MECHANISMS AND PATTERNS OF EVOLUTION

Size: px
Start display at page:

Download "MECHANISMS AND PATTERNS OF EVOLUTION"

Transcription

1 MECHANISMS AND PATTERNS OF EVOLUTION

2 Evolution What is it again? Evolution is the change in allele frequencies of a population over generations Mechanisms of Evolution what can make evolution happen? 1. Mutation 2. Recombination (gene shuffling) 3. Natural Selection 4. Genetic Drift 5. Gene flow (migration)

3 Evolution of Populations Genes and Variation Gene Pool- combined genetic information of all members of a particular population Relative Frequency the number of times the allele occurs in the gene pool.

4 Sources of Genetic Variation- biologist have discovered two main sources 1. Mutations- change in a sequence of DNA. May affect an organisms fitness (it s ability to survive and reproduce in its environment) 2. Gene shuffling (crossing over) - most caused during production of gametes. (sexual reproduction major source of variation within many populations)

5

6 3. Natural selection Individuals with traits best suited to their environment survive and reproduce more successfully. Natural Selection does not act directly on genes. It acts on phenotypes. (it can change the relative frequencies of alleles in the population over time)

7 A. Polygenic Traits traits controlled by two or more genes i. Height, skin color, eye color are all examples in humans ii. A bell shaped curve is typical of polygenic traits

8 B. The FITNESS of individuals near each other will not be very different, but fitness may vary from one end of the curve to the other Where fitness varies, NATURAL SELECTION can act!

9 C. Natural selection can affect the distribution of phenotypes in 3 ways i. DIRECTIONAL Selection ii. STABILIZING Selection iii. DISRUPTIVE Selection

10 i. Directional Selection Low mortality, high fitness High mortality, low fitness Individuals at one end of the curve have higher fitness than individuals in middle or at other end Graph shifts as some individuals fail to survive at one end and succeed and reproduce at other

11 EXAMPLE OF DIRECTIONAL SELECTION Beak size varies in a population Birds with bigger beaks can feed more easily on harder, thicker shelled seeds. Suppose a food shortage causes small and medium size seeds to run low. Birds with bigger beaks would be selected for and increase in numbers in population.

12 ii. Stabilizing Selection Individuals in the center of the curve have higher fitness than individuals at either end Graph stays in same place but narrows as more organisms in middle are produced.

13 Examples of Stabilizing Selection Male birds use their plumage to attract mates. Male birds in the population with less brilliant and showy plumage are less likely to attract a mate, while male birds with showy plumage are more likely to attract a mate. Key Brightness of Feather Color Stabilizing Selection Low mortality, high fitness High mortality, low fitness Selection against both extremes keep curve narrow and in same place. Male birds with showier, brightlycolored plumage also attract predators, and are less likely to live long enough to find a mate. The most fit, then, is the male bird in the middle-- showy, but not too showy.

14 Examples of Stabilizing Selection (2) Human babies born with low birth weight are less likely to survive. Babies born too large have difficulty being born. Average size babies are selected for.

15 iii. Disruptive Selection Individuals at extremes of the curve have higher fitness than individuals in middle. Can cause graph to split into two. Selection creates two distinct PHENOTYPES

16 Example of Disruptive Selection Suppose bird population lives in area where climate change causes medium size seeds become scarce while large and small seeds are still plentiful. Birds with bigger or smaller beaks would have greater fitness and the population may split into TWO GROUPS. One that eats small seeds and one that eats large seeds.

17 4. Genetic Drift- Random change in allele frequencies in a population, due to chance This may occur when a small group of individuals colonizes a new habitat. Individuals may carry alleles in different relative frequencies than the original larger population.

18 Genetic drift has been observed in some small human populations that have become isolated due to reasons such as religious practices and belief systems. For example, in Lancaster County, Pennsylvania, there is an Amish population of about 12,000 people who have a unique lifestyle and marry other members of their community. By chance, at least one of the original 30 Amish settlers in this community carried a recessive allele that results in short arms and legs and extra fingers and toes in offspring. Because of small gene pool, many individuals inherited the recessive allele over time. Today, the frequency of this allele among the Amish is high (1 in 14 rather than 1 in 1000 in the larger population of the U.S.)

19 5. Gene Flow- Movement of alleles in or out of a population (migration of individuals from group to group) Will change the allele frequencies of a population

20 B. Evolution Versus Genetic Equilibrium 1. Hardy-Weinberg Principle- states that allele frequencies in population will remain constant unless one or more factors cause those frequencies to change. There are 5 conditions to maintain genetic equilibrium, otherwise populations will evolve

21 Conditions that maintain Genetic Equilibrium (no evolution). ALL MUST BE MET! a. Random mating- populations breed randomly (mates not chosen as with humans) b. Large populations- genetic drift has less affect c. No migrations (in or out) gene pool kept together d. No mutations- if genes mutate from one form into another, new alleles may be introduced- changing frequencies of alleles e. No natural selection- no phenotype can have selective advantage over another.

