hall. 22

10 Class Date Section 11-4 Meiosis (pages ) ~ Key Concepts What happens during the process of meiosis? How is meiosis different from mitosis? Introduction (page 275) 1. List the two things that Mendel's principles of genetics required in order to be true. a. b. Chromosome Number (page 275) 2. What does it mean when two sets of chromosomes are homologous? 3. Circle the letter of each way to describe a diploid cell. a.2n b. Contains two sets of homologous chromosomes c. Contains a single set of homologous chromosomes d. Agamete 4. Circle the letter of the number of chromosomes in a haploid Drosophila cell. ~ 8 b. 4 ~ 2 d. 0 Phases of Meiosis (pages ) 5. Draw the chromosomes in the diagrams below to show the correct phase of meiosis. Prophase I Metaphase I Pearson Educo~on, Inc., publishing os Pearson Pren~ce Holi. 23 Anaphase II

11 Class Date 6. Identify which phase of meiosis is shown in the diagrams below. 7. Why is meiosis described as a process of reduction division? 8. What are the two distinct divisions of meiosis? a. b. 9. Is the following sentence true or false? The diploid cell that enters meiosis becomes 4 haploid cells at the end of meiosis. 10. How does a tetrad form in prophase I of meiosis? 11. Circle the number of chromatids in a tetrad. a. 8 b. 6 c. 4 d What results from the process of crossing-over during prophase I? Pearson EducaHon, Inc., publishing as Pearson PrenHce Hall. 24

12 Class Date 13. Circle the letter of each sentence that is true about meiosis. a. During meiosis I, homologous chromosomes separate. b. The two daughter cells produced by meiosis I still have the two complete sets of chromosomes, as does a diploid cell. c. During anaphase II, the paired chromatids separate. d. After meiosis II, the four daughter cells contain the diploid number of chromosomes. Gamete Formation (page 278) Match the products of meiosis with the descriptions. Product of Meiosis Description 14. eggs a. Haploid gametes produced in males 15. sperm b. Haploid gametes produced in females 16. polar bodies c. Cells produced in females that do not participate in reproduction Comparing Mitosis and Meiosis (page 278) 17. Circle the letter of each sentence that is true about mitosis and meiosis. a. Mitosis produces four genetically different haploid cells. b. Meiosis produces two genetically identical diploid cells. c. Mitosis begins with a diploid cell. d. Meiosis begins with a diploid cell. Reading Skill Practice You can often increase your understanding of what you've read by making comparisons. A compare-and-contrast table helps you to do this. On a separate sheet of paper, make a table to compare the processes of mitosis and meiosis. For more information about compare-and-contrast tables, see Organizing Information in Appendix A in your textbook. Peorson Educotlon, Inc., publishing as Pearson Prentlce Hall. 25

13 Class Date Section 11-5 Linkage and Gene Maps (pages ) ~ Key Concept What structures actually assort independently? Gene Linkage (page 279) 1. Is the following sentence true or false? Thomas Hunt Morgan discovered that some genes violated the principle of independent assortment. 2. Morgan grouped the Drosophila genes that were inherited together into four groups. 3. List the two conclusions tfu.t Morgan made about genes and chromosomes. a. b. 4. Why didn't Mendel observe gene linkage? Gene Maps (pages ) 5. Explain why two genes fowld on the same chromosome are not always linked forever. 6. The new combinations of alleles produced by crossover events help to generate genetic 7. Is the following sentence true or false? Genes that are closer together are more likely to be separated by a crossover event in meiosis. 8. What is a gene map? 9. How is a gene map constructed? Pearson Education, Inc., publishing as Pearson Prenfice Hall. 26

14 Class Date Chapter 11 Introduction to Genetics Vocabulary Review Labeling Diagrams used twice heterozygous parent dominant allele recessive allele 6. Use the words listed below to label the Punnett square. Some words may be H h homozygous offspring heterozygous offspring 1. ' I \ HI \h ' HH Hh Hh hh Matching In the space provided, write the letter of the definition that best matches each tenn. 7. phenotype a. likelihood that something will happen 8. gamete b. shows the relative locations of genes on a chromosome c. physical characteristics of an organism 9. genetics d. containing one set of chromosomes 10. probability e. sex cell 11. haploid. chemical factor that determines traits 12. gene map g. specific characteristic 13. gene h. scientific study of heredity 14. multiple alleles 1. gene with more than two alleles 15. trait Completion Fill in the blanks with terms fron1 Chapter The process in which two genes segregate independently is called 17. Plants that, if left to self-pollinate, produce offspring identical to themselves are called 18. The offspring of crosses between parents with different traits are called 19. The process during sexual reproduction in which male and female sex cells join is called 20. The process of reduction division in which the number of chromosomes per cell is cut in half is called Pearson Educo~on, Inc., publishing os Peorson Prenfice Holi. 27

