Mendelian Genetics & Inheritance Patterns. Practice Questions. Slide 1 / 116. Slide 2 / 116. Slide 3 / 116

Size: px
Start display at page:

Download "Mendelian Genetics & Inheritance Patterns. Practice Questions. Slide 1 / 116. Slide 2 / 116. Slide 3 / 116"

Transcription

1 New Jersey Center for Teaching and Learning Slide 1 / 116 Progressive Science Initiative This material is made freely available at and is intended for the non-commercial use of students and teachers. These materials may not be used for any commercial purpose without the written permission of the owners. NJCTL maintains its website for the convenience of teachers who wish to make their work available to other teachers, participate in a virtual professional learning community, and/or provide access to course materials to parents, students and others. Click to go to website: Slide 2 / 116 Mendelian Genetics & Inheritance Patterns Practice Questions 1 Sexual reproduction takes a very significant toll on those species that utilize this process. What is the benefit that sexual reproduction offers for a species? Slide 3 / 116

2 2 What is the relationship between traits and heredity? Slide 4 / Explain the concept of Blending Inheritance. Was this theory supported or rejected by Mendel and his work? Slide 5 / Explain, in terms of the theory of Inherited Characteristics, how an anteater has developed a long nose. Slide 6 / 116

3 5 Identify the characteristics that made pea plants ideal for Mendel to use as a model organism. Slide 7 / Explain the process by which Mendel was able to control his breeding between pea plants. Slide 8 / What is a phenotype? Slide 9 / 116

4 8 Pick three traits Mendel chose to observe and identify two potential phenotypes for each trait. Slide 10 / What is true breeding? Slide 11 / Identify the ratio of offspring for the F1 and F2 generations in a monohybrid cross involving parents with white and purple flowers. Slide 12 / 116

5 11 Identify the four rules that Mendel established following his studies of the monohybrid cross process. Slide 13 / What is it called when an organism possesses two different alleles for a trait? Slide 14 / Explain how the ratio of the F2 generation in Mendel s monohybrid crosses helped him to determine the existence of dominant and recessive alleles. Slide 15 / 116

6 14 What is the Law of Segregation? Slide 16 / Identify the relationship between meiosis and Mendel s patterns of inheritance. Slide 17 / Suppose one of Mendel s pea plants had experienced a non-lethal form of trisomy for one of the characteristics he was studying. Explain how this could have complicated Mendel s observations if this plant were part of a parent generation in one of his monohybrid crosses. Slide 18 / 116

7 17 Suppose Mendel had made his observations a few decades later when there as more widespread knowledge of chromosomes throughout the scientific community. How do you suppose this may have impacted the development of his theory? Slide 19 / is widely considered to be the father of modern genetics because of the role that he played in the development of this field. Slide 20 / What is the concept of Inheritance of Acquired Characteristics? Explain this theory and identify the individual who developed the theory. Slide 21 / 116

8 20 What is a model organism? Identify Mendel s model organism. Slide 22 / Why was it essential that Mendel was able to control breeding between his pea plants? Slide 23 / Identify the details regarding the phenotypes investigated by Mendel that contributed to the ideal nature of his model organism. Slide 24 / 116

9 23 What is a monohybrid cross? Explain the steps involved in this process and identify the names of the generations involved. Slide 25 / Compare the phenotypes of the F1 generation with the phenotypes of the P generation in a monohybrid cross. Slide 26 / What did Mendel conclude regarding inheritance of alleles from his monohybrid cross experiments? Slide 27 / 116

10 26 What is it called when an organism possesses two copies of the same allele for a given trait? Slide 28 / Why did Mendel never discuss chromosomes in the development of his theories on genetics? Slide 29 / What is the relationship between homologous chromosomes and allele pairs described in Mendel s theories of inheritance? Slide 30 / 116

11 29 What is a heritable factor? Slide 31 / What is the difference between a homozygous and heterozygous allele combination? Slide 32 / Explain the purpose of a Punnett Square. Slide 33 / 116

12 32 What is the difference between a genotype and a phenotype? Slide 34 / Identify the genotypes of the P generation involved in Mendel s monohybrid crosses. Slide 35 / Suppose large ears (L) are dominant over small ears in elephants. Cross an elephant with small ears with a heterozygote elephant. What are the genotypic and phenotypic ratios? Slide 36 / 116

13 35 Suppose broad stripes (B) are dominant over skinny stripes in tigers. If two heterozygote tigers produce a cub, what is the percent chance that the cub will have skinny stripes? Slide 37 / Suppose the allele for blue color (B) is dominant to the allele for yellow in a flower species. What combination of parent genotypes could potentially yield yellow offspring? Slide 38 / Are offspring genotypic and phenotypic ratios always the same? Explain your answer. Slide 39 / 116

14 38 What is the purpose of a test-cross? Slide 40 / In Mendel s pea plants, tall was the dominant allele for plant height. Perform a test cross to determine the unknown genotype of a tall pea plant. Provide both possible outcomes. Slide 41 / Why does it make sense that test-crosses are more accurate and reliable involving species that reproduce with multiple offspring at one time? Slide 42 / 116

15 41 What is the difference between a monohybrid and dihybrid cross? Slide 43 / Suppose in eagles, short wings (S) are dominant over long wings (s) and sharp talons (T) is dominant over dull talons (t). Cross an eagle heterozygous for both traits with an eagle homozygous recessive for both traits. Provide genotypic and phenotypic ratios for offspring. Slide 44 / Suppose in lions, long tail (L) is dominant to short tail and solid coat (S) is dominant to mottled coat. Cross a lion homozygous recessive for tail length and heterozygous for coat with a lion heterozygous for tail length and homozygous dominant for coat. Provide genotypic and phenotypic ratios. Slide 45 / 116

16 44 Explain, in terms of probability, why the chances of producing two organisms that are genetically identical decreases as the number of genes in a genome increase. Slide 46 / Use the rule of multiplication to determine the following: Suppose you cross an organism with the genotype AaBbCc with an organism with the genotype aabbcc. What is the probability that the offspring will have the genotype aabbcc? Slide 47 / Use the rule of addition to determine the following: Suppose you cross two pea plants heterozygous for flower color (remember purple is dominant to white). What is the probability the offspring will be a heterozygote? Slide 48 / 116

