Patients with acute neurologic disease and respiratory failure are typically. Noninvasive Mechanical Ventilation in Acute Neurologic Disorders

Size: px
Start display at page:

Download "Patients with acute neurologic disease and respiratory failure are typically. Noninvasive Mechanical Ventilation in Acute Neurologic Disorders"

Transcription

1 TREATMENT UPDATE Noninvasive Mechanical Ventilation in Acute Neurologic Disorders Eelco F.M. Wijdicks, MD Department of Neurology, Division of Critical Care Neurology, Mayo Clinic College of Medicine, Rochester, MN Mechanical ventilation and endotracheal intubation has raised concerns due to risk of infectious complications. Noninvasive ventilation is becoming the preferred method of ventilatory treatment. Neurologists should be aware of such devices as the bilevel positive airway pressure ventilator, as it helps to reduce respiratory distress and improve gas exchange without major complications or significant side effects. The device is small and easy to use, and may become increasingly popular in the treatment of patients with acute neurologic disease and respiratory failure. [Rev Neurol Dis. 2005;2(1):8-12] 2005 MedReviews, LLC Key words: Noninvasive ventilation Bilevel positive airway pressure Acute neurologic disease Intubation Patients with acute neurologic disease and respiratory failure are typically intubated not only for airway protection and to provide a better oxygen source but also to provide machine-supported breaths. The threshold to intubate patients with acute neurologic disease is generally low and, typically, outside the purview of neurologists. In some instances, the indication for intubation is undisputed, such as in hypoxemic hypercapnic acute respiratory failure. In other instances, it is debatable and, unfortunately, usually after the fact 8 VOL. 2 NO REVIEWS IN NEUROLOGICAL DISEASES

2 BiPAP for Acute Neurologic Disorders (eg, intubation after a single seizure). In acutely ill neurologic patients, maintaining an adequate airway is equally as important as providing a sufficient respiratory cycle. The signs that reflect a marginal condition and likely decompensation within a short period of time are desaturation signals on the pulse but it is uncertain if it would prevent reintubation. Respiration in Acute Neurologic Disorders Breathing is possible due to a complex neuronal circuit, controlled by respiratory centers in the pons and medulla. The centers in the pons are Noninvasive ventilation can be just as satisfactory and even better than endotracheal intubation. oximeter, weak spontaneous or triggered cough, weak gag reflex with touching the soft palate at the uvula, increasing sputum quantity with suctioning every hour, and thick sputum. 1 However, not only can the indication be in question but also the mode of ventilating support. Bilevel positive airway pressure (BiPAP) ventilators are becoming a first-line ventilatory treatment in various medical causes of acute respiratory failure. 2 With further sophistication of noninvasive ventilation, this mode may become more popular. Two recent reports from the medical intensive care unit prove that outcomes with noninvasive ventilation can be just as satisfactory and even better than endotracheal intubation; however, using noninvasive ventilation would require hospitals to have a respiratory therapy department. 3-5 BiPAP has been a staple in chronic treatment of amyotrophic lateral sclerosis, myotonic dystrophy, and obstructive sleep apnea in the chronic degenerative neurologic diseases, 5,6 but the use of noninvasive ventilation in acute neurologic disorders is new; therefore, it is important for neurologists to be aware of this device. It has also become an alternative option to intubation in patients with myasthenia gravis. Additionally, noninvasive ventilation may be a weaning mode, triggered by vagal reflexes, but unlike the medulla, do not have an oscillator to produce respiratory rhythm or polish and smooth out the respiratory cycle. The respiratory neurons in the medulla are located dorsally and ventrally to the nucleus ambiguus. Central hyperventilation has traditionally been linked to midbrain lesions, but this phenomenon, uncommonly due to neurologic lesions, may not have a specific localization. Pontine lesions could lead to prolonged inspiratory gasps, but involvement of consciousness could produce shallow breaths alone. Medullary lesions lead to ataxic breathing or apnea. When a patient with acute neurologic disease fails to breathe or venti- agents). Combinations of these abnormalities may occur (eg, aspiration in a postictal patient). Any patient with acute neurologic disease should have a complete assessment, and the following questions should be asked: Does the patient breathe on his own? Does the patient get air in and oxygenate well? Are the mechanics of breathing intact? For an initial assessment, a good history is needed (Has the patient been given sedatives or vecuronium?) as well as a chest x-ray, arterial blood gas and pulse oximeter, and, when appropriate, pulmonary function tests (vital capacity, maximal inspiratory pressure, and maximal expiratory pressure). Why Avoid Endotracheal Intubation? Endotracheal intubation and mechanical ventilation provide adequate oxygenation and improve gas exchange in a vast majority of patients. This is particularly important in patients who are unable to maintain their airway, have recently aspirated, or have developed a pneumonitis or neurogenic pulmonary edema. Severe aspiration pneumonia Ventilator-associated pneumonia is not only common, but the mortality rate is approximately 30%. late well, 3 major causes should be considered: abnormal respiratory drive (eg, sedatives, seizures), abnormal respiratory conduit (eg, upper airway obstruction, diffuse pulmonary infiltrates), and abnormal respiratory mechanics (eg, diaphragmatic failure from phrenic nerve injury or abnormal neuromuscular junction traffic, particularly paralytic and neurogenic pulmonary edema almost always go hand in hand in patients who are comatose. However, the duration of intubation, mode of mechanical ventilation, and use of tracheostomy are very controversial issues in patients with neurologic disorders, and no reproducible studies are available. There are certain important facts derived from other VOL. 2 NO REVIEWS IN NEUROLOGICAL DISEASES 9