Section 11 1 The Work of Gregor Mendel (pages )

Section 11 1 The Work of Gregor Mendel (pages ) Chapter 11 Introduction to Genetics Section 11 1 The Work of Gregor Mendel (pages 263 266) This section describes how Gregor Mendel studied the inheritance of traits in garden peas and what his conclusions

More information

Name Hour. Section 11-1 The Work of Gregor Mendel (pages )

Name Hour. Section 11-1 The Work of Gregor Mendel (pages ) Name Hour Section 11-1 The Work of Gregor Mendel (pages 263-266) Introduction (page 263) 1. The scientific study of heredity is called. Gregor Mendel's Peas (pages 263-264) 2. Circle the letter of each

More information

The Experiments of Gregor Mendel

The Experiments of Gregor Mendel 11.1 The Work of Gregor Mendel 11.2 Applying Mendel s Principles The Experiments of Gregor Mendel Every living thing (plant or animal, microbe or human being) has a set of characteristics inherited from

More information

Gregor Mendel. What is Genetics? the study of heredity

Gregor Mendel. What is Genetics? the study of heredity Gregor Mendel What is Genetics? the study of heredity Gregor Mendel s Peas Pollen: plant s sperm Egg Cells: plants reproductive cells Fertilization: joining of pollen + egg cells develops into embryo in

More information

Lesson Overview 11.2 Applying Mendel s Principles

Lesson Overview 11.2 Applying Mendel s Principles THINK ABOUT IT Nothing in life is certain. Lesson Overview 11.2 Applying Mendel s Principles If a parent carries two different alleles for a certain gene, we can t be sure which of those alleles will be

More information

Chapter 11 Introduction to Genetics

Chapter 11 Introduction to Genetics Chapter 11 Introduction to Genetics 11.1 Gregor Mendel Genetics is the scientific study of heredity How traits are passed from one generation to the next Mendel Austrian monk (1822) Used Pea Plants (crossed

More information

Genetics & Heredity 11/16/2017

Genetics & Heredity 11/16/2017 Genetics & Heredity Biology I Turner College & Career High School 2017 Fertilization is the fusion of an egg and a sperm. Purebred (True breeding plants) are plants that were allowed to selfpollinate and

More information

Chapter 11 introduction to genetics 11.1 The work of Gregor mendel

Chapter 11 introduction to genetics 11.1 The work of Gregor mendel Chapter 11 introduction to genetics 11.1 The work of Gregor mendel What is inheritance? Two uses of the word inheritance Things that are passed down through generations Factors we get from our parents

More information

11-1: Introduction to Genetics

11-1: Introduction to Genetics 11-1: Introduction to Genetics The Work of Gregor Mendel Copyright Pearson Prentice Hall Genetics Vocabulary Genetics The study of heredity. Heredity The passing of physical characteristics from parents

More information

Mendel and Heredity. Chapter 12

Mendel and Heredity. Chapter 12 Mendel and Heredity Chapter 12 12.1 Objectives: 1.) summarize the importance of Mendel s experiments 2.)Differentiate between genes and alleles. 3.) Explain that alleles determine what physical traits

More information

Inheritance. What is inheritance? What are genetics? l The genetic characters transmitted from parent to offspring, taken collectively

Inheritance. What is inheritance? What are genetics? l The genetic characters transmitted from parent to offspring, taken collectively Genetics Interest Grabber Look at your classmates. Note how they vary in the shape of the front hairline, the space between the two upper front teeth, and the way in which the ear lobes are attached. Make

More information

Introduction to Genetics and Heredity

Introduction to Genetics and Heredity Introduction to Genetics and Heredity Although these dogs have similar characteristics they are each unique! I. Early Ideas About Heredity A. The Theory of Blending Inheritance Each parent contributes

More information

Chapter 11: Introduction to Genetics

Chapter 11: Introduction to Genetics Chapter 11: Introduction to Genetics 1 DO NOW Work in groups of 3 Create a list of physical characteristics you have in common with your group. Consider things like eye and hair color, style/texture of

More information

For a long time, people have observed that offspring look like their parents.

For a long time, people have observed that offspring look like their parents. Chapter 10 For a long time, people have observed that offspring look like their parents. Even before we knew about genes, people were breeding livestock to get certain traits in the offspring. They knew

More information

Genetics & The Work of Mendel. AP Biology

Genetics & The Work of Mendel. AP Biology Genetics & The Work of Mendel Gregor Mendel Modern genetics began in the mid-1800s in an abbey garden, where a monk named Gregor Mendel documented inheritance in peas u used experimental method u used

More information

Mendel and Heredity. Chapter 12

Mendel and Heredity. Chapter 12 Mendel and Heredity Chapter 12 Objectives: 1.) Differentiate between genotype and phenotype 2.)Differentiate between genes and alleles. 3.) Differentiate between dominant and recessive alleles. 4.) Explain

More information

Mendelian Genetics. You are who you are due to the interaction of HEREDITY and ENVIRONMENT. ENVIRONMENT: all outside forces that act on an organism.

