Workflow for Screening and Quantification of the SAMHSA (NIDA) Panel in Urine Using UHPLC-TOF

Size: px
Start display at page:

Download "Workflow for Screening and Quantification of the SAMHSA (NIDA) Panel in Urine Using UHPLC-TOF"

Transcription

1 APPLICATIO OTE Liquid Chromatography/ Mass Spectrometry Authors: Avinash Dalmia Joanne Mather PerkinElmer, Inc. Shelton, CT Workflow for Screening and Quantification of the SAMHSA (IDA) Panel in Urine Using UHPLC-TOF Introduction Workplace drug screening is a common feature of hiring practices as is routine screening of the existing workforce, such as federal employees, safety sensitive employees (e.g., railroad and airline employees) and non-federal non-regulated employees. Transportation employees are the largest group tested. Drug testing is also widely used in continuing probation cases and federally approved release cases, and in medical screening settings for pain medication compliance. In the U.S., drug screening for people working in certain occupations is mandated and regulated by the Substance Abuse and Mental Health Services Administration (SAMHSA).

2 The SAMHSA panel (formally referred to as the IDA panel) classes are chosen to represent the most commonly abused drugs in the general public. This list includes cocaine, marijuana, amphetamines, opiates and phencyclidines. The full list of compounds with their screening and confirmatory cutoff levels in urine (the most widely used matrix) is displayed in Table 1 1. A list of all compounds with their associated acronyms and molecular structures is displayed in Table 2. Table 1. List of analytes and their cutoff levels. Initial Test Analyte Initial Test Cutoff Concentration Confirmatory Test Analyte Confirmatory Test Cutoff Concentration Marijuana metabolites 50 ng/ml THCA 1 15 ng/ml Cocaine metabolites 150 ng/ml Benzoylecgonine 100 ng/ml Opiate metabolites 2000 ng/ml Codeine 2000 ng/ml Codeine/Morphine 2 Morphine 2000 ng/ml 6-Acetylmorphine 10 ng/ml 6-Acetylmorphine 10 ng/ml Phencyclidine 25 ng/ml Phencyclidine 25 ng/ml Amphetamines ng/ml Amphetamine 250 ng/ml AMP/MAMP 4 Methamphetamine ng/ml MDMA ng/ml MDMA 250 ng/ml MDA ng/ml MDEA ng/ml 1. Delta-9-tetrahydrocannabinol-9-carboxylic acid (THCA). 2. Morphine is the target analyte for codeine/morphine testing. 3. Either a single initial test kit or multiple initial test kits may be used provided the single test kit detects each target analyte independently at the specified cutoff. 4. Methamphetamine is the target analyte for amphetamine/ methamphetamine testing. 5. To be reported as positive for methamphetamine, a specimen must also contain amphetamine at a concentration equal to or greater than 100 ng/ml. 6. Methylenedioxymethamphetamine (MDMA). 7. Methylenedioxyamphetamine (MDA). 8. Methylenedioxyethylamphetamine (MDEA). Table 2. List of analytes and their molecular structures. Compound Amphetamine (AMP) Methamphetamine(MAMP) 3,4-Methylenedioxyamphetamine(MDA) 3,4-Methylenedioxymethamphetamine(MDMA) 3,4-Methylenedioxy--ethylamphetamine (MDEA) Phencyclidine (PCP) Codeine (COD) Morphine (MOR) 6 Acteylmorphine (6-AM) Benzoylecgonine (BZE) Tetrahydrocannabinol carboxylic acid (THC-COOH) Structure Immunoassays have traditionally been used for screening of the SAMHSA panel but this approach can be challenging since it can give false positive results. Some over the counter medications can produce a false positive result, such as decongestants, yielding a positive result for amphetamine. These false positives then require confirmation by other complimentary techniques, such as GC/MS. Immunoassays are not always sensitive enough to detect low levels of the drug in challenging matrices, such as urine and blood and can often not identify specific drugs within drug classes due to their lack of specificity. An example of this is the detection of morphine where the test would be unable to determine whether the drug taken was morphine, codeine or heroin. GC/MS, used extensively in confirmatory analysis, offers its own challenges in the analysis of drugs of abuse. Most of the compound classes are polar and often thermally labile thus requiring derivatization prior to analysis. Thermally labile compounds are often misidentified due to common EI fragments with other compounds. Unlike GC/MS, LC/MS does not require time consuming derivatization of samples and is ideally suited for the rapid analysis of these compounds. In 2011, SAMSHA altered the guidelines to allow LC/MS instruments to be used for urine quantitative confirmatory analysis. Among the LC techniques, LC/MS/MS is often used to quantitate drugs of abuse in biological fluids due to its sensitivity and selectivity. However, triple quadrupole techniques can have an undesirable high cost and lack the ability to easily identify new or unknown compounds. 2

3 We present an alternative technique to quantitate drugs of abuse in urine utilizing a rapid dilute and shoot with LC separation method in combination with time-of-flight mass spectrometry (TOF MS). The detection limits of the SAMHSA panel analyzed by the TOF were approximately times lower than those required by the SAMHSA guidelines for a confirmatory test cutoff level. In addition to the wide quantitative dynamic range of the AxIO 2 TOF MS, which rivals capabilities of the triple quadrupole instruments, the TOF also provides full spectrum information which allows for screening of non-target compounds. Due to the variety of the illicit and abused drugs available and high incidence of drug abuse, it is vital that labs have an approach that is fast, yet generic in nature and not targeted. It is costly and time prohibitive to add new drugs to an immunoassay based screening panel. TOF MS collects all the ions, and can be used to screen for a new drug immediately at little to no extra method development or cost, and with no requirement to reanalyze the sample. In this application note we present a rapid workflow for the screening and quantification of drugs of abuse in urine. Experimental A workflow for the screening and quantification of the IDA panel is shown in Figure 1. Sample preparation Urine (0.5 ml) was diluted with 0.5 ml of water. Sample (10 µl) was directly injected on column. o sample extraction was required. Calibration Curve(s) Urine blanks were spiked with calibrant levels of 11 IDA panel drugs and 300 ng/ml of deuterated internal standards of 10 IDA panel drugs. The deuterated MDMA standard was used as an internal standard for both MDA and MDMA. Samples were diluted 1:1 with water and 10 µl injected onto column. Each calibration level was injected five times. LC chromatography was developed to ensure that no interferences inherent in the matrix were detected as false positives, and also to ensure minimization of matrix effects (suppression or enhancement). LC conditions: Pump: PerkinElmer Flexar FX-15 UHPLC pump Flow: 0.25 ml/min Mobile phase A: 100 % Water with 10 mm Ammonium Formate adjusted to ph 5.5 Mobile phase B: 95 % AC/5% Water with 0.05 % Formic Acid Gradient conditions: Time (min) %A %B Curve Injection volume: 10 µl Full Loop Mode Column: PerkinElmer Brownlee SPP column C-18, 2.1x50 mm, 2.7 μm (part number ), SPP C18 guard column cartridge 2.1 mm x 5 mm, 2.7 μm (part number ), guard column holder (part number ) Column temperature: 30 C Diverter valve: LC Effluent was diverted to waste during initial 1.8 min of LC runs conditions: Mass spectrometer: Ionization source: Ionization mode: Acquisition mode: Internal calibration: PerkinElmer AxIO 2 TOF MS PerkinElmer Ultraspray 2 (Dual ESI source) Positive Trap Pulse Performed using m/z and as lock mass ions. Targeted Compounds to Screen Dilute and shoot sample Compound detected /? AALTE THC-COOH COCAIE CODEIE MORPHIE MDA MDEA O ES Report egative Screen Quantification & Confirmation Accurate Mass LC/MS Interrogate Data ID Unknowns 6-AM PCP BZE AMP MAMP MDMA Figure 1. Workflow for screening, identification and quantification of SAMHSA panel in urine. 3

