The Evolution of Darwin s Theory Pt 2. Chapter 16-17

Size: px
Start display at page:

Download "The Evolution of Darwin s Theory Pt 2. Chapter 16-17"

Transcription

1 The Evolution of Darwin s Theory Pt 2 { Chapter 16-17

2 Natural Selection If an individual has an allele that allows them to survive better in an environment than another allele, they will have a better chance of reproducing If they have a better chance of reproducing, the next generation will have a higher percentage of offspring with the alleles for the favorable trait Eventually, the alleles for the favorable trait will be the only alleles in the population

3 Generation 1

4

5 Generation 2

6

7 Generation 3

8

9 Generation 4

10

11 Generations 5-9

12

13 Generation 10?

14 Generation 1 Generation 10

15

16 Directional Selection Directional selection is when an extreme phenotype is favored and the distribution of alleles shifts toward the alleles that cause this phenotype Example, drug resistance If an antibiotic for fighting the bacteria caused by tuberculosis kills 98% of bacteria, it is successful in the moment Ten years later, however, those 2% of bacteria have become the same population size as the original population Now, the population is the same size AND they have been selected for resistance to the antibiotic.

17

18 Stabilizing selection Stabilizing selection is when an intermediate phenotype is favored. Extreme phenotypes are selected against. Example: Swiss starling birds contain genes for laying between 1-9 eggs 1-3 eggs/starling result in too small of a population in the next generation 6-9 eggs/starling result in not enough resources to support all the hatchlings 4-5 eggs/starling result in optimal conditions for the population

19

20

21 Disruptive Selection Disruptive selection is when the extreme phenotypes are favored over the intermediate phenotype Example: British land snails have genes for light colored shells, dark colored shells, or both Snails with shells of all one color are able to blend and hide in various habitats of the same colors Snails with banding are easy to spot in all habitats.

22

23

24 Sickle-Cell and Malaria Sickle-cell is codominant trait. Individuals homozygous recessive for sickle-cell usually die at a young age if they are born at all. Geneticists in Africa have noticed that heterozygote individuals have an interesting side-affect: immunity to malaria If an individual contains the allele for both normal and sickle cells, they have mostly normal blood. Infection by the malaria parasite causes the blood to change to sickle-cell shape, which kills the parasite Thus, being a heterozygote for sickle-cell makes you more immune to death from sickle-cell disease than homozygous recessive individuals AND more immune to death from malaria than homozygous dominant individuals. Unfortunately, it also ensures the safety of the sickle-cell allele

25 Speciation Speciation is the splitting of one species into two or more species, or the transformation of one species into a new species over time. A species is a group of organisms all capable of interbreeding and producing fertile offspring Gene flow occurs between populations of similar species, not different ones. Therefore, it s important to identify and separate species from each other. It s also important to note when species separate themselves to the point where a new species emerges.

26 Speciation For two species to separate, they must be reproductively isolated. There are many ways this occurs 1) Habitat isolation When two species occupy different habitats, even within the same geographic range, they are less likely to meet and attempt reproduction. Red Maples of the East Coast vs Bigleaf Maples of the West Coast 2) Temporal Isolation Two species live in the same area but reproduce at different times of the year The leopard frog, which mates in April and the bull frog, which mates in July

27

28

29 Speciation 3) Behavioral Isolation Two species have different courtship patterns that allow males and females to recognize one another. Fireflies of different species have different flashing patterns to attract mates Gypsy moths give off pheromones only detectable by members of their own species 4) Mechanical Isolation When two species genitalia or structures are incompatible, reproduction cannot occur Male dragonflies anatomy are so uniquely shaped they only fit with other members of their own species

30

31 Speciation 5) Gamete Isolation Two species may be able to mate, but their gametes may be incompatible with each other The Gray Fox has 66 chromosomes; the Red Fox has 34 6) Zygote Mortality Fertilization occurs, but the zygote does not survive Many zygotes of coral hybrids do not survive development

32 Speciation 7) Hybrid Sterility The zygote of a hybrid is able to develop and be born, but the offspring are sterile When a male donkey and a female horse reproduce, the result is a mule. Mules live healthy lives, but they are sterile 8) F 2 fitness F 2 fitness means that the offspring can survive and reproduce, but the F 2 generation cannot Crosses between primrose and cotton.

33

34 Speciation Sometimes the reproductive barrier can be removed in later generations Example: volcanic eruption causes destruction of habitat between two environments, but 200 years later the vegetation has re-grown. By this time, however, the two species have diverged so much that they still cannot mate even though the barrier is gone This type of speciation overall is called allopatric speciation Example: different tortoises on the Galapagos Islands

35

36 Speciation A similar issue arises when a reproductive speciation occurs in a small section of a population This smaller population subset eventually passes on to other members in later generations The species are never separated, but issues with gametes or zygotes result in speciation This type of speciation is called sympatric speciation Example: Development of polyploid gametes and zygotes in a population of carnations.

