Introduction. Copyright 2002 Pearson Education, Inc., publishing as Benjamin Cummings

Size: px
Start display at page:

Download "Introduction. Copyright 2002 Pearson Education, Inc., publishing as Benjamin Cummings"

Transcription

1

2 Introduction It was not until 1900 that biology finally caught up with Gregor Mendel. Independently, Karl Correns, Erich von Tschermak, and Hugo de Vries all found that Mendel had explained the basic rules of heredity 35 years before. Still, doubts remained about Mendel s laws of segregation and independent assortment until evidence had mounted that his mysterious factors were, in fact, genes located on chromosomes, which are made of DNA (and proteins). Lots of this evidence was revealed at Columbia University in Manhattan s upper west side. You meet interesting people in NYC. I m the one on the left.

3 1. Mendelian inheritance has its physical basis in the behavior of chromosomes during sexual life cycles Around 1900, scientists began to see obvious parallels between the behavior of chromosomes and the behavior of Mendel s factors. Chromosomes and genes are both present in pairs in diploid cells. Homologous chromosomes separate and alleles segregate during meiosis. Gametes get one from each pair. Fertilization restores the paired condition for both chromosomes and genes, just as Mendel had described.

4 Around 1902, Walter Sutton, Theodor Boveri, and others noted these parallels and a chromosome theory of inheritance began to take form. Fig. 15.1

5 3. Linked genes tend to be inherited together because they are located on the same chromosome Sutton correctly deduced that each chromosome has hundreds or thousands of genes. Genes located on the same chromosome, linked genes, tend to be inherited together because the chromosome is passed along as a unit. Results of crosses with linked genes deviate from those expected according to independent assortment. What would Mendel s dihybrid F 2 s be like with linked genes? Let s sketch it out.

6 Thomas Hunt Morgan, while still an undergraduate student of Sutton s at Columbia, observed this linkage and its deviations when he followed the inheritance of characters for body color and wing size. The wild-type (dominant) body color is gray (b + ) and the mutant black (b). The wild-type wing size is normal (vg + ) and the mutant has vestigial (small, undeveloped) wings (vg). Morgan crossed F 1 heterozygous females (b + bvg + vg) with homozygous recessive males (bbvgvg). Notice this is not a classic F 1 cross like we just sketched out. How is it different?

7 According to independent assortment, this should produce 4 phenotypes in a 1:1:1:1 ratio. Surprisingly, Morgan observed a large number of wild-type (gray-normal) and double-mutant (black-vestigial) flies among the offspring. These phenotypes correspond to those of the parents. Here are his actual numbers.

8 Fig. 15.4

9

10 Morgan reasoned that body color and wing shape are usually inherited together because their genes are on the same chromosome.

11 The other two phenotypes (grayvestigial and black-normal) were fewer than expected from independent assortment (1:1:1:1 expected), and totally unexpected from dependent assortment (1:1:0:0 expected). So what gives, they wondered. Are they linked or not?

12 Most of the offspring had parental phenotypes, suggesting linkage between the genes. However, 17% of the flies were recombinants, suggesting incomplete linkage of some sort.

13 Morgan proposed that some mechanism occasionally exchanged segments between homologous chromosomes. This switched alleles between homologous chromosomes. The actual mechanism, crossing over during prophase I, results in the production of more types of gametes than one would predict by Mendelian rules alone. Fig. 15.5a

14 Crossing over between these two genes doesn t happen in the formation of every gamete, so just some of many millions of gametes had recombined genes. Fig. 15.5b

15 5. Geneticists can use recombination data to map a chromosome s genetic loci One of Morgan s students, Alfred Sturtevant, used crossing over of linked genes to develop a method for constructing a chromosome map. This map is an ordered list of the genetic loci (the physical location of a gene on a chromosome) along a particular chromosome.

16 Sturtevant hypothesized that the frequency of recombinant offspring reflected the distances between genes on a chromosome. The farther apart two genes are, the higher the probability that a crossover will occur between them and therefore a higher number of recombinant offspring. Why????? The greater the distance between two genes, the more points between them where chiasmata form and crossing over can occur. Sturtevant used recombination frequencies from fruit fly crosses to map the relative position of genes along chromosomes, a linkage map.

17 Sturtevant used the test cross design to map the relative position of three fruit fly genes, body color (b), wing size (vg), and eye color (cn). The recombination frequency between cn and b is 9%. The recombination frequency between cn and vg is 9.5%. The recombination frequency between b and vg is 17%. The only possible arrangement of these three genes places the eye color gene between the other two. Fig. 15.6

18 Sturtevant expressed the distance between genes, the recombination frequency, as map units. One map unit (sometimes called a centimorgan) is equivalent to a 1% recombination frequency. You may notice that the three recombination frequencies in our mapping example are not quite additive: 9% (b-cn) + 9.5% (cnvg) > 17% (b-vg). This results from multiple crossing over events. A second crossing over cancels out the first and reduced the observed number of recombinant offspring. Genes farther apart (for example, b-vg) are more likely to experience multiple crossing over events.

19 Some genes on a chromosome are so far apart that a crossover between them is virtually certain. In this case, the frequency of recombination reaches its maximum value of 50% and the genes act as if found on separate chromosomes and are inherited independently. In fact, several of the pea plant genes studied by Mendel are located on the same chromosome. For example, seed color and flower color are linked, but far enough apart that linkage is not observed. Plant height and pod shape should show linkage, but Mendel never reported results of this cross. Hmmm..

20 Student Objectives: How do the events of meiosis explain the observations of Thomas Morgan? How can recombination during meiosis be explained? How can recombination during meiosis be utilized to locate genes on chromosomes and establish their relative distances?

21 A linkage map provides an imperfect picture of a chromosome. Map units indicate relative distance and order, not precise locations of genes. The frequency of crossing over is not actually uniform over the length of a chromosome. More recent techniques show the absolute distances between gene loci in DNA nucleotides. Chromosome mapping using crossover information is becoming a thing of the past, but it sometimes is on the AP test, so suck it up. Let s do some practice problems. Worksheet 21-23

22 Now how about this AP meiosis/crossing over lab? If it doesn t work, try these pictures.

23 1. The chromosomal basis of sex Although the anatomical and physiological differences between women and men are numerous, the chromosomal basis of sex is rather simple. In human and other mammals, there are two varieties of sex chromosomes, X and Y. This was also discovered at Columbia, by Nettie Stevens in An individual who inherits two X chromosomes usually develops as a female. An individual who inherits an X and a Y chromosome usually develops as a male.

24 Can you tell which of these two birds is the female?

25 News Flash!!!!!!!! Top three candidates for Man of the Year!

26

27

28

29 This X-Y system of mammals is not the only chromosomal mechanism of determining sex. Other options include the X-0 system, the Z-W system, and the haplodiploid system. But hold on a minute on the birds Fig. 15.8

30 In the X-Y system, Y and X chromosomes behave as homologous chromosomes during meiosis. In reality, they only share a few genes and rarely undergo crossing over. In both testes (XY) and ovaries (XX), the two sex chromosomes segregate during meiosis and each gamete receives one. Each egg receives an X chromosome. Half the sperm receive an X chromosome and half receive a Y chromosome, so the sperm cell determines the sex of the offspring. Because of this, each conception has about a fifty-fifty chance of producing a particular sex.