4 Results Screening To rapidly identify the presence or absence of drugs in large batches of samples, AxIO Solo software was used. AxIO Solo provides quick visualization of the presence or absence of analytes in the samples (Figure 2). Presence of individual drugs can be coded with a specific color for ease of identification. The software identifies the presence of a drug based on accurate mass and isotope profile ratio as shown in Figure 3. The isotope ratios allow further confirmation of the identity of detected compound, lowering the risk of false positives and can also be used to add confidence to the assignment of chemical composition to unknown species. In addition to searching against spectral information, the software also searches for target analytes based on user defined retention time windows which further improves the specificity of detection. The list of target analytes can be quickly and easily added to as previously unknown analytes are detected in samples. The analysis of the SAMHSA panel was completed in < 10 min. (Figure 4) with all peaks eluting before 9.5 minutes. The acquisition rate of the AxIO TOF 2 is sufficient to provide a total of at least 10 spectra across each chromatographic peak, as required by regulations. The use of the divert valve, which removes the salt to waste, ensures a cleaner more robust assay as urine salts, which tend to elute at the beginning of the chromatographic run do not enter the mass spectrometer. Figure 2. AxIO Solo screen shot for blank urine and 100 ng/ml levels of IDA drugs in urine. [M+H] + Theoretical Mass = Measured Mass = Mass Accuracy = 1.44 ppm MDEA M+1 Isotope Expected Rel. Response = 13.05% Measured Rel. Response = 13.43% Figure 3. Mass accuracy and isotope profile of MDEA. MDEA M+1 Isotope Expected Rel. Response = 0.77% Measured Rel. Response = 1.28% Figure 4. EIC for 300 ng/ml of 11 IDA panel drugs standard in urine. Figure 5. MDEA- linear calibration curve ( ng/ml). 4

5 Confirmation/Quantification The overall assay sensitivity was determined to be in the 1-10 ng/ ml range for all of the drugs spiked into urine, (Table 3). The limit of quantification (LOQs) measured by the TOF instrument were times more sensitive than what is currently required by the SAMHSA guidelines for confirmatory analysis. When analyzing such low levels of compound carryover must be assessed to ensure that the assay is suitable for use. In spite of the low LOQs provided by the TOF MS, 0% carryover was observed for the majority of the analytes and levels were negligible in others were detected, after an injection of the upper limit of quantification (ULOQ) mixture of the drugs tested. Linearity of a representative drug MDEA is shown in Figure 5. The assay showed linearity over three orders with an r 2 value of The majority of the drugs of abuse analyzed showed linearity of three orders of dynamic range where all data was processed without weighting and did not require a quadratic fit, with r 2 values of 0.99 demonstrating that the assay was linear and valid over the clinically relevant range required (Table 4). Multiple injections (n=5) of each calibration level showed excellent reproducibility (RSDs< 15%) for each of the drugs. The presence of a given drug in a urine sample can be confirmed by accurate mass and isotope profile provided by TOF MS. As shown in Table 5, the accurate masses of the majority of the drugs of abuse are < 3 ppm. The cannabinoid metabolite (delta-9-tetrahydrocannabinol-9- carboxylic acid/ THC-COOH), a difficult analyte to ionize, was detected with LOQ of 10 ng/ml which is below the confirmatory cutoff level required. Morphine, a difficult analyte to retain and remove potential interferences simultaneously, was detected with LOQ of 10 ng/ml. Table 3. IDA panel drugs of abuse LOQ in urine with associated cutoff levels. Initial Test Confirmatory LOQ Cut Off Test Cutoff Analyte (ng/ml) Level (ng/ml) Level (ng/ml) AMP MAMP MDA MDMA MDEA PCP BZE AM Morphine Codeine THC-COOH Table 4. IDA linearity correlation coefficients. Analyte Concentration Range (ng/ml) r 2 AMP MAMP MDA MDMA MDEA PCP BZE AM Morphine Codeine THC-COOH Table 5. Exact mass and formula for 11 IDA panel drugs of abuse. Compound [M+H] + Formula Measured Mass Mass Error/Da Mass Error/ppm AMP C 9 H MAMP C 10 H MDA C 10 H 13 O MDMA C 11 H 15 O MDEA C 12 H 17 O PCP C 17 H Morphine C 17 H 19 O BZE C 16 H 19 O Codeine C 18 H 21 O AM C 19 H 21 O THC-COOH C 21 H 28 O

6 Conclusions The method required little to no sample preparation or method development, saving hours of time and the use of costly reagents and consumables. This equates to a much lower cost per sample. The AxIO 2 TOF was easily able to screen and confirm 1-10 ng/ ml concentrations of drugs of abuse spiked in urine. The detection limits of these drugs were up to 1000 times lower than that required by the SAMHSA guidelines. AxIO 2 TOF with the ADC detector technology provides wide dynamic range capabilities similar to that of a triple quadrupole mass spectrometer, and although not required by the federal regulations, offers the screening of untargeted compounds and allows for subsequent re-interrogation of data. The AxIO 2 TOF MS is much easier to set up and adjust current methods for new or unknown compounds in comparison to triple quadrupoles which are more time consuming when modifying current methods or developing new methods. For rapid large scale screening of batches of samples, PerkinElmer AxIO Solo software provides a quick and easy platform to detect the presence or absence of drugs of abuse. References GuidelinesAnalytesCutoffs.pdf PerkinElmer, Inc. 940 Winter Street Waltham, MA USA P: (800) or (+1) For a complete listing of our global offices, visit Copyright , PerkinElmer, Inc. All rights reserved. PerkinElmer is a registered trademark of PerkinElmer, Inc. All other trademarks are the property of their respective owners A_01

Workflow for Screening and Quantification of the SAMHSA (NIDA) Panel in Serum Using UHPLC-TOF

Workflow for Screening and Quantification of the SAMHSA (NIDA) Panel in Serum Using UHPLC-TOF APPLICATIO OTE Liquid Chromatography/ Mass Spectrometry Authors: Avinash Dalmia Bonnie Marmor PerkinElmer, Inc. Shelton, CT Workflow for Screening and Quantification of the SAMHSA (IDA) Panel in Serum

More information

Quantitative Analysis of Drugs of Abuse in Urine using UHPLC Coupled to Accurate Mass AxION 2 TOF Mass Spectrometer

Quantitative Analysis of Drugs of Abuse in Urine using UHPLC Coupled to Accurate Mass AxION 2 TOF Mass Spectrometer application Note Liquid Chromatography/ Mass Spectrometry Authors Sharanya Reddy Blas Cerda PerkinElmer, Inc. Shelton, CT USA Quantitative Analysis of Drugs of Abuse in Urine using UHPLC Coupled to Accurate

More information

A Simple and Accurate Method for the Rapid Quantitation of Drugs of Abuse in Urine Using Liquid Chromatography

A Simple and Accurate Method for the Rapid Quantitation of Drugs of Abuse in Urine Using Liquid Chromatography Application Note LCMS-109 A Simple and Accurate Method for the Rapid Quantitation of Drugs of Abuse in Urine Using Liquid Chromatography Time of Flight (LC-TOF) Mass Spectrometry Introduction Many clinical