Evolutionary Processes

Evolutionary Processes Evolutionary Processes MICROEVOLUTION Population -- all the members of a single species Population genetics studies variations in gene pools *Basically, microevolution studies small changes in alleles

More information

So what is a species?

So what is a species? So what is a species? Evolutionary Forces New Groups Biological species concept defined by Ernst Mayr population whose members can interbreed & produce viable, fertile offspring reproductively compatible

More information

Chapter 15 Evolution Lecture Notes

Chapter 15 Evolution Lecture Notes Biology Chapter 15 Evolution Lecture Notes Name Per Quiz #9 o You will be able to answer questions about Darwin s historical voyage on the HMS Beagle o You will be able to explain Darwin s original theory

More information

The Origin of Species

The Origin of Species The Origin of Species Macroevolution: the origin of new taxonomic groups Speciation: the origin of new species 1- Anagenesis (phyletic evolution): accumulation of heritable changes 2- Cladogenesis (branching

More information

Goals: Be able to. Sexual Dimorphism

Goals: Be able to. Sexual Dimorphism Goals: Be able to Connect sexual dimorphism and sexual selection. Use parental investment arguments to describe why sexual selection occurs. Explain why long male peacock tails are an indicator of good

More information

Mechanisms of Evolution. Macroevolution. Speciation. MICROEVOLUTION - A change in the frequency of alleles. Review population genetics Ch. 23.

Mechanisms of Evolution. Macroevolution. Speciation. MICROEVOLUTION - A change in the frequency of alleles. Review population genetics Ch. 23. Mechanisms of Evolution Macroevolution Speciation MICROEVOLUTION - A change in the frequency of alleles. Review population genetics Ch. 23. MACROEVOLUTION - Speciation (or emergence of higher taxonomic

More information

The Origin of Species. Mom, Dad There s something you need to know I m a MAMMAL!

The Origin of Species. Mom, Dad There s something you need to know I m a MAMMAL! The Origin of Species Mom, Dad There s something you need to know I m a MAMMAL! 2007-2008 So what is a species?!! Biological species concept "! defined by Ernst Mayr "! population whose members can interbreed

More information

11.1 Genetic Variation Within Population. KEY CONCEPT A population shares a common gene pool.

11.1 Genetic Variation Within Population. KEY CONCEPT A population shares a common gene pool. KEY CONCEPT A population shares a common gene pool. Genetic variation in a population increases the chance that some individuals will survive. Genetic variation leads to phenotypic variation. Phenotypic

More information

Ch. 24 The Origin of Species

Ch. 24 The Origin of Species Ch. 24 The Origin of Species 1 Essential Question: How does a species evolve? 2 Two Types of Speciation: 1. microevolution adaptations to a single gene pool 2. macroevolution evolutionary change above

More information

CHAPTER 16 POPULATION GENETICS AND SPECIATION

CHAPTER 16 POPULATION GENETICS AND SPECIATION CHAPTER 16 POPULATION GENETICS AND SPECIATION MULTIPLE CHOICE 1. Which of the following describes a population? a. dogs and cats living in Austin, Texas b. four species of fish living in a pond c. dogwood

More information

11/14/2014. What is a species? Species and speciation. The biological species concept (BSC) emphasizes reproductive isolation

11/14/2014. What is a species? Species and speciation. The biological species concept (BSC) emphasizes reproductive isolation Species and speciation What is a species? Chapters 17 & 18 The biological species concept (BSC) emphasizes reproductive isolation Gene pools of biological species are isolated by pre- and post-zygotic

More information

The Origin of Species. Mom, Dad There s something you need to know I m a MAMMAL!

The Origin of Species. Mom, Dad There s something you need to know I m a MAMMAL! The Origin of Species Mom, Dad There s something you need to know I m a MAMMAL! 2010-2011 That mystery of mysteries Darwin never actually tackled how new species arose Both in space and time, we seem to

More information

Trait characteristic (hair color) Gene segment of DNA Allele a variety of a trait (brown hair or blonde hair)

Trait characteristic (hair color) Gene segment of DNA Allele a variety of a trait (brown hair or blonde hair) Evolution Change in DNA to favor certain traits over multiple generations Adaptations happen within a single generations Evolution is the result of adding adaptations together Evolution doesn t have a

More information

Unit 3.4 Mechanisms of Evolution Notes Outline

Unit 3.4 Mechanisms of Evolution Notes Outline Name Period Date Unit 3.4 Mechanisms of Evolution Notes Outline Learning Objectives: discuss patterns observed in evolution. Describe factors that influence speciation. Compare gradualism with punctuated

More information

Ch. 24 Speciation BIOL 221

Ch. 24 Speciation BIOL 221 Ch. 24 Speciation BIOL 221 Speciation Speciation Origin of new, is at the focal point of evolutionary theory Microevolution consists of adaptations that evolve within a population confined to one gene

More information

Ch. 23 The Evolution of Populations

Ch. 23 The Evolution of Populations Ch. 23 The Evolution of Populations 1 Essential question: Do populations evolve? 2 Mutation and Sexual reproduction produce genetic variation that makes evolution possible What is the smallest unit of

More information

The Origin of Species (Ch. 14) Mom, Dad There s something you need to know I m a MAMMAL!