31 Around 1995, someone figured out more about sex determination. In humans, the anatomical signs of sex first appear when the embryo is two months old. In individuals with the SRY gene (Sex determining Region of the Y chromosome), the embryonic gonads (gamete producing organs) are modified into testes. In addition, other genes on the Y chromosome are necessary for the production of functional sperm. In individuals lacking the SRY gene (those having two X chromosomes), the embryonic gonads develop into ovaries.

32 Maleness is exhibited in many species

33 Gynandro-whaaaat???

34 Gynandromorphs are what these birds are called, and some folks from Edinburgh figured them out. When the Z and W chromosomes don t divide as they should, some cells end up with a Z and some with a W, and those cells become male and female. Occurring at the first division, this results in a half male, half female. They end up being sterile. Another odd one, the platypus has TEN sex chromosomes per cell. A male is XYXYXYXYXY.

35 2. Morgan traced a gene to a specific chromosome Thomas Hunt Morgan made another big discovery. Like Mendel, Morgan made an insightful choice as an experimental animal, Drosophila melanogaster, a fruit fly species that eats fungi on fruit. Fruit flies are prolific breeders and have a generation time of two weeks. They are cheap and easy to maintain Fruit flies have three pairs of autosomes and a pair of sex chromosomes (XX in females, XY in males). Mating could be easily controlled by placing the future mom and pop in the same milk bottle in his lab known as The Fly Room.

36 Morgan spent a year looking for variant individuals among the flies he was breeding. He discovered a single male fly with white eyes instead of the usual red. Imagine the excitement that day in the lab!!! The normal character phenotype is the wild type. Alternative traits are mutant phenotypes. Fig. 15.2

37 When Morgan crossed his white-eyed male with a red-eyed female, all the F 1 offspring had red eyes, The red allele appeared dominant to the white allele. Crosses between the F 1 offspring produced the classic 3:1 phenotypic ratio in the F 2 offspring. Surprisingly, though, the white-eyed trait appeared only in males, definitely not Mendelian. All the females and half the males had red eyes. Like Mendel before him, Morgan now had some results that needed to be explained by some kind of model. Morgan concluded that a fly s eye color was linked to its sex.

38 Morgan deduced that the gene with the white-eyed mutation is on the X chromosome alone, a sexlinked gene. Females (XX) may have two red-eyed alleles and have red eyes or may be heterozygous and have red eyes. Males (XY) have only a single allele and will be red eyed if they have a red-eyed allele or white-eyed if they have a white-eyed allele. Fig. 15.3

39 2. Sex-linked genes have unique patterns of inheritance In addition to their role in determining sex, the sex chromosomes, especially the X chromosome, have genes for many traits unrelated to sex. These sex-linked genes follow the same pattern of inheritance as the white-eye locus in Drosophila. Fig. 15.9

40 If a sex-linked trait is due to a recessive allele, a female will have this phenotype only if she is homozygous. Heterozygous females will be carriers. Because males have only one X chromosome (hemizygous), any male receiving the recessive allele from his mother (right?) will have the trait. Because mutant alleles are usually rare, the chance of a female inheriting two of the same kind is much less than the chance of a male inheriting just one. Therefore, males are far more likely to inherit sexlinked recessive disorders than are females. What do you think we should name some of these fruit fly genes? Open this - Saved copy.

41 b. Some traits are determined by genes on sex chromosomes. To demonstrate your understanding, make sure you can explain examples like: Sex-linked genes reside on sex chromosomes (X in humans). In mammals and flies, the Y chromosome is very small and carries few genes. In mammals and flies, females are XX and males are XY; as such, X-linked recessive traits are always expressed in males. Some traits are sex limited, and expression depends on the sex of the individual, such as milk production in female mammals and pattern baldness in males.

42 Several serious human disorders are sex-linked. Duchenne muscular dystrophy affects one in 3,500 males born in the United States. Affected individuals rarely live past their early 20s. This disorder is due to the absence of an X-linked gene for a key muscle protein, called dystrophin. The disease is characterized by a progressive weakening of the muscles and loss of coordination. The two traits you should remember are red-green colorblindness and hemophilia.

43 Hemophilia is a sex-linked recessive trait defined by the absence of one or more blood clotting factors. Individuals with hemophilia have prolonged bleeding because a firm clot forms slowly. Bleeding in muscles and joints can be painful and lead to serious damage. Individuals can be treated with intravenous injections of the missing protein. Let s review these blood-related heredity examples. Queen Victoria? And now how about that sex-linked worksheet?

44 Q1: Chi Square A hetero red eyed female was crossed with a red eyed male. The results are shown below. Red eyes are sex-linked dominant to white, determine the chi square value. Round to the nearest hundredth. Phenotype # flies observed Red Eyes 134 White Eyes 66

45 Chi Square Strategy Given observed You have to figure out expected. Usually to do a Punnett square to figure this out Plug in + +

46 Observed 134 red eyes, 66 white eyes Expected X R X R X R X R X r X R X r Chi-Square red + whit e Y X R Y 3:1 ratio = red X r Y ( ) 2 / (66-50) 2 /50 50 white

47 1. Pedigree analysis reveals Mendelian patterns in human inheritance Rather than manipulate mating patterns of people (a bit impractical and unethical), geneticists analyze the results of matings that have already occurred. In a pedigree analysis, information about the presence/absence of a particular phenotypic trait is collected from as many individuals in a family as possible and across generations. The distribution of these characters is then mapped on the family tree.

48 For example, the occurrence of widows peak (W) is dominant to a straight hairline (w). The relationship among alleles can be integrated with the phenotypic appearance of these traits to predict the genotypes of members of this family.

49 For example, if an individual in the third generation lacks a widow s peak, but both her parents have widow s peaks, then her parents must be heterozygous for that gene If some siblings in the second generation lack a widow peak and one of the grandparents (first generation) also lacks one, then we know the other grandparent must be heterozygous and we can determine the genotype of almost all other individuals. Notice the colored symbol is the dominant trait. Fig

50 We can use the same family tree to trace the distribution of attached earlobes (f), a recessive characteristic. Notice the colored-in trait is the recessive one here. Individuals with a dominant allele (F) have free earlobes. Some individuals may be ambiguous, especially if they have the dominant phenotype and could be heterozygous or homozygous dominant. So let s practice. Fig

51 Some phenotypes have a distinctly southern flavor.

52 No fooling? Turns out these human traits aren t always what they are represented to be. Cats may be cooler to work with. Check this out. How about a little project for your camera phone?