Mendelian Genetics. You are who you are due to the interaction of HEREDITY and ENVIRONMENT. ENVIRONMENT: all outside forces that act on an organism. Heredity Chapter 3 3:1 Genetics Mendelian Genetics You are who you are due to the interaction of HEREDITY and ENVIRONMENT. ENVIRONMENT: all outside forces that act on an organism. HEREDITY: traits that

More information

Guided Reading and Study. Definition a. The scientific study of heredity. b. Physical characteristics

Guided Reading and Study. Definition a. The scientific study of heredity. b. Physical characteristics Genetics: The Science of Heredity Mendel's Work Guided Reading and Study This section describes how Gregor Mendel identified the method by which characteristics are passed from parents to their offspring.

More information

Genetics & The Work of Mendel

Genetics & The Work of Mendel Genetics & The Work of Mendel 2006-2007 Gregor Mendel Modern genetics began in the mid-1800s in an abbey garden, where a monk named Gregor Mendel documented inheritance in peas used experimental method

More information

Name Period. Keystone Vocabulary: genetics fertilization trait hybrid gene allele Principle of dominance segregation gamete probability

Name Period. Keystone Vocabulary: genetics fertilization trait hybrid gene allele Principle of dominance segregation gamete probability Name Period BIO B2 GENETICS (Chapter 11) You should be able to: 1. Describe and/or predict observed patterns of inheritance (dominant, recessive, co- dominant, incomplete dominance, sex- linked, polygenic

More information

The Work of Gregor Mendel. Lesson Overview. Lesson Overview The Work of Gregor Mendel

The Work of Gregor Mendel. Lesson Overview. Lesson Overview The Work of Gregor Mendel Lesson Overview 11.1 The Work of Gregor Mendel GENETICS Genetics: The scientific study of heredity Genetics is the key to understanding what makes each organism unique. THINK ABOUT IT What is an inheritance?

More information

Objectives. ! Describe the contributions of Gregor Mendel to the science of genetics. ! Explain the Law of Segregation.

Objectives. ! Describe the contributions of Gregor Mendel to the science of genetics. ! Explain the Law of Segregation. Objectives! Describe the contributions of Gregor Mendel to the science of genetics.! Explain the Law of Segregation.! Explain the Law of Independent Assortment.! Explain the concept of dominance.! Define

More information

VOCABULARY somatic cell autosome fertilization gamete sex chromosome diploid homologous chromosome sexual reproduction meiosis

VOCABULARY somatic cell autosome fertilization gamete sex chromosome diploid homologous chromosome sexual reproduction meiosis SECTION 6.1 CHROMOSOMES AND MEIOSIS Study Guide KEY CONCEPT Gametes have half the number of chromosomes that body cells have. VOCABULARY somatic cell autosome fertilization gamete sex chromosome diploid

More information

Name Class Date. KEY CONCEPT The chromosomes on which genes are located can affect the expression of traits.

Name Class Date. KEY CONCEPT The chromosomes on which genes are located can affect the expression of traits. Section 1: Chromosomes and Phenotype KEY CONCEPT The chromosomes on which genes are located can affect the expression of traits. VOCABULARY carrier sex-linked gene X chromosome inactivation MAIN IDEA:

More information

Genetics PPT Part 1 Biology-Mrs. Flannery

Genetics PPT Part 1 Biology-Mrs. Flannery Genetics PPT Part Biology-Mrs. Flannery In an Abbey Garden Mendel studied garden peas because they were easy to grow, came in many readily distinguishable varieties, had easily visible traits are easily

More information

GENETICS PREDICTING HEREDITY

GENETICS PREDICTING HEREDITY GENETICS PREDICTING HEREDITY INTRODUCTION TO GENETICS Genetics is the scientific study of heredity Heredity is essentially the study of how traits are passed from parents to their offspring. GREGOR MENDEL

More information

Chapter 6 Heredity The Big Idea Heredity is the passing of the instructions for traits from one generation to the next.