The Origin of Species (Ch. 14) Mom, Dad There s something you need to know I m a MAMMAL! The Origin of Species (Ch. 14) Mom, Dad There s something you need to know I m a MAMMAL! 2007-2008 That mystery of mysteries Darwin never actually tackled how new species arose Both in space and time,

More information

MECHANISMS AND PATTERNS OF EVOLUTION

MECHANISMS AND PATTERNS OF EVOLUTION MECHANISMS AND PATTERNS OF EVOLUTION Evolution What is it again? Evolution is the change in allele frequencies of a population over generations Mechanisms of Evolution what can make evolution happen? 1.

More information

Bio 1M: Evolutionary processes

Bio 1M: Evolutionary processes Bio 1M: Evolutionary processes Evolution by natural selection Is something missing from the story I told last chapter? Heritable variation in traits Selection (i.e., differential reproductive success)

More information

Biology Teach Yourself Series Topic 14: Population genetics

Biology Teach Yourself Series Topic 14: Population genetics Biology Teach Yourself Series Topic 14: Population genetics A: Level 14, 474 Flinders Street Melbourne VIC 3000 T: 1300 134 518 W: tssm.com.au E: info@tssm.com.au TSSM 2011 Page 1 of 24 Contents Population

More information

Chapter 24 The Origin of Species

Chapter 24 The Origin of Species Chapter 24 The Origin of Species Concept 24.1: The biological species concept emphasizes reproductive isolation Species is a Latin word meaning kind or appearance Biologists compare morphology, physiology,

More information

Chapter 16. What is a species? How do new species form? Origin of species

Chapter 16. What is a species? How do new species form? Origin of species Chapter 16 Origin of species What is a species? Biological species concept (Mayr) A species is a group of populations whose individuals interbreed with each other (or at least are capable of interbreeding),

More information

THE EVOLUTION OF POPULATIONS

THE EVOLUTION OF POPULATIONS THE EVOLUTION OF POPULATIONS HOW DOES A POPULATION OF PENGUINS EVOLVE? Every year, king penguins return to breed in the same colony in which they are born. These colonies help penguins to guard, protect

More information

Natural Selection. species: a group of organisms that can interbreed and produce viable, fertile offspring

Natural Selection. species: a group of organisms that can interbreed and produce viable, fertile offspring Imagine that you and your classmates are taking a nature hike through a nearby desert ecosystem. The hot sun is beating down on you, and you begin to wonder how anything could live in this harsh climate.

More information

GENETIC EQUILIBRIUM. Chapter 16

GENETIC EQUILIBRIUM. Chapter 16 GENETIC EQUILIBRIUM Chapter 16 16-1 Population Genetics Population= number of organisms of the same species in a particular place at a point in time Gene pool= total genetic information of a population

More information

Patterns of Inheritance

Patterns of Inheritance 1 Patterns of Inheritance Bio 103 Lecture Dr. Largen 2 Topics Mendel s Principles Variations on Mendel s Principles Chromosomal Basis of Inheritance Sex Chromosomes and Sex-Linked Genes 3 Experimental

More information

EVOLUTION MICROEVOLUTION CAUSES OF MICROEVOLUTION. Evolution Activity 2.3 page 1

EVOLUTION MICROEVOLUTION CAUSES OF MICROEVOLUTION. Evolution Activity 2.3 page 1 AP BIOLOGY EVOLUTION ACTIVITY 2.3 NAME DATE HOUR MICROEVOLUTION MICROEVOLUTION CAUSES OF MICROEVOLUTION Evolution Activity 2.3 page 1 QUESTIONS: 1. Use the key provided to identify the microevolution cause

More information

SPECIATION THE CLASSIC VIEW OF SPECIATION THE CLASSIC VIEW OF SPECIATION

SPECIATION THE CLASSIC VIEW OF SPECIATION THE CLASSIC VIEW OF SPECIATION SPECIATION Provides the link between evolutionary change within lineages (anagenesis/microevolution) and the macroevolutionary patterns that result from cladogenesis. Is a process (degree of reproductive