53 Speaking of southern traditions Let s practice what we have learned with the Blue People of Kentucky: ople.asp

54 Here is yet another curious fact about females Although female mammals inherit two X chromosomes, only one X chromosome is active. Therefore, males and females have the same effective dose (one copy ) of genes on the X chromosome. During female development, one X chromosome per cell condenses into a compact object, a Barr body. This inactivates most of its genes. The condensed Barr body chromosome is reactivated in ovarian cells that produce ova.

55 Mary Lyon, a British geneticist, has demonstrated that the selection of which X chromosome to form the Barr body occurs randomly and independently in embryonic cells at the time of X inactivation. As a consequence, females consist of a mosaic of cells, some with an active paternal X, others with an active maternal X. After Barr body formation, all descendent cells have the same inactive X. If a female is heterozygous for a sex-linked trait, approximately half her cells will express one allele and the other half will express the other allele.

56 In humans, this mosaic pattern is evident in women who are heterozygous for an X-linked mutation that prevents the development of sweat glands. A heterozygous woman will have patches of normal skin and skin patches lacking sweat glands.

57 Similarly, the orange and black pattern on tortoiseshell cats is due to patches of cells expressing an orange allele while others have a non-orange allele. Only female cats will show this coloring. Fig

58 3. The pattern of inheritance (monohybrid, dihybrid, sex-linked, and genes linked on the same homologous chromosome) can often be predicted from data that gives the parent genotype/phenotype and/or the offspring phenotypes/genotypes.

59 CHAPTER 15 THE CHROMOSOMAL BASIS OF INHERITANCE Section C: Errors and Exceptions in Chromosomal Inheritance 1. Alterations of chromosome number or structure cause some genetic disorders 2. The phenotypic effects of some mammalian genes depend on whether they are inherited from the mother or the father (imprinting) 3. Extranuclear genes exhibit a non-mendelian pattern of inheritance

60 Introduction. Gene mutations are not the only kind of changes to the genome that can affect phenotype. Major chromosomal aberrations and their consequences produce exceptions to standard chromosome theory. In addition, two types of normal inheritance also deviate from the standard pattern. Let s see

61 1. Alterations of chromosome number or structure cause some genetic disorders Nondisjunction occurs when problems with the meiotic spindle cause errors in daughter cells. This may occur if tetrad chromosomes do not separate properly during meiosis I. Alternatively, sister chromatids may fail to separate during meiosis II. Fig

62 As a consequence of non-disjunction, some gametes receive two of the same type of chromosome and other gametes receives no copy. They should get one from each pair. Fully 1/3 of human egg cells have the wrong number of chromosomes!! Offspring resulting from fertilization of a normal gamete with one after non-disjunction will have an abnormal chromosome number or aneuploidy. Trisomic cells have three copies of a particular chromosome type and have 2n + 1 total chromosomes. Monosomic cells have only one copy of a particular chromosome type and have 2n - 1 chromosomes. Aneuploidy typically leads to a distinct phenotype.

63 Organisms with more than two complete sets of chromosomes have undergone polypoidy. This may occur when a normal gamete fertilizes another gamete in which there has been nondisjunction of all its chromosomes. The resulting zygote would be triploid (3n). Alternatively, if a 2n zygote failed to divide after replicating its chromosomes, a tetraploid (4n) embryo would result from subsequent successful cycles of mitosis. Many seedless fruits come from plants with an odd number of sets of chromosomes (3n, 5n, etc.)

64 Polyploidy is relatively common among plants and much less common among animals. The spontaneous origin of polyploid individuals plays an important role in the evolution of plants. Both fishes and amphibians have polyploid species. Recently, researchers in Chile have identified a new rodent species which may be the product of polyploidy. Fig

65 Breakage of a chromosome can lead to four types of changes in chromosome structure. A deletion occurs when a chromosome fragment lacking a centromere is lost during cell division. This chromosome will be missing certain genes. A duplication occurs when a fragment becomes attached as an extra segment to a sister chromatid. Fig a & b

66 An inversion occurs when a chromosomal fragment reattaches to the original chromosome but in the reverse orientation. In translocation, a chromosomal fragment joins a nonhomologous chromosome. Some translocations are reciprocal, others are not. Fig c & d

67 Deletions and duplications are common in meiosis. Homologous chromatids may break and rejoin at incorrect places, such that one chromatid will lose more genes than it receives. A diploid embryo that is homozygous for a large deletion or made with a large deletion to its single X chromosome is usually missing many essential genes and this leads to a lethal outcome. Duplications and translocations are typically harmful. Reciprocal translocation or inversion can alter phenotype because a gene s expression is influenced by its location.

68 Several serious human disorders are due to alterations of chromosome number and structure. Although the frequency of aneuploid zygotes may be quite high in humans (up to 40% of gametes may be aneuploid), most of these alterations are so disastrous that the embryos are spontaneously aborted long before birth. These developmental problems results from an imbalance among gene products. Certain aneuploid conditions upset the balance less, leading to survival to birth and beyond. These individuals have a set of symptoms - a syndrome - characteristic of the type of aneuploidy.

69 One aneuploid condition, Down syndrome, is due to three copies of chromosome 21. It affects one in 700 children born in the U.S. Although chromosome 21 is the smallest human chromosome, it severely alters an individual s phenotype in specific ways. Fig

70 Most cases of Down syndrome result from nondisjunction during gamete production in the mother. The frequency of Down syndrome correlates with the age of the mother. This may be linked to some age-dependent abnormality in the spindle checkpoint during meiosis I, leading to nondisjunction. Trisomies of other chromosomes also increase in incidence with maternal age, but it is rare for infants with these autosomal trisomies to survive for long.

71 Non-disjunction of sex chromosomes produces a variety of aneuploid conditions in humans. Unlike autosomes, this aneuploidy upsets the genetic balance less severely. This may be because the Y chromosome contains relatively few genes. Also, extra copies of the X chromosome become inactivated as Barr bodies in somatic cells.

72 Klinefelter s syndrome, an XXY male, occurs once in every 2000 live births. These individuals have male sex organs, but are sterile. There may be feminine characteristics, but their intelligence is normal. Males with an extra Y chromosome (XYY) tend to somewhat taller than average. Trisomy X (XXX), which occurs once in every 2000 live births, produces healthy females. Monosomy X or Turner s syndrome (X0), which occurs once in every 5000 births, produces phenotypic, but immature females.

73 Structural alterations of chromosomes can also cause human disorders. Deletions, even in a heterozygous state, cause severe physical and mental problems. One syndrome, cri du chat, results from a specific deletion in chromosome 5. These individuals are mentally retarded, have a small head with unusual facial features, and a cry like the mewing of a distressed cat. This syndrome is fatal in infancy or early childhood.

