Supplementary Materials for VAMP4 directs synaptic vesicles to a pool that selectively maintains asynchronous neurotransmission
|
|
- Gordon Miller
- 10 months ago
- Views:
Transcription
1 Supplementary Materials for VAMP4 directs synaptic vesicles to a pool that selectively maintains asynchronous neurotransmission Jesica Raingo, Mikhail Khvotchev, Pei Liu, Frederic Darios, Ying C. Li, Denise M.O. Ramirez, Megumi Adachi, Philippe Lemieux, Katalin Toth, Bazbek Davletov and Ege T. Kavalali Supplementary Figure 1: Limited co-localization of VAMP4 staining with Parvalbumin positive terminals at the stratum pyramidale. Supplementary Figure 2: Wide-spread distribution of syb2 in synaptic terminals in the stratum radiatum of the CA1 area. Supplementary Figure 3: Endogenous VAMP4 is present in synapses formed in culture. Supplementary Figure 4: Parvalbumin-positive inhibitory interneurons are sparsely distributed in high density hippocampal cultures. Supplementary Figure 5: IPSCs evoked in response to paired pulse stimulation (P2/P1) showed a significant increase indicating the reduced release probability of synapses expressing VAMP4. Supplementary Figure 6: Knockdown of VAMP4 in hippocampal neurons using two lentiviral short hairpin RNA constructs Supplementary Figure 7: Prominent surface expression of VAMP4 equals the size of the cytoplasmic VAMP4 pool. Supplementary Figure 8: The VAMP4 L25A mutant forms stable SNARE complexes with syntaxin1 and SNAP-25. Supplementary Figure 9: VAMP4 L25A mutant maintains evoked neurotransmission when expressed on the background of syb2-deficient neurons. Supplementary Figure 10: The model of syb2- and VAMP4-driven synaptic transmission. 1
2 Supplementary Figure 1: Limited co-localization of VAMP4 staining with Parvalbumin positive terminals at the stratum pyramidale. Immunofluorescence labeling for VAMP4 (green) and PV (red) in the CA1 area of the hippocampus. Colocalization occurs in the soma of PV-positive interneurons (upper row, arrow), but not in presynaptic terminals (s.p. stratum pyramidale, upper row; lower row) where PV-positive terminals surrounding somas of pyramidal cells are VAMP4-negative. However, it is difficult to exclude some low level of co-localization, as pyramidal cell soma staining for VAMP4 dominates at the stratum pyramidale. Scale bar: 15 µm 2
3 Supplementary Figure 2: Wide-spread distribution of syb2 in synaptic terminals in the stratum radiatum of the CA1 area. Electron micrographs showing immunoreactivity for syb2 in the str. radiatum of the CA1 area. Large panel on the left: Several presynaptic terminals are showing positive syb2-staining, dark staining is the result of the immunoperoxidase reaction, two presynaptic terminals are shown with higher magnification on the right. Bottom right panel: Immunogold labeling for syb2 of a presynaptic terminal in the str. radiatum of the CA1 area. Scale bars: 1 µm 3
4 Supplementary Figure 3: Endogenous VAMP4 is present in synapses formed in culture. Neurons were processed for immunocytochemistry using a tyramide signal amplification system for synaptophysin I (synaptic marker) and VAMP4. White arrowheads indicate synaptic puncta colocalized with VAMP4 immunoreactivity. Scale bar is 10 µm. 4
5 Supplementary Figure 4: Parvalbumin-positive inhibitory interneurons are sparsely distributed in high density hippocampal cultures. Neurons were processed for immunocytochemistry for synapsin (synaptic marker) and parvalbumin. Scale bar is 40 µm. 5
6 Supplementary Figure 5: IPSCs evoked in response to paired pulse stimulation (P2/P1) showed a significant increase indicating the reduced release probability of synapses expressing VAMP4. Representative traces (left) and paired pulse ratios (right) of IPSCs evoked in response to two stimuli separate by a 100 ms interpulse interval in syb2 deficient neurons infected with VAMP4 (n=31) or syb2 (n=35) (data from the same cells as in Fig. 1a). Bars represent mean ± standard error of the mean (s.e.m.) and "*" denotes statistical significance between the groups assessed by one-way ANOVA-Fisher test at p<