More information

Rapid Screening and Quantitation of Postharvest Fungicides on Citrus Fruits Using AxION DSA/TOF and Flexar SQ MS

Rapid Screening and Quantitation of Postharvest Fungicides on Citrus Fruits Using AxION DSA/TOF and Flexar SQ MS APPLICATION NOTE Mass Spectrometry Author: Avinash Dalmia PerkinElmer, Inc. Shelton, CT USA Rapid Screening and Quantitation of Postharvest Fungicides on Citrus Fruits Using AxION DSA/TOF and Flexar SQ

More information

Modernizing the Forensic Lab with LC-MS/MS Technology

Modernizing the Forensic Lab with LC-MS/MS Technology Modernizing the Lab with LC-MS/MS Technology Innovative SCIEX Analytical Tools for the Rapid Identification of Drugs of Abuse in Samples Oscar G. Cabrices 1, Holly McCall 1, Xiang He 1, Alexandre Wang

More information

A Comprehensive Screening of Illicit and Pain Management Drugs from Whole Blood Using SPE and LC/MS/MS

A Comprehensive Screening of Illicit and Pain Management Drugs from Whole Blood Using SPE and LC/MS/MS A Comprehensive Screening of Illicit and Pain Management Drugs from Whole Blood Using SPE and LC/MS/MS Introduction Drug analysis from whole blood is gaining popularity due to a more complete measurement

More information

Quantitative Analysis of Opiates in Urine Using RRHT LC/MS/MS. Application. Authors. Introduction. Abstract. Forensics

Quantitative Analysis of Opiates in Urine Using RRHT LC/MS/MS. Application. Authors. Introduction. Abstract. Forensics Quantitative Analysis of piates in Urine Using RRHT LC/MS/MS Application Forensics Authors Sheher Mohsin Agilent Technologies, Inc. 10 N. Martingale Rd., Suite 550 Schaumburg, IL 60173 USA Yanan Yang Agilent

More information

Analysis of Common Sweeteners and Additives in Beverages with the PerkinElmer Flexar FX-15 System Equipped with a PDA Detector

Analysis of Common Sweeteners and Additives in Beverages with the PerkinElmer Flexar FX-15 System Equipped with a PDA Detector application Note Liquid Chromatography Author Njies Pedjie PerkinElmer, Inc. Shelton, CT 06484 USA Analysis of Common Sweeteners and Additives in Beverages with the PerkinElmer Flexar FX-15 System Equipped

More information

NeoSal Oral Fluid Collection System Solutions for Forensic Drug Detection

NeoSal Oral Fluid Collection System Solutions for Forensic Drug Detection PERFORMANCE OF THE NEOSAL ORAL FLUID COLLECTION SYSTEM Neogen develops and manufactures a comprehensive range of ELISA test kits and accessories for forensic drug detection. Neogen offers solutions to

More information

DETERMINATION OF CANNABINOIDS, THC AND THC-COOH, IN ORAL FLUID USING AN AGILENT 6490 TRIPLE QUADRUPOLE LC/MS

DETERMINATION OF CANNABINOIDS, THC AND THC-COOH, IN ORAL FLUID USING AN AGILENT 6490 TRIPLE QUADRUPOLE LC/MS FORENSICS AND TOXICOLOGY ANALYSIS DETERMINATION OF CANNABINOIDS, THC AND THC-COOH, IN ORAL FLUID USING AN AGILENT 6490 TRIPLE QUADRUPOLE LC/MS Solutions for Your Analytical Business Markets and Applications

More information

Confirmation by Triple Quadrupole LC/MS/MS for HHS-compliant Workplace Urine Drug Testing

Confirmation by Triple Quadrupole LC/MS/MS for HHS-compliant Workplace Urine Drug Testing Confirmation by Triple Quadrupole LC/MS/MS for HHS-compliant Workplace Urine Drug Testing A complete applications solution for forensic toxicology laboratories John Hughes Agilent Technologies Pleasanton,

More information

Analysis of drugs of abuse in biological matrix using Time of Flight technology

Analysis of drugs of abuse in biological matrix using Time of Flight technology Analysis of drugs of abuse in biological matrix using Time of Flight technology Niclas Stephanson, PhD Department of Clinical Pharmacology Karolinska University Hospital Karolinska Institutet Stockholm,

More information

4.5 Minute Analysis of Benzodiazepines in Urine and Whole Blood Using LC/MS/MS and an Ultra Biphenyl Column

4.5 Minute Analysis of Benzodiazepines in Urine and Whole Blood Using LC/MS/MS and an Ultra Biphenyl Column Clinical, Forensic & Toxicology Applications 4.5 Minute Analysis of Benzodiazepines in Urine and Whole Blood Using LC/MS/MS and an Ultra Biphenyl Column By Amanda Rigdon Abstract A rapid, sensitive method

More information

A Novel Platform of On-line Sample Pre-treatment and LC/MS/MS Analysis for Screening and Quantitation of Illicit Drugs in Urine

A Novel Platform of On-line Sample Pre-treatment and LC/MS/MS Analysis for Screening and Quantitation of Illicit Drugs in Urine PO-CON737E A Novel Platform of On-line Sample Pre-treatment and LC/MS/MS Analysis for Screening and Quantitation of Illicit Drugs in Urine ASMS 7 WP 353 Shao Hua Chia ; Zhi Wei Edwin Ting ; Daisuke Kawakami

More information

Finally, a Solid Phase Extraction product for Drugs of Abuse

Finally, a Solid Phase Extraction product for Drugs of Abuse n io t c a r t x E e s a h P d li Finally, a So e s u b A f o s g u r D r fo product Imagine Only Needing 1 SPE Sorbent For All of Your Drugs of Abuse Extractions Extract over 11 drugs using the same sorbent

More information

Cannabinoid Profiling and Quantitation in Hemp Extracts using the Agilent 1290 Infinity II/6230B LC/TOF system

Cannabinoid Profiling and Quantitation in Hemp Extracts using the Agilent 1290 Infinity II/6230B LC/TOF system Cannabinoid Profiling and Quantitation in Hemp Extracts using the Agilent 9 Infinity II/63B LC/TOF system Application Brief Authors Mike Adams, Karen Kaikaris, and A. Roth CWC Labs Joan Stevens, Sue D

More information

Analysis of Isoflavones with the PerkinElmer Flexar FX-15 UHPLC System Equipped with a PDA Detector

Analysis of Isoflavones with the PerkinElmer Flexar FX-15 UHPLC System Equipped with a PDA Detector application Note UHPLC Author Njies Pedjie PerkinElmer, Inc. Shelton, CT 06484 USA Analysis of Isoflavones with the PerkinElmer Flexar FX-15 UHPLC System Equipped with a PDA Detector Introduction Foods

More information

Qualitative and quantitative determination of cannabinoid profiles and potency in CBD hemp oil using LC/UV and Mass Selective Detection

Qualitative and quantitative determination of cannabinoid profiles and potency in CBD hemp oil using LC/UV and Mass Selective Detection Application Note Cannabis Qualitative and quantitative determination of cannabinoid profiles and potency in CBD hemp oil using LC/UV and Mass Selective Detection Authors Mike Adams, Annette Roth, Sue D

More information

The Drug Testing Process. Employer or Practice

The Drug Testing Process. Employer or Practice Disclosures Clinical Professor, Jefferson Medical College BOD MROCC [Medical Review Officer Certification Council] BOD National Sleep Foundation BOD POEMS [Pennsylvania Occupational & Environmental Medicine