Chapter 6 Heredity The Big Idea Heredity is the passing of the instructions for traits from one generation to the next. Chapter 6 Heredity The Big Idea Heredity is the passing of the instructions for traits from one generation to the next. Section 1 Mendel and His Peas Key Concept The work of Gregor Mendel explains the

More information

Gregor Mendel and Genetics Worksheets

Gregor Mendel and Genetics Worksheets Gregor Mendel and Genetics Worksheets Douglas Wilkin, Ph.D. (DWilkin) Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book,

More information

Lesson Overview 11.1 The Work of Gregor Mendel

Lesson Overview 11.1 The Work of Gregor Mendel THINK ABOUT IT What is an inheritance? Lesson Overview 11.1 The Work of Gregor Mendel It is something we each receive from our parents a contribution that determines our blood type, the color of our hair,

More information

1/9/2014. Introduction to Genetics. The Work of Gregor Mendel THE WORK OF GREGOR MENDEL. Some Definitions:

1/9/2014. Introduction to Genetics. The Work of Gregor Mendel THE WORK OF GREGOR MENDEL. Some Definitions: Introduction to Genetics Chapter 11 Chapter 11 Section 1 THE WORK OF GREGOR MENDEL The Work of Gregor Mendel Some Definitions: Genetics the study of biological inheritance and variation Chromosomes hereditary

More information

Chapter 13: Patterns of Inheritance

Chapter 13: Patterns of Inheritance Chapter 13: Patterns of Inheritance 1 Gregor Mendel (1822-1884) Between 1856 and 1863 28,000 pea plants Called the Father of Genetics" 2 Site of Gregor Mendel s experimental garden in the Czech Republic

More information

You are who you are because of a combination of HEREDITY and ENVIRONMENT. ENVIRONMENT: all outside forces that act on an organism.

You are who you are because of a combination of HEREDITY and ENVIRONMENT. ENVIRONMENT: all outside forces that act on an organism. Unit 6 Genetics 6.1 Genetics You are who you are because of a combination of HEREDITY and ENVIRONMENT. ENVIRONMENT: all outside forces that act on an organism. HEREDITY: traits that are passed from parents

More information

Chapter 10 Notes Patterns of Inheritance, Part 1

Chapter 10 Notes Patterns of Inheritance, Part 1 Chapter 10 Notes Patterns of Inheritance, Part 1 I. Gregor Mendel (1822-1884) a. Austrian monk with a scientific background b. Conducted numerous hybridization experiments with the garden pea, Pisum sativum,

More information

He called these new plants hybrids because they received different genetic information, or different alleles, for a trait from each parent.

He called these new plants hybrids because they received different genetic information, or different alleles, for a trait from each parent. /6/204 in a Garden Each time Mendel studied a trait, he crossed two plants with different expressions of the trait and found that the new plants all looked like one of the two parents. He called these

More information

8.1 Genes Are Particulate and Are Inherited According to Mendel s Laws 8.2 Alleles and Genes Interact to Produce Phenotypes 8.3 Genes Are Carried on

8.1 Genes Are Particulate and Are Inherited According to Mendel s Laws 8.2 Alleles and Genes Interact to Produce Phenotypes 8.3 Genes Are Carried on Chapter 8 8.1 Genes Are Particulate and Are Inherited According to Mendel s Laws 8.2 Alleles and Genes Interact to Produce Phenotypes 8.3 Genes Are Carried on Chromosomes 8.4 Prokaryotes Can Exchange Genetic

More information

UNIT 6 GENETICS 12/30/16

UNIT 6 GENETICS 12/30/16 12/30/16 UNIT 6 GENETICS III. Mendel and Heredity (6.3) A. Mendel laid the groundwork for genetics 1. Traits are distinguishing characteristics that are inherited. 2. Genetics is the study of biological

More information

biology Slide 1 of 32

biology Slide 1 of 32 biology 1 of 32 11-1 The Work of Gregor 11-1 The Work of Gregor Mendel Mendel 2 of 32 Gregor Mendel s Peas Gregor Mendel s Peas Genetics is the scientific study of heredity. Gregor Mendel was an Austrian

More information

Lesson Overview. The Work of Gregor Mendel. Lesson Overview The Work of Gregor Mendel

Lesson Overview. The Work of Gregor Mendel. Lesson Overview The Work of Gregor Mendel Lesson Overview 11.1 The Work of Gregor Mendel The Experiments of Gregor Mendel Where does an organism get its unique characteristics? An individual s characteristics are determined by factors that are

More information

Mendel explained how a dominant allele can mask the presence of a recessive allele.

Mendel explained how a dominant allele can mask the presence of a recessive allele. Section 2: Mendel explained how a dominant allele can mask the presence of a recessive allele. K What I Know W What I Want to Find Out L What I Learned Essential Questions What is the significance of Mendel

More information

Unit 7 Section 2 and 3

Unit 7 Section 2 and 3 Unit 7 Section 2 and 3 Evidence 12: Do you think food preferences are passed down from Parents to children, or does the environment play a role? Explain your answer. One of the most important outcomes

More information

Notes: Mendelian Genetics

Notes: Mendelian Genetics Notes: Mendelian Genetics Heredity is passing characteristics from one generation to the next. Genetics is the study of heredity. Who was Gregor Mendel? Gregor Mendel is the Father of Modern Genetics.