17 47 Use the rule of addition to determine the following: Suppose you cross two pea plants heterozygous for flower color (remember purple is dominant to white). What is the probability the offspring will be purple? Slide 49 / Use the rules of multiplication and addition to determine the following: Suppose you cross two individuals with the following genotypes: AABbCC x aabbcc. What is the probability that you will produce an offspring with genotype AaBBCC or AaBbCc? Slide 50 / In developing a Punnett Square, what do the letters actually represent? Slide 51 / 116

18 50 In Mendel s monohybrid cross, which allele is expressed in a heterozygous genotype? Slide 52 / In Mendelian traits, is it always possible to determine the genotype of an organism with a dominant phenotype? Explain your answer. Slide 53 / Suppose in pine trees long needles (L) are dominant to short needles. Cross a homozygous dominant tree with a short-needled tree. Provide genotypic and phenotypic ratios. Slide 54 / 116

19 53 Suppose in great white sharks that a tall dorsal fin (T) is dominant to a short dorsal fin. Cross a homozygous dominant shark with a heterozygous shark. Provide genotypic and phenotypic ratios. Slide 55 / Suppose in panda bears small ears (S) are dominant over big ears. You work at a zoo, and need to determine the genotype of your small eared panda. Explain how you could potentially determine the unknown genotype. Slide 56 / Explain how dihybrid crosses helped Mendel to develop his theory of independent assortment. Slide 57 / 116

20 56 Suppose in largemouth bass, green skin color (G) is dominant over olive (g) and broad stripe (B) is dominant over thin (b). Cross two bass that are heterozygous for both traits, and provide phenotypic ratios. Slide 58 / Suppose in spruce trees, long needles (L) are dominant over short needles (l) and thick bark (T) is dominant over thin (t). Cross a spruce tree heterozygous for needle length and homozygous dominant for bark thickness with a tree homozygous dominant for needle length and homozygous recessive for bark thickness. Provide genotypic and phenotypic ratios for offspring. Slide 59 / Use the rule of multiplication to determine the following: Suppose you cross two organisms with the genotype AaBbCc. What is the probability the offspring will have the same genotype? Slide 60 / 116

21 59 Use the rule of addition to determine the following: Suppose you cross two pea plants heterozygous for flower color (remember purple is dominant to white). What is the probability the offspring will be a homozygote? Slide 61 / Use the rules of multiplication and addition to determine the following: Suppose you cross two individuals with the following genotypes: AaBbCc x AaBbCc. What is the probability that you will produce an offspring with genotype AaBbCc or AAbbCc? Slide 62 / Provide one example in which the patterns of inheritance observed by Mendel would not apply Slide 63 / 116

22 62 How many phenotypes may exist for a trait that possesses two allele options? Slide 64 / Suppose Mendel s pea plants demonstrated incomplete dominance, with pink being the intermediate phenotype. What would the genotypic and phenotypic ratios have been in Mendel s F1 generation? Slide 65 / Suppose in crocodiles, the tooth length trait exhibits incomplete dominance. Cross a long toothed (L) crocodile with a short toothed crocodile. Provide ratios. Slide 66 / 116

23 65 In horses, red hair (R) is codominant with white hair (W). The codominant phenotype is a roan coat. Cross a red stallion with a roan mare. Provide ratios. Slide 67 / What is pleiotropy? Slide 68 / Explain the principle of polygenic inheritance. Slide 69 / 116

24 68 Why is height in humans considered to be a polygenic trait? Slide 70 / In humans there are three alleles for blood type: A, B and O. A and B are codominant, and O is recessive. Cross a type AB parent with an AO parent, provide potential genotypic and phenotypic ratios for offspring. Slide 71 / Refer to the question above. What is the probability that the parents would produce a child with type AB blood? Slide 72 / 116

25 71 Explain the principle of incomplete dominance. Slide 73 / In snapdragons, incomplete dominance results in a pink flower. Cross a red flower (R) with a pink flower. Provide ratios. Slide 74 / Explain the principle of codominance. Slide 75 / 116

26 74 Identify and explain the difference between codominance and incomplete dominance. Slide 76 / Explain why sickle cell anemia would be considered to be a pleiotropic trait. Slide 77 / Why is skin color in humans considered to be a polygenic trait? Slide 78 / 116

27 77 Consider a genetic mutation in which a single gene creates multiple effects in an afflicted individual. Would this be considered a pleiotropic or polygenic situation? Slide 79 / Suppose parents with type A blood had a child with type O blood. Explain how this situation could potentially occur. Slide 80 / In rabbits, coat color is a trait that demonstrates complete dominance, but has multiple alleles. Brown coat is dominant to all other alleles, Black coat is dominant to Gray coat. Cross a homozygous Brown rabbit with a heterozygous black rabbit. Provide ratios. Slide 81 / 116

28 80 Explain, using examples of non-mendelian inheritance, why Gregor Mendel may have had a more difficult time developing his rules for inheritance if his pea plants were not as straightforward in their hereditary patterns. Slide 82 / What genotype would an individual who suffers from a recessive inherited disease have to exhibit? Explain. Slide 83 / Would you be able to identify a carrier of a genetic disease by examining phenotype? Why or why not? Slide 84 / 116

29 83 Suppose two parents who were carriers of a recessive genetic disorder on a single allele decided to have children. What is the percent chance that their child could be born with the disorder? Slide 85 / Explain why consanguineous marriages may result in a higher rate of rare inherited disorders. Slide 86 / Can an individual be a carrier for a dominant genetic disorder? Explain your answer. Slide 87 / 116

30 86 What is a sex-linked disorder? Slide 88 / Suppose a female is a carrier for a sex-linked disorder that her husband does not have. What is the percent chance that she will have a child with the disorder? Does the gender of the child matter in this situation? Slide 89 / Suppose a mother with an X-linked dominant genetic disorder has a child with a male who does not exhibit the disorder. What is the likelihood that their child will have the disorder? Does the gender of the child matter in this situation? Slide 90 / 116

31 89 What is the role of a genetic counselor in the process of family planning? Slide 91 / Briefly explain the process of amniocentesis. Slide 92 / Explain, in terms of genotype versus phenotype, how ultrasounds and amniocentesis are used to predict the occurrence of genetic disorders. Slide 93 / 116