7 Supplementary Figure 6: Knockdown of VAMP4 in hippocampal neurons using two lentiviral short hairpin RNA constructs (A) Bar graph depicts the reduction in mrna levels (quantified with Q-PCR) after infection with VAMP4 knockdown constructs KD1 and KD2. (B) Reduction in VAMP4 protein is also detectable as a decrease in VAMP4 immunofluorescence in infected neurons stained with VAMP4 and synapsin antibodies. 7
8 Supplementary Figure 7: Prominent surface expression of VAMP4 equals the size of the cytoplasmic VAMP4 pool. In this experiment we modified the external and internal ph values to assess the localization of VAMP4. Bath application of an acidified (ph 4) solution onto cultured neurons infected with VAMP4 lentivirus caused a decrease in fluorescence consistent with quenching of phluorin fluorescence at the membrane surface. The figure shows averaged time courses (n= 58 boutons; VAMP4) in control conditions (ph7.2) and in presence of acidic external solution (ph 4). After wash-out of the acidic solution, we applied 50 mm NH 4 Cl containing extracellular solution. In this case, VAMP4 showed increased fluorescence (nearly equal to the surface fraction) consistent with alkalinization of internal organelles containing this protein. 8
9 Supplementary Figure 8: The VAMP4 L25A mutant forms stable SNARE complexes with syntaxin1 and SNAP-25. (A) VAMP4 L25A and VAMP4 ΔN (The N-terminal sequence of VAMP4 prior to SNARE motif is deleted) forms stable SDS-resistant complex with Syntaxin 1 and SNAP-25 similar to syb2 or wild type VAMP4 (Fig. 3). Experiments were performed as described in Fig. 5a. (B) VAMP4 L25A and VAMP4 ΔN containing SNARE complexes do not engage with complexins 1&2 or synaptotagmin 1. Experiments were performed as described in Fig. 5c. 9
10 Supplementary Figure 9: VAMP4 L25A mutant maintains evoked neurotransmission when expressed on the background of syb2-deficient neurons. Representative traces (left) and average cumulative charge transfer values (right) of IPSCs recorded in syb2 deficient neurons infected with VAMP4 L25A (n=8 cells) and VAMP4 (n=31 cells). IPSCs were evoked by 50 APs applied at 10 Hz. Data represent means ± s.e.m. (no statistically significant difference between the groups as measured by two tailed t-test). 10
11 Supplementary Figure 10: The model of syb2- and VAMP4-driven synaptic transmission. Presynaptic terminals contain syb2-enriched vesicles (green) that mainly drive synchronous release and VAMP4-enriched vesicles that selectively support asynchronous release (red). Stimulation-dependent trafficking of VAMP4 suggests that activity could shift the proportion of vesicles enriched in VAMP4 and modulate the kinetics of neurotransmitter release. 11
Supplementary Figure 1. SybII and Ceb are sorted to distinct vesicle populations in astrocytes. Nature Neuroscience: doi: /nn.
Supplementary Figure 1 SybII and Ceb are sorted to distinct vesicle populations in astrocytes. (a) Exemplary images for cultured astrocytes co-immunolabeled with SybII and Ceb antibodies. SybII accumulates
SUPPLEMENTARY FIGURE LEGENDS
SUPPLEMENTARY FIGURE LEGENDS Supplemental FIG. 1. Localization of myosin Vb in cultured neurons varies with maturation stage. A and B, localization of myosin Vb in cultured hippocampal neurons. A, in DIV
Autonomous Function of Synaptotagmin 1 in Triggering Synchronous Release Independent of Asynchronous Release
Neuron, Vol. 48, 547 554, November 23, 2005, Copyright ª2005 by Elsevier Inc. DOI 10.1016/j.neuron.2005.09.006 Autonomous Function of Synaptotagmin 1 in Triggering Synchronous Release Independent of Asynchronous
Supplemental Information. Ca V 2.2 Gates Calcium-Independent. but Voltage-Dependent Secretion. in Mammalian Sensory Neurons
Neuron, Volume 96 Supplemental Information Ca V 2.2 Gates Calcium-Independent but Voltage-Dependent Secretion in Mammalian Sensory Neurons Zuying Chai, Changhe Wang, Rong Huang, Yuan Wang, Xiaoyu Zhang,
THE SYNAPTIC VESICLE CYCLE
Annu. Rev. Neurosci. 2004. 27:509 47 doi: 10.1146/annurev.neuro.26.041002.131412 Copyright c 2004 by Annual Reviews. All rights reserved First published online as a Review in Advance on March 12, 2004
1) Drop off in the Bi 150 box outside Baxter 331 or to the head TA (jcolas).