3 BiPAP for Acute Neurologic Disorders continued intensive care unit (ICU) populations. Ventilator-associated pneumonia is not only common, but the mortality rate is approximately 30%. It is estimated to occur in 20 cases per 1000 ventilator days, and in 68% of the isolates, Staphylococcus aureus, Streptococcus pneumonia, or Pseudomonas aeruginosa are present. The time on the mechanical ventilator clearly increases the risk of developing pneumonia, and early extubation is a desired goal. It is well known that aggressive management of pulmonary complications after any acute brain injury is probably the most important issue in these patients. In addition, there is a concern that the use of mechanical ventilators can cause lung injury. Thus any ventilator mode that prevents or reduces time on the ventilator or even prevents endotracheal intubation and consequently reduces length of stay and costs in the ICU seems very appropriate. BiPAP: Principles and Use Noninvasive ventilator devices provide almost similar modes as mechanical ventilators. For example, the Respironics BiPaP-ST (Murrysville, PA) can be set on spontaneous, spontaneous timed (assist control), and timed (control). Some of the control variables in BiPAP ventilation are inspiratory positive airway pressure, expiratory positive airway pressure, or continuous positive airway pressure, depending on the rate and inspiratory time percent. Inspiration can be time- or flow-triggered and flow- or time-cycled. The systems used provide continuous flow and square wave pressure pattern as oxygen is delivered to the system. A pressure-controlled ventilator delivers noninvasive positive pressure ventilation. The device is small, simple to operate, and has only a few settings. When the mask is fitted, patients will obtain BiPAP by initiating a breath, or the machine may cycle between inspiration and expiration with time intervals that can be set manually. The goal of noninvasive ventilation is to reduce respiratory distress and improve gas exchange, but this can only be effective if there is good patient and ventilator synchrony. During noninvasive ventilation, the patient becomes comfortable and the work of breathing is reduced and noticed by the patient. Ideally, noninvasive ventilation should avert intubation. In patients with more chronic neurologic disease, noninvasive ventilation could improve quality of life, avoid hospitalization, stabilize gas exchange, reduce fatigue and somnolence, and may, depending on the underlying disorder, prolong survival. 2,6,7 The mask should be fitting but not tight (Figure 1). Unfortunately, a mask that lies over the nose and mouth may be very uncomfortable Figure 1. BiPAP fitted to support poor ventilatory drive and tidal volumes associated in a patient with stupor due to acute hydrocephalus. BiPAP, bilevel positive airway pressure. to a dyspneic patient. The patient, if alert, should be allowed to adjust to this mask but would certainly need reassurance that breathing will become more pleasant after a desirable level is found. Noninvasive positive pressure ventilation is usually started with low inspiratory pressures, and then adjusted to patient comfort. Typically, 6 to 8 cm H 2 O is initiated and then gradually increased to 10 to 16 cm H 2 O. In the acute setting, high initial pressures, in the order of 20 cm H 2 O, may sometimes be preferred to quickly unload inspiratory muscles. A reduction in pressure settings would then follow. The patient is clinically monitored and comfort is assessed not only by reducing respiratory rate but also by oxygen saturation. Hill 8 suggests coaching the patient by saying, Let the machine breathe for you, while also pointing out to the patient that endotracheal intubation will be avoided. The patient is monitored using several variables, but comfort and respiratory distress remain the most important guidelines. A trial in which a patient is struggling, restless, and unable to have the machine take over will fail. Another indicator of success is the reduction of the respiratory rate and the resolution of tachycardia. Gas exchange can be monitored with continuous arterial oxygen saturation using a pulse oximeter at the bedside. Patient/ ventilator synchrony is more difficult to judge and requires practical experience. Typically, the patient triggers flow with each breath, and the ventilator cycles simply into an expiratory phase. However, in some patients, poor synchronization with the device during rapid shallow breathing or pooling secretions from oropharyngeal weakness may frustrate physicians with its use. Some important side effects can be avoided, such as air leaking and 10 VOL. 2 NO REVIEWS IN NEUROLOGICAL DISEASES

4 BiPAP for Acute Neurologic Disorders mask discomfort. Mouth and nasal dryness and congestion could become a problem when BiPAP is used for prolonged periods of time. Indications of Noninvasive Positive Pressure Ventilation The clinical indication of BiPAP is severe dyspnea, clinical presence of accessory muscle use, abdominal paradox, presence of tachypnea with Acute Myasthenia gravis exacerbation Stupor from overdose Postictal period after generalized tonic-clonic seizure BiPAP, bilevel positive airway pressure. mean duration was 5 days, but some patients could be weaned within 4 hours after specific therapy was initiated. In this preliminary study, we found that BiPAP could prevent intubation in 70% of the trials; however, BiPAP failed in all patients who had hypercapnia at presentation. This would indicate that a more severe degree of neuromuscular respiratory failure exists in these patients. In In a preliminary study in patients with myasthenia gravis, BiPAP could prevent intubation in 70% of the trials. respiratory rates of more than 30 breaths per minute, and a gas exchange with oxygen pressure fraction of inspired oxygen of less than 200. Neurologic indications for BiPAP are listed in Table 1. In patients with an acute neuromuscular disorder, we have shown that myasthenia gravis can be treated with noninvasive mechanical ventilation, which may prevent intubation. In 11 episodes, BiPAP was started in patients in whom the vital capacities were markedly reduced and consistently below 10 ml/kg body weight. The mean BiPAP pressures were 13 5 cm H 2 O, and inspiratory expiratory with a range of 10 to cm H 2 O. Oxygen supplementation was provided, typically with the range of 2-10 L/min. In these patients, the addition, we were successful in weaning patients from the ventilator in myasthenia gravis. 9,10 This is a useful observation particularly because a recent study suggests that noninvasive positive pressure ventilation for Table 1 Some Neurologic Indications for BiPAP Chronic Amyotrophic lateral sclerosis Muscular dystrophy Diaphragmatic failure from phrenic nerve lesion needed.) Patients with a decreased level of consciousness were excluded from this trial, and most patients had pneumonia, postoperative failure sepsis, or acute respiratory distress syndrome. Neuromuscular disease was tested in only a small proportion of patients. One case example of BiPAP use in Guillain-Barré syndrome (GBS) has been published, indicating that noninvasive ventilation can be used safely and effectively in certain conditions. 12 Our initial experience with the use of BiPAP in GBS was different and more dramatic. We recently noted 2 instances of emergency intubation in patients with GBS. 13 In these 2 consecutive patients, BiPAP seemed to provide good comfort with marked improvement in gas exchange. However, both suddenly deteriorated with marked hypoxemia. BiPAP should be considered in acute neuromuscular disease and possibly in patients who have a decreased level of consciousness and reduced respiratory drive. respiratory failure after extubation in chronic obstructive pulmonary disease was not successful and did not prevent the need for reintubation. 11 (Our patient population with acute neuromuscular disease and generally good prior lung function is clearly different, but prospective studies are Both patients had to be intubated and were found to have very low inspiratory and expiratory pressures and vital capacities much lower than at the time of the start of noninvasive mechanical ventilation. These initial attempts were totally unsuccessful, and, therefore, its use in GBS is concerning. We would warn against its indiscriminate use in GBS and call for prospective study. It is clear that the rapid beneficial effect of plasma exchange on respiratory function in myasthenia gravis is not seen in GBS with respiratory failure, and both intravenous immunoglobulin and plasma exchange generally do not prevent intubation in GBS. Acute hypoxemia can be due to excessive secretions obstructing the airway, or sometimes the use of opioids VOL. 2 NO REVIEWS IN NEUROLOGICAL DISEASES 11