22 Gene Frequency & the Hardy-Weinberg Equation The Hardy-Weinberg Equation p 2 + 2pq + q 2 = 1 p 2 = the frequency of homozygous dominant genotype 2pq = the frequency of heterozygous genotype q 2 = the frequency of homozygous recessive genotype

23 HARDY-WEINBERG PRINCIPLE = allele frequency in a population will remain constant unless one or more factors cause the frequency to change. In a situation in which allele frequencies remain constant ( = genetic equilibrium ) populations will NOT EVOLVE! It is difficult to meet all conditions of Hardy Weinberg so in most populations, EVOLUTION HAPPENS!

24 C. The Process of Speciation (formation of a new species) 1. Isolating mechanisms a. Reproductive isolation- Prevents two populations from interbreeding with each other and exchanging genes. This can develop in variety of waysbehavioral isolation, geographic isolation, temporal isolation The Eastern and Western Meadowlark have overlapping ranges but do not interbreed, because they have different mating songs

25 b. Behavioral isolation- don t interbreed because of differences in courtship rituals or other types of behavior c. Geographic isolation- two populations separated by geographic barriers (rivers, mountains, bodies of water) d. Temporal isolation- when two species reproduce at different times

26

27 Large scale evolutionary patterns and processes that occur over long periods of time = Macroevolution 1. Mass extinction 2. Adaptive radiation (Divergent evolution) 3. Convergent evolution 4. Coevolution 5. Punctuated Evolution

28 Mass Extinctions At several times in Earth s history large numbers of species became extinct at the same time Caused by several factors: erupting volcanoes Plate tectonics (continents were moving) Changing sea levels Asteroids hitting the Earth Global climate change EX/At the end of the Mesozoic Era more than HALF of all plants and animals were wiped out including the dinosaurs

29 Mass Extinctions Effects of mass extinctions: Opens habitats and provides opportunities for remaining species After mass extinctions there is often a burst of evolution that produces many new species EX: Cenozoic era that followed = Age of Mammals Mammals species increased dramatically

30 When a single species or small group of species has evolved through natural selection into diverse forms that live in different ways = adaptive radiation OR divergent evolution Ex: Galápagos finches More than a dozen species evolved from one species

31 Sometimes different organisms evolution in different places or at different times but in ecologically similar environments and end up looking very similar. Process by which unrelated organisms come to resemble each other = convergent evolution

32 The process by which two species evolve in response to changes in each other over time = coevolution

33 How fast does evolution operate? Darwin believed evolution happened slowly over a long time If biological change is at a slow pace, it is called gradualism.

34 Fossil record shows evolution happens more in bursts. Pattern of a long stable period interrupted by a brief period of more rapid change = Punctuated Equilibrium

Evolutionary Forces. What changes populations?

Evolutionary Forces. What changes populations? Evolutionary Forces What changes populations? Forces of evolutionary change Natural selection traits that improve survival or reproduction accumulate in the population ADAPTIVE change Genetic drift frequency

More information

THE EVOLUTION OF POPULATIONS

THE EVOLUTION OF POPULATIONS THE EVOLUTION OF POPULATIONS HOW DOES A POPULATION OF PENGUINS EVOLVE? Every year, king penguins return to breed in the same colony in which they are born. These colonies help penguins to guard, protect

More information

Evolution of Populations

Evolution of Populations Chapter 16 Evolution of Populations Section 16 1 Genes and Variation (pages 393 396) This section describes the main sources of inheritable variation in a population. It also explains how phenotypes are

More information

So what is a species?

So what is a species? So what is a species? Evolutionary Forces New Groups Biological species concept defined by Ernst Mayr population whose members can interbreed & produce viable, fertile offspring reproductively compatible

More information

Any variation that makes an organism better suited to its environment so it can survive is called a what?

Any variation that makes an organism better suited to its environment so it can survive is called a what? A change of an organism over time is also called. Chapters 10 & 11 Evolution Any variation that makes an organism better suited to its environment so it can survive is called a what? 1 Adaptation James

More information

DEFINITIONS: POPULATION: a localized group of individuals belonging to the same species

DEFINITIONS: POPULATION: a localized group of individuals belonging to the same species DEFINITIONS: POPULATION: a localized group of individuals belonging to the same species SPECIES: a group of populations whose individuals have the potential to interbreed and produce fertile offspring

More information

Evidence for evolution in Darwin s time came from several sources: 1. Fossils 2. Geography 3. Embryology 4. Anatomy

Evidence for evolution in Darwin s time came from several sources: 1. Fossils 2. Geography 3. Embryology 4. Anatomy Evidence for evolution in Darwin s time came from several sources: 1. Fossils 2. Geography 3. Embryology 4. Anatomy 1 Fossils in different layers of rock (sedimentary rock strata) have shown: Evidence