Bi/CNS/NB 150 Problem Set 3 Due: Tuesday, Oct. 27, at 4:30 pm Instructions: 1) Drop off in the Bi 150 box outside Baxter 331 or e-mail to the head TA (jcolas). 2) Submit with this cover page. 3) Use a
Increased Expression of a-synuclein Reduces Neurotransmitter Release by Inhibiting Synaptic Vesicle Reclustering after Endocytosis
Article Increased Expression of a-synuclein Reduces Neurotransmitter Release by Inhibiting Synaptic Vesicle Reclustering after Endocytosis Venu M. Nemani, 1 Wei Lu, 2 Victoria Berge, 3 Ken Nakamura, 1
Desynchronization of Neocortical Networks by Asynchronous Release of GABA at Autaptic and Synaptic Contacts from Fast-Spiking Interneurons
Desynchronization of Neocortical Networks by Asynchronous Release of GABA at Autaptic and Synaptic Contacts from Fast-Spiking Interneurons Frédéric Manseau 1, Silvia Marinelli 1, Pablo Méndez 1, Beat Schwaller
Supplementary Figure 1. Rab27a-KD inhibits speed and persistence of HEp3 cells migrating in the chick CAM. (a) Western blot analysis of Rab27a
Supplementary Figure 1. Rab27a-KD inhibits speed and persistence of HEp3 cells migrating in the chick CAM. (a) Western blot analysis of Rab27a expression in GFP-expressing HEp3 cells. (b) Representative
Supporting Online Material for
www.sciencemag.org/cgi/content/full/317/5841/183/dc1 Supporting Online Material for Astrocytes Potentiate Transmitter Release at Single Hippocampal Synapses Gertrudis Perea and Alfonso Araque* *To whom
Wenqin Hu, Cuiping Tian, Tun Li, Mingpo Yang, Han Hou & Yousheng Shu
Distinct contributions of Na v 1.6 and Na v 1.2 in action potential initiation and backpropagation Wenqin Hu, Cuiping Tian, Tun Li, Mingpo Yang, Han Hou & Yousheng Shu Supplementary figure and legend Supplementary
Supplementary Figure S1. Venn diagram analysis of mrna microarray data and mirna target analysis. (a) Western blot analysis of T lymphoblasts (CLS)
Supplementary Figure S1. Venn diagram analysis of mrna microarray data and mirna target analysis. (a) Western blot analysis of T lymphoblasts (CLS) and their exosomes (EXO) in resting (REST) and activated
Salamanca Study Abroad Program: Neurobiology of Hearing
Salamanca Study Abroad Program: Neurobiology of Hearing Synaptics and the auditory nerve R. Keith Duncan University of Michigan rkduncan@umich.edu Review Resources Reviews: Safieddine et al., 2012, The
SYNAPTIC COMMUNICATION
BASICS OF NEUROBIOLOGY SYNAPTIC COMMUNICATION ZSOLT LIPOSITS 1 NERVE ENDINGS II. Interneuronal communication 2 INTERNEURONAL COMMUNICATION I. ELECTRONIC SYNAPSE GAP JUNCTION II. CHEMICAL SYNAPSE SYNAPSES
Supplementary Table 1. List of primers used in this study
Supplementary Table 1. List of primers used in this study Gene Forward primer Reverse primer Rat Met 5 -aggtcgcttcatgcaggt-3 5 -tccggagacacaggatgg-3 Rat Runx1 5 -cctccttgaaccactccact-3 5 -ctggatctgcctggcatc-3
Bioscience in the 21st century
Bioscience in the 21st century Neurons, Synapses, and Signaling Dr. Michael Burger Outline: 1. Why neuroscience? 2. The neuron 3. Action potentials 4. Synapses 5. Organization of the nervous system 6.
Supplemental information Acid-sensing ion channel 1a contributes to hippocampal LTP inducibility through multiple mechanisms
Supplemental information Acid-sensing ion channel 1a contributes to hippocampal LTP inducibility through multiple mechanisms Ming-Gang Liu, Hu-Song Li, Wei-Guang Li, Yan-Jiao Wu, Shi-Ning Deng, Chen Huang,
Modelling Vesicular Release at Hippocampal Synapses
Modelling Vesicular Release at Hippocampal Synapses Suhita Nadkarni 1,2., Thomas M. Bartol 1,2., Terrence J. Sejnowski 1,2,3 *, Herbert Levine 1 1 Center for Theoretical Biological Physics, University
SUPPLEMENTARY INFORMATION
SUPPLEMENTARY INFORMATION doi:10.1038/nature11306 Supplementary Figures Supplementary Figure 1. Basic characterization of GFP+ RGLs in the dentate gyrus of adult nestin-gfp mice. a, Sample confocal images
Nature Neuroscience: doi: /nn Supplementary Figure 1. Large-scale calcium imaging in vivo.