5 BiPAP for Acute Neurologic Disorders continued to control pain; in other patients, it is due to ventilation/perfusion mismatch as a result of microatelectasis. BiPAP: Not for Everyone BiPAP should be considered in acute neuromuscular disease and possibly in patients who have a decreased level of consciousness and reduced respiratory drive. Such patients would have had a single seizure, and may briefly become hypoxemic from use of benzodiazepines; have been intoxicated with alcohol or use of other drugs that will metabolize within 24 hours; or are recovering from the impact of acute brain injury (eg, subarachnoid hemorrhage). It may have an important use in patients with catastrophic brain injury to provide palliation. Providing noninvasive ventilation in patients with marked respiratory distress and do-not-resuscitate or intubate orders may cause significant improvement in comfort and also family assurance. Noninvasive ventilation is associated with complications, but when used in short periods of time, they are not of major concern. These complications are nasal congestion, eye irritation, nasal bridge ulceration, aspiration, and gastric distension. In addition, pneumothorax has been described in patients with Duchenne s muscular dystrophy. 14 This may be due to a predilection of patients with Duchenne s muscular dystrophy. Noninvasive mechanical ventilation could become an important adjunct in acutely ill neurologic patients. Neurologists should be aware of this mode, but respiratory care therapists should also be available to monitor and coach the patient. References 1. Coplin WM, Pierson DJ, Cooley KD, et al. Implications of extubation delay in brain-injured patients meeting standard weaning criteria. Am J Respir Crit Care Med. 2000;161: Paus-Jenssen ES, Reid JK, Cockcroft DW, et al. The use of noninvasive ventilation in acute respiratory failure at a tertiary care center. Chest. 2004;126: Girault C, Briel A, Hellot MF, et al. Noninvasive mechanical ventilation in clinical practice: a 2-year experience in a medical intensive care unit. Crit Care Med. 2003;31: Hillberg RE, Johnson DC. Noninvasive ventilation. N Engl J Med. 1997;337: Loube DI, Gay PC, Strohl KP, et al. Indications for positive airway pressure treatment of adult obstructive sleep apnea patients: a consensus statement. Chest. 1999;115: Bach JR, Ishikawa Y, Kim H. Prevention of pulmonary morbidity for patients with Duchenne muscular dystrophy. Chest. 1997;112: Eagle M, Baudouin SV, Chandler C, et al. Survival in Duchenne muscular dystrophy: improvements in life expectancy since 1967 and the impact of home nocturnal ventilation. Neuromuscul Disord. 2002;12: Hill NS. Noninvasive Positive Pressure Ventilation: Principles and Applications. Armonk, NY: Futura Publishing Company, Rabinstein A, Wijdicks EFM. BiPAP in acute respiratory failure due to myasthenic crisis may prevent intubation. Neurology. 2002;59: Rabinstein AA, Wijdicks EFM. Weaning from the ventilator using BiPAP in myasthenia gravis. Muscle Nerve. 2003;27: Esteban A, Frutos-Vivar F, Ferguson ND, et al. Noninvasive positive-pressure ventilation for respiratory failure after extubation. N Engl J Med. 2004;350: Pearse RM, Draper A, Grounds RM. Noninvasive ventilation to avoid tracheal intubation in a patient with Guillain-Barre syndrome. Br J Anaesth. 2003;91: Wijdicks EFM, Roy TK. BiPAP in early Guillain- Barré syndrome may fail. Submitted for publication. 14. Simonds AK, Muntoni F, Heather S, Fielding S. Impact of nasal ventilation on survival in hypercapnic Duchenne muscular dystrophy. Thorax. 1998;53: Main Points The use of a mechanical ventilator may increase the risk of developing pneumonia or may cause lung injury; therefore, noninvasive ventilation may be a good alternative. The goal of noninvasive ventilation is to reduce respiratory distress and improve gas exchange. This can only be effective if there is good patient and ventilator synchrony. In patients with more chronic neurologic disease, noninvasive ventilation could improve quality of life, avoid hospitalization, stabilize gas exchange, reduce fatigue and somnolence, and may prolong survival. Bilevel positive airway pressure (BiPAP) ventilators may be used in patients with respiratory failure and myasthenia gravis only when hypercapnia is absent. BiPAP in central nervous system disorders with an improving level of consciousness may be a preferred mode rather than endotracheal intubation. BiPAP may serve as a good weaning mode. 12 VOL. 2 NO REVIEWS IN NEUROLOGICAL DISEASES

What is the next best step?

What is the next best step? Noninvasive Ventilation William Janssen, M.D. Assistant Professor of Medicine National Jewish Health University of Colorado Denver Health Sciences Center What is the next best step? 65 year old female

More information

Neuromuscular diseases (NMDs) include both hereditary and acquired diseases of the peripheral neuromuscular system. They are diseases of the

Neuromuscular diseases (NMDs) include both hereditary and acquired diseases of the peripheral neuromuscular system. They are diseases of the Neuromuscular diseases (NMDs) include both hereditary and acquired diseases of the peripheral neuromuscular system. They are diseases of the peripheral nerves (neuropathies and anterior horn cell diseases),

More information

Mechanical Ventilation of the Patient with Neuromuscular Disease

Mechanical Ventilation of the Patient with Neuromuscular Disease Mechanical Ventilation of the Patient with Neuromuscular Disease Dean Hess PhD RRT Associate Professor of Anesthesia, Harvard Medical School Assistant Director of Respiratory Care, Massachusetts General

More information

ORIGINAL CONTRIBUTION. Noninvasive Ventilation in Myasthenic Crisis. is defined by the appearance

ORIGINAL CONTRIBUTION. Noninvasive Ventilation in Myasthenic Crisis. is defined by the appearance ORIGINAL CONTRIBUTION Noninvasive Ventilation in Myasthenic Crisis Janaka Seneviratne, MBBS; Jay Mandrekar, PhD; Eelco F. M. Wijdicks, MD; Alejandro A. Rabinstein, MD Background: Myasthenic crisis (MC)

More information

Sample Case Study. The patient was a 77-year-old female who arrived to the emergency room on

Sample Case Study. The patient was a 77-year-old female who arrived to the emergency room on Sample Case Study The patient was a 77-year-old female who arrived to the emergency room on February 25 th with a chief complaint of shortness of breath and a deteriorating pulmonary status along with

More information

NIV - BI-LEVEL POSITIVE AIRWAY PRESSURE (BIPAP)

NIV - BI-LEVEL POSITIVE AIRWAY PRESSURE (BIPAP) Introduction NIV - BI-LEVEL POSITIVE AIRWAY PRESSURE (BIPAP) Noninvasive ventilation (NIV) is a method of delivering oxygen by positive pressure mask that allows for the prevention or postponement of invasive

More information

Ron Hosp, MS-HSA, RRT Regional Respiratory Specialist. This program has been approved for 1 hour of continuing education credit.

Ron Hosp, MS-HSA, RRT Regional Respiratory Specialist. This program has been approved for 1 hour of continuing education credit. Ron Hosp, MS-HSA, RRT Regional Respiratory Specialist This program has been approved for 1 hour of continuing education credit. Course Objectives Identify at least four goals of home NIV Identify candidates

More information

Prepared by : Bayan Kaddourah RN,MHM. GICU Clinical Instructor

Prepared by : Bayan Kaddourah RN,MHM. GICU Clinical Instructor Mechanical Ventilation Prepared by : Bayan Kaddourah RN,MHM. GICU Clinical Instructor 1 Definition Is a supportive therapy to facilitate gas exchange. Most ventilatory support requires an artificial airway.

More information

Index. sleep.theclinics.com. Note: Page numbers of article titles are in boldface type.

Index. sleep.theclinics.com. Note: Page numbers of article titles are in boldface type. Index Note: Page numbers of article titles are in boldface type. A Acquired central hypoventilation syndrome, NPPV in children with, 475 Acute cardiogenic pulmonary edema, PAP therapy in, 394 395 Adaptive

More information

NON INVASIVE LIFE SAVERS. Non Invasive Ventilation (NIV)

NON INVASIVE LIFE SAVERS. Non Invasive Ventilation (NIV) Table 1. NIV: Mechanisms Of Action Decreases work of breathing Increases functional residual capacity Recruits collapsed alveoli Improves respiratory gas exchange Reverses hypoventilation Maintains upper

More information

Bi-Level Therapy: Boosting Comfort & Compliance in Apnea Patients

Bi-Level Therapy: Boosting Comfort & Compliance in Apnea Patients Bi-Level Therapy: Boosting Comfort & Compliance in Apnea Patients Objectives Describe nocturnal ventilation characteristics that may indicate underlying conditions and benefits of bilevel therapy for specific

More information

Keeping Patients Off the Vent: Bilevel, HFNC, Neither?