More information

CHAPTER 16 POPULATION GENETICS AND SPECIATION

CHAPTER 16 POPULATION GENETICS AND SPECIATION CHAPTER 16 POPULATION GENETICS AND SPECIATION MULTIPLE CHOICE 1. Which of the following describes a population? a. dogs and cats living in Austin, Texas b. four species of fish living in a pond c. dogwood

More information

11.1 Genetic Variation Within Population. KEY CONCEPT A population shares a common gene pool.

11.1 Genetic Variation Within Population. KEY CONCEPT A population shares a common gene pool. KEY CONCEPT A population shares a common gene pool. Genetic variation in a population increases the chance that some individuals will survive. Genetic variation leads to phenotypic variation. Phenotypic

More information

Unit 3.4 Mechanisms of Evolution Notes Outline

Unit 3.4 Mechanisms of Evolution Notes Outline Name Period Date Unit 3.4 Mechanisms of Evolution Notes Outline Learning Objectives: discuss patterns observed in evolution. Describe factors that influence speciation. Compare gradualism with punctuated

More information

Evolutionary Processes

Evolutionary Processes Evolutionary Processes MICROEVOLUTION Population -- all the members of a single species Population genetics studies variations in gene pools *Basically, microevolution studies small changes in alleles

More information

Trait characteristic (hair color) Gene segment of DNA Allele a variety of a trait (brown hair or blonde hair)

Trait characteristic (hair color) Gene segment of DNA Allele a variety of a trait (brown hair or blonde hair) Evolution Change in DNA to favor certain traits over multiple generations Adaptations happen within a single generations Evolution is the result of adding adaptations together Evolution doesn t have a

More information

Ch. 23 The Evolution of Populations

Ch. 23 The Evolution of Populations Ch. 23 The Evolution of Populations 1 Essential question: Do populations evolve? 2 Mutation and Sexual reproduction produce genetic variation that makes evolution possible What is the smallest unit of

More information

EVOLUTION MICROEVOLUTION CAUSES OF MICROEVOLUTION. Evolution Activity 2.3 page 1

EVOLUTION MICROEVOLUTION CAUSES OF MICROEVOLUTION. Evolution Activity 2.3 page 1 AP BIOLOGY EVOLUTION ACTIVITY 2.3 NAME DATE HOUR MICROEVOLUTION MICROEVOLUTION CAUSES OF MICROEVOLUTION Evolution Activity 2.3 page 1 QUESTIONS: 1. Use the key provided to identify the microevolution cause

More information

Natural Selection. species: a group of organisms that can interbreed and produce viable, fertile offspring

Natural Selection. species: a group of organisms that can interbreed and produce viable, fertile offspring Imagine that you and your classmates are taking a nature hike through a nearby desert ecosystem. The hot sun is beating down on you, and you begin to wonder how anything could live in this harsh climate.

More information

Mechanisms of Evolution

Mechanisms of Evolution Mechanisms of Evolution TEKS 7(F) analyze and evaluate the effects of other evolutionary mechanisms, including genetic drift, gene flow, mutation, and recombination Evolution is. For Darwin (1859): Evolution

More information

Chapter 23. Population Genetics. I m from the shallow end of the gene pool AP Biology

Chapter 23. Population Genetics. I m from the shallow end of the gene pool AP Biology Chapter 23. Population Genetics I m from the shallow end of the gene pool 1 Essential Questions How can we measure evolutionary change in a population? What produces the variation that makes evolution

More information

NATURAL SELECTION. Essential Question: How can a change in the environment initiate a change in a population?

NATURAL SELECTION. Essential Question: How can a change in the environment initiate a change in a population? Bell ringer 1. A species of mockingbird lives in the Apalachicola National Forest. One year, a few of the mockingbirds were born with very long beaks. Over the next several years, the area experienced

More information

Evolution of Populations. AP Biology

Evolution of Populations. AP Biology Evolution of Populations 2007-2008 Doonesbury - Sunday February 8, 2004 Review of Darwin s Influence Geology Thomas Hutton Charles Lyll - Biology Jean Baptist Lamark - Tendency toward Perfection - Use

More information

How Populations Evolve

How Populations Evolve Chapter 16: pp. 283-298 BIOLOGY 10th Edition How Populations Evolve 10% of population Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. natural disaster kills five

More information

Microevolution Changing Allele Frequencies

Microevolution Changing Allele Frequencies Microevolution Changing Allele Frequencies Evolution Evolution is defined as a change in the inherited characteristics of biological populations over successive generations. Microevolution involves the

More information

Ch. 24 The Origin of Species

Ch. 24 The Origin of Species Ch. 24 The Origin of Species 1 Essential Question: How does a species evolve? 2 Two Types of Speciation: 1. microevolution adaptations to a single gene pool 2. macroevolution evolutionary change above

More information

Mechanisms of Evolution. Macroevolution. Speciation. MICROEVOLUTION - A change in the frequency of alleles. Review population genetics Ch. 23.