74 c. Certain human genetic disorders can be attributed to the inheritance of single gene traits or specific chromosomal changes, such as nondisjunction. To demonstrate your understanding, make sure you can explain examples like: Sickle cell anemia Tay-Sachs disease Huntington s disease X-linked color blindness Trisomy 21/Down syndrome Klinefelter s syndrome

75 3. Extranuclear genes exhibit a non- Mendelian pattern of inheritance Not all of a eukaryote cell s genes are located in the nucleus. Extranuclear genes are found on small circles of DNA in mitochondria and chloroplasts. These organelles reproduce themselves. Their cytoplasmic genes do not display Mendelian inheritance. They are not distributed to offspring during meiosis.

76 Karl Correns in 1909 first observed cytoplasmic genes in plants. He determined that the coloration of the offspring was determined only by the maternal parent. These coloration patterns are due to genes in the plastids which are inherited only via the ovum, not the pollen. Fig

77 Because a zygote inherits all its mitochondria only from the ovum, all mitochondrial genes in mammals demonstrate maternal inheritance. Several rare human disorders are produced by mutations to mitochondrial DNA. These primarily impact ATP supply by producing defects in the electron transport chain or ATP synthase. Tissues that require high energy supplies (for example, the nervous system and muscles) may suffer energy deprivation from these defects. Other mitochondrial mutations may contribute to diabetes, heart disease, and other diseases of aging.

78 c. Some traits result from nonnuclear inheritance. Evidence of student learning is a demonstrated understanding of each of the following: 1. Chloroplasts and mitochondria are randomly assorted to gametes and daughter cells; thus, traits determined by chloroplast and mitochondrial DNA do not follow simple Mendelian rules. 2. In animals, mitochondrial DNA is transmitted by the egg and not by sperm; as such, mitochondrialdetermined traits are maternally inherited.

Student Objectives: How do the events of meiosis explain the observations of Thomas Morgan? How can recombination during meiosis be explained?

Student Objectives: How do the events of meiosis explain the observations of Thomas Morgan? How can recombination during meiosis be explained? Student Objectives: How do the events of meiosis explain the observations of Thomas Morgan? How can recombination during meiosis be explained? How can recombination during meiosis be utilized to locate

More information

Chapter 15 Notes 15.1: Mendelian inheritance chromosome theory of inheritance wild type 15.2: Sex-linked genes

Chapter 15 Notes 15.1: Mendelian inheritance chromosome theory of inheritance wild type 15.2: Sex-linked genes Chapter 15 Notes The Chromosomal Basis of Inheritance Mendel s hereditary factors were genes, though this wasn t known at the time Now we know that genes are located on The location of a particular gene

More information

CHAPTER 15 THE CHROMOSOMAL BASIS OF INHERITANCE. Section A: Relating Mendelism to Chromosomes

CHAPTER 15 THE CHROMOSOMAL BASIS OF INHERITANCE. Section A: Relating Mendelism to Chromosomes CHAPTER 15 THE CHROMOSOMAL BASIS OF INHERITANCE Section A: Relating Mendelism to Chromosomes 1. Mendelian inheritance has its physical basis in the behavior of chromosomes during sexual life cycles 2.

More information

The Chromosomal Basis of Inheritance

The Chromosomal Basis of Inheritance Chapter 15 The Chromosomal Basis of Inheritance PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Lectures by Chris Romero Overview: Locating Genes on Chromosomes A century

More information

The Chromosomal Basis of Inheritance

The Chromosomal Basis of Inheritance The Chromosomal Basis of Inheritance Factors and Genes Mendel s model of inheritance was based on the idea of factors that were independently assorted and segregated into gametes We now know that these

More information

Ch. 15 The Chromosomal Basis of Inheritance

Ch. 15 The Chromosomal Basis of Inheritance Ch. 15 The Chromosomal Basis of Inheritance Nov 12 12:58 PM 1 Essential Question: Are chromosomes the basis of inheritance? Nov 12 1:00 PM 2 1902 Walter S. Sutton, Theodor Boveri, et al Chromosome Theory

More information

The Chromosomal Basis of Inheritance

The Chromosomal Basis of Inheritance LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 15 The Chromosomal Basis of Inheritance

More information

The Chromosomal Basis Of Inheritance

The Chromosomal Basis Of Inheritance The Chromosomal Basis Of Inheritance Chapter 15 Objectives Explain the chromosomal theory of inheritance and its discovery. Explain why sex-linked diseases are more common in human males than females.

More information

The Chromosomal Basis of Inheritance

The Chromosomal Basis of Inheritance Chapter 15 The Chromosomal Basis of Inheritance Lecture Outline Overview: Locating Genes on Chromosomes Today we know that genes Gregor Mendel s hereditary factors are located on chromosomes. A century

More information

The Chromosomal Basis of Inheritance

The Chromosomal Basis of Inheritance Chapter 15 The Chromosomal Basis of Inheritance PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

The Chromosomal Basis of Inheritance

The Chromosomal Basis of Inheritance Chapter 15 The Chromosomal Basis of Inheritance PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

The Chromosomal Basis of Inheritance

The Chromosomal Basis of Inheritance LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 15 The Chromosomal Basis of Inheritance

More information

The Chromosomal Basis of Inheritance

The Chromosomal Basis of Inheritance LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 15 The Chromosomal Basis of Inheritance

More information

Relating Mendelian Inheritance to the Behavior of Chromosomes

Relating Mendelian Inheritance to the Behavior of Chromosomes Chapter 15 Relating Mendelian Inheritance to the Behavior of Chromosomes 1. Explain how the observations of cytologists and geneticists provided the basis for the chromosome theory of inheritance. 2. Explain

More information

The Chromosomal Basis of Inheritance

The Chromosomal Basis of Inheritance Chapter 15 The Chromosomal Basis of Inheritance Lecture Outline Overview: Locating Genes Along Chromosomes Today we know that genes Gregor Mendel s hereditary factors are located on chromosomes. A century

More information

The Chromosomal Basis of Inheritance

The Chromosomal Basis of Inheritance LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 15 The Chromosomal Basis of Inheritance

More information

BIOLOGY. The Chromosomal Basis of Inheritance CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. The Chromosomal Basis of Inheritance CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 15 The Chromosomal Basis of Inheritance Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Where are Mendel s hereditary

More information

The Chromosomal Basis of Inheritance

The Chromosomal Basis of Inheritance Chapter 15 The Chromosomal Basis of Inheritance PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

CHROMOSOMAL THEORY OF INHERITANCE

CHROMOSOMAL THEORY OF INHERITANCE AP BIOLOGY EVOLUTION/HEREDITY UNIT Unit 1 Part 7 Chapter 15 ACTIVITY #10 NAME DATE PERIOD CHROMOSOMAL THEORY OF INHERITANCE The Theory: Genes are located on chromosomes Chromosomes segregate and independently

More information

AP Biology Chapter 15 Notes The Chromosomal Basis of Inheritance

AP Biology Chapter 15 Notes The Chromosomal Basis of Inheritance AP Biology Chapter 15 Notes The Chromosomal Basis of Inheritance I. Chapter 15.1: Mendelian inheritance has its physical basis in the behavior of chromosomes. a. Chromosome theory of inheritance: i. Mendelian