Keeping Patients Off the Vent: Bilevel, HFNC, Neither? Keeping Patients Off the Vent: Bilevel, HFNC, Neither? Robert Kempainen, MD Pulmonary and Critical Care Medicine Hennepin County Medical Center University of Minnesota School of Medicine Objectives Summarize

More information

Noninvasive Mechanical Ventilation in Children ศ.พญ.อร ณวรรณ พฤทธ พ นธ หน วยโรคระบบหายใจเด ก ภาคว ชาก มารเวชศาสตร คณะแพทยศาสตร โรงพยาบาลรามาธ บด

Noninvasive Mechanical Ventilation in Children ศ.พญ.อร ณวรรณ พฤทธ พ นธ หน วยโรคระบบหายใจเด ก ภาคว ชาก มารเวชศาสตร คณะแพทยศาสตร โรงพยาบาลรามาธ บด Noninvasive Mechanical Ventilation in Children ศ.พญ.อร ณวรรณ พฤทธ พ นธ หน วยโรคระบบหายใจเด ก ภาคว ชาก มารเวชศาสตร คณะแพทยศาสตร โรงพยาบาลรามาธ บด Noninvasive Mechanical Ventilation Provide support without

More information

Test Bank Pilbeam's Mechanical Ventilation Physiological and Clinical Applications 6th Edition Cairo

Test Bank Pilbeam's Mechanical Ventilation Physiological and Clinical Applications 6th Edition Cairo Instant dowload and all chapters Test Bank Pilbeam's Mechanical Ventilation Physiological and Clinical Applications 6th Edition Cairo https://testbanklab.com/download/test-bank-pilbeams-mechanical-ventilation-physiologicalclinical-applications-6th-edition-cairo/

More information

I. Subject: Pressure Support Ventilation (PSV) with BiPAP Device/Nasal CPAP

I. Subject: Pressure Support Ventilation (PSV) with BiPAP Device/Nasal CPAP I. Subject: Pressure Support Ventilation (PSV) with BiPAP Device/Nasal CPAP II. Policy: PSV with BiPAP device/nasal CPAP will be initiated upon a physician's order by Respiratory Therapy personnel trained

More information

BiLevel Pressure Device

BiLevel Pressure Device PROCEDURE - Page 1 of 7 Purpose Scope Classes/ Goals Define indications and care settings for acute and chronic initiation of Noninvasive Positive Pressure Ventilation. Identify the role of Respiratory

More information

How to write bipap settings

How to write bipap settings How to write bipap settings 6-6-2013 Living On O2 for Life If you use a bipap machine, like I do, this post is for you. I've been using a bipap machine since 1993 which is a pretty long time. BiPAP 's

More information

NIV use in ED. Dr. Khalfan AL Amrani Emergency Resuscitation Symposium 2 nd May 2016 SQUH

NIV use in ED. Dr. Khalfan AL Amrani Emergency Resuscitation Symposium 2 nd May 2016 SQUH NIV use in ED Dr. Khalfan AL Amrani Emergency Resuscitation Symposium 2 nd May 2016 SQUH Outline History & Introduction Overview of NIV application Review of proven uses of NIV History of Ventilation 1940

More information

Objectives. Health care significance of ARF 9/10/15 TREATMENT OF ACUTE RESPIRATORY FAILURE OF VARIABLE CAUSES: INVASIVE VS. NON- INVASIVE VENTILATION

Objectives. Health care significance of ARF 9/10/15 TREATMENT OF ACUTE RESPIRATORY FAILURE OF VARIABLE CAUSES: INVASIVE VS. NON- INVASIVE VENTILATION TREATMENT OF ACUTE RESPIRATORY FAILURE OF VARIABLE CAUSES: INVASIVE VS. NON- INVASIVE VENTILATION Louisa Chika Ikpeama, DNP, CCRN, ACNP-BC Objectives Identify health care significance of acute respiratory

More information

Preventing Respiratory Complications of Muscular Dystrophy

Preventing Respiratory Complications of Muscular Dystrophy Preventing Respiratory Complications of Muscular Dystrophy Jonathan D. Finder, MD Professor of Pediatrics University of Pittsburgh School of Medicine Children s Hospital of Pittsburgh Introduction Respiratory

More information

Mechanical ventilation in the emergency department

Mechanical ventilation in the emergency department Mechanical ventilation in the emergency department Intubation and mechanical ventilation are often needed in emergency treatment. A ENGELBRECHT, MB ChB, MMed (Fam Med), Dip PEC, DA Head, Emergency Medicine

More information

CONTINUOUS POSITIVE AIRWAY PRESSURE (CPAP) DEFINITION

CONTINUOUS POSITIVE AIRWAY PRESSURE (CPAP) DEFINITION CONTINUOUS POSITIVE AIRWAY PRESSURE (CPAP) DEFINITION Method of maintaining low pressure distension of lungs during inspiration and expiration when infant breathing spontaneously Benefits Improves oxygenation

More information

Noninvasive ventilation: Selection of patient, interfaces, initiation and weaning

Noninvasive ventilation: Selection of patient, interfaces, initiation and weaning CME article Johnson S, et al: Noninvasive ventilation Noninvasive ventilation: Selection of patient, interfaces, initiation and weaning Saumy Johnson, Ramesh Unnikrishnan * Email: ramesh.unnikrishnan@manipal.edu

More information

Recent Advances in Respiratory Medicine

Recent Advances in Respiratory Medicine Recent Advances in Respiratory Medicine Dr. R KUMAR Pulmonologist Non Invasive Ventilation (NIV) NIV Noninvasive ventilation (NIV) refers to the administration of ventilatory support without using an invasive

More information

Lecture Notes. Chapter 3: Asthma

Lecture Notes. Chapter 3: Asthma Lecture Notes Chapter 3: Asthma Objectives Define asthma and status asthmaticus List the potential causes of asthma attacks Describe the effect of asthma attacks on lung function List the clinical features

More information

RESPIRATORY FAILURE. Dr Graeme McCauley KGH

RESPIRATORY FAILURE. Dr Graeme McCauley KGH RESPIRATORY FAILURE Dr Graeme McCauley KGH Definitions Failure to oxygenate-pao2 < 60 Failure to clear CO2-PaCO2 > 50 Acute vs Chronic Hypoxemic failure- type l Hypercapneic failure- type ll Causes of

More information

AFCH NEUROMUSCULAR DISORDERS (NMD) PROTOCOL

AFCH NEUROMUSCULAR DISORDERS (NMD) PROTOCOL AFCH NEUROMUSCULAR DISORDERS (NMD) PROTOCOL A. Definition of Therapy: 1. Cough machine: 4 sets of 5 breaths with a goal of I:E pressures approximately the same of 30-40. Inhale time = 1 second, exhale

More information

Respiratory Failure. Causes of Acute Respiratory Failure (ARF): a- Intrapulmonary:

Respiratory Failure. Causes of Acute Respiratory Failure (ARF): a- Intrapulmonary: Respiratory failure exists whenever the exchange of O 2 for CO 2 in the lungs cannot keep up with the rate of O 2 consumption & CO 2 production in the cells of the body. This results in a fall in arterial

More information

NON-INVASIVE VENTILATION. Lijun Ding 23 Jan 2018

NON-INVASIVE VENTILATION. Lijun Ding 23 Jan 2018 NON-INVASIVE VENTILATION Lijun Ding 23 Jan 2018 Learning objectives What is NIV The difference between CPAP and BiPAP The indication of the use of NIV Complication of NIV application Patient monitoring

More information

Non-Invasive Ventilation

Non-Invasive Ventilation Khusrav Bajan Head Emergency Medicine, Consultant Intensivist & Physician, P.D. Hinduja National Hospital & M.R.C. 112 And the Lord God formed man of the dust of the ground and breathed into his nostrils

More information

Condensed version.