More information

Introduction to Genetics and Heredity

Introduction to Genetics and Heredity Introduction to Genetics and Heredity Although these dogs have similar characteristics they are each unique! I. Early Ideas About Heredity A. The Theory of Blending Inheritance Each parent contributes

More information

The Origin of Species

The Origin of Species The Origin of Species Bowerbirds, native to New Guinea and Australia, are named for the structure, called a bower, that the male weaves from twigs and grasses to attract females. After building his bower,

More information

9/25/ Some traits are controlled by a single gene. Selective Breeding: Observing Heredity

9/25/ Some traits are controlled by a single gene. Selective Breeding: Observing Heredity Chapter 7 Learning Outcomes Explain the concept of a single-gene trait Describe Mendel s contributions to the field of genetics Be able to define the terms gene, allele, dominant, recessive, homozygous,

More information

The Origin of Species

The Origin of Species Chapter 24. The Origin of Species Both in space and time, we seem to be brought somewhat near to that great fact that mystery of mysteries the first appearance of new beings on this Earth. Darwin 1 Essential

More information

Patterns of Inheritance

Patterns of Inheritance Patterns of Inheritance Mendel the monk studied inheritance keys to his success: he picked pea plants he focused on easily categorized traits he used true-breeding populations parents always produced offspring

More information

How Populations Evolve

How Populations Evolve Chapter 16: pp. 283-298 BIOLOGY 10th Edition How Populations Evolve 10% of population Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. natural disaster kills five

More information

11.1 Genetic Variation

11.1 Genetic Variation 11.1 Genetic Variation Within Populations KEY CONCEPT A population shares a common gene pool. Genetic variation in a population increases the chance that some individuals will survive. Genetic variation

More information

Chapter 11. Introduction to Genetics

Chapter 11. Introduction to Genetics Chapter 11 Introduction to Genetics A Brief History In the past, people did not understand how traits were inherited, but there were many guesses based on things that could be observed. Two theories emerged.

More information

Evolution of Populations

Evolution of Populations Chapter 16 Evolution of Populations Section 16 1 Genes and Variation (pages 393 396) This section describes the main sources of inheritable variation in a population. It also explains how phenotypes are

More information

The Origin of Species

The Origin of Species Chapter 24 The Origin of Species PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

More information

Mechanisms of Evolution

Mechanisms of Evolution Mechanisms of Evolution Mutation Gene Flow (migration) Non-random mating Genetic Drift Natural Selection...individuals don t evolve, populations do 1. Mutation The ultimate source of genetic variation.

More information

(a) Similarity between different species (b) Diversity within a species

(a) Similarity between different species (b) Diversity within a species Fig. 24-1 Fig. 24-2 (a) Similarity between different species (b) Diversity within a species Fig. 24-2a (a) Similarity between different species Fig. 24-2b (b) Diversity within a species Fig. 24-3 EXPERIMENT

More information

Assessment Schedule 2013 Biology: Demonstrate understanding of evolutionary processes leading to speciation (91605)

Assessment Schedule 2013 Biology: Demonstrate understanding of evolutionary processes leading to speciation (91605) NCEA Level 3 Biology (91605) 2013 page 1 of 6 Assessment Schedule 2013 Biology: Demonstrate understanding of evolutionary processes leading to speciation (91605) Assessment Criteria Evidence Achievement

More information

TECHNIQUE. Parental generation (P) Stamens Carpel 3. RESULTS First filial. offspring (F 1 )

TECHNIQUE. Parental generation (P) Stamens Carpel 3. RESULTS First filial. offspring (F 1 ) TECHNIQUE 2 Parental generation (P) Stamens Carpel 3 4 RESULTS First filial generation offspring (F ) 5 2 EXPERIMENT P Generation (true-breeding parents) Purple flowers White flowers F Generation (hybrids)

More information

Evidence for evolution in Darwin s time came from several sources: 1. Fossils 2. Geography 3. Embryology 4. Anatomy

Evidence for evolution in Darwin s time came from several sources: 1. Fossils 2. Geography 3. Embryology 4. Anatomy Evidence for evolution in Darwin s time came from several sources: 1. Fossils 2. Geography 3. Embryology 4. Anatomy 1 Fossils in different layers of rock (sedimentary rock strata) have shown: Evidence

More information

Chapter 10 Notes Patterns of Inheritance, Part 1

Chapter 10 Notes Patterns of Inheritance, Part 1 Chapter 10 Notes Patterns of Inheritance, Part 1 I. Gregor Mendel (1822-1884) a. Austrian monk with a scientific background b. Conducted numerous hybridization experiments with the garden pea, Pisum sativum,

More information

Microevolution Changing Allele Frequencies

Microevolution Changing Allele Frequencies Microevolution Changing Allele Frequencies Evolution Evolution is defined as a change in the inherited characteristics of biological populations over successive generations. Microevolution involves the

