Homework 6 Solutions

Size: px
Start display at page:

Download "Homework 6 Solutions"

Transcription

1 Homework 6 Solutions Math 314, Fall 216 Problem 1 The HIV virus targets CD4+ T cells, sometimes called helper T cells During an infection, the total number T t) of helper T cells in the blood, the number T t) of infected helper T cells, and the number V t) of HIV virions free virus particles) in the blood can be modeled by the differential equations = kt V δt, where k, δ, π, and c are positive constants Part a) dv = πt cv, Briefly explain what each term in each of these two differential equations represents What assumptions about proportionality are being made in this model? What is the significance of the four constants k, δ, π, and c? We discuss each of the four terms: 1 In the first differential equation, kt V represents the rate at which helper T cells become infected by virions This is assumed to be proportional to both the number T of helper T cells and the number V of virions, with k being a constant of proportionality that represents the infectiousness of the virions in a given host 2 In the first differential equation, δt represents the rate at which infected helper T cells are cleared from the body, either by dying a natural death or being destroyed or cleared from the body by the immune system This rate is assumed to be proportional to the number of infected helper T cells, with δ being the clearance rate 3 In the second differential equation, πt represents the rate at which virions are produced by the infected helper T cells This is assumed to be proportional to the number of infected helper T cells, with π representing the rate at which a single infected T cell produces virions 4 In the second differential equation, cv represents the rate at which virions either die or are cleared from the body This is assumed to be proportional to the number of virions, with c being the clearance rate 1

2 Part b) A typical HIV infection spends many years in a quasi-steady state Find formulas for the ratio T /V and the total number T of helper T cells during this steady state in terms of the constants k, δ, π, and c Setting the derivatives equal to zero gives Solving the second equation for T /V gives = kt V δt and = πt cv T V = c π Substituting T = cv/π into the first equation gives = kt V δcv/π, and solving for T yields T = δc πk Part c) Administration of an RT inhibitor an antiretroviral drug) blocks the virus from infecting new cells, thereby decreasing k to zero Assuming we administer such a drug at t =, find a formula for T t) in this case, assuming the initial condition T ) = T Substituting k = into the first differential equation gives which has solution Part d) = δt T t) = T e δt Use your answer to part c) to find a general formula for V t) in the same scenario You will need to use the method of integrating factors to solve this part) Substituting T t) = T e δt into the second differential equation gives dv = πt e δt cv Adding cv to both sides and multiplying by e ct yields or equivalently ct dv e + cect V = πt e c δ)t, d [ ] e ct V = πt e c δ)t 2

3 Thus e ct V = where A is a constant Then V t) = πt e c δ)t = πt e c δ)t ) πt e δt + Ae ct + A Part e) Assuming the infection is in a quasi-steady state at t = with initial condition V ) = V, use your answers to parts b) and d) to show that V t) = ce δt δe ct) V Since the infection starts in a quasi-steady state, we know that T V = c π Substituting πt = cv into our solution from part c) yields ) cv V t) = e δt + Ae ct 1) We can solve for the constant A using the initial condition V ) = V Substituting in t = gives Solving for A and simplifying yields V = cv + A A = δv Substituting this into equation 1) above and simplifying gives us the desired equation: V t) = ce δt δe ct) V 3

4 Problem 2 A protease inhibitor is an antiviral drug that interferes with viral replication, causing newly produced virions to be non-infectious The effect of a protease inhibitor can be modeled by the differential equations = kt V I δt, dv NI = πt cv NI, dv I = cv I, where V I t) is the number of infectious HIV virions and V NI t) is the number of non-infections HIV virions Part a) Assuming a protease inhibitor is administered at t =, the number of infectious virions will decrease exponentially according to the equation V I = V e ct Find a general formula for T t) in this case, assuming that the total number T t) of helper T cells is constant Substituting V I = V e ct into the first differential equation gives = kt V e ct δt Adding δt to both sides and multiplying by e δt yields or equivalently Integrating gives where B is a constant Thus Part b) δt dt e + δeδt T = kt V e δ c)t, d ] [e δt T = kt V e δ c)t e δt T = kt V e δ c)t T = + B, ) kt V e ct + Be δt Assuming the HIV infection is in a quasi-steady state at t =, use your answer to part a) to show that δe ct T ce δt) T t) = Because the infection starts in a quasi-stead state, we know from question 1b) that T V = c π and T = δc πk 4