Supplementary Figure 1 Large-scale calcium imaging in vivo. (a) Schematic illustration of the in vivo camera imaging set-up for large-scale calcium imaging. (b) High-magnification two-photon image from
Vesicular Trafficking of Semaphorin 3A is Activity- Dependent and Differs Between Axons and Dendrites
Traffic 6; 7: 6 77 Blackwell Munksgaard Copyright # Blackwell Munksgaard 6 doi:./j.6-854.6.44.x Vesicular Trafficking of Semaphorin A is Activity- Dependent and Differs Between Axons and Dendrites Joris
Modeling Excitatory and Inhibitory Chemical Synapses
In review, a synapse is the place where signals are transmitted from a neuron, the presynaptic neuron, to another cell. This second cell may be another neuron, muscle cell or glandular cell. If the second
Synaptic Transmission: Ionic and Metabotropic
Synaptic Transmission: Ionic and Metabotropic D. Purves et al. Neuroscience (Sinauer Assoc.) Chapters 5, 6, 7. C. Koch. Biophysics of Computation (Oxford) Chapter 4. J.G. Nicholls et al. From Neuron to
Neurons, Synapses, and Signaling
Chapter 48 Neurons, Synapses, and Signaling PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions
El Azzouzi et al., http ://www.jcb.org /cgi /content /full /jcb /DC1
Supplemental material JCB El Azzouzi et al., http ://www.jcb.org /cgi /content /full /jcb.201510043 /DC1 THE JOURNAL OF CELL BIOLOGY Figure S1. Acquisition of -phluorin correlates negatively with podosome
Wnt Signaling Mediates Experience-Related Regulation of Synapse Numbers and Mossy Fiber Connectivities in the Adult Hippocampus
Article Wnt Signaling Mediates Experience-Related Regulation of Synapse Numbers and Mossy Fiber Connectivities in the Adult Hippocampus Nadine Gogolla, 1,2 Ivan Galimberti, 1 Yuichi Deguchi, 1 and Pico
The 7 th lecture. Anatomy and Physiology For the. 1 st Class. By Dr. Ala a Hassan Mirza
The 7 th lecture In Anatomy and Physiology For the 1 st Class By Dr. Ala a Hassan Mirza Nervous System (part I) The Nerve Tissue and the Nervous System The Tissues of the Body There are 4 types of tissues
The Nervous System. Dr. ZHANG Xiong Dept. of Physiology ZJU School of Medicine.
The Nervous System Dr. ZHANG Xiong Dept. of Physiology ZJU School of Medicine Http://10.10.10.151 Part 1. Summary of the nervous system The Nervous System Central Nervous System Brain + Spinal Cord Peripheral
PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland
AD Award Number: W81XWH-11-1-0356 TITLE: New Treatments for Drug-Resistant Epilepsy that Target Presynaptic Transmitter Release PRINCIPAL INVESTIGATOR: Emilio R. Garrido Sanabria, MD, PhD CONTRACTING ORGANIZATION:
35-2 The Nervous System Slide 1 of 38
1 of 38 35-2 The Nervous System The nervous system controls and coordinates functions throughout the body and responds to internal and external stimuli. 2 of 38 Neurons Neurons The messages carried by
Supplemental Information. Memory-Relevant Mushroom Body. Output Synapses Are Cholinergic
Neuron, Volume 89 Supplemental Information Memory-Relevant Mushroom Body Output Synapses Are Cholinergic Oliver Barnstedt, David Owald, Johannes Felsenberg, Ruth Brain, John-Paul Moszynski, Clifford B.
Alterations in Synaptic Strength Preceding Axon Withdrawal
Alterations in Synaptic Strength Preceding Axon Withdrawal H. Colman, J. Nabekura, J.W. Lichtman presented by Ana Fiallos Synaptic Transmission at the Neuromuscular Junction Motor neurons with cell bodies
Portions from Chapter 6 CHAPTER 7. The Nervous System: Neurons and Synapses. Chapter 7 Outline. and Supporting Cells
CHAPTER 7 The Nervous System: Neurons and Synapses Chapter 7 Outline Neurons and Supporting Cells Activity in Axons The Synapse Acetylcholine as a Neurotransmitter Monoamines as Neurotransmitters Other
Chapter 4: The Cytology of Neurons
Chapter 4: The Cytology of Neurons Principles of Neural Science by Eric R. Kandel Fundamental Neuroscience by Duane E. Haines The World of the Cell by Wayne M. Becker (Ding-I Yang) 851 7386 An Overall
Concept 48.1 Neuron organization and structure reflect function in information transfer
Name Chapter 48: Neurons, Synapses, and Signaling Period Chapter 48: Neurons, Synapses, and Signaling Concept 48.1 Neuron organization and structure reflect function in information transfer 1. What is
Scuola di Neuroscienze Università degli Studi di Torino
Scuola di Neuroscienze Università degli Studi di Torino Corso di Dottorato Torino, 7 Settembre 2006 Canali del calcio presinaptici: distribuzione e neurotrasmissione Presynaptic Ca 2+ channels: types and
DPP6 Establishes the A-Type K + Current Gradient Critical for the Regulation of Dendritic Excitability in CA1 Hippocampal Neurons
Article DPP6 Establishes the A-Type K + Current Gradient Critical for the Regulation of Dendritic Excitability in CA1 Hippocampal Neurons Wei Sun, 1,2 Jon K. Maffie, 3 Lin Lin, 1 Ronald S. Petralia, 4
Human Anatomy and Physiology - Problem Drill 11: Neural Tissue & The Nervous System
Human Anatomy and Physiology - Problem Drill 11: Neural Tissue & The Nervous System Question No. 1 of 10 The human body contains different types of tissue. The tissue is formed into organs and organ systems.
CORTICAL INHIBITORY NEURONS AND SCHIZOPHRENIA
CORTICAL INHIBITORY NEURONS AND SCHIZOPHRENIA David A. Lewis*,Takanori Hashimoto* and David W. Volk* Abstract Impairments in certain cognitive functions, such as working memory, are core features of schizophrenia.