Condensed version. I m Stu 3 Condensed version smcvicar@uwhealth.org Listen 1. Snoring 2. Gurgling 3. Hoarseness 4. Stridor (inspiratory/expiratory) 5. Wheezing 6. Grunting Listen Crackles Wheezing Stridor Absent Crackles

More information

POLICY. Number: Title: APPLICATION OF NON INVASIVE VENTILATION FOR ACUTE RESPIRATORY FAILURE. Authorization

POLICY. Number: Title: APPLICATION OF NON INVASIVE VENTILATION FOR ACUTE RESPIRATORY FAILURE. Authorization POLICY Number: 7311-60-024 Title: APPLICATION OF NON INVASIVE VENTILATION FOR ACUTE RESPIRATORY FAILURE Authorization [ ] President and CEO [ x ] Vice President, Finance and Corporate Services Source:

More information

CoughAssist E70. More than just a comfortable cough. Flexible therapy that brings more comfort to your patients airway clearance

CoughAssist E70. More than just a comfortable cough. Flexible therapy that brings more comfort to your patients airway clearance CoughAssist E70 More than just a comfortable cough Flexible therapy that brings more comfort to your patients airway clearance Flexible, customisable loosening and clearing therapy An effective cough is

More information

Mechanical Ventilation Principles and Practices

Mechanical Ventilation Principles and Practices Mechanical Ventilation Principles and Practices Dr LAU Chun Wing Arthur Department of Intensive Care Pamela Youde Nethersole Eastern Hospital 6 October 2009 In this lecture, you will learn Major concepts

More information

Handling Common Problems & Pitfalls During. Oxygen desaturation in patients receiving mechanical ventilation ACUTE SEVERE RESPIRATORY FAILURE

Handling Common Problems & Pitfalls During. Oxygen desaturation in patients receiving mechanical ventilation ACUTE SEVERE RESPIRATORY FAILURE Handling Common Problems & Pitfalls During ACUTE SEVERE RESPIRATORY FAILURE Pravit Jetanachai, MD QSNICH Oxygen desaturation in patients receiving mechanical ventilation Causes of oxygen desaturation 1.

More information

Competency Title: Continuous Positive Airway Pressure

Competency Title: Continuous Positive Airway Pressure Competency Title: Continuous Positive Airway Pressure Trainee Name: ------------------------------------------------------------- Title: ---------------------------------------------------------------

More information

Pediatric Patients. Neuromuscular Disease. Teera Kijmassuwan, MD Phetcharat Netmuy, B.N.S., MA Oranee Sanmaneechai, MD : Preceptor

Pediatric Patients. Neuromuscular Disease. Teera Kijmassuwan, MD Phetcharat Netmuy, B.N.S., MA Oranee Sanmaneechai, MD : Preceptor Patient Management Pediatric Patients with Neuromuscular Disease Teera Kijmassuwan, MD Phetcharat Netmuy, B.N.S., MA Oranee Sanmaneechai, MD : Preceptor Case Thai boy 1 year old Present with Respiratory

More information

Motor Neurone Disease NICE to manage Management of ineffective cough. Alex Long Specialist NIV/Respiratory physiotherapist June 2016

Motor Neurone Disease NICE to manage Management of ineffective cough. Alex Long Specialist NIV/Respiratory physiotherapist June 2016 Motor Neurone Disease NICE to manage Management of ineffective cough Alex Long Specialist NIV/Respiratory physiotherapist June 2016 Content NICE guideline recommendations Respiratory involvement in MND

More information

10/17/2016 OXYGEN DELIVERY: INDICATIONS AND USE OF EQUIPMENT COURSE OBJECTIVES COMMON CAUSES OF RESPIRATORY FAILURE

10/17/2016 OXYGEN DELIVERY: INDICATIONS AND USE OF EQUIPMENT COURSE OBJECTIVES COMMON CAUSES OF RESPIRATORY FAILURE OXYGEN DELIVERY: INDICATIONS AND USE OF EQUIPMENT J U L I E Z I M M E R M A N, R N, M S N C L I N I C A L N U R S E S P E C I A L I S T E L O I S A C U T L E R, R R T, B S R C C L I N I C A L / E D U C

More information

Capnography Connections Guide

Capnography Connections Guide Capnography Connections Guide Patient Monitoring Contents I Section 1: Capnography Introduction...1 I Section 2: Capnography & PCA...3 I Section 3: Capnography & Critical Care...7 I Section 4: Capnography

More information

Therapist Written RRT Examination Detailed Content Outline

Therapist Written RRT Examination Detailed Content Outline I. PATIENT DATA EVALUATION AND RECOMMENDATIONS 4 7 17 28 A. Review Data in the Patient Record 1 4 0 5 1. Patient history e.g., present illness admission notes respiratory care orders medication history

More information

The great majority of neuromuscular disease morbidity. Prevention of Pulmonary Morbidity for Patients With Neuromuscular Disease*

The great majority of neuromuscular disease morbidity. Prevention of Pulmonary Morbidity for Patients With Neuromuscular Disease* Prevention of Pulmonary Morbidity for Patients With Neuromuscular Disease* Alice C. Tzeng, MD; and John R. Bach, MD, FCCP Study objective: To evaluate the effects of a respiratory muscle aid protocol on

More information

INDICATIONS FOR RESPIRATORY ASSISTANCE A C U T E M E D I C I N E U N I T P - Y E A R M B B S 4

INDICATIONS FOR RESPIRATORY ASSISTANCE A C U T E M E D I C I N E U N I T P - Y E A R M B B S 4 INDICATIONS FOR RESPIRATORY ASSISTANCE A C U T E M E D I C I N E U N I T P - Y E A R M B B S 4 RESPIRATORY FAILURE Acute respiratory failure is defined by hypoxemia with or without hypercapnia. It is one

More information

WHAT DO YOU WANT FROM A HOME VENTILATION SYSTEM? 8322_RS_HomeNIV_brochure_v14.ind1 1 4/7/06 12:57:35

WHAT DO YOU WANT FROM A HOME VENTILATION SYSTEM? 8322_RS_HomeNIV_brochure_v14.ind1 1 4/7/06 12:57:35 WHAT DO YOU WANT FROM A HOME VENTILATION SYSTEM? 8322_RS_HomeNIV_brochure_v14.ind1 1 4/7/06 12:57:35 D I L E M M A DIFFERENT VENTILATORS DIFFERENT ALGORITHMS TO KNOW YOU VE CHANGED PATIENT LIVES?PATIENT??