Mechanisms of Evolution. Macroevolution. Speciation. MICROEVOLUTION - A change in the frequency of alleles. Review population genetics Ch. 23. Mechanisms of Evolution Macroevolution Speciation MICROEVOLUTION - A change in the frequency of alleles. Review population genetics Ch. 23. MACROEVOLUTION - Speciation (or emergence of higher taxonomic

More information

Genes in a Population

Genes in a Population Population Genetics Genes in a Population Population genetics is the study of allele behavior in a population. A population is a group of local interbreeding individuals of a single species Example: ABO

More information

Assessment Schedule 2013 Biology: Demonstrate understanding of evolutionary processes leading to speciation (91605)

Assessment Schedule 2013 Biology: Demonstrate understanding of evolutionary processes leading to speciation (91605) NCEA Level 3 Biology (91605) 2013 page 1 of 6 Assessment Schedule 2013 Biology: Demonstrate understanding of evolutionary processes leading to speciation (91605) Assessment Criteria Evidence Achievement

More information

Mechanisms of Evolution

Mechanisms of Evolution Mechanisms of Evolution Mutation Gene Flow (migration) Non-random mating Genetic Drift Natural Selection...individuals don t evolve, populations do 1. Mutation The ultimate source of genetic variation.

More information

Ch 4: Mendel and Modern evolutionary theory

Ch 4: Mendel and Modern evolutionary theory Ch 4: Mendel and Modern evolutionary theory 1 Mendelian principles of inheritance Mendel's principles explain how traits are transmitted from generation to generation Background: eight years breeding pea

More information

Bio 1M: Evolutionary processes

Bio 1M: Evolutionary processes Bio 1M: Evolutionary processes Evolution by natural selection Is something missing from the story I told last chapter? Heritable variation in traits Selection (i.e., differential reproductive success)

More information

Schedule Change! Today: Thinking About Darwinian Evolution. Perplexing Observations. We owe much of our understanding of EVOLUTION to CHARLES DARWIN.

Schedule Change! Today: Thinking About Darwinian Evolution. Perplexing Observations. We owe much of our understanding of EVOLUTION to CHARLES DARWIN. Schedule Change! Film and activity next Friday instead of Lab 8. (No need to print/read the lab before class.) Today: Thinking About Darwinian Evolution Part 1: Darwin s Theory What is evolution?? And

More information

CHAPTER 20 LECTURE SLIDES

CHAPTER 20 LECTURE SLIDES CHAPTER 20 LECTURE SLIDES To run the animations you must be in Slideshow View. Use the buttons on the animation to play, pause, and turn audio/text on or off. Please note: once you have used any of the

More information

How Organisms Evolve Chapters The Theory of Evolution. The Theory of Evolution. Evolution can be traced through the fossil record.

How Organisms Evolve Chapters The Theory of Evolution. The Theory of Evolution. Evolution can be traced through the fossil record. How Organisms Evolve Chapters 14-15 The Theory of Evolution Evolution is the process of change in the inherited traits of a population of organisms from one generation to the next. The inherited traits

More information

The Origin of Species. Mom, Dad There s something you need to know I m a MAMMAL!

The Origin of Species. Mom, Dad There s something you need to know I m a MAMMAL! The Origin of Species Mom, Dad There s something you need to know I m a MAMMAL! 2007-2008 So what is a species?!! Biological species concept "! defined by Ernst Mayr "! population whose members can interbreed

More information

Section 8.1 Studying inheritance

Section 8.1 Studying inheritance Section 8.1 Studying inheritance Genotype and phenotype Genotype is the genetic constitution of an organism that describes all the alleles that an organism contains The genotype sets the limits to which

More information

The Evolution of Darwin s Theory Pt 2. Chapter 16-17

The Evolution of Darwin s Theory Pt 2. Chapter 16-17 The Evolution of Darwin s Theory Pt 2 { Chapter 16-17 Natural Selection If an individual has an allele that allows them to survive better in an environment than another allele, they will have a better

More information

Ch. 24 Speciation BIOL 221

Ch. 24 Speciation BIOL 221 Ch. 24 Speciation BIOL 221 Speciation Speciation Origin of new, is at the focal point of evolutionary theory Microevolution consists of adaptations that evolve within a population confined to one gene

More information

GENETIC EQUILIBRIUM. Chapter 16

GENETIC EQUILIBRIUM. Chapter 16 GENETIC EQUILIBRIUM Chapter 16 16-1 Population Genetics Population= number of organisms of the same species in a particular place at a point in time Gene pool= total genetic information of a population

More information

The Origin of Species

The Origin of Species LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 24 The Origin of Species Lectures

More information

The Origin of Species (Ch. 14) Mom, Dad There s something you need to know I m a MAMMAL!