More information

Fundamentals of Genetics

Fundamentals of Genetics Fundamentals of Genetics For thousands of years people have known that living things somehow pass on some type of information to their offspring. This was very clear in things that humans selected to breed

More information

The Work of Gregor Mendel. Guided Reading

The Work of Gregor Mendel. Guided Reading The Work of Gregor Mendel Guided Reading Gregor Mendel 25 min Mendel (pearson) 6 min The Experiments of Gregor Mendel 1. What is Heredity? The delivery of characteristics from parents to offspring 2. What

More information

Mendelian Genetics. Biology 3201 Unit 3

Mendelian Genetics. Biology 3201 Unit 3 Mendelian Genetics Biology 3201 Unit 3 Recall: Terms Genetics is a branch of biology dealing with the principles of variation and inheritance in animals and plants. Heredity the passing of traits from

More information

Genetics & The Work of Mendel

Genetics & The Work of Mendel Genetics & The Work of Mendel 2006-2007 Gregor Mendel Modern genetics began in the mid-1800s in an abbey garden, where a monk named Gregor Mendel documented inheritance in peas used experimental method

More information

11.1 The Work of Mendel

11.1 The Work of Mendel 11.1 The Work of Mendel Originally prepared by Kim B. Foglia Revised and adapted by Nhan A. Pham Objectives Describe Mendel s classic garden pea experiment. Summarize Mendel s conclusion about inheritance.

More information

Semester 2- Unit 2: Inheritance

Semester 2- Unit 2: Inheritance Semester 2- Unit 2: Inheritance heredity -characteristics passed from parent to offspring genetics -the scientific study of heredity trait - a specific characteristic of an individual genes -factors passed

More information

Sexual Reproduction & Inheritance

Sexual Reproduction & Inheritance Sexual Reproduction & Sexual Reproduction & Overview Asexual vs Sexual Reproduction Meiosis Genetic Diversity Mendel & The Laws of Sexual Reproduction Sexual Reproduction Asexual Reproduction Prokaryotes

More information

Biology. Slide 1 of 31. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 31. End Show. Copyright Pearson Prentice Hall Biology 1 of 31 11 3 Exploring Mendelian 11-3 Exploring Mendelian Genetics Genetics 2 of 31 Independent Assortment What is the principle of independent assortment? 3 of 31 Independent Assortment Independent

More information

Laws of Inheritance. Bởi: OpenStaxCollege

Laws of Inheritance. Bởi: OpenStaxCollege Bởi: OpenStaxCollege The seven characteristics that Mendel evaluated in his pea plants were each expressed as one of two versions, or traits. Mendel deduced from his results that each individual had two

More information

Gregor Mendel Father of Genetics

Gregor Mendel Father of Genetics Genetics and Mendel Gregor Mendel Father of Genetics Gregor Mendel First person to trace characteristics of living things Augustinian Monk Lived and worked in an Austrian monastery in the mid-1800s Parents

More information

Genetics and heredity. For a long time, general ideas of inheritance were known + =

Genetics and heredity. For a long time, general ideas of inheritance were known + = Mendelian Genetics Genetics and heredity For a long time, general ideas of inheritance were known + = + = What was really lacking was a quantitative understanding of how particular traits were passed down

More information

MENDELIAN GENETIC CH Review Activity

MENDELIAN GENETIC CH Review Activity MENDELIAN GENETIC CH. 6.3-6.5 Review Activity Question 1 Who is considered to be the father of genetics? Answer 1 Question 2 Gregor Mendel What part of DNA directs a cell to make a certain protein? 1 Answer

More information

Chapter 11. Introduction to Genetics

Chapter 11. Introduction to Genetics Chapter 11 Introduction to Genetics A Brief History In the past, people did not understand how traits were inherited, but there were many guesses based on things that could be observed. Two theories emerged.

More information

Mendelian Genetics. Gregor Mendel. Father of modern genetics

Mendelian Genetics. Gregor Mendel. Father of modern genetics Mendelian Genetics Gregor Mendel Father of modern genetics Objectives I can compare and contrast mitosis & meiosis. I can properly use the genetic vocabulary presented. I can differentiate and gather data

More information

biology Slide 1 of 32 End Show Copyright Pearson Prentice Hall

biology Slide 1 of 32 End Show Copyright Pearson Prentice Hall biology 1 of 32 11-1 The Work of Gregor Mendel 2 of 32 Gregor Mendel s Peas Genetics is the scientific study of heredity. Gregor Mendel was an Austrian monk. His work was important to the understanding

More information

Mendelian Genetics Chapter 11

Mendelian Genetics Chapter 11 Mendelian Genetics Chapter 11 Starts on page 308 Roots, Prefixes & Suffixes: homo = hetero = geno = pheno = zyg = co = poly = Section 11-1: Mendel & His Peas I. Vocabulary Words: A. Gene - a small section

More information

Chapter 12 Multiple Choice

Chapter 12 Multiple Choice Chapter 12 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What did Gregor Mendel do to study different characteristics in his genetics experiments? a.