More information

BIOLOGY - CLUTCH CH.15 - CHROMOSOMAL THEORY OF INHERITANCE

BIOLOGY - CLUTCH CH.15 - CHROMOSOMAL THEORY OF INHERITANCE !! www.clutchprep.com Chromosomal theory of inheritance: chromosomes are the carriers of genetic material. Independent Assortment alleles for different characters sort independently of each other during

More information

A gene is a sequence of DNA that resides at a particular site on a chromosome the locus (plural loci). Genetic linkage of genes on a single

A gene is a sequence of DNA that resides at a particular site on a chromosome the locus (plural loci). Genetic linkage of genes on a single 8.3 A gene is a sequence of DNA that resides at a particular site on a chromosome the locus (plural loci). Genetic linkage of genes on a single chromosome can alter their pattern of inheritance from those

More information

Chapter 15: The Chromosomal Basis of Inheritance

Chapter 15: The Chromosomal Basis of Inheritance Name Period Chapter 15: The Chromosomal Basis of Inheritance Concept 15.1 Mendelian inheritance has its physical basis in the behavior of chromosomes 1. What is the chromosome theory of inheritance? 2.

More information

Chapter 15: The Chromosomal Basis of Inheritance

Chapter 15: The Chromosomal Basis of Inheritance Name Chapter 15: The Chromosomal Basis of Inheritance 15.1 Mendelian inheritance has its physical basis in the behavior of chromosomes 1. What is the chromosome theory of inheritance? 2. Explain the law

More information

THE CHROMOSOMAL BASIS OF INHERITANCE CHAPTER 15

THE CHROMOSOMAL BASIS OF INHERITANCE CHAPTER 15 THE CHROMOSOMAL BASIS OF INHERITANCE CHAPTER 15 What you must know: Inheritance in sex-linked genes. Inheritance of linked genes and chromosomal mapping. How alteration of chromosome number or structurally

More information

Chapter 15. The Chromosomal Basis of Inheritance. Concept 15.1 Mendelian inheritance has its physical basis in the behavior of chromosomes

Chapter 15. The Chromosomal Basis of Inheritance. Concept 15.1 Mendelian inheritance has its physical basis in the behavior of chromosomes Chapter 15 The Chromosomal Basis of Inheritance Overview: Locating Genes Along Chromosomes Today we know that genes Gregor Mendel s hereditary factors are located on chromosomes. A century ago, the relationship

More information

UNIT 6 GENETICS 12/30/16

UNIT 6 GENETICS 12/30/16 12/30/16 UNIT 6 GENETICS III. Mendel and Heredity (6.3) A. Mendel laid the groundwork for genetics 1. Traits are distinguishing characteristics that are inherited. 2. Genetics is the study of biological

More information

Recombina*on of Linked Genes: Crossing Over. discovered that genes can be linked. the linkage was incomplete

Recombina*on of Linked Genes: Crossing Over. discovered that genes can be linked. the linkage was incomplete Recombina*on of Linked Genes: Crossing Over Fig. 15-10 Testcross parents Gray body, normal wings (F 1 dihybrid) Black body, vestigial wings (double mutant) Morgan discovered that genes can be linked the

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Chapter 15 Chromosomal Basis for Inheritance AP Biology Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) When Thomas Hunt Morgan crossed

More information

Genetics Review. Alleles. The Punnett Square. Genotype and Phenotype. Codominance. Incomplete Dominance

Genetics Review. Alleles. The Punnett Square. Genotype and Phenotype. Codominance. Incomplete Dominance Genetics Review Alleles These two different versions of gene A create a condition known as heterozygous. Only the dominant allele (A) will be expressed. When both chromosomes have identical copies of the

More information

Chromosomes, Mapping, and the Meiosis-Inheritance Connection. Chapter 13

Chromosomes, Mapping, and the Meiosis-Inheritance Connection. Chapter 13 Chromosomes, Mapping, and the Meiosis-Inheritance Connection Chapter 13 Chromosome Theory Chromosomal theory of inheritance - developed in 1902 by Walter Sutton - proposed that genes are present on chromosomes

More information

Figure 1: Transmission of Wing Shape & Body Color Alleles: F0 Mating. Figure 1.1: Transmission of Wing Shape & Body Color Alleles: Expected F1 Outcome

Figure 1: Transmission of Wing Shape & Body Color Alleles: F0 Mating. Figure 1.1: Transmission of Wing Shape & Body Color Alleles: Expected F1 Outcome I. Chromosomal Theory of Inheritance As early cytologists worked out the mechanism of cell division in the late 1800 s, they began to notice similarities in the behavior of BOTH chromosomes & Mendel s

More information

UNIT IV. Chapter 14 The Human Genome

UNIT IV. Chapter 14 The Human Genome UNIT IV Chapter 14 The Human Genome UNIT 2: GENETICS Chapter 7: Extending Medelian Genetics I. Chromosomes and Phenotype (7.1) A. Two copies of each autosomal gene affect phenotype 1. Most human traits

More information

Campbell Biology 10. A Global Approach. Chapter 15 Linkage and Chromosomes

Campbell Biology 10. A Global Approach. Chapter 15 Linkage and Chromosomes Lecture on General Biology 2 Campbell Biology 10 A Global Approach th edition Chapter 15 Linkage and Chromosomes Chul-Su Yang, Ph.D., chulsuyang@hanyang.ac.kr Infection Biology Lab., Dept. of Molecular

More information

Genetics. the of an organism. The traits of that organism can then be passed on to, on

Genetics. the of an organism. The traits of that organism can then be passed on to, on Genetics DNA contains the genetic code for the production of. A gene is a segment of DNA, which consists of enough bases to code for many different proteins. The specific proteins produced by a gene determine

More information

HEREDITY. Heredity is the transmission of particular characteristics from parent to offspring.

HEREDITY. Heredity is the transmission of particular characteristics from parent to offspring. INHERITANCE IN LIFE HEREDITY Heredity is the transmission of particular characteristics from parent to offspring. Mendel presented completely new theory of inheritance in the journal Transactions of the

More information

Much ha happened since Mendel

Much ha happened since Mendel Chapter 15 Chromosomal Basis of Inheritance Much ha happened since Mendel We can show genes are located at particular loci on chromosomes Using fluorescent dye to mark a particular gene 1 The use of these

More information

The Living Environment Unit 3 Genetics Unit 11 Complex Inheritance and Human Heredity-class key. Name: Class key. Period:

The Living Environment Unit 3 Genetics Unit 11 Complex Inheritance and Human Heredity-class key. Name: Class key. Period: Name: Class key Period: Chapter 11 assignments Pages/Sections Date Assigned Date Due Topic: Recessive Genetic Disorders Objective: Describe some recessive human genetic disorders. _recessive_ alleles are

More information

LECTURE 12 B: GENETIC AND INHERITANCE

LECTURE 12 B: GENETIC AND INHERITANCE LECTURE 12 B: GENETIC AND INHERITANCE Mendel s Legacy Genetics is everywhere these days and it will continue as a dominant force in biology and society for decades to come. Wouldn t it be nice if people

More information

Genetics. by their offspring. The study of the inheritance of traits is called.