The Origin of Species (Ch. 14) Mom, Dad There s something you need to know I m a MAMMAL! The Origin of Species (Ch. 14) Mom, Dad There s something you need to know I m a MAMMAL! 2007-2008 That mystery of mysteries Darwin never actually tackled how new species arose Both in space and time,

More information

The Origin of Species

The Origin of Species The Origin of Species Macroevolution: the origin of new taxonomic groups Speciation: the origin of new species 1- Anagenesis (phyletic evolution): accumulation of heritable changes 2- Cladogenesis (branching

More information

NAME: PID: Group Name: BioSci 110, Fall 08 Exam 3

NAME: PID: Group Name: BioSci 110, Fall 08 Exam 3 For questions 1 and 2 use the phylogeny to the right. 1. With what group of species do rodents share the most traits? a. amphibians b. dinosaurs and birds c. *primates d. ray-finned fish e. sharks 2. Which

More information

The Origin of Species. Mom, Dad There s something you need to know I m a MAMMAL!

The Origin of Species. Mom, Dad There s something you need to know I m a MAMMAL! The Origin of Species Mom, Dad There s something you need to know I m a MAMMAL! 2010-2011 That mystery of mysteries Darwin never actually tackled how new species arose Both in space and time, we seem to

More information

Name: Date: Period: Unit 1 Test: Microevolution (Original Test) Ms. OK, AP Biology,

Name: Date: Period: Unit 1 Test: Microevolution (Original Test) Ms. OK, AP Biology, Name: Date: Period: Unit 1 Test: Microevolution (Original Test) Ms. OK, AP Biology, 2014-2015 General Directions: Use your time effectively, working as quickly as you can without losing accuracy. Do not

More information

Goals: Be able to. Sexual Dimorphism

Goals: Be able to. Sexual Dimorphism Goals: Be able to Connect sexual dimorphism and sexual selection. Use parental investment arguments to describe why sexual selection occurs. Explain why long male peacock tails are an indicator of good

More information

Evolution. Determining Allele Frequency These frogs are diploid, thus have two copies of their genes for color. Determining Allele Frequency

Evolution. Determining Allele Frequency These frogs are diploid, thus have two copies of their genes for color. Determining Allele Frequency Evolution Microevolution Changing Allele Frequencies Evolution is defined as a change in the inherited characteristics of biological populations over successive generations. Microevolution involves the

More information

PopGen4: Assortative mating

PopGen4: Assortative mating opgen4: Assortative mating Introduction Although random mating is the most important system of mating in many natural populations, non-random mating can also be an important mating system in some populations.

More information

11.1 Genetic Variation

11.1 Genetic Variation 11.1 Genetic Variation Within Populations KEY CONCEPT A population shares a common gene pool. Genetic variation in a population increases the chance that some individuals will survive. Genetic variation

More information

2017 Version. Key Question types NCEA Science 1.9 Genetic Variation AS 90948

2017 Version. Key Question types NCEA Science 1.9 Genetic Variation AS 90948 2017 Version Key Question types NCEA Science 1.9 Genetic Variation AS 90948 Linking DNA, Alleles and Chromosomes Chromosomes are made up of DNA. DNA is a large molecule that is coiled into a double helix

More information

Microevolution: The Forces of Evolutionary Change Part 2. Lecture 23

Microevolution: The Forces of Evolutionary Change Part 2. Lecture 23 Microevolution: The Forces of Evolutionary Change Part 2 Lecture 23 Outline Conditions that cause evolutionary change Natural vs artificial selection Nonrandom mating and sexual selection The role of chance

More information

Chapter 21.2 Mechanisms of Evolutionary Change

Chapter 21.2 Mechanisms of Evolutionary Change Beak depth of Beak depth Colonie High AP Biology Chapter 21.2 Mechanisms of Evolutionary Change Populations Evolve! Natural selection acts on individuals differential survival survival of the fittest differential

More information

QUARTERLY ASSESSMENT

QUARTERLY ASSESSMENT Eighth Grade Science 1 2 3 4 QUARTERLY ASSESSMENT Zanesville City Schools 1 1. [LS 1] [R3] Scientists found fish fossils in the desert. What do the fossils tell about this environment when the fish were

More information

Gregor Mendel. What is Genetics? the study of heredity

Gregor Mendel. What is Genetics? the study of heredity Gregor Mendel What is Genetics? the study of heredity Gregor Mendel s Peas Pollen: plant s sperm Egg Cells: plants reproductive cells Fertilization: joining of pollen + egg cells develops into embryo in

More information

From so simple a beginning, endless forms so beautiful and wonderful have been and are being evolved

From so simple a beginning, endless forms so beautiful and wonderful have been and are being evolved VariaTiOn: The KEY to Evolu4on SWBAT describe how natural selec4on acts on genes. From so simple a beginning, endless forms so beautiful and wonderful have been and are being evolved 1 Charles Darwin (the

More information

Biology Teach Yourself Series Topic 14: Population genetics

Biology Teach Yourself Series Topic 14: Population genetics Biology Teach Yourself Series Topic 14: Population genetics A: Level 14, 474 Flinders Street Melbourne VIC 3000 T: 1300 134 518 W: tssm.com.au E: info@tssm.com.au TSSM 2011 Page 1 of 24 Contents Population

More information

HARDY- WEINBERG PRACTICE PROBLEMS

HARDY- WEINBERG PRACTICE PROBLEMS HARDY- WEINBERG PRACTICE PROBLEMS PROBLEMS TO SOLVE: 1. The proportion of homozygous recessives of a certain population is 0.09. If we assume that the gene pool is large and at equilibrium and all genotypes

More information

Chapter 16. What is a species? How do new species form? Origin of species

Chapter 16. What is a species? How do new species form? Origin of species Chapter 16 Origin of species What is a species? Biological species concept (Mayr) A species is a group of populations whose individuals interbreed with each other (or at least are capable of interbreeding),

More information

Q1.Darwin s theory of natural selection states that all living things have evolved from simple life forms.