32 92 Define carrier, in terms of inherited diseases. Slide 94 / Suppose parents who are carriers of a recessive genetic disorder on a single allele decided to have a child with a parent who exhibits the same disorder. What is the percent chance that their child could be born with the disorder? Does this percentage change if they had a second child? Explain your answer. Slide 95 / Huntington s disease is a dominant genetic disorder. Would an individual heterozygous for the Huntington s allele demonstrate the disease? Explain your answer. Slide 96 / 116

33 95 Suppose a father, who is heterozygous for Huntington s disease, has a child with a mother who does not have the disease. What is the percent chance that the child will have the disease? Slide 97 / Identify the combination of sex chromosomes exhibited by a male and a female. Slide 98 / Why do males typically exhibit x-linked disorders more often than females? Slide 99 / 116

34 98 Suppose a father with an X-linked recessive disorder has a child with a woman who does not have the disorder. What is the percent chance that the child will have the disorder? Does gender matter in this situation? Slide 100 / Explain why, in relationship to sex chromosomes, most of the genes that are critical for survival are found on the X chromosome instead of the Y chromosome. Slide 101 / Briefly explain the process of chorionic villi sampling. What may be the advantage to this process over amniocentesis? Slide 102 / 116

35 101 What methods can be used to mitigate the symptoms of a child born with phenylketonuria? Slide 103 / Why are amniocentesis, CVS and fetoscopy generally only performed if the risk of genetic disease is deemed to be relatively high? Slide 104 / Why are pedigrees useful in studying genetic disorders? Slide 105 / 116

36 104 If two individuals in a pedigree do not have an autosomal recessive disorder, but one of their four children does have the selected disorder, what are the genotypes of the parents? How do you know? Slide 106 / Suppose you are using a pedigree to study a sexlinked recessive genetic disorder. If a female demonstrates this disorder, what is her genotype? What can you infer about her father s genotype? Slide 107 / Refer to the pedigree. Is the studied disorder a recessive or dominant disorder? How do you know? Slide 108 / 116

37 107 Refer to the pedigree. What can you infer about the genotype of individual II-1? How do you know? Slide 109 / Refer to the pedigree. Suppose this a sex-linked disorder. What can you infer about the genotype of individual I-1? Explain your answer. Slide 110 / When studying a pedigree, how can you tell if a trait is autosomal dominant or autosomal recessive? Slide 111 / 116

38 110 Suppose you are studying a pedigree for a genetic disorder that only shows up in male individuals. What details may you be able to infer about this disorder? Slide 112 / Suppose you are using a pedigree to study a sexlinked disorder. You come across a situation where a female has the disorder, but her father did not. Explain how this could occur. Slide 113 / Refer to the pedigree. Could this be an autosomal dominant disorder? Explain your answer. Slide 114 / 116

39 113 Refer to the pedigree. If this is an autosomal dominant disorder, what is the genotype of II-4? Slide 115 / Refer to the pedigree. If this is an autosomal recessive disorder, what is the genotype individual II-1? Slide 116 / 116

Progressive Science Initiative. Click to go to website:

Progressive Science Initiative. Click to go to website: Slide 1 / 116 New Jersey Center for Teaching and Learning Progressive Science Initiative This material is made freely available at www.njctl.org and is intended for the non-commercial use of students and

More information

Mendelian Genetics. KEY CONCEPT Mendel s research showed that traits are inherited as discrete units.

Mendelian Genetics. KEY CONCEPT Mendel s research showed that traits are inherited as discrete units. KEY CONCEPT Mendel s research showed that traits are inherited as discrete units. Mendel laid the groundwork for genetics. Traits are distinguishing characteristics that are inherited. Genetics is the

More information

Genes and Inheritance (11-12)

Genes and Inheritance (11-12) Genes and Inheritance (11-12) You are a unique combination of your two parents We all have two copies of each gene (one maternal and one paternal) Gametes produced via meiosis contain only one copy of

More information

Mendelian Genetics & Inheritance Patterns. Multiple Choice Review. Slide 1 / 47. Slide 2 / 47. Slide 4 / 47. Slide 3 / 47. Slide 5 / 47.

Mendelian Genetics & Inheritance Patterns. Multiple Choice Review. Slide 1 / 47. Slide 2 / 47. Slide 4 / 47. Slide 3 / 47. Slide 5 / 47. Slide 1 / 47 Slide 2 / 47 New Jersey enter for Teaching and Learning Progressive Science Initiative This material is made freely available at www.njctl.org and is intended for the non-commercial use of

More information

Unit 7 Section 2 and 3

Unit 7 Section 2 and 3 Unit 7 Section 2 and 3 Evidence 12: Do you think food preferences are passed down from Parents to children, or does the environment play a role? Explain your answer. One of the most important outcomes

More information

Genetics. The study of heredity. Father of Genetics: Gregor Mendel (mid 1800 s) Developed set of laws that explain how heredity works

Genetics. The study of heredity. Father of Genetics: Gregor Mendel (mid 1800 s) Developed set of laws that explain how heredity works Genetics The study of heredity Father of Genetics: Gregor Mendel (mid 1800 s) Developed set of laws that explain how heredity works Father of Genetics: Gregor Mendel original pea plant (input) offspring

More information

Mendelian Genetics & Inheritance Patterns. Multiple Choice Review. Slide 1 / 47. Slide 2 / 47. Slide 3 / 47

Mendelian Genetics & Inheritance Patterns. Multiple Choice Review. Slide 1 / 47. Slide 2 / 47. Slide 3 / 47 New Jersey enter for Teaching and Learning Slide 1 / 47 Progressive Science Initiative This material is made freely available at www.njctl.org and is intended for the non-commercial use of students and

More information

Mendelian Genetics & Inheritance Patterns. Multiple Choice Review. Slide 2 / 47. Slide 1 / 47. Slide 3 (Answer) / 47. Slide 3 / 47.