5 Substituting V = πt /c and kt = δc/π into our solution to part a) gives ) δ T T = e ct + Be δt To find the constant B, we substitute t = to get Solving for B and simplifying gives T = δ T + B so T = B = ct δe ct ce δt) T Part c) Use your answer to part b) to show that V NI t) = cv δte ct + c e δt e ct)) Substituting our answer from part b) into the differential equation for V NI gives dv NI δe ct ce δt) T = π cv NI Adding cv NI to both sides and multiplying by e ct yields or equivalently Integrating gives e ct dv NI + ce ct V NI = πt ) e c δ)t d ] [e ct V NI = πt ) e c δ)t e ct V NI = πt δt c ) ec δ)t + R where R is a constant Multiplying by e ct and substituting πt = cv gives V NI t) = cv δte ct + c ) e δt + Re ct 2) Now presumably V NI ) =, since there were no non-infectious virions before we administered to protease inhibitor Substituting t = gives us = cv ) c + R 5

6 so R = cv c ) Substituting this into equation 2) and simplifying yields the desired equation: V NI t) = cv δte ct + c e δt e ct)) 6

Decay characteristics of HIV-1- infected compartments during combination therapy

Decay characteristics of HIV-1- infected compartments during combination therapy Decay characteristics of HIV-1- infected compartments during combination therapy Perelson et al. 1997 Kelsey Collins BIOL0380 September 28, 2009 SUMMARY Analyzed decay patterns of viral load of HIV- 1-infected

More information

Mathematical Analysis of HIV-1 Dynamics in Vivo

Mathematical Analysis of HIV-1 Dynamics in Vivo SIAM REVIEW Vol. 41, No. 1, pp. 3 44 c 1999 Society for Industrial and Applied Mathematics Mathematical Analysis of HIV-1 Dynamics in Vivo Alan S. Perelson Patrick W. Nelson Abstract. Mathematical models

More information

VIRUS POPULATION DYNAMICS

VIRUS POPULATION DYNAMICS MCB 137 VIRUS DYNAMICS WINTER 2008 VIRUS POPULATION DYNAMICS Introduction: The basic epidemic model The classical model for epidemics is described in [1] and [Chapter 10 of 2]. Consider a population of

More information

ON ATTAINING MAXIMAL AND DURABLE SUPPRESSION OF THE VIRAL LOAD. Annah M. Jeffrey, Xiaohua Xia and Ian K. Craig

ON ATTAINING MAXIMAL AND DURABLE SUPPRESSION OF THE VIRAL LOAD. Annah M. Jeffrey, Xiaohua Xia and Ian K. Craig ON ATTAINING MAXIMAL AND DURABLE SUPPRESSION OF THE VIRAL LOAD Annah M. Jeffrey, Xiaohua Xia and Ian K. Craig Department of Electrical, Electronic and Computer Engineering, University of Pretoria, Pretoria

More information

HIV-1 R.eplication Rate

HIV-1 R.eplication Rate HIV-1 R.eplication Rate Michelle J. Arias and Delmy Iiiguez University of California, Riverside Erika T. Camacho Wellesley College Rafael B. Castillo State University of New York at Stony Brook Eliel Melon

More information

0.1 Immunology - HIV/AIDS. 0.2 History & biology of HIV

0.1 Immunology - HIV/AIDS. 0.2 History & biology of HIV 0.1 mmunology - HV/ADS n our previous models we assumed a homogeneous population where everyone was susceptible and infectious to the same degree. n contrast, the dynamics of STDs is affected by the general