Q1.Darwin s theory of natural selection states that all living things have evolved from simple life forms. VARIATION AND EVOLUTION. NAME.. Q.Darwin s theory of natural selection states that all living things have evolved from simple life forms. (a) Use the correct answer from the box to complete the sentence.

More information

BIO 202 : GENETICS AND EVOLUTION

BIO 202 : GENETICS AND EVOLUTION BIO 202 : GENETICS AND EVOLUTION INTRODUCTION Genetics is the study of hereditary and expression of such traits or heredity. Genetics is the branch of biology that deals with heredity and expression of

More information

In the mid-20th century the structure of DNA was discovered. What is a section of DNA which codes for one specific protein called?

In the mid-20th century the structure of DNA was discovered. What is a section of DNA which codes for one specific protein called? Q1.Our understanding of genetics and inheritance has improved due to the work of many scientists. (a) Draw one line from each scientist to the description of their significant work. Scientist Description

More information

Evolutionary Forces. What changes populations?

Evolutionary Forces. What changes populations? Evolutionary Forces What changes populations? 2007-2008 Forces of evolutionary change Natural selection traits that improve survival or reproduction will accumulate in the population adaptive change Genetic

More information

We are an example of a biological species that has evolved

We are an example of a biological species that has evolved Bio 1M: Primate evolution (complete) 1 Patterns of evolution Humans as an example We are an example of a biological species that has evolved Many of your friends are probably humans Humans seem unique:

More information

Introduction to Genetics and Heredity

Introduction to Genetics and Heredity Introduction to Genetics and Heredity Although these dogs have similar characteristics they are each unique! I. Early Ideas About Heredity A. The Theory of Blending Inheritance Each parent contributes

More information

Science (www.tiwariacademy.com)

Science (www.tiwariacademy.com) () Exercises Question 1: A Mendelian experiment consisted of breeding tall pea plants bearing violet flowers with short pea plants bearing white flowers. The progeny all bore violet flowers, but almost

More information

ANSWERS & MARK SCHEMES. an obstacle to interbreeding; thus limiting gene flow between parts of the gene pool; thus enabling divergence; max 2

ANSWERS & MARK SCHEMES. an obstacle to interbreeding; thus limiting gene flow between parts of the gene pool; thus enabling divergence; max 2 QUESTIONSHEET 1 (b) (i) a population of similar organisms that are capable of interbreeding to form fertile offspring; they are reproductively isolated from other such populations/cannot interbreed with

More information

Level 2 Biology, 2016

Level 2 Biology, 2016 91157 911570 2SUPERVISOR S Level 2 Biology, 2016 91157 Demonstrate understanding of genetic variation and change 9.30 a.m. Friday 18 November 2016 Credits: Four Achievement Achievement with Merit Achievement

More information

Unit 1 Biological Diversity Topic 1.1 Examining Diversity. Text p. 3-15

Unit 1 Biological Diversity Topic 1.1 Examining Diversity. Text p. 3-15 Topic 1.1 Examining Diversity. Text p. 3-15 Variation to the MAX! Biologists have identified over species of animals and over species of plants. The most successful life form is What is Biodiversity? The

More information

SEX. Genetic Variation: The genetic substrate for natural selection. Sex: Sources of Genotypic Variation. Genetic Variation

SEX. Genetic Variation: The genetic substrate for natural selection. Sex: Sources of Genotypic Variation. Genetic Variation Genetic Variation: The genetic substrate for natural selection Sex: Sources of Genotypic Variation Dr. Carol E. Lee, University of Wisconsin Genetic Variation If there is no genetic variation, neither

More information

Genetics: field of biology that studies heredity, or the passing of traits from parents to offspring Trait: an inherited characteristic, such as eye

Genetics: field of biology that studies heredity, or the passing of traits from parents to offspring Trait: an inherited characteristic, such as eye Genetics: field of biology that studies heredity, or the passing of traits from parents to offspring Trait: an inherited characteristic, such as eye colour or hair colour Gregor Mendel discovered how traits

More information

2. By breeding the pea plants he was growing in the monastery s garden, he discovered the

2. By breeding the pea plants he was growing in the monastery s garden, he discovered the Name: _ Date: Directions: Navigate to https://goo.gl/tcd8l4 to view the corresponding PowerPoint. Be sure to click PRESENT in the upper right hand corner! Answer the following questions from the PowerPoint.