More information

Genetics and Diversity Punnett Squares

Genetics and Diversity Punnett Squares Genetics and Diversity Punnett Squares 1 OUTCOME QUESTION(S): S1-1-12: How are the features of the parents inherited to create unique offspring? Vocabulary & Concepts Allele Dominant Recessive Genotype

More information

CHAPTER 20 LECTURE SLIDES

CHAPTER 20 LECTURE SLIDES CHAPTER 20 LECTURE SLIDES To run the animations you must be in Slideshow View. Use the buttons on the animation to play, pause, and turn audio/text on or off. Please note: once you have used any of the

More information

ANSWERS & MARK SCHEMES. an obstacle to interbreeding; thus limiting gene flow between parts of the gene pool; thus enabling divergence; max 2

ANSWERS & MARK SCHEMES. an obstacle to interbreeding; thus limiting gene flow between parts of the gene pool; thus enabling divergence; max 2 QUESTIONSHEET 1 (b) (i) a population of similar organisms that are capable of interbreeding to form fertile offspring; they are reproductively isolated from other such populations/cannot interbreed with

More information

Meiotic Mistakes and Abnormalities Learning Outcomes

Meiotic Mistakes and Abnormalities Learning Outcomes Meiotic Mistakes and Abnormalities Learning Outcomes 5.6 Explain how nondisjunction can result in whole chromosomal abnormalities. (Module 5.10) 5.7 Describe the inheritance patterns for strict dominant

More information

2017 Version. Key Question types NCEA Science 1.9 Genetic Variation AS 90948

2017 Version. Key Question types NCEA Science 1.9 Genetic Variation AS 90948 2017 Version Key Question types NCEA Science 1.9 Genetic Variation AS 90948 Linking DNA, Alleles and Chromosomes Chromosomes are made up of DNA. DNA is a large molecule that is coiled into a double helix

More information

Microevolution: The Forces of Evolutionary Change Part 2. Lecture 23

Microevolution: The Forces of Evolutionary Change Part 2. Lecture 23 Microevolution: The Forces of Evolutionary Change Part 2 Lecture 23 Outline Conditions that cause evolutionary change Natural vs artificial selection Nonrandom mating and sexual selection The role of chance

More information

Genes and Inheritance (11-12)

Genes and Inheritance (11-12) Genes and Inheritance (11-12) You are a unique combination of your two parents We all have two copies of each gene (one maternal and one paternal) Gametes produced via meiosis contain only one copy of

More information

Mendel and Heredity. Chapter 12

Mendel and Heredity. Chapter 12 Mendel and Heredity Chapter 12 12.1 Objectives: 1.) summarize the importance of Mendel s experiments 2.)Differentiate between genes and alleles. 3.) Explain that alleles determine what physical traits

More information

Genetics and Heredity Notes

Genetics and Heredity Notes Genetics and Heredity Notes I. Introduction A. It was known for 1000s of years that traits were inherited but scientists were unsure about the laws that governed this inheritance. B. Gregor Mendel (1822-1884)

More information

How do genes influence our characteristics?

How do genes influence our characteristics? Genetics Supplement 1 This activity will focus on the question: How do genes contribute to the similarities and differences between parents and their children? This question can be divided into two parts:

More information

The Origin of Species

The Origin of Species LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 24 The Origin of Species Lectures

More information

8.1 Genes Are Particulate and Are Inherited According to Mendel s Laws 8.2 Alleles and Genes Interact to Produce Phenotypes 8.3 Genes Are Carried on

8.1 Genes Are Particulate and Are Inherited According to Mendel s Laws 8.2 Alleles and Genes Interact to Produce Phenotypes 8.3 Genes Are Carried on Chapter 8 8.1 Genes Are Particulate and Are Inherited According to Mendel s Laws 8.2 Alleles and Genes Interact to Produce Phenotypes 8.3 Genes Are Carried on Chromosomes 8.4 Prokaryotes Can Exchange Genetic

More information

Mendel. The pea plant was ideal to work with and Mendel s results were so accurate because: 1) Many. Purple versus flowers, yellow versus seeds, etc.

Mendel. The pea plant was ideal to work with and Mendel s results were so accurate because: 1) Many. Purple versus flowers, yellow versus seeds, etc. Mendel A. Mendel: Before Mendel, people believed in the hypothesis. This is analogous to how blue and yellow paints blend to make. Mendel introduced the hypothesis. This deals with discrete units called

More information

Schedule Change! Today: Thinking About Darwinian Evolution. Perplexing Observations. We owe much of our understanding of EVOLUTION to CHARLES DARWIN.