More information

Rapid Analysis of Water-Soluble Vitamins in Infant Formula by Standard-Addition

Rapid Analysis of Water-Soluble Vitamins in Infant Formula by Standard-Addition Rapid Analysis of Water-Soluble Vitamins in Infant Formula by Standard-Addition Evelyn Goh Waters Pacific, Singapore APPLICATION BENEFITS This method allows for the simultaneous analysis of 12 water-soluble

More information

The Development of LC/MS Methods for Determination of Polar Drugs of Abuse in Biological Samples

The Development of LC/MS Methods for Determination of Polar Drugs of Abuse in Biological Samples WA20259 The Development of LC/MS Methods for Determination of Polar Drugs of Abuse in Biological Samples Michael S. Young and Kevin M. Jenkins Waters Corporation, 34 Maple Street, Milford, MA 01757 Introduction

More information

The Development of LC/MS Methods for Determination of MDMA (Ecstasy) and Metabolites in Biological Samples

The Development of LC/MS Methods for Determination of MDMA (Ecstasy) and Metabolites in Biological Samples WA20714 The Development of LC/MS Methods for Determination of MDMA (Ecstasy) and Metabolites in Biological Samples Michael S. Young and Kevin M. Jenkins Waters Corporation, 34 Maple Street, Milford, MA

More information

Quantitative Method for Amphetamines, Phentermine, and Designer Stimulants Using an Agilent 6430 LC/MS/MS

Quantitative Method for Amphetamines, Phentermine, and Designer Stimulants Using an Agilent 6430 LC/MS/MS Quantitative Method for Amphetamines, Phentermine, and Designer Stimulants Using an Agilent 6430 LC/MS/MS Application Note Forensic Toxicology Authors Jason Hudson, Ph.D., James Hutchings, Ph.D., and Rebecca

More information

Advancing your Forensic Toxicology Analyses; Adopting the Latest in Mass Spectrometry Innovations

Advancing your Forensic Toxicology Analyses; Adopting the Latest in Mass Spectrometry Innovations Advancing your Forensic Toxicology Analyses; Adopting the Latest in Mass Spectrometry Innovations For Research Use Only. Not for use in diagnostic procedures. 1 2015 AB Sciex RUO-MKT-11-1018-A For research

More information

High-Throughput Quantitative LC-MS/MS Analysis of 6 Opiates and 14 Benzodiazepines in Urine

High-Throughput Quantitative LC-MS/MS Analysis of 6 Opiates and 14 Benzodiazepines in Urine High-Throughput Quantitative LC-MS/MS Analysis of and 14 Benzodiazepines in Urine Bill Yu, Kristine Van Natta, Marta Kozak, Thermo Fisher Scientific, San Jose, CA Application Note 588 Key Words Opiates,

More information

SWATH Acquisition Enables the Ultra-Fast and Accurate Determination of Novel Synthetic Opioids

SWATH Acquisition Enables the Ultra-Fast and Accurate Determination of Novel Synthetic Opioids SWATH Acquisition Enables the Ultra-Fast and Accurate Determination of Novel Synthetic Opioids Data Independent Acquisition on TripleTOF and X-Series QTOF Systems for Seized Drug Analysis Oscar G. Cabrices

More information

Fast and easy separation of 23 drugs of abuse. including high, stable resolution of isobaric opioids from human urine by UHPLC-MS/MS

Fast and easy separation of 23 drugs of abuse. including high, stable resolution of isobaric opioids from human urine by UHPLC-MS/MS TECHNICAL NOTE 21883 Fast and easy separation of 23 drugs of abuse including high, stable resolution of isobaric opioids from human urine by UHPLC-MS/MS Authors Kean Woodmansey 1, Jon Bardsley 1 and Stacy

More information

One Source Toxicology Laboratory, 1213 Genoa Red Bluff, Pasadena, Texas 77504

One Source Toxicology Laboratory, 1213 Genoa Red Bluff, Pasadena, Texas 77504 Validation of Analysis of Amphetamines, Opiates, Phencyclidine, Cocaine, and Benzoylecgonine in Oral Fluids by Liquid Chromatography Tandem Mass Spectrometry Subbarao V. Kala*, Steve E. Harris, Tom D.

More information

Comprehensive Forensic Toxicology Screening in Serum using On-Line SPE LC-MS/MS

Comprehensive Forensic Toxicology Screening in Serum using On-Line SPE LC-MS/MS Comprehensive Forensic Toxicology Screening in Serum using On-Line SPE LC-MS/MS SCIEX QTRAP 4500 LC-MS/MS System and Spark Holland PICO Adrian M. Taylor 1, Peter Ringeling 2, Martin Sibum 2, Stefan Sturm

More information

Amphetamines, Phentermine, and Designer Stimulant Quantitation Using an Agilent 6430 LC/MS/MS

Amphetamines, Phentermine, and Designer Stimulant Quantitation Using an Agilent 6430 LC/MS/MS Amphetamines, Phentermine, and Designer Stimulant Quantitation Using an Agilent 643 LC/MS/MS Application Note Forensics Authors Jason Hudson, Ph.D., James Hutchings, Ph.D., and Rebecca Wagner, Ph.D. Virginia

More information

O O H. Robert S. Plumb and Paul D. Rainville Waters Corporation, Milford, MA, U.S. INTRODUCTION EXPERIMENTAL. LC /MS conditions

O O H. Robert S. Plumb and Paul D. Rainville Waters Corporation, Milford, MA, U.S. INTRODUCTION EXPERIMENTAL. LC /MS conditions Simplifying Qual/Quan Analysis in Discovery DMPK using UPLC and Xevo TQ MS Robert S. Plumb and Paul D. Rainville Waters Corporation, Milford, MA, U.S. INTRODUCTION The determination of the drug metabolism

More information

Vitamin D Metabolite Analysis in Biological Samples Using Agilent Captiva EMR Lipid

Vitamin D Metabolite Analysis in Biological Samples Using Agilent Captiva EMR Lipid Vitamin D Metabolite Analysis in Biological Samples Using Agilent Captiva EMR Lipid Application Note Clinical Research Authors Derick Lucas and Limian Zhao Agilent Technologies, Inc. Abstract Lipids from

More information

Shuguang Li, Jason Anspach, Sky Countryman, and Erica Pike Phenomenex, Inc., 411 Madrid Ave., Torrance, CA USA PO _W

Shuguang Li, Jason Anspach, Sky Countryman, and Erica Pike Phenomenex, Inc., 411 Madrid Ave., Torrance, CA USA PO _W Simple, Fast and Accurate Quantitation of Human Plasma Vitamins and Their Metabolites by Protein Precipitation Combined with Columns Using HPLC-UV, HPLC-FLD or LC/MS/MS Shuguang Li, Jason Anspach, Sky

More information

Quantitative Analysis of THC and Main Metabolites in Whole Blood Using Tandem Mass Spectrometry and Automated Online Sample Preparation

Quantitative Analysis of THC and Main Metabolites in Whole Blood Using Tandem Mass Spectrometry and Automated Online Sample Preparation Quantitative Analysis of THC and Main Metabolites in Whole Blood Using Tandem Mass Spectrometry and Automated Online Sample Preparation Valérie Thibert, Bénédicte Duretz Thermo Fisher Scientific, Courtaboeuf,