More information

Two copies of each autosomal gene affect phenotype.

Two copies of each autosomal gene affect phenotype. UNIT 3 GENETICS LESSON #34: Chromosomes and Phenotype Objective: Explain how the chromosomes on which genes are located can affect the expression of traits. Take a moment to look at the variety of treats

More information

Science 1.9 AS WORKBOOK. Working to Excellence

Science 1.9 AS WORKBOOK. Working to Excellence Science 1.9 AS 90948 Demonstrate understanding of biological ideas relating to genetic variation WORKBOOK Working to Excellence CONTENTS 1. Writing Excellence answers to DNA and Genes questions 2. Writing

More information

The Origin of Species

The Origin of Species Chapter 24 The Origin of Species PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

More information

Lesson Overview 11.2 Applying Mendel s Principles

Lesson Overview 11.2 Applying Mendel s Principles THINK ABOUT IT Nothing in life is certain. Lesson Overview 11.2 Applying Mendel s Principles If a parent carries two different alleles for a certain gene, we can t be sure which of those alleles will be

More information

Objectives. ! Describe the contributions of Gregor Mendel to the science of genetics. ! Explain the Law of Segregation.

Objectives. ! Describe the contributions of Gregor Mendel to the science of genetics. ! Explain the Law of Segregation. Objectives! Describe the contributions of Gregor Mendel to the science of genetics.! Explain the Law of Segregation.! Explain the Law of Independent Assortment.! Explain the concept of dominance.! Define

More information

Biology 211 (1) Exam 5!

Biology 211 (1) Exam 5! Biology 211 (1) Exam 5 Chapter 25: Vocabulary: http://www.superteachertools.us/speedmatch/speedmatch.php? gamefile=6762#.vkzjcgrvhhw 1. For each individual, describe their philosophy on the idea of species

More information

Extra Review Practice Biology Test Genetics

Extra Review Practice Biology Test Genetics Mendel fill in the blanks: Extra Review Practice Biology Test Genetics Mendel was an Austrian monk who studied genetics primarily using plants. He started with plants that produced offspring with only

More information

Chapter 24 The Origin of Species

Chapter 24 The Origin of Species Chapter 24 The Origin of Species Concept 24.1: The biological species concept emphasizes reproductive isolation Species is a Latin word meaning kind or appearance Biologists compare morphology, physiology,

More information

What You ll Learn. Genetics Since Mendel. ! Explain how traits are inherited by incomplete dominance

What You ll Learn. Genetics Since Mendel. ! Explain how traits are inherited by incomplete dominance Genetics Since Mendel GLE 0707.4.4 Predict the probable appearance of offspring based on the genetic characteristics of the parents. What You ll Learn! Explain how traits are inherited by incomplete dominance!

More information

Case Studies in Ecology and Evolution

Case Studies in Ecology and Evolution 2 Genetics of Small Populations: the case of the Laysan Finch In 1903, rabbits were introduced to a tiny island in the Hawaiian archipelago called Laysan Island. That island is only 187 ha in size, in

More information

Bio 1M: The evolution of apes (complete) 1 Example. 2 Patterns of evolution. Similarities and differences. History

Bio 1M: The evolution of apes (complete) 1 Example. 2 Patterns of evolution. Similarities and differences. History Bio 1M: The evolution of apes (complete) 1 Example Humans are an example of a biological species that has evolved Possibly of interest, since many of your friends are probably humans Humans seem unique:

More information

Biology 12. Mendelian Genetics

Biology 12. Mendelian Genetics Mendelian Genetics Genetics: the science (study) of heredity that involves the structure and function of genes and the way genes are passed from one generation to the next. Heredity: the passing on of

More information

Unit 4 Genetics. 3. Categorize the following characteristics below as being influenced by genetics or the environment.

Unit 4 Genetics. 3. Categorize the following characteristics below as being influenced by genetics or the environment. Unit 4 Genetics TEKS 7.14A and 7.14C 1. Define heredity 1.Heredity = the passing of traits from parents to offspring 2. In some countries there is high population of individuals with straight hair verses

More information

Natural Selection Simulation: Predation and Coloration

Natural Selection Simulation: Predation and Coloration Name Period Date Natural Selection Simulation: Predation and Coloration This simulation was invented by G. Ledyard Stebbins, a pioneer in the evolution of plants. The purpose of the game is to illustrate

More information

The Origin of Species

The Origin of Species Chapter 24. The Origin of Species Both in space and time, we seem to be brought somewhat near to that great fact that mystery of mysteries the first appearance of new beings on this Earth. Darwin 1 Essential

More information

11-1: Introduction to Genetics

11-1: Introduction to Genetics 11-1: Introduction to Genetics The Work of Gregor Mendel Copyright Pearson Prentice Hall Genetics Vocabulary Genetics The study of heredity. Heredity The passing of physical characteristics from parents

More information

Mendelian Genetics. KEY CONCEPT Mendel s research showed that traits are inherited as discrete units.