Social transmission and buffering of synaptic changes after stress
SUPPLEMENTARY INFORMATION Articles https://doi.org/10.1038/s41593-017-0044-6 In the format provided by the authors and unedited. Social transmission and buffering of synaptic changes after stress Toni-Lee
LPS LPS P6 - + Supplementary Fig. 1.
P6 LPS - - - + + + - LPS + + - - P6 + Supplementary Fig. 1. Pharmacological inhibition of the JAK/STAT blocks LPS-induced HMGB1 nuclear translocation. RAW 267.4 cells were stimulated with LPS in the absence
Na + K + pump. The beauty of the Na + K + pump. Cotransport. The setup Cotransport the result. Found along the plasma membrane of all cells.
The beauty of the Na + K + pump Na + K + pump Found along the plasma membrane of all cells. Establishes gradients, controls osmotic effects, allows for cotransport Nerve cells have a Na + K + pump and
Outline. Animals: Nervous system. Neuron and connection of neurons. Key Concepts:
Animals: Nervous system Neuron and connection of neurons Outline 1. Key concepts 2. An Overview and Evolution 3. Human Nervous System 4. The Neurons 5. The Electrical Signals 6. Communication between Neurons
10.1: Introduction. Cell types in neural tissue: Neurons Neuroglial cells (also known as neuroglia, glia, and glial cells) Dendrites.
10.1: Introduction Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Cell types in neural tissue: Neurons Neuroglial cells (also known as neuroglia, glia, and glial
Computational cognitive neuroscience: 2. Neuron. Lubica Beňušková Centre for Cognitive Science, FMFI Comenius University in Bratislava
1 Computational cognitive neuroscience: 2. Neuron Lubica Beňušková Centre for Cognitive Science, FMFI Comenius University in Bratislava 2 Neurons communicate via electric signals In neurons it is important
Synaptic communication
Synaptic communication Objectives: after these lectures you should be able to: - explain the differences between an electrical and chemical synapse - describe the steps involved in synaptic communication
Version A. AP* Biology: Nervous System. Questions 1 and 2. Name: Period
Name: Period Version A AP* Biology: Nervous System Directions: Each of the questions or incomplete statements below is followed by four suggested answers or completions. Select the one that is best in
SUPPLEMENTARY INFORMATION
DOI: 10.1038/ncb2294 Figure S1 Localization and function of cell wall polysaccharides in root hair cells. (a) Spinning-disk confocal sections of seven day-old A. thaliana seedlings stained with 0.1% S4B
Axon Initial Segment Kv1 Channels Control Axonal Action Potential Waveform and Synaptic Efficacy
Article Axon Initial Segment Kv1 Channels Control Axonal Action Potential Waveform and Synaptic Efficacy Maarten H.P. Kole, 1,2 Johannes J. Letzkus, 1,2 and Greg J. Stuart 1, * 1 Division of Neuroscience,
The Nervous System & Nervous tissue. Dr. Ali Ebneshahidi
The Nervous System & Nervous tissue Dr. Ali Ebneshahidi Functions of the Nervous System 1. Nervous system and endocrine system are the chief control centers in maintaining body homeostasis. 2. Nervous
Long-Term, Selective Gene Expression in Developing and Adult Hippocampal Pyramidal Neurons Using Focal In Utero Electroporation
The Journal of Neuroscience, May 9, 2007 27(19):5007 5011 5007 Toolbox Editor s Note: Toolboxes are intended to briefly highlight a new method or a resource of general use in neuroscience or to critically
Supplementary Figure 1 Validation of Per2 deletion in neuronal cells in N Per2 -/- mice. (a) Western blot from liver extracts of mice held under ad
Supplementary Figure 1 Validation of Per2 deletion in neuronal cells in N Per2 -/- mice. (a) Western blot from liver extracts of mice held under ad libitum conditions detecting PER2 protein in brain and
SUPPLEMENTARY INFORMATION
doi:1.138/nature9553 Supplementary Table 1. Overlap of neuronal marker and PKC- expression in CEl. Marker/PKC- PKC- Marker Gad65 87.4±4.7 5.3±12.6 CRH 1.2±1. 16.9±15.2 Dyn 1.9±1.2 4.5±2.9 Enk 42.8±7.4
Nervous system function Central and peripheral nervous system. Myelinated neurons Nerve signal transmission Nerve Synapse
Outline Nervous System - Neurons Biol 105 Lecture Packet 9 Chapter 7 I. II. III. IV. V. VI. Nervous system function Central and peripheral nervous system Nervous system cells Myelinated neurons Nerve signal
SLX4 + MUS81 SLX4 + GEN1 SLX4 CONTROL SLX4