Mendelian Genetics & Inheritance Patterns. Multiple Choice Review. Slide 2 / 47. Slide 1 / 47. Slide 3 (Answer) / 47. Slide 3 / 47. Slide 1 / 47 Slide 2 / 47 New Jersey enter for Teaching and Learning Progressive Science Initiative This material is made freely available at www.njctl.org and is intended for the non-commercial use of

More information

Mendel and Heredity. Chapter 12

Mendel and Heredity. Chapter 12 Mendel and Heredity Chapter 12 12.1 Objectives: 1.) summarize the importance of Mendel s experiments 2.)Differentiate between genes and alleles. 3.) Explain that alleles determine what physical traits

More information

Mendel and Heredity. Chapter 12

Mendel and Heredity. Chapter 12 Mendel and Heredity Chapter 12 Objectives: 1.) Differentiate between genotype and phenotype 2.)Differentiate between genes and alleles. 3.) Differentiate between dominant and recessive alleles. 4.) Explain

More information

Genetics- The field of biology that studies how characteristics are passed from one generation to another.

Genetics- The field of biology that studies how characteristics are passed from one generation to another. Genetics- The field of biology that studies how characteristics are passed from one generation to another. Heredity- The passage of traits from one generation to the next. Characteristics- a quality of

More information

Ch 9 Assignment. 2. According to the blending theory of inheritance, a white rabbit crossed with a red rabbit would produce what kind of offspring?

Ch 9 Assignment. 2. According to the blending theory of inheritance, a white rabbit crossed with a red rabbit would produce what kind of offspring? Big idea: Mendel s Laws Answer the following questions as you read modules 9.1 9.10: 1. The study of genetics can be traced back to the Greek physician 2. According to the blending theory of inheritance,

More information

GENETICS PREDICTING HEREDITY

GENETICS PREDICTING HEREDITY GENETICS PREDICTING HEREDITY INTRODUCTION TO GENETICS Genetics is the scientific study of heredity Heredity is essentially the study of how traits are passed from parents to their offspring. GREGOR MENDEL

More information

B-4.7 Summarize the chromosome theory of inheritance and relate that theory to Gregor Mendel s principles of genetics

B-4.7 Summarize the chromosome theory of inheritance and relate that theory to Gregor Mendel s principles of genetics B-4.7 Summarize the chromosome theory of inheritance and relate that theory to Gregor Mendel s principles of genetics The Chromosome theory of inheritance is a basic principle in biology that states genes

More information

Introduction to Genetics

Introduction to Genetics Introduction to Genetics Remember DNA RNA Protein Traits DNA contains the code for proteins (protein synthesis remember?) Proteins determine our traits Gregor Mendel 1822-1884 Father of Genetics Studied

More information

Genetics: CH9 Patterns of Inheritance

Genetics: CH9 Patterns of Inheritance Genetics: CH9 Patterns of Inheritance o o Lecture note Directions Highlight Key information (10-30% of most slides) My Thoughts: Questions, comments, additional information, connections to prior knowledge,

More information

Gregor Mendel. What is Genetics? the study of heredity

Gregor Mendel. What is Genetics? the study of heredity Gregor Mendel What is Genetics? the study of heredity Gregor Mendel s Peas Pollen: plant s sperm Egg Cells: plants reproductive cells Fertilization: joining of pollen + egg cells develops into embryo in

More information

Genetics and Heredity Notes

Genetics and Heredity Notes Genetics and Heredity Notes I. Introduction A. It was known for 1000s of years that traits were inherited but scientists were unsure about the laws that governed this inheritance. B. Gregor Mendel (1822-1884)

More information

Mendelian Genetics and Beyond Chapter 4 Study Prompts

Mendelian Genetics and Beyond Chapter 4 Study Prompts Mendelian Genetics and Beyond Chapter 4 Study Prompts 1. What is a mode of inheritance? 2. Can you define the following? a. Autosomal dominant b. Autosomal recessive 3. Who was Gregor Mendel? 4. What did

More information

draw and interpret pedigree charts from data on human single allele and multiple allele inheritance patterns; e.g., hemophilia, blood types

draw and interpret pedigree charts from data on human single allele and multiple allele inheritance patterns; e.g., hemophilia, blood types Specific Outcomes for Knowledge Students will: 30 C2.1k describe the evidence for dominance, segregation and the independent assortment of genes on different chromosomes, as investigated by Mendel 30 C2.2k

More information

Name Class Date. Review Guide. Genetics. The fundamental principles of genetics were first discovered by. What type of plant did he breed?.

Name Class Date. Review Guide. Genetics. The fundamental principles of genetics were first discovered by. What type of plant did he breed?. Name Class Date Review Guide Genetics The fundamental principles of genetics were first discovered by. What type of plant did he breed?. True-breeding parental plants are called the generation. Their hybrid

More information

Name Class Date *PACKET NOTES & WORKSHEETS LAB GRADE

Name Class Date *PACKET NOTES & WORKSHEETS LAB GRADE Name Class Date *PACKET NOTES & WORKSHEETS LAB GRADE MEIOSIS is specialized cell division resulting in cells with the genetic material of the parents Sex cells called have exactly set of chromosomes, this

More information

Honors Biology Test Chapter 9 - Genetics

Honors Biology Test Chapter 9 - Genetics Honors Biology Test Chapter 9 - Genetics 1. The exceptions to the rule that every chromosome is part of a homologous pair are the a. sex chromosomes. c. linked chromosomes. b. autosomes. d. linked autosomes.

More information

Semester 2- Unit 2: Inheritance

Semester 2- Unit 2: Inheritance Semester 2- Unit 2: Inheritance heredity -characteristics passed from parent to offspring genetics -the scientific study of heredity trait - a specific characteristic of an individual genes -factors passed

More information

Patterns of Heredity - Genetics - Sections: 10.2, 11.1, 11.2, & 11.3

Patterns of Heredity - Genetics - Sections: 10.2, 11.1, 11.2, & 11.3 Patterns of Heredity - Genetics - Sections: 10.2, 11.1, 11.2, & 11.3 Genetics = the study of heredity by which traits are passed from parents to offspring Page. 227 Heredity = The passing of genes/traits

More information

UNIT III (Notes) : Genetics : Mendelian. (MHR Biology p ) Traits are distinguishing characteristics that make a unique individual.