Schedule Change! Today: Thinking About Darwinian Evolution. Perplexing Observations. We owe much of our understanding of EVOLUTION to CHARLES DARWIN. Schedule Change! Film and activity next Friday instead of Lab 8. (No need to print/read the lab before class.) Today: Thinking About Darwinian Evolution Part 1: Darwin s Theory What is evolution?? And

More information

Evolution of Populations. AP Biology

Evolution of Populations. AP Biology Evolution of Populations 2007-2008 Doonesbury - Sunday February 8, 2004 Review of Darwin s Influence Geology Thomas Hutton Charles Lyll - Biology Jean Baptist Lamark - Tendency toward Perfection - Use

More information

PopGen4: Assortative mating

PopGen4: Assortative mating opgen4: Assortative mating Introduction Although random mating is the most important system of mating in many natural populations, non-random mating can also be an important mating system in some populations.

More information

Name: Date: Period: Unit 1 Test: Microevolution (Original Test) Ms. OK, AP Biology,

Name: Date: Period: Unit 1 Test: Microevolution (Original Test) Ms. OK, AP Biology, Name: Date: Period: Unit 1 Test: Microevolution (Original Test) Ms. OK, AP Biology, 2014-2015 General Directions: Use your time effectively, working as quickly as you can without losing accuracy. Do not

More information

Unit 1 Biological Diversity Topic 1.1 Examining Diversity. Text p. 3-15

Unit 1 Biological Diversity Topic 1.1 Examining Diversity. Text p. 3-15 Topic 1.1 Examining Diversity. Text p. 3-15 Variation to the MAX! Biologists have identified over species of animals and over species of plants. The most successful life form is What is Biodiversity? The

More information

Individual Feedback Report for: St#: Test: GENETICS UNIT TEST 2score Grade: 3 Score: % (20.00 of 35.00)

Individual Feedback Report for: St#: Test: GENETICS UNIT TEST 2score Grade: 3 Score: % (20.00 of 35.00) Individual Feedback Report for: St#: 703709 Test: GENETICS UNIT TEST 2score Grade: 3 Score: 57.14 % (20.00 of 35.00) 26. T F The cell wall controls the transfer of nutrients into animal cells. 27. Mitosis

More information

Codominance. P: H R H R (Red) x H W H W (White) H W H R H W H R H W. F1: All Roan (H R H W x H R H W ) Name: Date: Class:

Codominance. P: H R H R (Red) x H W H W (White) H W H R H W H R H W. F1: All Roan (H R H W x H R H W ) Name: Date: Class: Name: Date: Class: (Exceptions to Mendelian Genetics Continued) Codominance Firstly, it is important to understand that the meaning of the prefix "co is "together" (i.e. cooperate = work together, coexist

More information

Chapter 15 Review Page 1

Chapter 15 Review Page 1 hapter 15 Review Page 1 1 ased on the results of this cross, you determine that the allele for round eyes is linked to the allele for no tooth. round eyes are dominant to vertical eyes, and the absence

More information

Chapter 24 The Origin of Species

Chapter 24 The Origin of Species Chapter 24 The Origin of Species Lecture Outline Overview: That Mystery of Mysteries Charles Darwin visited the Galápagos Islands and found plants and animals that lived nowhere else in the world. Darwin

More information

Mendel and Heredity. Chapter 12

Mendel and Heredity. Chapter 12 Mendel and Heredity Chapter 12 Objectives: 1.) Differentiate between genotype and phenotype 2.)Differentiate between genes and alleles. 3.) Differentiate between dominant and recessive alleles. 4.) Explain

More information

September 30, Lecture 10

September 30, Lecture 10 Disruptive Natural Selection in Sticklebacks field study carried out by Robinson lakes of coastal BC wherever two stickleback species occur in the same lake, they occupy different habitats and make use

More information

Meiosis and Genetics

Meiosis and Genetics Meiosis and Genetics Humans have chromosomes in each cell What pattern do you notice in the human karyotype (a technique that organizes chromosomes by type and size)? Humans are diploid 1 Gametes are produced

More information

Welcome Back! 2/6/18. A. GGSS B. ggss C. ggss D. GgSs E. Ggss. 1. A species of mice can have gray or black fur

Welcome Back! 2/6/18. A. GGSS B. ggss C. ggss D. GgSs E. Ggss. 1. A species of mice can have gray or black fur Welcome Back! 2/6/18 1. A species of mice can have gray or black fur and long or short tails. A cross between blackfurred, long-tailed mice and gray-furred, shorttailed mice produce all black-furred, long-tailed

More information

Genetics: CH9 Patterns of Inheritance

Genetics: CH9 Patterns of Inheritance Genetics: CH9 Patterns of Inheritance o o Lecture note Directions Highlight Key information (10-30% of most slides) My Thoughts: Questions, comments, additional information, connections to prior knowledge,

More information

Name Period. Keystone Vocabulary: genetics fertilization trait hybrid gene allele Principle of dominance segregation gamete probability