More information

The 2016 Summer Institute in Statistics and Modeling of Infectious Diseases Module 6: Infectious Diseases, Immunology and Within-Host Models Author:

The 2016 Summer Institute in Statistics and Modeling of Infectious Diseases Module 6: Infectious Diseases, Immunology and Within-Host Models Author: The 2016 Summer Institute in Statistics and Modeling of Infectious Diseases Module 6: Infectious Diseases, Immunology and Within-Host Models Author: Andreas Handel, Department of Epidemiology and Biostatistics,

More information

HIV Treatment Using Optimal Control

HIV Treatment Using Optimal Control Lab 1 HIV Treatment Using Optimal Control Introduction Viruses are the cause of many common illnesses in society today, such as ebola, influenza, the common cold, and Human Immunodeficiency Virus (HIV).

More information

Modeling the Effects of HIV on the Evolution of Diseases

Modeling the Effects of HIV on the Evolution of Diseases 1/20 the Evolution of Mentor: Nina Fefferman DIMACS REU July 14, 2011 2/20 Motivating Questions How does the presence of HIV in the body changes the evolution of pathogens in the human body? How do different

More information

Simple Mathematical Models Do Not Accurately Predict Early SIV Dynamics

Simple Mathematical Models Do Not Accurately Predict Early SIV Dynamics University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Faculty Publications and Other Works -- Mathematics Mathematics 3-13-2015 Simple Mathematical Models Do Not Accurately

More information

Mathematical Models for HIV infection in vivo - A Review

Mathematical Models for HIV infection in vivo - A Review ing of ODE DDE SDE s Mathematical s for HIV infection in vivo - A Department of Mathematics and Statistics Indian Institute of Technology, Kanpur Kanpur, 208016, India peeyush@iitk.ac.in January 20, 2010

More information

MODELING DISEASE FINAL REPORT 5/21/2010 SARAH DEL CIELLO, JAKE CLEMENTI, AND NAILAH HART

MODELING DISEASE FINAL REPORT 5/21/2010 SARAH DEL CIELLO, JAKE CLEMENTI, AND NAILAH HART MODELING DISEASE FINAL REPORT 5/21/2010 SARAH DEL CIELLO, JAKE CLEMENTI, AND NAILAH HART ABSTRACT This paper models the progression of a disease through a set population using differential equations. Two

More information

WHY? Viruses are considered non-living because they do:

WHY? Viruses are considered non-living because they do: Viruses What is a Virus? Non-living particle WHY? Viruses are considered non-living because they do: NOT Carry out metabolism NOT Grow or develop NOT Replicate without the help of a living cell (host).

More information

Dynamics of lentiviral infection in vivo in the absence of adaptive immune responses

Dynamics of lentiviral infection in vivo in the absence of adaptive immune responses Dynamics of lentiviral infection in vivo in the absence of adaptive immune responses Elissa J. Schwartz Associate Professor School of Biological Sciences Department of Mathematics & Statistics Washington

More information

KINETICS OF INFLUENZA A VIRUS INFECTIONS IN A HETEROGENEOUS CELL POPULATION. Marc J. Baron

KINETICS OF INFLUENZA A VIRUS INFECTIONS IN A HETEROGENEOUS CELL POPULATION. Marc J. Baron KINETICS OF INFLUENZA A VIRUS INFECTIONS IN A HETEROGENEOUS CELL POPULATION by Marc J. Baron B.Sc (Hons.), University of Saskatchewan, Saskatoon, SK, Canada, 2008 A thesis presented to Ryerson University

More information

Research Article Mathematical Modeling of Cytotoxic Lymphocyte-Mediated Immune Response to Hepatitis B Virus Infection

Research Article Mathematical Modeling of Cytotoxic Lymphocyte-Mediated Immune Response to Hepatitis B Virus Infection Hindawi Publishing Corporation Journal of Biomedicine and Biotechnology Volume 28, Article ID 74369, 9 pages doi:.55/28/74369 Research Article Mathematical Modeling of Cytotoxic Lymphocyte-Mediated Immune