More information

HEREDITY. Heredity is the transmission of particular characteristics from parent to offspring.

HEREDITY. Heredity is the transmission of particular characteristics from parent to offspring. INHERITANCE IN LIFE HEREDITY Heredity is the transmission of particular characteristics from parent to offspring. Mendel presented completely new theory of inheritance in the journal Transactions of the

More information

The Work of Gregor Mendel

The Work of Gregor Mendel The Work of Gregor Mendel Transmission of characteristics from is parents to offspring called. heredity The SCIENCE that studies how those characteristics are passed on from one generation to the next

More information

Biology. Chapter 13. Observing Patterns in Inherited Traits. Concepts and Applications 9e Starr Evers Starr. Cengage Learning 2015

Biology. Chapter 13. Observing Patterns in Inherited Traits. Concepts and Applications 9e Starr Evers Starr. Cengage Learning 2015 Biology Concepts and Applications 9e Starr Evers Starr Chapter 13 Observing Patterns in Inherited Traits Cengage Learning 2015 Cengage Learning 2015 After completing today s activities, students should

More information

Mendel s Law of Heredity. Page 254

Mendel s Law of Heredity. Page 254 Mendel s Law of Heredity Page 254 Define pollination The transfer of pollen grains from a male reproductive organ to a female reproductive organ in a plant is called pollination. Define cross pollination.

More information

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 6 Patterns of Inheritance

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 6 Patterns of Inheritance Chapter 6 Patterns of Inheritance Genetics Explains and Predicts Inheritance Patterns Genetics can explain how these poodles look different. Section 10.1 Genetics Explains and Predicts Inheritance Patterns

More information

Semester 2- Unit 2: Inheritance

Semester 2- Unit 2: Inheritance Semester 2- Unit 2: Inheritance heredity -characteristics passed from parent to offspring genetics -the scientific study of heredity trait - a specific characteristic of an individual genes -factors passed

More information

Biology Unit 7 Genetics 7:1 Genetics

Biology Unit 7 Genetics 7:1 Genetics Biology Unit 7 Genetics 7:1 Genetics Gregor Mendel: Austrian monk Studied the inheritance of traits in pea plants His work was not recognized until the 20 th century Between 1856 and 1863, Mendel cultivated

More information

Section 1 MENDEL S LEGACY

Section 1 MENDEL S LEGACY Chapter 9 Genetics Section 1 MENDEL S LEGACY Genetics is the field of biology devoted to understanding how characteristics are transmitted from parents to offspring Genetics was founded with the work of

More information

Genetics: field of biology that studies heredity, or the passing of traits from parents to offspring Trait: an inherited characteristic, such as eye

Genetics: field of biology that studies heredity, or the passing of traits from parents to offspring Trait: an inherited characteristic, such as eye Genetics: field of biology that studies heredity, or the passing of traits from parents to offspring Trait: an inherited characteristic, such as eye colour or hair colour Gregor Mendel discovered how traits

More information

draw and interpret pedigree charts from data on human single allele and multiple allele inheritance patterns; e.g., hemophilia, blood types

draw and interpret pedigree charts from data on human single allele and multiple allele inheritance patterns; e.g., hemophilia, blood types Specific Outcomes for Knowledge Students will: 30 C2.1k describe the evidence for dominance, segregation and the independent assortment of genes on different chromosomes, as investigated by Mendel 30 C2.2k

More information

Extra Review Practice Biology Test Genetics

Extra Review Practice Biology Test Genetics Mendel fill in the blanks: Extra Review Practice Biology Test Genetics Mendel was an Austrian monk who studied genetics primarily using plants. He started with plants that produced offspring with only

More information

Sexual Reproduction and Genetics. Section 1. Meiosis

Sexual Reproduction and Genetics. Section 1. Meiosis Chromosomes and Chromosome Number! Human body cells have 46 chromosomes! Each parent contributes 23 chromosomes! Homologous chromosomes one of two paired chromosomes, one from each parent Chromosomes and

More information

Patterns of Inheritance

Patterns of Inheritance 1 Patterns of Inheritance Bio 103 Lecture Dr. Largen 2 Topics Mendel s Principles Variations on Mendel s Principles Chromosomal Basis of Inheritance Sex Chromosomes and Sex-Linked Genes 3 Experimental

More information

Biology. Slide 1 of 31. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 31. End Show. Copyright Pearson Prentice Hall Biology 1 of 31 11 3 Exploring Mendelian 11-3 Exploring Mendelian Genetics Genetics 2 of 31 Independent Assortment Independent Assortment To determine if the segregation of one pair of alleles affects

More information

c. Relate Mendelian principles to modern-day practice of plant and animal breeding.

c. Relate Mendelian principles to modern-day practice of plant and animal breeding. Course: Biology Agricultural Science & Technology Unit: Genetics in Agriculture STATE STANDARD IV: Students will understand that genetic information coded in DNA is passed from parents to offspring by

More information

.the science that studies how genes are transmitted from one generation to the next.