More information

(To be filled by the treating physician)

(To be filled by the treating physician) CERTIFICATE OF MEDICAL NECESSITY TO BE ISSUED TO CGHS BENEFICIAREIS BEING PRESCRIBED BILEVEL CONTINUOUS POSITIVE AIRWAY PRESSURE (BI-LEVEL CPAP) / BI-LEVEL VENTILATORY SUPPORT SYSTEM Certification Type

More information

GE Healthcare. Non Invasive Ventilation (NIV) For the Engström Ventilator. Relief, Relax, Recovery

GE Healthcare. Non Invasive Ventilation (NIV) For the Engström Ventilator. Relief, Relax, Recovery GE Healthcare Non Invasive Ventilation (NIV) For the Engström Ventilator Relief, Relax, Recovery COPD is currently the fourth leading cause of death in the world, and further increases in the prevalence

More information

OXYGEN USE IN PHYSICAL THERAPY PRACTICE. Rebecca H. Crouch, PT,DPT,MS,CCS,FAACVPR

OXYGEN USE IN PHYSICAL THERAPY PRACTICE. Rebecca H. Crouch, PT,DPT,MS,CCS,FAACVPR OXYGEN USE IN PHYSICAL THERAPY PRACTICE Rebecca H. Crouch, PT,DPT,MS,CCS,FAACVPR Supplemental Oxygen Advantages British Medical Research Council Clinical Trial Improved survival using oxygen 15 hrs/day

More information

Non-invasive Ventilation

Non-invasive Ventilation Non-invasive Ventilation 163 29 Non-invasive Ventilation AM BHAGWATI Artificial ventilatory support has became an integral component in the management of critically ill patients in the intensive care units.

More information

Basics of NIV. Dr Shrikanth Srinivasan MD,DNB,FNB,EDIC. Consultant, Critical Care Medicine Medanta, The Medicity

Basics of NIV. Dr Shrikanth Srinivasan MD,DNB,FNB,EDIC. Consultant, Critical Care Medicine Medanta, The Medicity Basics of NIV Dr Shrikanth Srinivasan MD,DNB,FNB,EDIC Consultant, Critical Care Medicine Medanta, The Medicity Objectives: Definitions Advantages and Disadvantages Interfaces Indications Contraindications

More information

Trial protocol - NIVAS Study

Trial protocol - NIVAS Study 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Trial protocol - NIVAS Study METHODS Study oversight The Non-Invasive Ventilation after Abdominal Surgery

More information

KENNEDY DISEASE PULMONARY CONSIDERATIONS: SCIENCE & MANAGEMENT STRATEGIES

KENNEDY DISEASE PULMONARY CONSIDERATIONS: SCIENCE & MANAGEMENT STRATEGIES KENNEDY DISEASE PULMONARY CONSIDERATIONS: SCIENCE & MANAGEMENT STRATEGIES When you can t breathe nothing else matters American Lung Association Noah Lechtzin, MD; MHS Associate Professor of Medicine Johns

More information

NIV in Acute Respiratory Failure: Where we fail? Dr Shrikanth Srinivasan MD,DNB,FNB,EDIC Consultant, Critical Care Medicine Medanta, The Medicity

NIV in Acute Respiratory Failure: Where we fail? Dr Shrikanth Srinivasan MD,DNB,FNB,EDIC Consultant, Critical Care Medicine Medanta, The Medicity NIV in Acute Respiratory Failure: Where we fail? Dr Shrikanth Srinivasan MD,DNB,FNB,EDIC Consultant, Critical Care Medicine Medanta, The Medicity Use of NIV 1998-2010 50 45 40 35 30 25 20 15 10 5 0 1998

More information

Duchenne Muscular Dystrophy

Duchenne Muscular Dystrophy Authors: Elia Gomez-Merino, MD John R. Bach, MD Affiliations: From the Department of Pulmonary Medicine, Hospital Clinico Universitario de San Juan, San Juan de Alicante, Spain (EGM), and the Department

More information

A study of non-invasive ventilation in acute respiratory failure

A study of non-invasive ventilation in acute respiratory failure Original Research Article A study of non-invasive ventilation in acute respiratory failure Nilima Manohar Mane 1, Jayant L. Pednekar 2, Sangeeta Pednekar 3* 1 Consultant Physician and Diabetologist, Apollo

More information

Understanding Breathing Muscle Weakness

Understanding Breathing Muscle Weakness Understanding Breathing Muscle Weakness A N D R E A L. K L E I N P R E S I D E N T / F O U N D E R B R E A T H E W I T H M D w w w.facebook.com/ b r e a t h e w i t h m d h t t p : / / w w w. b r e a t

More information

Training. Continuous Positive Airway Pressure (CPAP)

Training. Continuous Positive Airway Pressure (CPAP) Training The training module will follow the national standard curriculum as it relates to the application and use of CPAP. The proposed curriculum will closely resemble the following algorithm utilizing

More information

Joint Trust Clinical Guideline for Monitoring of patients with Guillain Barré Syndrome (GBS)

Joint Trust Clinical Guideline for Monitoring of patients with Guillain Barré Syndrome (GBS) A Clinical Guideline For Use in: By: For: Division responsible for document: Key words: Name of document author: Job title of document author: Name of document author s Line Manager: Job title of author

More information

Acute Applications of Noninvasive Positive Pressure Ventilation* Timothy Liesching, MD; Henry Kwok, MD, FCCP; and Nicholas S.

Acute Applications of Noninvasive Positive Pressure Ventilation* Timothy Liesching, MD; Henry Kwok, MD, FCCP; and Nicholas S. reviews Acute Applications of Noninvasive Positive Pressure Ventilation* Timothy Liesching, MD; Henry Kwok, MD, FCCP; and Nicholas S. Hill, MD, FCCP Noninvasive positive-pressure ventilation (NPPV) has

More information

You are caring for a patient who is intubated and. pressure control ventilation. The ventilator. up to see these scalars

You are caring for a patient who is intubated and. pressure control ventilation. The ventilator. up to see these scalars Test yourself Test yourself #1 You are caring for a patient who is intubated and ventilated on pressure control ventilation. The ventilator alarms and you look up to see these scalars What is the most

More information

Pulmonary Care for Patients with Mitochondrial Disorders

Pulmonary Care for Patients with Mitochondrial Disorders Pulmonary Care for Patients with Mitochondrial Disorders Rajeev Bhatia, MD, MBBS, DCH, FAAP Pediatric Pulmonologist Assistant Professor of Pediatrics, NEOMED Medical Director, Clinical Exercise Physiology

More information

Respiratory Emergencies. Chapter 11

Respiratory Emergencies. Chapter 11 Respiratory Emergencies Chapter 11 Respiratory System Anatomy and Function of the Lung Characteristics of Adequate Breathing Normal rate and depth Regular breathing pattern Good breath sounds on both sides

More information

Lecture Notes. Chapter 2: Introduction to Respiratory Failure

Lecture Notes. Chapter 2: Introduction to Respiratory Failure Lecture Notes Chapter 2: Introduction to Respiratory Failure Objectives Define respiratory failure, ventilatory failure, and oxygenation failure List the causes of respiratory failure Describe the effects

More information

Predictors of Successful Noninvasive Ventilation Treatment for Patients Suffering Acute Respiratory Failure

Predictors of Successful Noninvasive Ventilation Treatment for Patients Suffering Acute Respiratory Failure ORIGINAL ARTICLE Predictors of Successful Noninvasive Ventilation Treatment for Patients Suffering Acute Respiratory Failure Ming-Shian Lin 1, How-Ran Guo 2,3, Ming-Hua Huang 4, Cheng-Ren Chen 1, Chen-Long