Genetics. by their offspring. The study of the inheritance of traits is called. Genetics DNA contains the genetic code for the production of. A gene is a part of DNA, which has enough bases to make for many different proteins. These specific proteins made by a gene decide the of an

More information

By Mir Mohammed Abbas II PCMB 'A' CHAPTER CONCEPT NOTES

By Mir Mohammed Abbas II PCMB 'A' CHAPTER CONCEPT NOTES Chapter Notes- Genetics By Mir Mohammed Abbas II PCMB 'A' 1 CHAPTER CONCEPT NOTES Relationship between genes and chromosome of diploid organism and the terms used to describe them Know the terms Terms

More information

Genetics, Mendel and Units of Heredity

Genetics, Mendel and Units of Heredity Genetics, Mendel and Units of Heredity ¾ Austrian monk and naturalist. ¾ Conducted research in Brno, Czech Republic from 1856-1863 ¾ Curious about how traits were passed from parents to offspring. Gregor

More information

Lecture 17: Human Genetics. I. Types of Genetic Disorders. A. Single gene disorders

Lecture 17: Human Genetics. I. Types of Genetic Disorders. A. Single gene disorders Lecture 17: Human Genetics I. Types of Genetic Disorders A. Single gene disorders B. Multifactorial traits 1. Mutant alleles at several loci acting in concert C. Chromosomal abnormalities 1. Physical changes

More information

The Chromosomal Basis of Inheritance

The Chromosomal Basis of Inheritance LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 15 The Chromosomal Basis of Inheritance

More information

Human Genetics (Learning Objectives)

Human Genetics (Learning Objectives) Human Genetics (Learning Objectives) Recognize Mendel s contribution to the field of genetics. Review what you know about a karyotype: autosomes and sex chromosomes. Understand and define the terms: characteristic,

More information

Lab Activity 36. Principles of Heredity. Portland Community College BI 233

Lab Activity 36. Principles of Heredity. Portland Community College BI 233 Lab Activity 36 Principles of Heredity Portland Community College BI 233 Terminology of Chromosomes Homologous chromosomes: A pair, of which you get one from mom, and one from dad. Example: the pair of

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Calico cats are female because 1) A) the Y chromosome has a gene blocking orange coloration.

More information

Meiotic Mistakes and Abnormalities Learning Outcomes

Meiotic Mistakes and Abnormalities Learning Outcomes Meiotic Mistakes and Abnormalities Learning Outcomes 5.6 Explain how nondisjunction can result in whole chromosomal abnormalities. (Module 5.10) 5.7 Describe the inheritance patterns for strict dominant

More information

GENETICS - CLUTCH CH.2 MENDEL'S LAWS OF INHERITANCE.

GENETICS - CLUTCH CH.2 MENDEL'S LAWS OF INHERITANCE. !! www.clutchprep.com CONCEPT: MENDELS EXPERIMENTS AND LAWS Mendel s Experiments Gregor Mendel was an Austrian monk who studied Genetics using pea plants Mendel used pure lines meaning that all offspring

More information

1042SCG Genetics & Evolutionary Biology Semester Summary

1042SCG Genetics & Evolutionary Biology Semester Summary 1042SCG Genetics & Evolutionary Biology Semester Summary Griffith University, Nathan Campus Semester 1, 2014 Topics include: - Mendelian Genetics - Eukaryotic & Prokaryotic Genes - Sex Chromosomes - Variations

More information

Genetics: Mendel and Beyond

Genetics: Mendel and Beyond Genetics: Mendel and Beyond 10 Genetics: Mendel and Beyond Put the following words in their correct location in the sentences below. crossing over fertilization meiosis zygote 4 haploid prophase I diploid

More information

Chapter 15 Chromosomes

Chapter 15 Chromosomes Chapter 15 Chromosomes Chromosome theory of inheritance Genes located on chromosomes = gene locus Thomas Hunt Morgan, Columbia Univ. Fly room Drosophila 100s of offspring 2n = 8 3 prs autosomes X and Y

More information

12.1 X-linked Inheritance in Humans. Units of Heredity: Chromosomes and Inheritance Ch. 12. X-linked Inheritance. X-linked Inheritance

12.1 X-linked Inheritance in Humans. Units of Heredity: Chromosomes and Inheritance Ch. 12. X-linked Inheritance. X-linked Inheritance Units of Heredity: Chromosomes and Inheritance Ch. 12 12.1 in Humans X-chromosomes also have non genderspecific genes Called X-linked genes Vision Blood-clotting X-linked conditions Conditions caused by

More information

Patterns in Inheritance. Chapter 10

Patterns in Inheritance. Chapter 10 Patterns in Inheritance Chapter 10 What you absolutely need to know Punnett Square with monohybrid and dihybrid cross Heterozygous, homozygous, alleles, locus, gene Test cross, P, F1, F2 Mendel and his

More information

GENETIC VARIATION AND PATTERNS OF INHERITANCE. SOURCES OF GENETIC VARIATION How siblings / families can be so different

GENETIC VARIATION AND PATTERNS OF INHERITANCE. SOURCES OF GENETIC VARIATION How siblings / families can be so different 9/22/205 GENETIC VARIATION AND PATTERNS OF INHERITANCE SOURCES OF GENETIC VARIATION How siblings / families can be so different Independent orientation of chromosomes (metaphase I of meiosis) Random fertilization

More information

Chromosomal inheritance & linkage. Exceptions to Mendel s Rules

Chromosomal inheritance & linkage. Exceptions to Mendel s Rules Overhead If a cell is 2n = 6, then how many different chromosomal arrangements at Metaphase I (not including mirror images) could it have? 2. 2 3. 3 4. 4 show 5. 5 Probability What is the probability that

More information

10/26/2015. ssyy, ssyy

10/26/2015. ssyy, ssyy Biology 102 Lecture 10: Chromosomes and Sex Inheritance All of our examples of inheritance patterns have focused on single genes Humans have 25,000 genes! Genes on the same chromosome are inherited together

More information

Pre-AP Biology Unit 7 Genetics Review Outline

Pre-AP Biology Unit 7 Genetics Review Outline Unit 7 Genetics Review Outline Pre-AP Biology 2017-2018 LT 1 - I can explain the relationships among alleles, genes, chromosomes, genotypes, and phenotypes. This target covers application of the vocabulary

More information

GENETICS - NOTES-

GENETICS - NOTES- GENETICS - NOTES- Warm Up Exercise Using your previous knowledge of genetics, determine what maternal genotype would most likely yield offspring with such characteristics. Use the genotype that you came

More information

Unit 3 Chapter 16 Genetics & Heredity. Biology 3201

Unit 3 Chapter 16 Genetics & Heredity. Biology 3201 Unit 3 Chapter 16 Genetics & Heredity Biology 3201 Intro to Genetics For centuries, people have known that certain physical characteristics are passed from one generation to the next. Using this knowledge,