.the science that studies how genes are transmitted from one generation to the next. Genetics .the science that studies how genes are transmitted from one generation to the next. The chromosomes are contained in the nucleus of the cell. Genes and Chromosomes Chromosomes are made of: Gene:

More information

Unit 6.2: Mendelian Inheritance

Unit 6.2: Mendelian Inheritance Unit 6.2: Mendelian Inheritance Lesson Objectives Define probability. Explain how probability is related to inheritance. Describe how to use a Punnett square. Explain how Mendel interpreted the results

More information

When Mendel crossed 2 plants that were different in a single trait, he called that a monohybrid cross. The resulting offspring were called the F1

When Mendel crossed 2 plants that were different in a single trait, he called that a monohybrid cross. The resulting offspring were called the F1 Genetics Gregor Mendel The father of Genetics Genetics- the study of heredity Heredity- the passing of characteristics or traits from parents to offspring Mendel chose pea plants to research. Pea plants

More information

Traits and Probability

Traits and Probability 6.5 Traits and Probability KEY CONCEPT The inheritance of traits follows the rules of probability. S Punnett squares illustrate genetic crosses. A monohybrid cross involves one trait. A dihybrid cross

More information

3. What law of heredity explains that traits, like texture and color, are inherited independently of each other?

3. What law of heredity explains that traits, like texture and color, are inherited independently of each other? Section 2: Genetics Chapter 11 pg. 308-329 Part 1: Refer to the table of pea plant traits on the right. Then complete the table on the left by filling in the missing information for each cross. 6. What

More information

Genetics Test- Mendel, Probablility and Heredity

Genetics Test- Mendel, Probablility and Heredity Genetics Test- Mendel, Probablility and Heredity Multiple Choice Identify the choice that best completes the statement or answers the question. 1. In Mendel s experiments, what percentage of the plants

More information

Introduction to Genetics

Introduction to Genetics DAY 2 Introduction to Genetics Heredity Passing of traits from parents to their young The branch of biology that studies heredity is genetics. Trait Characteristic that is inherited Gregor Mendel Austrian

More information

Genes and Inheritance

Genes and Inheritance Genes and Inheritance Variation Causes of Variation Variation No two people are exactly the same The differences between people is called VARIATION. This variation comes from two sources: Genetic cause

More information

VOCABULARY. TRAITS a genetic (inherited) characteristic. HEREDITY The passing of traits from parent to offspring

VOCABULARY. TRAITS a genetic (inherited) characteristic. HEREDITY The passing of traits from parent to offspring VOCABULARY TRAITS a genetic (inherited) characteristic HEREDITY The passing of traits from parent to offspring GENETICS the branch of biology that studies heredity (inherited traits) 1 Gregor Mendel Who?

More information

He was a Chezch priest and math teacher.

He was a Chezch priest and math teacher. Genetics The Study of Heredity This field of Genetics began with the work of Mendel in the early 19 th century. He was a Chezch priest and math teacher. He observed that many plants were true breeding

More information

Genetics. The study of heredity. Father of Genetics: Gregor Mendel (mid 1800 s) Developed set of laws that explain how heredity works

Genetics. The study of heredity. Father of Genetics: Gregor Mendel (mid 1800 s) Developed set of laws that explain how heredity works Genetics The study of heredity Father of Genetics: Gregor Mendel (mid 1800 s) Developed set of laws that explain how heredity works Father of Genetics: Gregor Mendel original pea plant (input) offspring

More information

Labrador Coat Color Similar to coat color in mice: Black lab is BxEx Yellow lab is xxee Chocolate lab is bbex Probable pathway:

Labrador Coat Color Similar to coat color in mice: Black lab is BxEx Yellow lab is xxee Chocolate lab is bbex Probable pathway: Honors Genetics 1. Gregor Mendel (1822-1884) German monk at the Augustine Abbey of St. Thomas in Brno (today in the Czech Republic). He was a gardener, teacher and priest. Mendel conducted experiments

More information

Genetics. Genetics. True or False. Genetics Vocabulary. Chapter 5. Objectives. Heredity