GEN MUS8 GEN MUS8 GEN MUS8 GEN MUS8 GEN C LM MUS8 XPF (loading control) D H2AX Frequency of -positive bridges (% of anaphase cells) 6 4 2 p =.8 x -4 GM855 p =.27 PSNF5 E H2AX Figure S. Analysis of anaphase
Dissecting the phenotypes of Dravet syndrome by gene deletion
doi:10.1093/brain/awv142 BRAIN 2015: 138; 2219 2233 2219 Dissecting the phenotypes of Dravet syndrome by gene deletion Moran Rubinstein, Sung Han, Chao Tai, Ruth E. Westenbroek, Avery Hunker, Todd Scheuer
Spiking Inputs to a Winner-take-all Network
Spiking Inputs to a Winner-take-all Network Matthias Oster and Shih-Chii Liu Institute of Neuroinformatics University of Zurich and ETH Zurich Winterthurerstrasse 9 CH-857 Zurich, Switzerland {mao,shih}@ini.phys.ethz.ch
Excitatory/Inhibitory Synaptic Imbalance Leads to Hippocampal Hyperexcitability in Mouse Models of Tuberous Sclerosis
Article Excitatory/Inhibitory Synaptic Imbalance Leads to Hippocampal Hyperexcitability in Mouse Models of Tuberous Sclerosis Helen S. Bateup, Caroline A. Johnson, Cassandra L. Denefrio, Jessica L. Saulnier,
2Lesson. Outline 3.2. Lesson Plan. The OVERVIEW. Lesson 3.2: How do our neurons communicate with each other? LESSON. Unit1.2
Outline OVERVIEW Rationale: This lesson is intended to introduce students to the process of synaptic transmission, which is how one neuron communicates with another neuron. Using the pain pathway as a
Supplementary Figure 1. Flies form water-reward memory only in the thirsty state
1 2 3 4 5 6 7 Supplementary Figure 1. Flies form water-reward memory only in the thirsty state Thirsty but not sated wild-type flies form robust 3 min memory. For the thirsty group, the flies were water-deprived
SSM signature genes are highly expressed in residual scar tissues after preoperative radiotherapy of rectal cancer.
Supplementary Figure 1 SSM signature genes are highly expressed in residual scar tissues after preoperative radiotherapy of rectal cancer. Scatter plots comparing expression profiles of matched pretreatment
6.5 Nerves, Hormones and Homeostasis
6.5 Nerves, Hormones and Homeostasis IB Biology SL Part 1 - Nerves Outcomes Part 1 6.5.1State that the nervous system consists of the central nervous system (CNS) and peripheral nerves, and is composed
DUAL INTRACELLULAR RECORDINGS AND COMPUTATIONAL MODELS OF SLOW INHIBITORY POSTSYNAPTIC POTENTIALS IN RAT NEOCORTICAL AND HIPPOCAMPAL SLICES
Pergamon Neuroscience Vol. 92, No. 4, pp. 1193 1215, 1999 Copyright 1999 IBRO. Published by Elsevier Science Ltd Printed in Great Britain. All rights reserved PII: S0306-4522(99)00021-4 0306-4522/99 $20.00+0.00
IP: anti-gfp VPS29-GFP. IP: anti-vps26. IP: anti-gfp - + +
FAM21 Strump. WASH1 IP: anti- 1 2 3 4 5 6 FAM21 Strump. FKBP IP: anti-gfp VPS29- GFP GFP-FAM21 tail H H/P P H H/P P c FAM21 FKBP Strump. VPS29-GFP IP: anti-gfp 1 2 3 FKBP VPS VPS VPS VPS29 1 = VPS29-GFP
Evaluating the Effect of Spiking Network Parameters on Polychronization
Evaluating the Effect of Spiking Network Parameters on Polychronization Panagiotis Ioannou, Matthew Casey and André Grüning Department of Computing, University of Surrey, Guildford, Surrey, GU2 7XH, UK
Parallel Driving and Modulatory Pathways Link the Prefrontal Cortex and Thalamus
Boston University OpenBU Health Sciences http://open.bu.edu SAR: Health Sciences: Scholarly Papers 2007-9-5 Parallel Driving and Modulatory Pathways Link the Prefrontal Cortex and Thalamus Zikopoulos,
GABA from reactive astrocytes impairs memory in mouse models of Alzheimer disease
SUPPLEMENTARY INFORMATION from reactive astrocytes impairs memory in mouse models of Alzheimer disease Seonmi Jo *, Oleg Yarishkin *, Yu Jin Hwang, Ye Eun Chun, Mijeong Park, Dong Ho Woo, Jin Young Bae,
Supplementary Figure 1. mrna targets were found in exosomes and absent in free-floating supernatant. Serum exosomes and exosome-free supernatant were
Supplementary Figure 1. mrna targets were found in exosomes and absent in free-floating supernatant. Serum exosomes and exosome-free supernatant were separated via ultracentrifugation and lysed to analyze
LESSON 3.3 WORKBOOK. Why does applying pressure relieve pain? Workbook. Postsynaptic potentials
Depolarize to decrease the resting membrane potential. Decreasing membrane potential means that the membrane potential is becoming more positive. Excitatory postsynaptic potentials (EPSP) graded postsynaptic