UNIT III (Notes) : Genetics : Mendelian. (MHR Biology p ) Traits are distinguishing characteristics that make a unique individual. 1 UNIT III (Notes) : Genetics : endelian. (HR Biology p. 526-543) Heredity is the transmission of traits from one generation to another. Traits that are passed on are said to be inherited. Genetics is

More information

IB BIO I Genetics Test Madden

IB BIO I Genetics Test Madden Name Date Multiple Choice 1. What does the genotype X H X h indicate? A. A co-dominant female B. A heterozygous male C. A heterozygous female D. A co-dominant male 2. A pure breeding tall plant with smooth

More information

11-1: Introduction to Genetics

11-1: Introduction to Genetics 11-1: Introduction to Genetics The Work of Gregor Mendel Copyright Pearson Prentice Hall Genetics Vocabulary Genetics The study of heredity. Heredity The passing of physical characteristics from parents

More information

Ch 8 Practice Questions

Ch 8 Practice Questions Ch 8 Practice Questions Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What fraction of offspring of the cross Aa Aa is homozygous for the dominant allele?

More information

MENDELIAN GENETICS. Law of Dominance: Law of Segregation: GAMETE FORMATION Parents and Possible Gametes: Gregory Mendel:

MENDELIAN GENETICS. Law of Dominance: Law of Segregation: GAMETE FORMATION Parents and Possible Gametes: Gregory Mendel: MENDELIAN GENETICS Gregory Mendel: Heredity: Cross: X P1 Generation: F1 Generation: F2 Generation: Gametes: Dominant: Recessive: Genotype: Phenotype: Law of Dominance: Genes: Alleles: Law of Segregation:

More information

Patterns of Inheritance

Patterns of Inheritance 1 Patterns of Inheritance Bio 103 Lecture Dr. Largen 2 Topics Mendel s Principles Variations on Mendel s Principles Chromosomal Basis of Inheritance Sex Chromosomes and Sex-Linked Genes 3 Experimental

More information

Unit 5 Review Name: Period:

Unit 5 Review Name: Period: Unit 5 Review Name: Period: 1 4 5 6 7 & give an example of the following. Be able to apply their meanings: Homozygous Heterozygous Dominant Recessive Genotype Phenotype Haploid Diploid Sex chromosomes

More information

Biology 12. Mendelian Genetics

Biology 12. Mendelian Genetics Mendelian Genetics Genetics: the science (study) of heredity that involves the structure and function of genes and the way genes are passed from one generation to the next. Heredity: the passing on of

More information

Extra Review Practice Biology Test Genetics

Extra Review Practice Biology Test Genetics Mendel fill in the blanks: Extra Review Practice Biology Test Genetics Mendel was an Austrian monk who studied genetics primarily using plants. He started with plants that produced offspring with only

More information

Pedigrees: Genetic Family History

Pedigrees: Genetic Family History Pedigrees: Genetic Family History - Women are represented with a. - Men are represented with a. - Affected individuals are (individuals who express the trait). C B A D If this is you who are The other

More information

Biology. Slide 1 of 31. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 31. End Show. Copyright Pearson Prentice Hall Biology 1 of 31 11 3 Exploring Mendelian 11-3 Exploring Mendelian Genetics Genetics 2 of 31 Independent Assortment Independent Assortment To determine if the segregation of one pair of alleles affects

More information

Meiotic Mistakes and Abnormalities Learning Outcomes

Meiotic Mistakes and Abnormalities Learning Outcomes Meiotic Mistakes and Abnormalities Learning Outcomes 5.6 Explain how nondisjunction can result in whole chromosomal abnormalities. (Module 5.10) 5.7 Describe the inheritance patterns for strict dominant

More information

Introduction to Genetics

Introduction to Genetics DAY 2 Introduction to Genetics Heredity Passing of traits from parents to their young The branch of biology that studies heredity is genetics. Trait Characteristic that is inherited Gregor Mendel Austrian

More information

Introduction to Genetics

Introduction to Genetics Introduction to Genetics Remember DNA RNA Protein Traits DNA contains the code for proteins (protein synthesis remember?) Proteins determine our traits Remember Gregor Mendel 1822-1884 Father of Genetics

More information

Pre-AP Biology Unit 7 Genetics Review Outline

Pre-AP Biology Unit 7 Genetics Review Outline Unit 7 Genetics Review Outline Pre-AP Biology 2017-2018 LT 1 - I can explain the relationships among alleles, genes, chromosomes, genotypes, and phenotypes. This target covers application of the vocabulary

More information

Biology Unit 7 Genetics 7:1 Genetics

Biology Unit 7 Genetics 7:1 Genetics Biology Unit 7 Genetics 7:1 Genetics Gregor Mendel: Austrian monk Studied the inheritance of traits in pea plants His work was not recognized until the 20 th century Between 1856 and 1863, Mendel cultivated

More information

Mendelian Genetics. Activity. Part I: Introduction. Instructions

Mendelian Genetics. Activity. Part I: Introduction. Instructions Activity Part I: Introduction Some of your traits are inherited and cannot be changed, while others can be influenced by the environment around you. There has been ongoing research in the causes of cancer.

More information

UNIT 6 GENETICS 12/30/16

UNIT 6 GENETICS 12/30/16 12/30/16 UNIT 6 GENETICS III. Mendel and Heredity (6.3) A. Mendel laid the groundwork for genetics 1. Traits are distinguishing characteristics that are inherited. 2. Genetics is the study of biological

More information

GENETIC VARIATION AND PATTERNS OF INHERITANCE. SOURCES OF GENETIC VARIATION How siblings / families can be so different

GENETIC VARIATION AND PATTERNS OF INHERITANCE. SOURCES OF GENETIC VARIATION How siblings / families can be so different 9/22/205 GENETIC VARIATION AND PATTERNS OF INHERITANCE SOURCES OF GENETIC VARIATION How siblings / families can be so different Independent orientation of chromosomes (metaphase I of meiosis) Random fertilization

More information

Chapter 11. Introduction to Genetics

Chapter 11. Introduction to Genetics Chapter 11 Introduction to Genetics A Brief History In the past, people did not understand how traits were inherited, but there were many guesses based on things that could be observed. Two theories emerged.