More information

Nasal High Flow Humidification with or without Oxygen for COPD Management. Shereen Bailey, RCP, RRT, NPS

Nasal High Flow Humidification with or without Oxygen for COPD Management. Shereen Bailey, RCP, RRT, NPS Nasal High Flow Humidification with or without Oxygen for COPD Management Shereen Bailey, RCP, RRT, NPS Objectives How it works COPD Management today The role of NHFC Evidence Research/Case Studies Types

More information

Respiratory Disease. Dr Amal Damrah consultant Neonatologist and Paediatrician

Respiratory Disease. Dr Amal Damrah consultant Neonatologist and Paediatrician Respiratory Disease Dr Amal Damrah consultant Neonatologist and Paediatrician Signs and Symptoms of Respiratory Diseases Cardinal Symptoms Cough Sputum Hemoptysis Dyspnea Wheezes Chest pain Signs and Symptoms

More information

Challenging Cases in Pediatric Polysomnography. Fauziya Hassan, MBBS, MS Assistant Professor Pediatric Pulmonary and Sleep

Challenging Cases in Pediatric Polysomnography. Fauziya Hassan, MBBS, MS Assistant Professor Pediatric Pulmonary and Sleep Challenging Cases in Pediatric Polysomnography Fauziya Hassan, MBBS, MS Assistant Professor Pediatric Pulmonary and Sleep Conflict of Interest None pertaining to this topic Will be using some slides from

More information

CLINICAL VIGNETTE 2016; 2:3

CLINICAL VIGNETTE 2016; 2:3 CLINICAL VIGNETTE 2016; 2:3 Editor-in-Chief: Olufemi E. Idowu. Neurological surgery Division, Department of Surgery, LASUCOM/LASUTH, Ikeja, Lagos, Nigeria. Copyright- Frontiers of Ikeja Surgery, 2016;

More information

1 Chapter 13 Respiratory Emergencies 2 Respiratory Distress Patients often complain about. Shortness of breath Symptom of many different Cause can be

1 Chapter 13 Respiratory Emergencies 2 Respiratory Distress Patients often complain about. Shortness of breath Symptom of many different Cause can be 1 Chapter 13 Respiratory Emergencies 2 Respiratory Distress Patients often complain about. Shortness of breath Symptom of many different Cause can be difficult to determine. Even for physician in hospital

More information

Acute Respiratory Distress Syndrome (ARDS) An Update

Acute Respiratory Distress Syndrome (ARDS) An Update Acute Respiratory Distress Syndrome (ARDS) An Update Prof. A.S.M. Areef Ahsan FCPS(Medicine) MD(Critical Care Medicine) MD ( Chest) Head, Dept. of Critical Care Medicine BIRDEM General Hospital INTRODUCTION

More information

Web Appendix 1: Literature search strategy. BTS Acute Hypercapnic Respiratory Failure (AHRF) write-up. Sources to be searched for the guidelines;

Web Appendix 1: Literature search strategy. BTS Acute Hypercapnic Respiratory Failure (AHRF) write-up. Sources to be searched for the guidelines; Web Appendix 1: Literature search strategy BTS Acute Hypercapnic Respiratory Failure (AHRF) write-up Sources to be searched for the guidelines; Cochrane Database of Systematic Reviews (CDSR) Database of

More information

Noninvasive Ventilation: Non-COPD Applications

Noninvasive Ventilation: Non-COPD Applications Noninvasive Ventilation: Non-COPD Applications NONINVASIVE MECHANICAL VENTILATION Why Noninvasive Ventilation? Avoids upper A respiratory airway trauma system lacerations, protective hemorrhage strategy

More information

Although the literature reports that approximately. off a ventilator

Although the literature reports that approximately. off a ventilator Taking your patient off a ventilator Although the literature reports that approximately 33% of patients in the ICU require mechanical ventilation (MV),! the figure is closer to 90% for the critically SONIA

More information

Gestione della dispnea nell insufficienza respiratoria end-stage

Gestione della dispnea nell insufficienza respiratoria end-stage Gestione della dispnea nell insufficienza respiratoria end-stage Salvatore M. Maggiore, MD, PhD salvatore.maggiore@unich.it Anesthesia and Intensive Care SS. Annunziata Hospital Gabriele d Annunzio University

More information

ACUTE RESPIRATORY DISTRESS SYNDROME (ARDS) Rv

ACUTE RESPIRATORY DISTRESS SYNDROME (ARDS) Rv ACUTE RESPIRATORY DISTRESS SYNDROME (ARDS) Rv.8.18.18 ACUTE RESPIRATORY DISTRESS SYNDROME (ARDS) SUDDEN PROGRESSIVE FORM OF ACUTE RESPIRATORY FAILURE ALVEOLAR CAPILLARY MEMBRANE BECOMES DAMAGED AND MORE

More information

SESSION 3 OXYGEN THERAPY

SESSION 3 OXYGEN THERAPY SESSION 3 OXYGEN THERAPY Harith Eranga Yapa Department of Nursing Faculty of Health Sciences The Open University of Sri Lanka 1 Outline Methods of delivery Complications of oxygen therapy Artificial airways

More information

Weaning from Mechanical Ventilation. Dr Azmin Huda Abdul Rahim

Weaning from Mechanical Ventilation. Dr Azmin Huda Abdul Rahim Weaning from Mechanical Ventilation Dr Azmin Huda Abdul Rahim Content Definition Classification Weaning criteria Weaning methods Criteria for extubation Introduction Weaning comprises 40% of the duration

More information

Chapter 13. Respiratory Emergencies

Chapter 13. Respiratory Emergencies Chapter 13 Respiratory Emergencies Introduction Patients often complain about dyspnea. Shortness of breath Symptom of many different conditions Cause can be difficult to determine. Even for physician in

More information

Concerns and Controversial Issues in NPPV. Concerns and Controversial Issues in Noninvasive Positive Pressure Ventilation

Concerns and Controversial Issues in NPPV. Concerns and Controversial Issues in Noninvasive Positive Pressure Ventilation : Common Therapy in Daily Practice Concerns and Controversial Issues in Noninvasive Positive Pressure Ventilation Rongchang Chen Guangzhou Institute of Respiratory Disease as the first choice of mechanical

More information

BiPAPS/TVAPSCPAPASV???? Lori Davis, B.Sc., R.C.P.T.(P), RPSGT

BiPAPS/TVAPSCPAPASV???? Lori Davis, B.Sc., R.C.P.T.(P), RPSGT BiPAPS/TVAPSCPAPASV???? Lori Davis, B.Sc., R.C.P.T.(P), RPSGT Modes Continuous Positive Airway Pressure (CPAP): One set pressure which is the same on inspiration and expiration Auto-PAP (APAP) - Provides

More information

By Nichole Miller, BSN Direct Care Nurse, ICU Dwight D Eisenhower Army Medical Center Fort Gordon, Ga.

By Nichole Miller, BSN Direct Care Nurse, ICU Dwight D Eisenhower Army Medical Center Fort Gordon, Ga. Set the stage for ventilator 2.0 ANCC CONTACT HOURS Are you puzzled by ventilator modes? We help you differentiate between invasive and noninvasive ventilation and understand the common settings for each.