More information

Analysis of anti-epileptic drugs in human serum using an Agilent Ultivo LC/TQ

Analysis of anti-epileptic drugs in human serum using an Agilent Ultivo LC/TQ Application Note Clinical Research Analysis of anti-epileptic drugs in human serum using an Agilent Ultivo LC/TQ Authors Jennifer Hitchcock 1, Lauren Frick 2, Peter Stone 1, and Vaughn Miller 2 1 Agilent

More information

Determination of Selected Illegal Drugs and its Important Metabolites in Waste Water by Large Volume Direct Injection HPLC-MS/MS

Determination of Selected Illegal Drugs and its Important Metabolites in Waste Water by Large Volume Direct Injection HPLC-MS/MS Determination of Selected Illegal Drugs and its Important Metabolites in Waste Water by Large Volume Direct Injection HPLC-MS/MS Jean-Daniel Berset 1 and André Schreiber 2 1 Water and Soil Protection Laboratory,

More information

UPLC/MS Monitoring of Water-Soluble Vitamin Bs in Cell Culture Media in Minutes

UPLC/MS Monitoring of Water-Soluble Vitamin Bs in Cell Culture Media in Minutes UPLC/MS Monitoring of Water-Soluble Vitamin Bs in Cell Culture Media in Minutes Catalin E. Doneanu, Weibin Chen, and Jeffrey R. Mazzeo Waters Corporation, Milford, MA, U.S. A P P L I C AT ION B E N E F

More information

Vitamin D3 and related compounds by ESI and APCI

Vitamin D3 and related compounds by ESI and APCI Liquid Chromatography Mass Spectrometry SSI-LCMS-9 Vitamin D and related compounds by ESI and APCI LCMS-8 Summary Vitamin D and related compounds were measured by LC-ESI/APCI-MS-MS. Background Accurate

More information

EDUCATIONAL COMMENTARY rd TEST EVENT Chemistry Urine Drug Testing

EDUCATIONAL COMMENTARY rd TEST EVENT Chemistry Urine Drug Testing EDUCATIONAL COMMENTARY 2003 3 rd TEST EVENT Chemistry Urine Drug Testing Educational commentary is provided through our affiliation with the American Society for Clinical Pathology (ASCP). To obtain FREE

More information

A Novel Solution for Vitamin K₁ and K₂ Analysis in Human Plasma by LC-MS/MS

A Novel Solution for Vitamin K₁ and K₂ Analysis in Human Plasma by LC-MS/MS A Novel Solution for Vitamin K₁ and K₂ Analysis in Human Plasma by LC-MS/MS By Shun-Hsin Liang and Frances Carroll Abstract Vitamin K₁ and K₂ analysis is typically complex and time-consuming because these

More information

Analysis of Cannabinoids in Cannabis by UHPLC Using PDA Detection

Analysis of Cannabinoids in Cannabis by UHPLC Using PDA Detection APPLICATION NOTE Liquid Chromatography Author: Wilhad M. Reuter PerkinElmer, Inc. Shelton, CT Analysis of Cannabinoids in Cannabis by UHPLC Using PDA Detection Introduction Cannabis sativa, from which

More information

A Robustness Study for the Agilent 6470 LC-MS/MS Mass Spectrometer

A Robustness Study for the Agilent 6470 LC-MS/MS Mass Spectrometer A Robustness Study for the Agilent 7 LC-MS/MS Mass Spectrometer Application Note Clinical Research Authors Linda Côté, Siji Joseph, Sreelakshmy Menon, and Kevin McCann Agilent Technologies, Inc. Abstract

More information

SPE-LC-MS/MS Method for the Determination of Nicotine, Cotinine, and Trans-3-hydroxycotinine in Urine

SPE-LC-MS/MS Method for the Determination of Nicotine, Cotinine, and Trans-3-hydroxycotinine in Urine SPE-LC-MS/MS Method for the Determination of Nicotine, Cotinine, and Trans-3-hydroxycotinine in Urine J. Jones, Thermo Fisher Scientific, Runcorn, Cheshire, UK Application Note 709 Key Words SPE, SOLA

More information

Interpretation of Workplace Tests for Cannabinoids

Interpretation of Workplace Tests for Cannabinoids J. Med. Toxicol. (2017) 13:106 110 DOI 10.1007/s13181-016-0587-z PROCEEDINGS Interpretation of Workplace Tests for Cannabinoids Ken Kulig 1 Received: 17 May 2016 /Revised: 16 August 2016 /Accepted: 6 September

More information

LCMS-8050 Drugs of Abuse: 113 Analytes with Polarity Switching

LCMS-8050 Drugs of Abuse: 113 Analytes with Polarity Switching Liquid Chromatography Mass Spectrometry SSI-LCMS-8 LCMS-8 Drugs of Abuse: Analytes with Polarity Switching LCMS-8 Summary Seventy six analytes and their internal standards are described below. Multiple

More information

Measuring Lipid Composition LC-MS/MS

Measuring Lipid Composition LC-MS/MS Project: Measuring Lipid Composition LC-MS/MS Verification of expected lipid composition in nanomedical controlled release systems by liquid chromatography tandem mass spectrometry AUTHORED BY: DATE: Sven

More information

Quantitative Analysis of Vit D Metabolites in Human Plasma using Exactive System

Quantitative Analysis of Vit D Metabolites in Human Plasma using Exactive System Quantitative Analysis of Vit D Metabolites in Human Plasma using Exactive System Marta Kozak Clinical Research Applications Group Thermo Fisher Scientific San Jose CA Clinical Research use only, Not for

More information

Determination of Amphetamine and Derivatives in Urine

Determination of Amphetamine and Derivatives in Urine Determination of Amphetamine and Derivatives in Urine Using a Modified QuEChERS and Capillary Electrophoresis Tandem Mass Spectrometry Analysis Application Note Authors Vagner B. dos Santos and Claudimir

More information

Analysis of Testosterone, Androstenedione, and Dehydroepiandrosterone Sulfate in Serum for Clinical Research

Analysis of Testosterone, Androstenedione, and Dehydroepiandrosterone Sulfate in Serum for Clinical Research Analysis of Testosterone, Androstenedione, and Dehydroepiandrosterone Sulfate in Serum for Clinical Research Dominic Foley, Michelle Wills, and Lisa Calton Waters Corporation, Wilmslow, UK APPLICATION

More information

A NOVEL METHOD OF M/Z DRIFT CORRECTION FOR OA-TOF MASS SPECTROMETERS BASED ON CONSTRUCTION OF LIBRARIES OF MATRIX COMPONENTS.

A NOVEL METHOD OF M/Z DRIFT CORRECTION FOR OA-TOF MASS SPECTROMETERS BASED ON CONSTRUCTION OF LIBRARIES OF MATRIX COMPONENTS. A NOVEL METHOD OF M/Z DRIFT CORRECTION FOR OA-TOF MASS SPECTROMETERS BASED ON CONSTRUCTION OF LIBRARIES OF MATRIX COMPONENTS. Martin R Green*, Keith Richardson, John Chipperfield, Nick Tomczyk, Martin

More information

High-Throughput, Cost-Efficient LC-MS/MS Forensic Method for Measuring Buprenorphine and Norbuprenorphine in Urine

High-Throughput, Cost-Efficient LC-MS/MS Forensic Method for Measuring Buprenorphine and Norbuprenorphine in Urine High-Throughput, Cost-Efficient LC-MS/MS Forensic Method for Measuring and in Urine Xiaolei Xie, Joe DiBussolo, Marta Kozak; Thermo Fisher Scientific, San Jose, CA Application Note 627 Key Words, norbuprenorphine,

More information

Authors. Abstract. Forensic Toxicology. Irina Dioumaeva, John M. Hughes Agilent Technologies, Inc.