More information

Mendelian Genetics. Gregor Mendel. Father of modern genetics

Mendelian Genetics. Gregor Mendel. Father of modern genetics Mendelian Genetics Gregor Mendel Father of modern genetics Objectives I can compare and contrast mitosis & meiosis. I can properly use the genetic vocabulary presented. I can differentiate and gather data

More information

Question 2: Which one of the following is the phenotypic monohybrid ratio in F2 generation? (a) 3:1 (b) 1:2:1 (c) 2:2 (d) 1:3 Solution 2: (a) 3 : 1

Question 2: Which one of the following is the phenotypic monohybrid ratio in F2 generation? (a) 3:1 (b) 1:2:1 (c) 2:2 (d) 1:3 Solution 2: (a) 3 : 1 Class X Genetics Biology A. MULTIPLE CHOICE TYPE: (Select the most appropriate option) Which one of the following has the smallest number of chromosomes? (a) Onion (b) Mouse (c) Monkey (d) Ascaris (d)

More information

Name Period. Keystone Vocabulary: genetics fertilization trait hybrid gene allele Principle of dominance segregation gamete probability

Name Period. Keystone Vocabulary: genetics fertilization trait hybrid gene allele Principle of dominance segregation gamete probability Name Period BIO B2 GENETICS (Chapter 11) You should be able to: 1. Describe and/or predict observed patterns of inheritance (dominant, recessive, co- dominant, incomplete dominance, sex- linked, polygenic

More information

Two copies of each autosomal gene affect phenotype.

Two copies of each autosomal gene affect phenotype. UNIT 3 GENETICS LESSON #34: Chromosomes and Phenotype Objective: Explain how the chromosomes on which genes are located can affect the expression of traits. Take a moment to look at the variety of treats

More information

Chapter 11 introduction to genetics 11.1 The work of Gregor mendel

Chapter 11 introduction to genetics 11.1 The work of Gregor mendel Chapter 11 introduction to genetics 11.1 The work of Gregor mendel What is inheritance? Two uses of the word inheritance Things that are passed down through generations Factors we get from our parents

More information

Labrador Coat Color Similar to coat color in mice: Black lab is BxEx Yellow lab is xxee Chocolate lab is bbex Probable pathway:

Labrador Coat Color Similar to coat color in mice: Black lab is BxEx Yellow lab is xxee Chocolate lab is bbex Probable pathway: Honors Genetics 1. Gregor Mendel (1822-1884) German monk at the Augustine Abbey of St. Thomas in Brno (today in the Czech Republic). He was a gardener, teacher and priest. Mendel conducted experiments

More information

Unit 5: Genetics Guided Notes

Unit 5: Genetics Guided Notes 1 Unit 5: Genetics Guided Notes Basic Mendelian Genetics Before Gregor Mendel 1) When Mendel started his work, most people believed in the blending theory of inheritance. (Inheritance, Heredity, and Genetics

More information

Chapter 17 Genetics Crosses:

Chapter 17 Genetics Crosses: Chapter 17 Genetics Crosses: 2.5 Genetics Objectives 2.5.6 Genetic Inheritance 2.5.10.H Origin of the Science of genetics 2.5.11 H Law of segregation 2.5.12 H Law of independent assortment 2.5.13.H Dihybrid

More information

You are who you are because of a combination of HEREDITY and ENVIRONMENT. ENVIRONMENT: all outside forces that act on an organism.

You are who you are because of a combination of HEREDITY and ENVIRONMENT. ENVIRONMENT: all outside forces that act on an organism. Unit 6 Genetics 6.1 Genetics You are who you are because of a combination of HEREDITY and ENVIRONMENT. ENVIRONMENT: all outside forces that act on an organism. HEREDITY: traits that are passed from parents

More information

Unit 3. Intro. Genetics The branch of biology that deals with variation (differences) and inheritance. Genetics. Sep 6 5:24 PM.

Unit 3. Intro. Genetics The branch of biology that deals with variation (differences) and inheritance. Genetics. Sep 6 5:24 PM. Unit 3.notebook June 03, 2014 Unit 3 Genetics Sep 6 5:24 PM Intro Genetics The branch of biology that deals with variation (differences) and inheritance. Feb 27 1:30 PM Intro Heredity The passing of genetic

More information

GENETICS NOTES. Chapters 12, 13, 14, 15 16

GENETICS NOTES. Chapters 12, 13, 14, 15 16 GENETICS NOTES Chapters 12, 13, 14, 15 16 DNA contains the genetic code for the production of PROTEINS. A gene is a segment of DNA, which consists of enough bases to code for many different proteins. The

More information

Semester 2- Unit 2: Inheritance

Semester 2- Unit 2: Inheritance Semester 2- Unit 2: Inheritance heredity -characteristics passed from parent to offspring genetics -the scientific study of heredity trait - a specific characteristic of an individual genes -factors passed

More information

Mendelian Genetics. You are who you are due to the interaction of HEREDITY and ENVIRONMENT. ENVIRONMENT: all outside forces that act on an organism.

Mendelian Genetics. You are who you are due to the interaction of HEREDITY and ENVIRONMENT. ENVIRONMENT: all outside forces that act on an organism. Heredity Chapter 3 3:1 Genetics Mendelian Genetics You are who you are due to the interaction of HEREDITY and ENVIRONMENT. ENVIRONMENT: all outside forces that act on an organism. HEREDITY: traits that

More information

MENDELIAN GENETIC CH Review Activity

MENDELIAN GENETIC CH Review Activity MENDELIAN GENETIC CH. 6.3-6.5 Review Activity Question 1 Who is considered to be the father of genetics? Answer 1 Question 2 Gregor Mendel What part of DNA directs a cell to make a certain protein? 1 Answer

More information

Introduction to Genetics and Heredity

Introduction to Genetics and Heredity Introduction to Genetics and Heredity Although these dogs have similar characteristics they are each unique! I. Early Ideas About Heredity A. The Theory of Blending Inheritance Each parent contributes

More information

Biology. Slide 1 of 31. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 31. End Show. Copyright Pearson Prentice Hall Biology 1 of 31 11 3 Exploring Mendelian 11-3 Exploring Mendelian Genetics Genetics 2 of 31 Independent Assortment What is the principle of independent assortment? 3 of 31 Independent Assortment Independent

More information

Patterns of Heredity Genetics

Patterns of Heredity Genetics Patterns of Heredity Genetics DO NOW Hand in outlines (my desk) Pick up tests from back table and review them. We will be going over the zipgrade and the short answer together. Save your questions for

More information

Class *GENETIC NOTES & WORKSHEETS

Class *GENETIC NOTES & WORKSHEETS Name Class *GENETIC NOTES & WORKSHEETS DAY 1: Mendelian Genetics Vocabulary A. Genetics- Study of B. Heredity- The passing on of characteristics (traits) from to C. Trait A particular that can vary from