Genetics. Genetics. True or False. Genetics Vocabulary. Chapter 5. Objectives. Heredity Genetics True or False Genes are things you wear on your legs. A priest raising peas in his garden was one of the first to discover how genetics works. Plants can be purebred just like dogs. Dominate alleles

More information

OCTOBER 21 Unit 5 Heredity 1. What is Heredity

OCTOBER 21 Unit 5 Heredity 1. What is Heredity OCTOBER 21 Unit 5 Heredity 1. What is Heredity the passing on of physical or mental characteristics genetically from one generation to another. Agenda 1. Warm-up 2. Mendlian Notes pg 5-6 3. Lets Practice

More information

Agro/ANSC/Biol/Gene/Hort 305 Fall, 2017 MENDELIAN INHERITANCE Chapter 2, Genetics by Brooker (Lecture outline) #2

Agro/ANSC/Biol/Gene/Hort 305 Fall, 2017 MENDELIAN INHERITANCE Chapter 2, Genetics by Brooker (Lecture outline) #2 Agro/ANSC/Biol/Gene/Hort 305 Fall, 2017 MENDELIAN INHERITANCE Chapter 2, Genetics by Brooker (Lecture outline) #2 MENDEL S LAWS OF INHERITANCE Gregor Johann Mendel (1822-1884) is considered the father

More information

Writing the Rules of Heredity. 23. Genetics I

Writing the Rules of Heredity. 23. Genetics I 1. 2. 3. 4. 5. 6. 7. Describe the general aspects of Mendel s experimental method, and explain why his work is considered so important. Define the following terms: gene, F 1 generation, F 2 generation,

More information

Genetics. *** Reading Packet

Genetics. *** Reading Packet Genetics *** Reading Packet 5.4 Mendel and His Peas Learning Objectives Describe Mendel's first genetics experiments. Introduction Why do you look like your family? For a long time people understood that

More information

Mendelian Genetics. KEY CONCEPT Mendel s research showed that traits are inherited as discrete units.

Mendelian Genetics. KEY CONCEPT Mendel s research showed that traits are inherited as discrete units. KEY CONCEPT Mendel s research showed that traits are inherited as discrete units. Mendel laid the groundwork for genetics. Traits are distinguishing characteristics that are inherited. Genetics is the

More information

Patterns of Inheritance. { Unit 3

Patterns of Inheritance. { Unit 3 Patterns of Inheritance { Unit 3 Austrian monk, gardener, scientist First acknowledged to study heredity the passing on of characteristics from parents to offspring Traits characteristics that are inherited

More information

Biology. Chapter 11 Notes: Mendel and Heredity

Biology. Chapter 11 Notes: Mendel and Heredity Interest Grabber Section 11-1 Biolog Chapter 11 Notes: Genetics Analzing Inheritance Offspring resemble their parents. Offspring inherit genes for characteristics from their parents. To learn about inheritance,

More information

Mendel rigorously followed various traits in the pea plants he bred. He analyzed

Mendel rigorously followed various traits in the pea plants he bred. He analyzed 4.2.a Mendelian Genetics Mendel explained how a dominant allele can mask the presence of a recessive allele. Real-World Reading Link There are many different breeds of dogs, such as Labrador retrievers,

More information

Chapter 17 Genetics Crosses:

Chapter 17 Genetics Crosses: Chapter 17 Genetics Crosses: 2.5 Genetics Objectives 2.5.6 Genetic Inheritance 2.5.10.H Origin of the Science of genetics 2.5.11 H Law of segregation 2.5.12 H Law of independent assortment 2.5.13.H Dihybrid

More information

5.5 Genes and patterns of inheritance

5.5 Genes and patterns of inheritance 5.5 Genes and patterns of inheritance Mendel s laws of Inheritance: 1 st Law = The law of segregation of factors states that when any individual produces gametes, the alleles separate, so that each gamete

More information

HEREDITY = The passing of traits from parents to offspring. Transmitted by means of information stored in molecules of DNA.

HEREDITY = The passing of traits from parents to offspring. Transmitted by means of information stored in molecules of DNA. HEREDITY = The passing of traits from parents to offspring. Transmitted by means of information stored in molecules of DNA. GENEITCS =Scientific study of heredity Based on knowledge that traits are transmitted

More information

What are sex cells? How does meiosis help explain Mendel s results?

What are sex cells? How does meiosis help explain Mendel s results? CHAPTER 5 3 Meiosis SECTION Heredity BEFORE YOU READ After you read this section, you should be able to answer these questions: What are sex cells? How does meiosis help explain Mendel s results? National

More information

2 Traits and Inheritance

2 Traits and Inheritance CHATER 6 2 Traits and Inheritance SECTION Heredity 7.2.c., 7.2.d California Science Standards BEFORE YOU READ After you read this section, you should be able to answer these questions: What did Mendel

More information