Authors. Abstract. Forensic Toxicology. Irina Dioumaeva, John M. Hughes Agilent Technologies, Inc. SAMHSA-Compliant LC/MS/MS Analysis of 11-nor-9-carboxy-D 9 - Tetrahydrocannabinol in Urine with Agilent Bond Elut Plexa PCX and Agilent Poroshell 120 Application Note Forensic Toxicology Authors Irina

More information

Abstract. Introduction

Abstract. Introduction A Fast Dilute-And-Shoot Method for Simultaneous 5-Hydroxyindoleacetic Acid (5-HIAA), Vanillylmandelic Acid (VMA), and Homovanillic Acid (HVA) LC-MS/MS Analysis in Human Urine By Shun-Hsin Liang and Sue

More information

2013 Clinical drug and alcohol testing solutions. Product Catalog. CLIA-waived point of care test devices

2013 Clinical drug and alcohol testing solutions. Product Catalog. CLIA-waived point of care test devices 2013 Clinical drug and alcohol testing solutions Product Catalog CLIA-waived point of care test devices HELPING YOU MAKE INFORMED DECISIONS ABOUT ABUSE. Substance abuse testing with more substance. 2 of

More information

Toxicology Screening of Whole Blood Extracts Using GC/Triple Quadrupole/MS

Toxicology Screening of Whole Blood Extracts Using GC/Triple Quadrupole/MS Toxicology Screening of Whole Blood Extracts Using GC/Triple Quadrupole/MS Application Note Forensic Toxicology Authors Bruce Quimby and Mike Szelewski Agilent Technologies, Inc. 2850 Centerville Road

More information

Validation of a Benzodiazepine and Z-Drug Method Using an Agilent 6430 LC/MS/MS

Validation of a Benzodiazepine and Z-Drug Method Using an Agilent 6430 LC/MS/MS Validation of a Benzodiazepine and Z-Drug Method Using an Agilent 6430 LC/MS/MS Application Note Forensics Authors Jason Hudson, Ph.D., James Hutchings, Ph.D., and Rebecca Wagner, Ph.D. Virginia Department

More information

Matrix Factor Determination with the Waters Regulated Bioanalysis System Solution

Matrix Factor Determination with the Waters Regulated Bioanalysis System Solution Matrix Factor Determination with the Waters Regulated Bioanalysis System Solution Joanne Mather, Steve Cubbedge, Debadeep Bhattacharya, and Robert S. Plumb Waters Corporation, Milford, MA, U.S. A P P L

More information

A FORENSIC TOXICOLOGY METHOD FOR THE DETERMINATION OF DESOMORPHINE, HEROIN, METHADONE, BUPRENORPHINE AND METABOLITES IN URINE USING LC/MS QQQ

A FORENSIC TOXICOLOGY METHOD FOR THE DETERMINATION OF DESOMORPHINE, HEROIN, METHADONE, BUPRENORPHINE AND METABOLITES IN URINE USING LC/MS QQQ FORENSICS MARKET A FORENSIC TOXICOLOGY METHOD FOR THE DETERMINATION OF DESOMORPHINE, HEROIN, METHADONE, BUPRENORPHINE AND METABOLITES IN URINE USING LC/MS QQQ Desomorphine, also known by its street name

More information

Using Liquid Chromatography Tandem Mass Spectrometry Urine Drug Testing to Identify Licit and Illicit Drug-Use in a Community-based Patient Population

Using Liquid Chromatography Tandem Mass Spectrometry Urine Drug Testing to Identify Licit and Illicit Drug-Use in a Community-based Patient Population Using Liquid Chromatography Tandem Mass Spectrometry Urine Drug Testing to Identify Licit and Illicit Drug-Use in a Community-based Patient Population Adam S. Ptolemy 1, Colleen Murray 2, Edward Dunn 3,

More information

Application of LC/Electrospray Ion Trap Mass Spectrometry for Identification and Quantification of Pesticides in Complex Matrices

Application of LC/Electrospray Ion Trap Mass Spectrometry for Identification and Quantification of Pesticides in Complex Matrices Application ote #LCMS-2 esquire series Application of LC/Electrospray Ion Trap Mass Spectrometry for Identification and Quantification of Pesticides in Complex Matrices Introduction The simple monitoring

More information

Opiates, Opioids and Benzodiazepines, Amphetamines & Illicit Drug Forensic Analysis by LC/MS

Opiates, Opioids and Benzodiazepines, Amphetamines & Illicit Drug Forensic Analysis by LC/MS Opiates, Opioids and Benzodiazepines, Amphetamines & Illicit Drug Forensic Analysis by LC/MS Julie Cichelli, PhD Agilent Technologies Application Engineer April 29, 2014 Agenda A method for the rapid analysis

More information

Validation Report for the Neogen Fentanyl Kit for ELISA Screening of Whole Blood and Urine Specimens

Validation Report for the Neogen Fentanyl Kit for ELISA Screening of Whole Blood and Urine Specimens Validation Report for the Neogen Fentanyl Kit for ELISA Screening of Whole Blood and Urine Specimens This document describes the validation of a Neogen Fentanyl kit for the semi-quantitative analysis of

More information

Analysis of Cannabinoids in Hemp Seed Oils by HPLC Using PDA Detection

Analysis of Cannabinoids in Hemp Seed Oils by HPLC Using PDA Detection A P P L I C AT I O N N O T E Liquid Chromatography Authors: Catharine Layton Wilhad M. Reuter PerkinElmer, Inc. Shelton, CT Analysis of Cannabinoids in Hemp Seed Oils by HPLC Using PDA Detection Introduction

More information

Ultra Performance Liquid Chromatography Coupled to Orthogonal Quadrupole TOF MS(MS) for Metabolite Identification

Ultra Performance Liquid Chromatography Coupled to Orthogonal Quadrupole TOF MS(MS) for Metabolite Identification 22 SEPARATION SCIENCE REDEFINED MAY 2005 Ultra Performance Liquid Chromatography Coupled to Orthogonal Quadrupole TOF MS(MS) for Metabolite Identification In the drug discovery process the detection and

More information

Rapid and Robust Detection of THC and Its Metabolites in Blood

Rapid and Robust Detection of THC and Its Metabolites in Blood Rapid and Robust Detection of THC and Its Metabolites in Blood Application Note Forensics/Doping Control Author Stephan Baumann Agilent Technologies, Inc. Santa Clara CA 95051 USA Abstract A robust method

More information

Quantitative Analysis of Amphetamine-Type Drugs by Extractive Benzoylation and LC/MS/MS. Application. Introduction. Authors. Abstract.

Quantitative Analysis of Amphetamine-Type Drugs by Extractive Benzoylation and LC/MS/MS. Application. Introduction. Authors. Abstract. Quantitative Analysis of Amphetamine-Type Drugs by Extractive Benzoylation and LC/MS/MS Application Forensics Authors Neil Campbell, B. Sc. Forensic Science Laboratory Chemistry Centre (WA) 5 Hay Street

More information

LC Application Note. Dangerous driver?