Overview of Neurons. Psychology 470. Introduction to Chemical Additions. Neurons2. Axons and Related Structures. Structures
Soma Collateral Overview of Neurons Psychology 470 Axon Hillock Teleodendria Introduction to Chemical Additions Steven E. Meier, Ph.D. Node of Ranvier Listen to the audio lecture while viewing these slides
Section: Chapter 5: Multiple Choice. 1. The structure of synapses is best viewed with a(n):
Section: Chapter 5: Multiple Choice 1. The structure of synapses is best viewed with a(n): p.155 electron microscope. light microscope. confocal microscope. nissle-stained microscopic procedure. 2. Electron
Perisynaptic Location of Metabot ropic GI utamate Receptors mglur1 and mglur5 on Dendrites and Dendritic Spines in the Rat Hippocampus
European Journal of Neuroscience, Vol. 8, pp. 1488-1500, 1996 0 European Neuroscience Association Perisynaptic Location of Metabot ropic GI utamate Receptors mglur1 and mglur5 on Dendrites and Dendritic
Supporting Online Material for
www.sciencemag.org/cgi/content/full/331/6017/599/dc1 Supporting Online Material for Action-Potential Modulation During Axonal Conduction Takuya Sasaki, Norio Matsuki, Yuji Ikegaya* *To whom correspondence
antagonists on hippocampal long-term potentiation
Research Opposing actions of chronic 9 -tetrahydrocannabinol and cannabinoid antagonists on hippocampal long-term potentiation Alexander F. Hoffman, 1 Murat Oz, 1 Ruiqin Yang, 2 Aron H. Lichtman, 2 and
Recurrent excitatory postsynaptic potentials induced by synchronized fast cortical oscillations
Proc. Natl. Acad. Sci. USA Vol. 94, pp. 12198 12203, October 1997 Neurobiology Recurrent excitatory postsynaptic potentials induced by synchronized fast cortical oscillations (neuronal network 40 Hz synaptic
a b c Supplementary Figure 1 R Shrm4 0 -/- -/- GABA B1b Wild type GABA B1a GABA B1a -GABA B1b mean intensity (a.u) Ponceau GABA B
a b c 200 - H S1 P1 S2 P2 SYN TIF PSD Shrm4 95 - PSD95 34 - Synaptophysin 120-100 - Wil type GABA B1a -/- GABA B1b -/- -GABA B1a -GABA B1b e f 5 μm 10 μm 20 μm 100 - GABA B1a 600 400 200 Ponceau GABA B
Biology 201-Worksheet on Nervous System (Answers are in your power point outlines-there is no key!)
Bio 201 Tissues and Skin 1 March 21, 2011 Biology 201-Worksheet on Nervous System (Answers are in your power point outlines-there is no key!) 1. The study of the normal functioning and disorders of the
Supplemental Information. Induction of Expansion and Folding. in Human Cerebral Organoids
Cell Stem Cell, Volume 20 Supplemental Information Induction of Expansion and Folding in Human Cerebral Organoids Yun Li, Julien Muffat, Attya Omer, Irene Bosch, Madeline A. Lancaster, Mriganka Sur, Lee
Supplemental information contains 7 movies and 4 supplemental Figures
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Supplemental information contains 7 movies and 4 supplemental Figures Movies: Movie 1. Single virus tracking of A4-mCherry-WR MV
Linking Neuronal Ensembles by Associative Synaptic Plasticity
Linking Neuronal Ensembles by Associative Synaptic Plasticity Qi Yuan 1,2, Jeffry S. Isaacson 2, Massimo Scanziani 1,2,3 * 1 Department of Neurobiology, Center for Neural Circuits and Behavior, University
Nervous System Review
Nervous System Review Name: Block: 1. Which processes are involved in the movement of molecule Y from point X to point Z? A. exocytosis and diffusion B. endocytosis and diffusion C. exocytosis and facilitated
hemodynamic stress. A. Echocardiographic quantification of cardiac dimensions and function in
SUPPLEMENTAL FIGURE LEGENDS Supplemental Figure 1. Fbn1 C1039G/+ hearts display normal cardiac function in the absence of hemodynamic stress. A. Echocardiographic quantification of cardiac dimensions and
Supplementary information. The Light Intermediate Chain 2 Subpopulation of Dynein Regulates Mitotic. Spindle Orientation
Supplementary information The Light Intermediate Chain 2 Subpopulation of Dynein Regulates Mitotic Spindle Orientation Running title: Dynein LICs distribute mitotic functions. Sagar Mahale a, d, *, Megha
Karen L.P. McNally, Amy S. Fabritius, Marina L. Ellefson, Jonathan R. Flynn, Jennifer A. Milan, and Francis J. McNally
Developmental Cell, Volume 22 Supplemental Information Kinesin-1 Prevents Capture of the Oocyte Meiotic Spindle by the Sperm Aster Karen L.P. McNally, Amy S. Fabritius, Marina L. Ellefson, Jonathan R.