Mendelian Genetics. KEY CONCEPT Mendel s research showed that traits are inherited as discrete units. KEY CONCEPT Mendel s research showed that traits are inherited as discrete units. Mendel laid the groundwork for genetics. Traits are distinguishing characteristics that are inherited. Genetics is the

More information

Genetic Variation Junior Science

Genetic Variation Junior Science 2018 Version Genetic Variation Junior Science http://img.publishthis.com/images/bookmarkimages/2015/05/d/5/c/d5cf017fb4f7e46e1c21b874472ea7d1_bookmarkimage_620x480_xlarge_original_1.jpg Sexual Reproduction

More information

Chapter 15 Evolution Lecture Notes

Chapter 15 Evolution Lecture Notes Biology Chapter 15 Evolution Lecture Notes Name Per Quiz #9 o You will be able to answer questions about Darwin s historical voyage on the HMS Beagle o You will be able to explain Darwin s original theory

More information

Introduction to Genetics

Introduction to Genetics DAY 2 Introduction to Genetics Heredity Passing of traits from parents to their young The branch of biology that studies heredity is genetics. Trait Characteristic that is inherited Gregor Mendel Austrian

More information

Biology. Slide 1 of 31. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 31. End Show. Copyright Pearson Prentice Hall Biology 1 of 31 11 3 Exploring Mendelian 11-3 Exploring Mendelian Genetics Genetics 2 of 31 Independent Assortment What is the principle of independent assortment? 3 of 31 Independent Assortment Independent

More information

The plant of the day Pinus longaeva Pinus aristata

The plant of the day Pinus longaeva Pinus aristata The plant of the day Pinus longaeva Pinus aristata Today s Topics Non-random mating Genetic drift Population structure Big Questions What are the causes and evolutionary consequences of non-random mating?

More information

Mendelian Genetics Chapter 11

Mendelian Genetics Chapter 11 Mendelian Genetics Chapter 11 Starts on page 308 Roots, Prefixes & Suffixes: homo = hetero = geno = pheno = zyg = co = poly = Section 11-1: Mendel & His Peas I. Vocabulary Words: A. Gene - a small section

More information

Patterns of Inheritance

Patterns of Inheritance Patterns of Inheritance Mendel the monk studied inheritance keys to his success: he picked pea plants he focused on easily categorized traits he used true-breeding populations parents always produced offspring

More information

Lecture Outline. Darwin s Theory of Natural Selection. Modern Theory of Natural Selection. Changes in frequencies of alleles

Lecture Outline. Darwin s Theory of Natural Selection. Modern Theory of Natural Selection. Changes in frequencies of alleles 1. Basics of Natural Selection Lecture Outline 2. How to test for the key components of natural selection a. Variation b. Heritability c. Can the trait respond to selection? d. What are the selective forces?

More information

2/3 x 1 x 1/4 = 2/12 = 1/6

2/3 x 1 x 1/4 = 2/12 = 1/6 1. Imagine that you are a genetic counselor, and a couple planning to start a family comes to you for assistance. Charles was married once before, and he and his first wife had a child with cystic fibrosis

More information

The behavioral ecology of animal reproduction

The behavioral ecology of animal reproduction The behavioral ecology of animal reproduction I. Introduction to Behavioral Ecology Behavioral ecologists test hypotheses about the adaptive function of a behavior Behavioral Ecology Behavioral ecologists

More information

Name Class Date. Review Guide. Genetics. The fundamental principles of genetics were first discovered by. What type of plant did he breed?.

Name Class Date. Review Guide. Genetics. The fundamental principles of genetics were first discovered by. What type of plant did he breed?. Name Class Date Review Guide Genetics The fundamental principles of genetics were first discovered by. What type of plant did he breed?. True-breeding parental plants are called the generation. Their hybrid

More information

Evolutionary Forces. What changes populations?

Evolutionary Forces. What changes populations? Evolutionary Forces What changes populations? 2007-2008 Forces of evolutionary change Natural selection traits that improve survival or reproduction will accumulate in the population adaptive change Genetic

More information

Review. 1) A huge molecule made up of amino acids (adenine, cytosine, guanine, thymine)

Review. 1) A huge molecule made up of amino acids (adenine, cytosine, guanine, thymine) Mutations Review 1) A huge molecule made up of amino acids (adenine, cytosine, guanine, thymine) DNA 2) A process that produces the sex cells with half the chromosomes of a body cell Meiosis 3) Strands

More information

Reproduction Review YOU ARE EXPECTED TO KNOW THE MEANING OF ALL THE FOLLOWING TERMS:

Reproduction Review YOU ARE EXPECTED TO KNOW THE MEANING OF ALL THE FOLLOWING TERMS: Reproduction Review YOU ARE EXPECTED TO KNOW THE MEANING OF ALL THE FOLLOWING TERMS: CHROMOSOME GENE DNA TRAIT HEREDITY INTERPHASE MITOSIS CYTOKINESIS ASEXUAL BINARY FISSION CELL CYCLE GENETIC DIVERSITY

More information