Name Period. Keystone Vocabulary: genetics fertilization trait hybrid gene allele Principle of dominance segregation gamete probability Name Period BIO B2 GENETICS (Chapter 11) You should be able to: 1. Describe and/or predict observed patterns of inheritance (dominant, recessive, co- dominant, incomplete dominance, sex- linked, polygenic

More information

Section 8.1 Studying inheritance

Section 8.1 Studying inheritance Section 8.1 Studying inheritance Genotype and phenotype Genotype is the genetic constitution of an organism that describes all the alleles that an organism contains The genotype sets the limits to which

More information

EEB 122b FIRST MIDTERM

EEB 122b FIRST MIDTERM EEB 122b FIRST MIDTERM Page 1 1 Question 1 B A B could have any slope (pos or neg) but must be above A for all values shown The axes above relate individual growth rate to temperature for Daphnia (a water

More information

Section 11 1 The Work of Gregor Mendel (pages )

Section 11 1 The Work of Gregor Mendel (pages ) Chapter 11 Introduction to Genetics Section 11 1 The Work of Gregor Mendel (pages 263 266) This section describes how Gregor Mendel studied the inheritance of traits in garden peas and what his conclusions

More information

Genetics 1 by Drs. Scott Poethig, Ingrid Waldron, and. Jennifer Doherty, Department of Biology, University of Pennsylvania, Copyright, 2011

Genetics 1 by Drs. Scott Poethig, Ingrid Waldron, and. Jennifer Doherty, Department of Biology, University of Pennsylvania, Copyright, 2011 Genetics 1 by Drs. Scott Poethig, Ingrid Waldron, and. Jennifer Doherty, Department of Biology, University of Pennsylvania, Copyright, 2011 We all know that children tend to resemble their parents in appearance.

More information

Evolution and Speciation

Evolution and Speciation CHAPTER 9 Evolution and Speciation Specific Expectations In this chapter you will learn how to... C1.2 evaluate the possible impact of an environmental change on natural selection and on the vulnerability

More information

The Discovery of Chromosomes and Sex-Linked Traits

The Discovery of Chromosomes and Sex-Linked Traits The Discovery of Chromosomes and Sex-Linked Traits Outcomes: 1. Compare the pattern of inheritance produced by genes on the sex chromosomes to that produced by genes on autosomes, as investigated by Morgan.

More information

Genes in a Population

Genes in a Population Population Genetics Genes in a Population Population genetics is the study of allele behavior in a population. A population is a group of local interbreeding individuals of a single species Example: ABO

More information

Two copies of each autosomal gene affect phenotype.

Two copies of each autosomal gene affect phenotype. UNIT 3 GENETICS LESSON #34: Chromosomes and Phenotype Objective: Explain how the chromosomes on which genes are located can affect the expression of traits. Take a moment to look at the variety of treats

More information

Mendelian Genetics & Inheritance Patterns. Multiple Choice Review. Slide 1 / 47. Slide 2 / 47. Slide 4 / 47. Slide 3 / 47. Slide 5 / 47.

Mendelian Genetics & Inheritance Patterns. Multiple Choice Review. Slide 1 / 47. Slide 2 / 47. Slide 4 / 47. Slide 3 / 47. Slide 5 / 47. Slide 1 / 47 Slide 2 / 47 New Jersey enter for Teaching and Learning Progressive Science Initiative This material is made freely available at www.njctl.org and is intended for the non-commercial use of

More information

Ch 4: Mendel and Modern evolutionary theory

Ch 4: Mendel and Modern evolutionary theory Ch 4: Mendel and Modern evolutionary theory 1 Mendelian principles of inheritance Mendel's principles explain how traits are transmitted from generation to generation Background: eight years breeding pea

More information

Sexual Reproduction. Chapter 3 Sexual Reproduction BC Science Probe 9 pages

Sexual Reproduction. Chapter 3 Sexual Reproduction BC Science Probe 9 pages Sexual Reproduction Chapter 3 Sexual Reproduction BC Science Probe 9 pages 72-105 Why Sex? Textbook Read pages 74 77 Sexual Reproduction Is reproduction involving two parents Each parent contributes equal

More information

Any variation that makes an organism better suited to its environment so it can survive is called a what?

Any variation that makes an organism better suited to its environment so it can survive is called a what? A change of an organism over time is also called. Chapters 10 & 11 Evolution Any variation that makes an organism better suited to its environment so it can survive is called a what? 1 Adaptation James

More information

Human Inheritance Lesson 4

Human Inheritance Lesson 4 Human Inheritance Lesson 4 May 10 6:55 PM What are some patterns of human inheritance? What are the functions of the sex chromosomes? May 10 6:56 PM 1 I. What are some patterns of human inheritance A.