More information

Sexual Reproduction and Genetics. Section 1. Meiosis

Sexual Reproduction and Genetics. Section 1. Meiosis Chromosomes and Chromosome Number! Human body cells have 46 chromosomes! Each parent contributes 23 chromosomes! Homologous chromosomes one of two paired chromosomes, one from each parent Chromosomes and

More information

PRINCIPLES OF INHERITANCE AND VARIATION

PRINCIPLES OF INHERITANCE AND VARIATION PRINCIPLES OF INHERITANCE AND VARIATION Genetics Genetics is a branch of biology dealing with inheritance and variation of characters from parents of offspring. Inheritance Process by which characters

More information

Unit 5 Review Name: Period:

Unit 5 Review Name: Period: Unit 5 Review Name: Period: 1 4 5 6 7 & give an example of the following. Be able to apply their meanings: Homozygous Heterozygous Dominant Recessive Genotype Phenotype Haploid Diploid Sex chromosomes

More information

Chapter 9. Patterns of Inheritance. Lectures by Gregory Ahearn. University of North Florida. Copyright 2009 Pearson Education, Inc.

Chapter 9. Patterns of Inheritance. Lectures by Gregory Ahearn. University of North Florida. Copyright 2009 Pearson Education, Inc. Chapter 9 Patterns of Inheritance Lectures by Gregory Ahearn University of North Florida Copyright 2009 Pearson Education, Inc. 9.1 What Is The Physical Basis Of Inheritance? Inheritance occurs when genes

More information

Patterns of Inheritance

Patterns of Inheritance 1 Patterns of Inheritance Bio 103 Lecture Dr. Largen 2 Topics Mendel s Principles Variations on Mendel s Principles Chromosomal Basis of Inheritance Sex Chromosomes and Sex-Linked Genes 3 Experimental

More information

8/31/2017. Biology 102. Lecture 10: Chromosomes and Sex Inheritance. Independent Assortment. Independent Assortment. Independent Assortment

8/31/2017. Biology 102. Lecture 10: Chromosomes and Sex Inheritance. Independent Assortment. Independent Assortment. Independent Assortment Biology 102 Lecture 10: Chromosomes and Sex Inheritance All of our examples of inheritance patterns have focused on single genes Humans have 25,000 genes! Genes on the same chromosome are inherited together

More information

Chapter 17 Genetics Crosses:

Chapter 17 Genetics Crosses: Chapter 17 Genetics Crosses: 2.5 Genetics Objectives 2.5.6 Genetic Inheritance 2.5.10.H Origin of the Science of genetics 2.5.11 H Law of segregation 2.5.12 H Law of independent assortment 2.5.13.H Dihybrid

More information

MULTIPLE CHOICE QUESTIONS

MULTIPLE CHOICE QUESTIONS SHORT ANSWER QUESTIONS-Please type your awesome answers on a separate sheet of paper. 1. What is an X-linked inheritance pattern? Use a specific example to explain the role of the father and mother in

More information

MEIOSIS: Genetic Variation / Mistakes in Meiosis. (Sections 11-3,11-4;)

MEIOSIS: Genetic Variation / Mistakes in Meiosis. (Sections 11-3,11-4;) MEIOSIS: Genetic Variation / Mistakes in Meiosis (Sections 11-3,11-4;) RECALL: Mitosis and Meiosis differ in several key ways: MITOSIS: MEIOSIS: 1 round of cell division 2 rounds of cell division Produces

More information

Mendelian Genetics. 7.3 Gene Linkage and Mapping Genes can be mapped to specific locations on chromosomes.

Mendelian Genetics. 7.3 Gene Linkage and Mapping Genes can be mapped to specific locations on chromosomes. 7 Extending CHAPTER Mendelian Genetics GETTING READY TO LEARN Preview Key Concepts 7.1 Chromosomes and Phenotype The chromosomes on which genes are located can affect the expression of traits. 7.2 Complex

More information

Downloaded from Chapter 5 Principles of Inheritance and Variation

Downloaded from  Chapter 5 Principles of Inheritance and Variation Chapter 5 Principles of Inheritance and Variation Genetics: Genetics is a branch of biology which deals with principles of inheritance and its practices. Heredity: It is transmission of traits from one

More information

Chromosomes and Human Inheritance. Chapter 11

Chromosomes and Human Inheritance. Chapter 11 Chromosomes and Human Inheritance Chapter 11 11.1 Human Chromosomes Human body cells have 23 pairs of homologous chromosomes 22 pairs of autosomes 1 pair of sex chromosomes Autosomes and Sex Chromosomes

More information

Patterns of Heredity - Genetics - Sections: 10.2, 11.1, 11.2, & 11.3

Patterns of Heredity - Genetics - Sections: 10.2, 11.1, 11.2, & 11.3 Patterns of Heredity - Genetics - Sections: 10.2, 11.1, 11.2, & 11.3 Genetics = the study of heredity by which traits are passed from parents to offspring Page. 227 Heredity = The passing of genes/traits

More information

Human Heredity: The genetic transmission of characteristics from parent to offspring.

Human Heredity: The genetic transmission of characteristics from parent to offspring. Human Heredity: The genetic transmission of characteristics from parent to offspring. Karyotype : picture of the actual chromosomes arranged in pairs, paired and arranged from largest to smallest. Human

More information

14 2 Human Chromosomes

14 2 Human Chromosomes 14-2 Human Chromosomes 1 of 25 Sex-Linked Genes Sex-Linked Genes The X chromosome and the Y chromosomes determine sex. Genes located on these chromosomes are called sex-linked genes. More than 100 sex-linked

More information

GENETICS NOTES. Chapters 12, 13, 14, 15 16

GENETICS NOTES. Chapters 12, 13, 14, 15 16 GENETICS NOTES Chapters 12, 13, 14, 15 16 DNA contains the genetic code for the production of PROTEINS. A gene is a segment of DNA, which consists of enough bases to code for many different proteins. The

More information

The form of cell division by which gametes, with half the number of chromosomes, are produced. Chromosomes

The form of cell division by which gametes, with half the number of chromosomes, are produced. Chromosomes & Karyotypes The form of cell division by which gametes, with half the number of chromosomes, are produced. Homologous Chromosomes Pair of chromosomes (maternal and paternal) that are similar in shape,

More information

Genes and Inheritance (11-12)

Genes and Inheritance (11-12) Genes and Inheritance (11-12) You are a unique combination of your two parents We all have two copies of each gene (one maternal and one paternal) Gametes produced via meiosis contain only one copy of

More information

Genetics - Problem Drill 06: Pedigree and Sex Determination

Genetics - Problem Drill 06: Pedigree and Sex Determination Genetics - Problem Drill 06: Pedigree and Sex Determination No. 1 of 10 1. The following is a pedigree of a human trait. Determine which trait this is. (A) Y-linked Trait (B) X-linked Dominant Trait (C)

More information

P = parents F = filial

P = parents F = filial Genetics Mendel s work Bred pea plants Cross-pollinated true breeding parents (P) then raised the seed & observed traits (F 1 ) Allowed offspring to cross-pollinate & observed next generation (F 2 ) P

More information

The Discovery of Chromosomes and Sex-Linked Traits

The Discovery of Chromosomes and Sex-Linked Traits The Discovery of Chromosomes and Sex-Linked Traits Outcomes: 1. Compare the pattern of inheritance produced by genes on the sex chromosomes to that produced by genes on autosomes, as investigated by Morgan.