More information

Genetics & Heredity 11/16/2017

Genetics & Heredity 11/16/2017 Genetics & Heredity Biology I Turner College & Career High School 2017 Fertilization is the fusion of an egg and a sperm. Purebred (True breeding plants) are plants that were allowed to selfpollinate and

More information

OCTOBER 21 Unit 5 Heredity 1. What is Heredity

OCTOBER 21 Unit 5 Heredity 1. What is Heredity OCTOBER 21 Unit 5 Heredity 1. What is Heredity the passing on of physical or mental characteristics genetically from one generation to another. Agenda 1. Warm-up 2. Mendlian Notes pg 5-6 3. Lets Practice

More information

Example: Colour in snapdragons

Example: Colour in snapdragons Incomplete Dominance this occurs when the expression of one allele does not completely mask the expression of another. the result is that a heterozygous organism has a phenotype that is a blend of the

More information

Mendel explained how a dominant allele can mask the presence of a recessive allele.

Mendel explained how a dominant allele can mask the presence of a recessive allele. Section 2: Mendel explained how a dominant allele can mask the presence of a recessive allele. K What I Know W What I Want to Find Out L What I Learned Essential Questions What is the significance of Mendel

More information

Genetics and heredity. For a long time, general ideas of inheritance were known + =

Genetics and heredity. For a long time, general ideas of inheritance were known + = Mendelian Genetics Genetics and heredity For a long time, general ideas of inheritance were known + = + = What was really lacking was a quantitative understanding of how particular traits were passed down

More information

Name Class Date. KEY CONCEPT The chromosomes on which genes are located can affect the expression of traits.

Name Class Date. KEY CONCEPT The chromosomes on which genes are located can affect the expression of traits. Section 1: Chromosomes and Phenotype KEY CONCEPT The chromosomes on which genes are located can affect the expression of traits. VOCABULARY carrier sex-linked gene X chromosome inactivation MAIN IDEA:

More information

Chapter 11 Introduction to Genetics

Chapter 11 Introduction to Genetics Chapter 11 Introduction to Genetics 11.1 Gregor Mendel Genetics is the scientific study of heredity How traits are passed from one generation to the next Mendel Austrian monk (1822) Used Pea Plants (crossed

More information

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 6 Patterns of Inheritance

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 6 Patterns of Inheritance Chapter 6 Patterns of Inheritance Genetics Explains and Predicts Inheritance Patterns Genetics can explain how these poodles look different. Section 10.1 Genetics Explains and Predicts Inheritance Patterns

More information

MONOHYBRID CROSSES WITH DOMINANT TRAITS

MONOHYBRID CROSSES WITH DOMINANT TRAITS HEREDITY WORKSHEET Name: MONOHYBRID CROSSES WITH DOMINANT TRAITS 1. The table below indicates dominant and recessive traits in corn plants. Refer to this information for questions 1 7. Dominant Tall (T)

More information

Keywords. Punnett Square forked line. gene allele dominant recessive character trait phenotype genotype

Keywords. Punnett Square forked line. gene allele dominant recessive character trait phenotype genotype Genetics Core Concepts Mendel s Law of Segregation states that there are two alleles for every gene determining a specific characteristic, and these alleles are segregated into separate gametes during

More information

NOTES: Exceptions to Mendelian Genetics!

NOTES: Exceptions to Mendelian Genetics! NOTES: 11.3 Exceptions to Mendelian Genetics! Beyond Dominant and Recessive Alleles Some alleles are neither dominant nor recessive, and many traits are controlled by multiple alleles OR multiple genes.

More information

Patterns of Inheritance

Patterns of Inheritance Patterns of Inheritance Mendel the monk studied inheritance keys to his success: he picked pea plants he focused on easily categorized traits he used true-breeding populations parents always produced offspring

More information

MENDELIAN GENETICS. Punnet Squares and Pea Plants

MENDELIAN GENETICS. Punnet Squares and Pea Plants MENDELIAN GENETICS Punnet Squares and Pea Plants Introduction Mendelian laws of inheritance are statements about the way certain characteristics are transmitted from one generation to another in an organism.

More information

Fundamentals of Genetics

Fundamentals of Genetics Fundamentals of Genetics Genetics- the science of heredity. Gregor Johann Mendel- Father of Genetics 5/19/14 mendelian genetics3 1 1. Heredity -the passing of traits from parents to offspring a. Gregor

More information

Welcome Back! 2/6/18. A. GGSS B. ggss C. ggss D. GgSs E. Ggss. 1. A species of mice can have gray or black fur

Welcome Back! 2/6/18. A. GGSS B. ggss C. ggss D. GgSs E. Ggss. 1. A species of mice can have gray or black fur Welcome Back! 2/6/18 1. A species of mice can have gray or black fur and long or short tails. A cross between blackfurred, long-tailed mice and gray-furred, shorttailed mice produce all black-furred, long-tailed

More information

Unit 6.2: Mendelian Inheritance

Unit 6.2: Mendelian Inheritance Unit 6.2: Mendelian Inheritance Lesson Objectives Define probability. Explain how probability is related to inheritance. Describe how to use a Punnett square. Explain how Mendel interpreted the results

More information

8.1 Genes Are Particulate and Are Inherited According to Mendel s Laws 8.2 Alleles and Genes Interact to Produce Phenotypes 8.3 Genes Are Carried on

8.1 Genes Are Particulate and Are Inherited According to Mendel s Laws 8.2 Alleles and Genes Interact to Produce Phenotypes 8.3 Genes Are Carried on Chapter 8 8.1 Genes Are Particulate and Are Inherited According to Mendel s Laws 8.2 Alleles and Genes Interact to Produce Phenotypes 8.3 Genes Are Carried on Chromosomes 8.4 Prokaryotes Can Exchange Genetic

More information

Objectives. ! Describe the contributions of Gregor Mendel to the science of genetics. ! Explain the Law of Segregation.