LC Application Note. Dangerous driver? LC Application Note Dangerous driver? www.palsystem.com Dangerous driver? Robert M. Sears 1 ; Kenneth C. Lewis 2 ; and Kim Gamble 3 1 SC Law Enforcement Division, Columbia, SC 29221; 2 OpAns LLC, Durham

More information

Laboratory Testing to Support Pain Management: Methods, Concepts and Case Studies

Laboratory Testing to Support Pain Management: Methods, Concepts and Case Studies Laboratory Testing to Support Pain Management: Methods, Concepts and Case Studies Frederick G. Strathmann, PhD, DABCC, (CC,TC) Medical Director, Toxicology Associate Scientific Director of MS ARUP Laboratories

More information

Determination of Amantadine Residues in Chicken by LCMS-8040

Determination of Amantadine Residues in Chicken by LCMS-8040 Liquid Chromatography Mass Spectrometry Determination of Amantadine Residues in Chicken by LCMS-8040 A method for the determination of amantadine in chicken was established using Shimadzu Triple Quadrupole

More information

Comparison of Different Whole Blood Sample Pretreatment Methods for Targeted Analysis of Basic Drugs

Comparison of Different Whole Blood Sample Pretreatment Methods for Targeted Analysis of Basic Drugs Seyed Sadjadi, Shahana Huq, Sean Orlowicz and Laura Snow Phenomenex, Inc., 411 Madrid Ave., Torrance, CA 90501 USA Comparison of Different Whole Blood Sample Pretreatment Methods for Targeted Analysis

More information

Analysis of Cannabinoids in Hemp Seed Oils by HPLC Using PDA Detection

Analysis of Cannabinoids in Hemp Seed Oils by HPLC Using PDA Detection APPLICATION NOTE Liquid Chromatography Authors: Catharine Layton Wilhad M. Reuter PerkinElmer, Inc. Shelton, CT Analysis of Cannabinoids in Hemp Seed Oils by HPLC Using PDA Detection Introduction Cannabis

More information

Development of a Screening Analysis by LC Time-Of-Flight MS for Drugs of Abuse Application

Development of a Screening Analysis by LC Time-Of-Flight MS for Drugs of Abuse Application Development of a Screening Analysis by LC Time-Of-Flight MS for Drugs of Abuse Application Forensic Toxicology Authors Courtney Milner and Russell Kinghorn Baseline Separation Technologies Pty Ltd. Abstract

More information

Fully Automated Online Sample Preparation and LC-MS/MS Analysis of Drugs of Abuse in Oral Fluids

Fully Automated Online Sample Preparation and LC-MS/MS Analysis of Drugs of Abuse in Oral Fluids PO-CON1753E Fully Automated Online Sample Preparation and LC-MS/MS Analysis of Drugs of Abuse in Oral Fluids ASMS 2017 TP-442 Joshua F. Emory 1, Nathan DeFreitas 2, Michael Roberts 1, Manoj Tyagi 2, M.

More information

Policy - Substance Abuse

Policy - Substance Abuse 1. Document Control Name: HSE-POL-07 Title: Canadian Substance Abuse Policy Dept Owner: HSE Sensitivity: Apply Region: Division: Function: to: All Internal Rev No Change Date Change Description Revision

More information

High Throughput Extraction of Opiates from Urine and Analysis by GC/MS or LC/MS/MS)

High Throughput Extraction of Opiates from Urine and Analysis by GC/MS or LC/MS/MS) High Throughput Extraction of Opiates from Urine and Analysis by GC/MS or LC/MS/MS) Michael Rummel, Matthew Trass, Michael Campognone, and Sky Countryman Phenomenex, Inc., 411 Madrid Avenue, Torrance,

More information

Fast and simultaneous analysis of ethanol metabolites and barbiturates using the QTRAP 4500 LC-MS/MS system

Fast and simultaneous analysis of ethanol metabolites and barbiturates using the QTRAP 4500 LC-MS/MS system Fast and simultaneous analysis of ethanol metabolites and barbiturates using the QTRAP 4500 LC-MS/MS system Xiang He 1, Adrian Taylor 2 and Alexandre Wang 1 1 SCIEX, Redwood City, USA. 2 SCIEX, Concord,

More information

Rapid Alcohol Screening Devices. p19

Rapid Alcohol Screening Devices. p19 CLIA-WAIVED Product Catalog RAPID DRUG SCREENING DEVICES Rapid Urine Drug Screening Devices. p5 Rapid Alcohol Screening Devices. p19 Complementary Products. p23 HELPING YOU MAKE INFORMED DECISIONS ABOUT

More information

Dr. Erin E. Chambers Waters Corporation. Presented by Dr. Diego Rodriguez Cabaleiro Waters Europe Waters Corporation 1

Dr. Erin E. Chambers Waters Corporation. Presented by Dr. Diego Rodriguez Cabaleiro Waters Europe Waters Corporation 1 Development of an SPE-LC/MS/MS Assay for the Simultaneous Quantification of Amyloid Beta Peptides in Cerebrospinal Fluid in Support of Alzheimer s Research Dr. Erin E. Chambers Waters Corporation Presented

More information

Supporting Information

Supporting Information Supporting Information Schlosburg et al. 10.1073/pnas.1219159110 SI Materials and Methods: Quantification of Heroin Metabolites Sample Collection. Trunk blood was collected in a 1:1 ratio with acetate

More information

LC/MS/MS SOLUTIONS FOR LIPIDOMICS. Biomarker and Omics Solutions FOR DISCOVERY AND TARGETED LIPIDOMICS

LC/MS/MS SOLUTIONS FOR LIPIDOMICS. Biomarker and Omics Solutions FOR DISCOVERY AND TARGETED LIPIDOMICS LC/MS/MS SOLUTIONS FOR LIPIDOMICS Biomarker and Omics Solutions FOR DISCOVERY AND TARGETED LIPIDOMICS Lipids play a key role in many biological processes, such as the formation of cell membranes and signaling

More information

Key Advantages of Comprehensive Cannabis Analysis

Key Advantages of Comprehensive Cannabis Analysis Comprehensive Cannabis Analysis: Pesticides, Aflatoxins, Terpenes, and High Linear Dynamic Range Potency from One Extract Using One Column and One Solvent System Robert Di Lorenzo 1, Diana Tran 2, KC Hyland

More information

[ APPLICATION NOTE ] High Sensitivity Intact Monoclonal Antibody (mab) HRMS Quantification APPLICATION BENEFITS INTRODUCTION WATERS SOLUTIONS KEYWORDS

[ APPLICATION NOTE ] High Sensitivity Intact Monoclonal Antibody (mab) HRMS Quantification APPLICATION BENEFITS INTRODUCTION WATERS SOLUTIONS KEYWORDS Yun Wang Alelyunas, Henry Shion, Mark Wrona Waters Corporation, Milford, MA, USA APPLICATION BENEFITS mab LC-MS method which enables users to achieve highly sensitive bioanalysis of intact trastuzumab

More information

Profiling of Endogenous Metabolites Using Time-of-Flight LC/MS with Ion Pair Reverse Phase Chromatography

Profiling of Endogenous Metabolites Using Time-of-Flight LC/MS with Ion Pair Reverse Phase Chromatography Profiling of Endogenous Metabolites Using Time-of-Flight LC/MS with Ion Pair Reverse Phase Chromatography Application Note Metabolomics Author Yuqin Dai Agilent Technologies, Inc. 31 Stevens Creek Blvd,

More information

LC-MS/MS Method for the Determination of 21 Opiates and Opiate Derivatives in Urine

LC-MS/MS Method for the Determination of 21 Opiates and Opiate Derivatives in Urine LC-MS/MS Method for the Determination of 21 Opiates and Opiate Derivatives in Urine J. Jones, S. Westwood, T. Liddicoat, L. Pereira, T. Edge Thermo Fisher Scientific, Manor Park, Runcorn, UK Overview Purpose:

More information

Cannabinoid Quantitation Using an Agilent 6430 LC/MS/MS

Cannabinoid Quantitation Using an Agilent 6430 LC/MS/MS Cannabinoid Quantitation Using an Agilent 643 LC/MS/MS Application Note Forensics Authors Jason Hudson, Ph.D., James Hutchings, Ph.D., and Rebecca Wagner, Ph.D. Virginia Department of Forensic Science

More information

LC-MS/MS Method for the Determination of Tenofovir from Plasma

LC-MS/MS Method for the Determination of Tenofovir from Plasma LC-MS/MS Method for the Determination of Tenofovir from Plasma Kimberly Phipps, Thermo Fisher Scientific, Runcorn, Cheshire, UK Application Note 687 Key Words SPE, SOLA CX, Hypersil GOLD, tenofovir Abstract

More information

Sue D Antonio Application Chemist Cedar Creek, TX

Sue D Antonio Application Chemist Cedar Creek, TX Sue D Antonio Application Chemist Cedar Creek, TX What is Hemp Oil? CBD hemp oil is a natural botanical extract of the common hemp plant. CBD hemp oil is derived from the seeds and stem of the Cannabis

More information

Overview. Introduction. Experimental. Cliquid Software for Routine LC/MS/MS Analysis

Overview. Introduction. Experimental. Cliquid Software for Routine LC/MS/MS Analysis A Fast and Sensitive LC/MS/MS Method for the Quantification and Confirmation of 3 Benzodiazepines and Nonbenzodiazepine Hypnotics in Forensic Urine Samples Cliquid Software for Routine LC/MS/MS Analysis

More information

Quantitative Determination of Drugs of Abuse in Human Plasma and Serum by LC/MS/MS Using Agilent Captiva EMR Lipid Cleanup

Quantitative Determination of Drugs of Abuse in Human Plasma and Serum by LC/MS/MS Using Agilent Captiva EMR Lipid Cleanup Application Note Forensic Testing Quantitative Determination of Drugs of Abuse in Human Plasma and Serum by LC/MS/MS Using Agilent Captiva EMR Lipid Cleanup Author Limian Zhao Agilent Technologies, Inc.

More information

Application Note. Abstract. Authors. Pharmaceutical

Application Note. Abstract. Authors. Pharmaceutical Analysis of xycodone and Its Metabolites-oroxycodone, xymorphone, and oroxymorphone in Plasma by LC/MS with an Agilent ZRBAX StableBond SB-C18 LC Column Application ote Pharmaceutical Authors Linda L.

More information

Rapid, Simple Impurity Characterization with the Xevo TQ Mass Spectrometer

Rapid, Simple Impurity Characterization with the Xevo TQ Mass Spectrometer Robert Plumb, Michael D. Jones, and Marian Twohig Waters Corporation, Milford, MA, USA INTRODUCTION The detection and characterization of impurities and degradation products of an active pharmaceutical

More information

Direct Analysis of Urinary Opioids and Metabolites by Mixed-Mode µelution SPE Combined with UPLC/MS/MS for Forensic Toxicology

Direct Analysis of Urinary Opioids and Metabolites by Mixed-Mode µelution SPE Combined with UPLC/MS/MS for Forensic Toxicology Direct Analysis of Urinary Opioids and Metabolites by Mixed-Mode µelution SPE Combined with UPLC/MS/MS for Forensic Toxicology Jonathan P. Danaceau, Erin E. Chambers, and Kenneth J. Fountain Waters Corporation,

More information

Development of a Bioanalytical Method for Quantification of Amyloid Beta Peptides in Cerebrospinal Fluid

Development of a Bioanalytical Method for Quantification of Amyloid Beta Peptides in Cerebrospinal Fluid Development of a Bioanalytical Method for Quantification of Amyloid Beta Peptides in Cerebrospinal Fluid Joanne ( 乔安妮 ) Mather Senior Scientist Waters Corporation Data courtesy of Erin Chambers and Mary

More information

Rapid and Accurate LC-MS/MS Analysis of Nicotine and Related Compounds in Urine Using Raptor Biphenyl LC Columns and MS-Friendly Mobile Phases

Rapid and Accurate LC-MS/MS Analysis of Nicotine and Related Compounds in Urine Using Raptor Biphenyl LC Columns and MS-Friendly Mobile Phases Clinical, Forensic & Toxicology Applications Rapid and Accurate LC-MS/MS Analysis of Nicotine and Related Compounds in Urine Using Raptor Biphenyl LC Columns and MS-Friendly Mobile Phases By Shun-Hsin

More information

Robust extraction, separation, and quantitation of structural isomer steroids from human plasma by SPE-UHPLC-MS/MS

Robust extraction, separation, and quantitation of structural isomer steroids from human plasma by SPE-UHPLC-MS/MS TECHNICAL NOTE 21882 Robust extraction, separation, and quantitation of structural isomer steroids human plasma by SPE-UHPLC-MS/MS Authors Jon Bardsley 1, Kean Woodmansey 1, and Stacy Tremintin 2 1 Thermo

More information

Extraction of Synthetic and Naturally Occurring Cannabinoids in Urine Using SPE and LC-MS/MS

Extraction of Synthetic and Naturally Occurring Cannabinoids in Urine Using SPE and LC-MS/MS Extraction of Synthetic and Naturally Occurring Cannabinoids in Urine Using SPE and LC-MS/MS UCT Part Numbers SSHLD063 Styre Screen HLD 60 mg, 6 ml column SPHPHO6001-5 Select ph Buffer Pouches 100 mm Phosphate

More information

Quantitative Determination of Drugs of Abuse in Human Whole Blood by LC/MS/MS Using Agilent Captiva EMR Lipid Cleanup

Quantitative Determination of Drugs of Abuse in Human Whole Blood by LC/MS/MS Using Agilent Captiva EMR Lipid Cleanup Application Note Forensic Testing Quantitative Determination of Drugs of Abuse in Human Whole Blood by LC/MS/MS Using Agilent Captiva EMR Lipid Cleanup Author Limian Zhao Agilent Technologies, Inc. Abstract

More information

Automated Direct Sample Analysis (DSA/TOF) for the Rapid Screening and Confirmation of Illicit Street Drugs

Automated Direct Sample Analysis (DSA/TOF) for the Rapid Screening and Confirmation of Illicit Street Drugs A P P L I C AT I O N N O T E Mass Spectrometry Authors Sean Daugherty, Hayley Crowe PerkinElmer, Inc. Seer Green, Beaconsfield, HP9 2FX United Kingdom Automated Direct Sample Analysis (DSA/TOF) for the

More information

Fastect II Drug Screen Dipstick Test Training and Certification Program

Fastect II Drug Screen Dipstick Test Training and Certification Program Fastect II Drug Screen Dipstick Test Training and Certification Program Fastect II Training Page 1 of 7 Rev. B Fastect II Drug Screen Dipstick Test Training and Certification for Test Administrators The

More information

Testing robustness: Immunosuppressant drugs in blood with a TSQ Quantis MS for clinical research

Testing robustness: Immunosuppressant drugs in blood with a TSQ Quantis MS for clinical research TEHNIL NOTE 64969 Testing robustness: Immunosuppressant drugs in blood with a TSQ Quantis MS for clinical research uthors Kristine Van Natta, Neloni Wijeratne, laudia Martins Thermo Fisher Scientific,

More information