More information

Introduction and Overview of Acute Respiratory Failure

Introduction and Overview of Acute Respiratory Failure Introduction and Overview of Acute Respiratory Failure Definition: Acute Respiratory Failure Failure to oxygenate Inadequate PaO 2 to saturate hemoglobin PaO 2 of 60 mm Hg ~ SaO 2 of 90% PaO 2 of 50 mm

More information

Bilevel positive airway pressure nasal mask ventilation in patients with acute hypercapnic respiratory failure

Bilevel positive airway pressure nasal mask ventilation in patients with acute hypercapnic respiratory failure Bilevel positive airway pressure nasal mask ventilation in patients with acute hypercapnic respiratory failure CK Chan, KS Lau, HC Fan, CW Lam The efficacy and complications of bilevel positive airway

More information

Pain Module. Opioid-RelatedRespiratory Depression (ORRD)

Pain Module. Opioid-RelatedRespiratory Depression (ORRD) Pain Module Opioid-RelatedRespiratory Depression (ORRD) Characteristics of patients who are at higher risk for Opioid- Related Respiratory Depression (ORRD) Sleep apnea or sleep disorder diagnosis : typically

More information

MND Study Day. Martin Latham CNS Leeds Sleep Service

MND Study Day. Martin Latham CNS Leeds Sleep Service MND Study Day Martin Latham CNS Leeds Sleep Service Objectives: Identifying individuals at risk. Understand issues related to NIV. Understand issues related to secretion management Improve outcomes. Identifying

More information

The objectives of this presentation are to

The objectives of this presentation are to 1 The objectives of this presentation are to 1. Review the mechanics of airway clearance 2. Understand the difference between secretion mobilization and secretion clearance 3. Identify conditions that

More information

RESPIRATORY COMPLICATIONS AFTER SCI

RESPIRATORY COMPLICATIONS AFTER SCI SHEPHERD.ORG RESPIRATORY COMPLICATIONS AFTER SCI NORMA I RIVERA, RRT, RCP RESPIRATORY EDUCATOR SHEPHERD CENTER 2020 Peachtree Road, NW, Atlanta, GA 30309-1465 404-352-2020 DISCLOSURE STATEMENT I have no

More information

José A. Fernández, Antonio Fernández-Valiñas, Daniel Hernández, Joel Orozco, and Antonio Lugo

José A. Fernández, Antonio Fernández-Valiñas, Daniel Hernández, Joel Orozco, and Antonio Lugo Case Reports in Critical Care Volume 2015, Article ID 624718, 4 pages http://dx.doi.org/10.1155/2015/624718 Case Report Myasthenic Crisis in an Elderly Patient with Positive Antibodies against Acetylcholine

More information

Non-Invasive Ventilation of the Restricted Thorax: Effects of Ventilator Modality on Quality of Life. The North Study

Non-Invasive Ventilation of the Restricted Thorax: Effects of Ventilator Modality on Quality of Life. The North Study Non-Invasive Ventilation of the Restricted Thorax: Effects of Ventilator Modality on Quality of Life The North Study Lorna Cummins RRT, Pat Hanly MD, Andrea Loewen MD, Karen Rimmer MD Raymond Tye RRT,

More information

Respiratory Management of Facioscapulohumeral Muscular Dystrophy. Nicholas S. Hill, MD Tufts Medical Center Boston, MA

Respiratory Management of Facioscapulohumeral Muscular Dystrophy. Nicholas S. Hill, MD Tufts Medical Center Boston, MA Respiratory Management of Facioscapulohumeral Muscular Dystrophy Nicholas S. Hill, MD Tufts Medical Center Boston, MA Respiratory Involvement in FSHD Very variable time of onset rate of progression Muscles

More information

Policy Specific Section: October 1, 2010 January 21, 2013

Policy Specific Section: October 1, 2010 January 21, 2013 Medical Policy Bi-level Positive Airway Pressure (BPAP/NPPV) Type: Medical Necessity/Not Medical Necessity Policy Specific Section: Durable Medical Equipment Original Policy Date: Effective Date: October

More information

The Respiratory System

The Respiratory System Elaine N. Marieb Katja Hoehn Human Anatomy & Physiology SEVENTH EDITION C H A P T E R PowerPoint Lecture Slides prepared by Vince Austin, Bluegrass Technical and Community College 22P A R T B The Respiratory

More information

Ventilator Waveforms: Interpretation

Ventilator Waveforms: Interpretation Ventilator Waveforms: Interpretation Albert L. Rafanan, MD, FPCCP Pulmonary, Critical Care and Sleep Medicine Chong Hua Hospital, Cebu City Types of Waveforms Scalars are waveform representations of pressure,

More information

The difference is clear. CoughAssist clears airways with the force of a natural cough

The difference is clear. CoughAssist clears airways with the force of a natural cough The difference is clear CoughAssist clears airways with the force of a natural cough When only a real cough will do CoughAssist is a noninvasive therapy that safely and consistently removes secretions

More information

Patient ventilator asynchrony and sleep disruption during noninvasive

Patient ventilator asynchrony and sleep disruption during noninvasive Review Article Patient ventilator asynchrony and sleep disruption during noninvasive ventilation Michelle Ramsay Lane Fox Unit, St Thomas Hospital, London, UK Correspondence to: Dr. Michelle Ramsay, MRCP

More information

1. When a patient fails to ventilate or oxygenate adequately, the problem is caused by pathophysiological factors such as hyperventilation.

1. When a patient fails to ventilate or oxygenate adequately, the problem is caused by pathophysiological factors such as hyperventilation. Chapter 1: Principles of Mechanical Ventilation TRUE/FALSE 1. When a patient fails to ventilate or oxygenate adequately, the problem is caused by pathophysiological factors such as hyperventilation. F

More information

Home Mechanical Ventilation. Anthony Bateman

Home Mechanical Ventilation. Anthony Bateman Home Mechanical Ventilation Anthony Bateman What is Long Term Ventilation? LTV is the provision of respiratory support to individuals with non-acute respiratory failure Progression of expected disease

More information

OSA and COPD: What happens when the two OVERLAP?

OSA and COPD: What happens when the two OVERLAP? 2011 ISRC Seminar 1 COPD OSA OSA and COPD: What happens when the two OVERLAP? Overlap Syndrome 1 OSA and COPD: What happens when the two OVERLAP? ResMed 10 JAN Global leaders in sleep and respiratory medicine

More information

CPAP. Pre-Hospital Treatment Using The Respironics Whisperflow CPAP Device. Charlottesville Albemarle Rescue Squad - CPAP

CPAP. Pre-Hospital Treatment Using The Respironics Whisperflow CPAP Device. Charlottesville Albemarle Rescue Squad - CPAP CPAP Pre-Hospital Treatment Using The Respironics Whisperflow CPAP Device CPAP What Is It? C ontinuous P ositive A irway P ressure Anatomy Review Anatomy Review Anatomy Review Alveoli Anatomy Review Chest

More information

COMMISSION ON ACCREDITATION FOR RESPIRATORY CARE TMC DETAILED CONTENT OUTLINE COMPARISON

COMMISSION ON ACCREDITATION FOR RESPIRATORY CARE TMC DETAILED CONTENT OUTLINE COMPARISON A. Evaluate Data in the Patient Record I. PATIENT DATA EVALUATION AND RECOMMENDATIONS 1. Patient history e.g., admission data orders medications progress notes DNR status / advance directives social history

More information