Objectives. ! Describe the contributions of Gregor Mendel to the science of genetics. ! Explain the Law of Segregation. Objectives! Describe the contributions of Gregor Mendel to the science of genetics.! Explain the Law of Segregation.! Explain the Law of Independent Assortment.! Explain the concept of dominance.! Define

More information

Honors Biology Review Sheet to Chapter 9 Test

Honors Biology Review Sheet to Chapter 9 Test Honors Biology Review Sheet to Chapter 9 Test Name Per 1. Label the following flower: sepal, petal, anther, filament, style, ovary, stigma Draw in ovules and label. Color the female structure red and the

More information

I. Classical Genetics. 1. What makes these parakeets so varied in color?

I. Classical Genetics. 1. What makes these parakeets so varied in color? 1. Classical Genetics a. Mendel i. Mendel s Laws ii. Advanced Genetic Principles b. Modern Genetics i. Scientists ii. Nucleic Acids DNA/RNA Function iii.replication iv.protein Synthesis v. Mutations (gene

More information

Section 11 1 The Work of Gregor Mendel (pages )

Section 11 1 The Work of Gregor Mendel (pages ) Chapter 11 Introduction to Genetics Section 11 1 The Work of Gregor Mendel (pages 263 266) This section describes how Gregor Mendel studied the inheritance of traits in garden peas and what his conclusions

More information

HEREDITY. def: the passing of traits from parent to offspring.

HEREDITY. def: the passing of traits from parent to offspring. Genetics & Heredity HEREDITY def: the passing of traits from parent to offspring. GENETICS def: The study of heredity. *The Father of Genetics* (1822-1884) Occupation: Monk Subjects Studied: Botany (*study

More information

Lesson Overview 11.2 Applying Mendel s Principles

Lesson Overview 11.2 Applying Mendel s Principles THINK ABOUT IT Nothing in life is certain. Lesson Overview 11.2 Applying Mendel s Principles If a parent carries two different alleles for a certain gene, we can t be sure which of those alleles will be

More information

Ch 10 Genetics Mendelian and Post-Medelian Teacher Version.notebook. October 20, * Trait- a character/gene. self-pollination or crosspollination

Ch 10 Genetics Mendelian and Post-Medelian Teacher Version.notebook. October 20, * Trait- a character/gene. self-pollination or crosspollination * Trait- a character/gene shape, * Monk in Austria at age 21 * At 30, went to University of Vienna to study science and math * After graduating he returned to the monastery and became a high school teacher

More information

Mendelian Genetics: Patterns of Inheritance

Mendelian Genetics: Patterns of Inheritance Mendelian Genetics: Patterns of Inheritance A Bit on Gregor Mendel Born to a poor farming family in what is now part of Czech Republic Attended Augustinian monastery (1843) Became an excellent teacher

More information

Genetics & The Work of Mendel. AP Biology

Genetics & The Work of Mendel. AP Biology Genetics & The Work of Mendel Gregor Mendel Modern genetics began in the mid-1800s in an abbey garden, where a monk named Gregor Mendel documented inheritance in peas u used experimental method u used

More information

Gregor Mendel Father of Genetics

Gregor Mendel Father of Genetics Genetics and Mendel Gregor Mendel Father of Genetics Gregor Mendel First person to trace characteristics of living things Augustinian Monk Lived and worked in an Austrian monastery in the mid-1800s Parents

More information

Genetics. *** Reading Packet

Genetics. *** Reading Packet Genetics *** Reading Packet 5.4 Mendel and His Peas Learning Objectives Describe Mendel's first genetics experiments. Introduction Why do you look like your family? For a long time people understood that

More information

Genetics. Genetics. True or False. Genetics Vocabulary. Chapter 5. Objectives. Heredity

Genetics. Genetics. True or False. Genetics Vocabulary. Chapter 5. Objectives. Heredity Genetics True or False Genes are things you wear on your legs. A priest raising peas in his garden was one of the first to discover how genetics works. Plants can be purebred just like dogs. Dominate alleles

More information

Genetics & The Work of Mendel

Genetics & The Work of Mendel Genetics & The Work of Mendel 2006-2007 Gregor Mendel Modern genetics began in the mid-1800s in an abbey garden, where a monk named Gregor Mendel documented inheritance in peas used experimental method

More information

Genetics. Why do offspring resemble their parents? What role can technology play in genetics? Let s explore the answers to these questions.

Genetics. Why do offspring resemble their parents? What role can technology play in genetics? Let s explore the answers to these questions. In a monastery garden, a curious monk discovered some of the basic principles of genetics. The monk, Gregor Mendel (1822 1884), laid the groundwork for the study of genetics, which has advanced our understanding

More information

Genetics & The Work of Mendel

Genetics & The Work of Mendel Genetics & The Work of Mendel 2006-2007 Gregor Mendel Modern genetics began in the mid-1800s in an abbey garden, where a monk named Gregor Mendel documented inheritance in peas used experimental method

More information

The passing of traits from parents to offspring. The scientific study of the inheritance

The passing of traits from parents to offspring. The scientific study of the inheritance Inheritance The passing of traits from parents to offspring Genetics The scientific study of the inheritance Gregor Mendel -Father of modern genetics -Used peas to successfully identify the laws of heredity

More information

Class XII Chapter 5 Principles of Inheritance and Variation Biology

Class XII Chapter 5 Principles of Inheritance and Variation Biology Question 1: Mention the advantages of selecting pea plant for experiment by Mendel. Mendel selected pea plants to carry out his study on the inheritance of characters from parents to offspring. He selected

More information

.the science that studies how genes are transmitted from one generation to the next.

.the science that studies how genes are transmitted from one generation to the next. Genetics .the science that studies how genes are transmitted from one generation to the next. The chromosomes are contained in the nucleus of the cell. Genes and Chromosomes Chromosomes are made of: Gene:

More information

Chapter 10 Notes Patterns of Inheritance, Part 1

Chapter 10 Notes Patterns of Inheritance, Part 1 Chapter 10 Notes Patterns of Inheritance, Part 1 I. Gregor Mendel (1822-1884) a. Austrian monk with a scientific background b. Conducted numerous hybridization experiments with the garden pea, Pisum sativum,

More information

Mendel. The pea plant was ideal to work with and Mendel s results were so accurate because: 1) Many. Purple versus flowers, yellow versus seeds, etc.

Mendel. The pea plant was ideal to work with and Mendel s results were so accurate because: 1) Many. Purple versus flowers, yellow versus seeds, etc. Mendel A. Mendel: Before Mendel, people believed in the hypothesis. This is analogous to how blue and yellow paints blend to make. Mendel introduced the hypothesis. This deals with discrete units called

More information