Ionotropic glutamate receptors (iglurs)
Ionotropic glutamate receptors (iglurs) GluA1 GluA2 GluA3 GluA4 GluN1 GluN2A GluN2B GluN2C GluN2D GluN3A GluN3B GluK1 GluK2 GluK3 GluK4 GluK5 The general architecture of receptor subunits Unique properties
Synaptotagmin-2 Is a Reliable Marker for Parvalbumin Positive Inhibitory Boutons in the Mouse Visual Cortex
Synaptotagmin-2 Is a Reliable Marker for Parvalbumin Positive Inhibitory Boutons in the Mouse Visual Cortex Jean-Pierre Sommeijer, Christiaan N. Levelt* Department of Molecular Visual Neuroscience, Netherlands
Compensatory Contribution of Ca V. 2.3 Channels to Acetylcholine Release at the Neuromuscular Junction of Tottering Mice
5 Compensatory Contribution of 2.3 Channels to Acetylcholine Release at the Neuromuscular Junction of Tottering Mice Simon Kaja, 1,2 Rob C.G. van de Ven, 3 Michel D. Ferrari, 1 Rune R. Frants, 3 Arn M.J.M.
Expression of the transient receptor potential channels TRPV1, TRPA1 and TRPM8 in mouse trigeminal primary afferent neurons innervating the dura
Washington University School of Medicine Digital Commons@Becker Open Access Publications 212 Expression of the transient receptor potential channels TRPV1, TRPA1 and TRPM8 in mouse trigeminal primary afferent
BIOLOGY 2050 LECTURE NOTES ANATOMY & PHYSIOLOGY I (A. IMHOLTZ) FUNDAMENTALS OF THE NERVOUS SYSTEM AND NERVOUS TISSUE P1 OF 5
P1 OF 5 The nervous system controls/coordinates the activities of cells, tissues, & organs. The endocrine system also plays a role in control/coordination. The nervous system is more dominant. Its mechanisms
Reduced Neuromuscular Quantal Content With Normal Synaptic Release Time Course and Depression in Canine Motor Neuron Disease
J Neurophysiol 88: 3305 3314, 2002; 10.1152/jn.00271.2002. Reduced Neuromuscular Quantal Content With Normal Synaptic Release Time Course and Depression in Canine Motor Neuron Disease MARK M. RICH, 1,2
Supplemental Information. Caldendrin Directly Couples. Postsynaptic Calcium Signals. to Actin Remodeling in Dendritic Spines
Neuron, Volume 97 Supplemental Information Caldendrin Directly Couples Postsynaptic Calcium Signals to Actin Remodeling in Dendritic Spines Marina Mikhaylova, Julia Bär, Bas van Bommel, Philipp Schätzle,
Nature Biotechnology: doi: /nbt.3828
Supplementary Figure 1 Development of a FRET-based MCS. (a) Linker and MA2 modification are indicated by single letter amino acid code. indicates deletion of amino acids and N or C indicate the terminus
CYTOARCHITECTURE OF CEREBRAL CORTEX
BASICS OF NEUROBIOLOGY CYTOARCHITECTURE OF CEREBRAL CORTEX ZSOLT LIPOSITS 1 CELLULAR COMPOSITION OF THE CEREBRAL CORTEX THE CEREBRAL CORTEX CONSISTS OF THE ARCHICORTEX (HIPPOCAMPAL FORMA- TION), PALEOCORTEX
VISUAL CORTICAL PLASTICITY
VISUAL CORTICAL PLASTICITY OCULAR DOMINANCE AND OTHER VARIETIES REVIEW OF HIPPOCAMPAL LTP 1 when an axon of cell A is near enough to excite a cell B and repeatedly and consistently takes part in firing
Neurotransmitter release at ribbon synapses in the retina
Immunology and Cell Biology (2000) 78, 442 446 Curtin Conference Neurotransmitter release at ribbon synapses in the retina CATHERINE W MORGANS Synaptic Biochemistry Group, Division of Neuroscience, John
Supplementary Table 1. The primers used for quantitative RT-PCR. Gene name Forward (5 > 3 ) Reverse (5 > 3 )
770 771 Supplementary Table 1. The primers used for quantitative RT-PCR. Gene name Forward (5 > 3 ) Reverse (5 > 3 ) Human CXCL1 GCGCCCAAACCGAAGTCATA ATGGGGGATGCAGGATTGAG PF4 CCCCACTGCCCAACTGATAG TTCTTGTACAGCGGGGCTTG
Analysis of State-Dependent Transitions in Frequency and Long-Distance Coordination in a Model Oscillatory Cortical Circuit
Journal of Computational Neuroscience 15, 283 298, 2003 c 2003 Kluwer Academic Publishers. Manufactured in The Netherlands. Analysis of State-Dependent Transitions in Frequency and Long-Distance Coordination