More information

Genetics and Heredity

Genetics and Heredity Genetics and Heredity History Genetics is the study of genes. Inheritance is how traits, or characteristics, are passed on from generation to generation. Chromosomes are made up of genes, which are made

More information

100% were red eyed = red is dominant - He then bred 2 offspring from the F1 generation F1 = Rr x Rr

100% were red eyed = red is dominant - He then bred 2 offspring from the F1 generation F1 = Rr x Rr 7. Gene Linkage and Cross-over Thomas Hunt Morgan 1910 Working with fruit flies he proved that genes on the same chromosome tended to be inherited together. = Linked genes ie. Eye color and hair color

More information

Extra Review Practice Biology Test Genetics

Extra Review Practice Biology Test Genetics Mendel fill in the blanks: Extra Review Practice Biology Test Genetics Mendel was an Austrian monk who studied genetics primarily using plants. He started with plants that produced offspring with only

More information

Lesson Overview Human Chromosomes

Lesson Overview Human Chromosomes Lesson Overview 14.1 Human Chromosomes Human Genome To find what makes us uniquely human, we have to explore the human genome, which is the full set of genetic information carried in our DNA. This DNA

More information

Human Genetics Notes:

Human Genetics Notes: Human Genetics Notes: Human Chromosomes Cell biologists analyze chromosomes by looking at. Cells are during mitosis. Scientists then cut out the chromosomes from the and group them together in pairs. A

More information

This document is a required reading assignment covering chapter 4 in your textbook.

This document is a required reading assignment covering chapter 4 in your textbook. This document is a required reading assignment covering chapter 4 in your textbook. Chromosomal basis of genes and linkage The majority of chapter 4 deals with the details of mitosis and meiosis. This

More information

UNIT 2: GENETICS Chapter 7: Extending Medelian Genetics

UNIT 2: GENETICS Chapter 7: Extending Medelian Genetics CORNELL NOTES Directions: You must create a minimum of 5 questions in this column per page (average). Use these to study your notes and prepare for tests and quizzes. Notes will be stamped after each assigned

More information

Genetic Variation Junior Science

Genetic Variation Junior Science 2018 Version Genetic Variation Junior Science http://img.publishthis.com/images/bookmarkimages/2015/05/d/5/c/d5cf017fb4f7e46e1c21b874472ea7d1_bookmarkimage_620x480_xlarge_original_1.jpg Sexual Reproduction

More information

Name Class Date. KEY CONCEPT The chromosomes on which genes are located can affect the expression of traits.

Name Class Date. KEY CONCEPT The chromosomes on which genes are located can affect the expression of traits. Section 1: Chromosomes and Phenotype KEY CONCEPT The chromosomes on which genes are located can affect the expression of traits. VOCABULARY carrier sex-linked gene X chromosome inactivation MAIN IDEA:

More information

Genes and Inheritance

Genes and Inheritance Genes and Inheritance Variation Causes of Variation Variation No two people are exactly the same The differences between people is called VARIATION. This variation comes from two sources: Genetic cause

More information

VOCABULARY somatic cell autosome fertilization gamete sex chromosome diploid homologous chromosome sexual reproduction meiosis

VOCABULARY somatic cell autosome fertilization gamete sex chromosome diploid homologous chromosome sexual reproduction meiosis SECTION 6.1 CHROMOSOMES AND MEIOSIS Study Guide KEY CONCEPT Gametes have half the number of chromosomes that body cells have. VOCABULARY somatic cell autosome fertilization gamete sex chromosome diploid

More information

Genetic basis of inheritance and variation. Dr. Amjad Mahasneh. Jordan University of Science and Technology

Genetic basis of inheritance and variation. Dr. Amjad Mahasneh. Jordan University of Science and Technology Genetic basis of inheritance and variation Dr. Amjad Mahasneh Jordan University of Science and Technology Segment 1 Hello and welcome everyone. My name is Amjad Mahasneh. I teach molecular biology at Jordan

More information

Chapter 11. Chromosomes and Human Inheritance

Chapter 11. Chromosomes and Human Inheritance Chapter 11 Chromosomes and Human Inheritance Human Chromosomes Human body cells have 23 pairs of homologous chromosomes 22 pairs of autosomes 1 pair of sex chromosomes Autosomesand Sex Chromosomes Paired

More information

Chapter 28 Modern Mendelian Genetics

Chapter 28 Modern Mendelian Genetics Chapter 28 Modern Mendelian Genetics (I) Gene-Chromosome Theory Genes exist in a linear fashion on chromosomes Two genes associated with a specific characteristic are known as alleles and are located on

More information

Chapter 15 Chromosomes, Mapping, and the Meiosis - Inheritance Connection

Chapter 15 Chromosomes, Mapping, and the Meiosis - Inheritance Connection hapter 15 hromosomes, Mapping, and the Meiosis - Inheritance onnection 1 XTNSIONS (not really XPTIONS) Sex Linkage rosophila melanogaster fruit fly species eats fungi on fruit generation time 2 weeks ruit

More information

Review for Meiosis and Genetics Unit Test: Theory

Review for Meiosis and Genetics Unit Test: Theory Review for Meiosis and Genetics Unit Test: Theory 1. What is a karyotype? What stage of mitosis is the best for preparing karyotypes? a karyotype is a picture of all of the chromosomes in a cell, organized

More information

Honors Biology Review Sheet to Chapter 9 Test

Honors Biology Review Sheet to Chapter 9 Test Honors Biology Review Sheet to Chapter 9 Test Name Per 1. Label the following flower: sepal, petal, anther, filament, style, ovary, stigma Draw in ovules and label. Color the female structure red and the

More information

Chapter 15 - Chromosomal Basis of Inheritance CHROMOSOMAL THEORY OF INHERITANCE

Chapter 15 - Chromosomal Basis of Inheritance CHROMOSOMAL THEORY OF INHERITANCE Chapter 15 - Chromosomal Basis of Inheritance CHROMOSOMAL THEORY OF INHERITANCE Early 1900 s cytology and genetics merge ~ parallels between chromosome behavior and Mendel s factors MENDEL s hereditary

More information

What are sex cells? How does meiosis help explain Mendel s results?

What are sex cells? How does meiosis help explain Mendel s results? CHAPTER 5 3 Meiosis SECTION Heredity BEFORE YOU READ After you read this section, you should be able to answer these questions: What are sex cells? How does meiosis help explain Mendel s results? National

More information