More information

Genetics and heredity. For a long time, general ideas of inheritance were known + =

Genetics and heredity. For a long time, general ideas of inheritance were known + = Mendelian Genetics Genetics and heredity For a long time, general ideas of inheritance were known + = + = What was really lacking was a quantitative understanding of how particular traits were passed down

More information

Mendelian Genetics & Inheritance Patterns. Multiple Choice Review. Slide 1 / 47. Slide 2 / 47. Slide 3 / 47

Mendelian Genetics & Inheritance Patterns. Multiple Choice Review. Slide 1 / 47. Slide 2 / 47. Slide 3 / 47 New Jersey enter for Teaching and Learning Slide 1 / 47 Progressive Science Initiative This material is made freely available at www.njctl.org and is intended for the non-commercial use of students and

More information

Mendelian Genetics & Inheritance Patterns. Multiple Choice Review. Slide 2 / 47. Slide 1 / 47. Slide 3 (Answer) / 47. Slide 3 / 47.

Mendelian Genetics & Inheritance Patterns. Multiple Choice Review. Slide 2 / 47. Slide 1 / 47. Slide 3 (Answer) / 47. Slide 3 / 47. Slide 1 / 47 Slide 2 / 47 New Jersey enter for Teaching and Learning Progressive Science Initiative This material is made freely available at www.njctl.org and is intended for the non-commercial use of

More information

Evolution. Determining Allele Frequency These frogs are diploid, thus have two copies of their genes for color. Determining Allele Frequency

Evolution. Determining Allele Frequency These frogs are diploid, thus have two copies of their genes for color. Determining Allele Frequency Evolution Microevolution Changing Allele Frequencies Evolution is defined as a change in the inherited characteristics of biological populations over successive generations. Microevolution involves the

More information

NAME: PID: Group Name: BioSci 110, Fall 08 Exam 3

NAME: PID: Group Name: BioSci 110, Fall 08 Exam 3 For questions 1 and 2 use the phylogeny to the right. 1. With what group of species do rodents share the most traits? a. amphibians b. dinosaurs and birds c. *primates d. ray-finned fish e. sharks 2. Which

More information

Natural Selection In Humans (Sickle Cell Anemia)

Natural Selection In Humans (Sickle Cell Anemia) Natural Selection In Humans (Sickle Cell Anemia) Background Information Hemoglobin is a protein found in red blood cells Transports oxygen to body tissues Individuals homozygous for the sickle cell allele

More information

DEFINITIONS: POPULATION: a localized group of individuals belonging to the same species

DEFINITIONS: POPULATION: a localized group of individuals belonging to the same species DEFINITIONS: POPULATION: a localized group of individuals belonging to the same species SPECIES: a group of populations whose individuals have the potential to interbreed and produce fertile offspring

More information

Unit 5 Review Name: Period:

Unit 5 Review Name: Period: Unit 5 Review Name: Period: 1 4 5 6 7 & give an example of the following. Be able to apply their meanings: Homozygous Heterozygous Dominant Recessive Genotype Phenotype Haploid Diploid Sex chromosomes

More information

On the origin of species, Really

On the origin of species, Really On the origin of species, Really Mohamed Noor Duke University Life on our planet is highly diverse but that life seems to exist in discrete clusters at multiple levels We readily recognize these clusters

More information

Genetics Honors NOtes 2017 SHORT p2.notebook. May 26, 2017

Genetics Honors NOtes 2017 SHORT p2.notebook. May 26, 2017 Do Now A man and woman want to predict the chances of their offspring having dimples. The woman is heterozygous for dimples and the man does not have dimples. What is the chance of having a child with

More information

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 6 Patterns of Inheritance

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 6 Patterns of Inheritance Chapter 6 Patterns of Inheritance Genetics Explains and Predicts Inheritance Patterns Genetics can explain how these poodles look different. Section 10.1 Genetics Explains and Predicts Inheritance Patterns

More information

Mendelian Genetics Chapter 11

Mendelian Genetics Chapter 11 Mendelian Genetics Chapter 11 Starts on page 308 Roots, Prefixes & Suffixes: homo = hetero = geno = pheno = zyg = co = poly = Section 11-1: Mendel & His Peas I. Vocabulary Words: A. Gene - a small section

More information

The Origin of Species. Chapter 22

The Origin of Species. Chapter 22 The Origin of Species Chapter 22 1 The Nature of Species The concept of species must account for two phenomena: The distinctiveness of species that occur together at a single locality The connection that

More information

Chapter 23. Population Genetics. I m from the shallow end of the gene pool AP Biology

Chapter 23. Population Genetics. I m from the shallow end of the gene pool AP Biology Chapter 23. Population Genetics I m from the shallow end of the gene pool 1 Essential Questions How can we measure evolutionary change in a population? What produces the variation that makes evolution

More information