More information

APPLICATION OF MATHEMATICAL MODELING TO IMMUNOLOGICAL PROBLEMS

APPLICATION OF MATHEMATICAL MODELING TO IMMUNOLOGICAL PROBLEMS Trakia Journal of Sciences, Vol. 8, Suppl. 2, pp 49-55, 2 Copyright 29 Trakia University Available online at: http://www.uni-sz.bg ISSN 33-75 (print) ISSN 33-355 (online) APPLICATION OF MATHEMATICAL MODELING

More information

Mathematical Considerations of Antiretroviral Therapy Aimed at HIV-1 Eradication or Maintenance of Low Viral Loads. Wein, D'Amato, and Perelson

Mathematical Considerations of Antiretroviral Therapy Aimed at HIV-1 Eradication or Maintenance of Low Viral Loads. Wein, D'Amato, and Perelson Mathematical Considerations of Antiretroviral Therapy Aimed at HIV-1 Eradication or Maintenance of Low Viral Loads Wein, D'Amato, and Perelson #3939-97-MSA February, 1997 Mathematical Considerations of

More information

Mathematical Analysis of an HIV/AIDS Epidemic Model

Mathematical Analysis of an HIV/AIDS Epidemic Model American Journal of Mathematics and Statistics 15, 5(5): 53-58 DOI: 1.593/j.ajms.1555.5 Mathematical Analysis of an HIV/AIDS Epidemic Model Udoy S. Basak 1,*, Bimal Kumar Datta, Prodip Kumar Ghose 3 1

More information

Stability Analysis for an HIV Infection Model with Immune Response and Cure Rate

Stability Analysis for an HIV Infection Model with Immune Response and Cure Rate IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Stability Analysis for an HIV Infection Model with Immune Response and Cure Rate To cite this article: Linli Zhang and Lin Wang

More information

Approximately 200 million individuals worldwide

Approximately 200 million individuals worldwide Triphasic Decline of Hepatitis C Virus RNA During Antiviral Therapy Harel Dahari, Ruy M. Ribeiro, and Alan S. Perelson When patients chronically infected with hepatitis C virus (HCV) are placed on antiviral

More information

Equation Development of Tumor-Immune ODE System

Equation Development of Tumor-Immune ODE System Equation Development of Tumor-Immune ODE System L.G. de Pillis and A.E. Radunskaya August 22, 2002 ThisworkwassupportedinpartbyagrantfromtheW.M.KeckFoundation 0-0 TUMOR-IMMUNE EQUATION DEVELOPMENT Overview

More information

HIV depletes T-helper17, we simply stimulate it. By Prof. Dr.Pichaet Wiriyachitra Ph.D., F.R.A.C.I.

HIV depletes T-helper17, we simply stimulate it. By Prof. Dr.Pichaet Wiriyachitra Ph.D., F.R.A.C.I. HIV depletes T-helper17, we simply stimulate it By Prof. Dr.Pichaet Wiriyachitra Ph.D., F.R.A.C.I. Natural Healthcare for HIV infected HIV depletes T-helper17, we simply stimulate it Dr.Pichaet Wiriyachitra

More information

Viruses. Rotavirus (causes stomach flu) HIV virus

Viruses. Rotavirus (causes stomach flu) HIV virus Viruses Rotavirus (causes stomach flu) HIV virus What is a virus? A virus is a microscopic, infectious agent that may infect any type of living cell. Viruses must infect living cells in order to make more

More information

Appendix (unedited, as supplied by the authors)

Appendix (unedited, as supplied by the authors) Appendix (unedited, as supplied by the authors) Details of the mathematical model The model used for the simulations in this manuscript was adapted from a previously described model of HCV transmission

More information

Some living things are made of ONE cell, and are called. Other organisms are composed of many cells, and are called. (SEE PAGE 6)

Some living things are made of ONE cell, and are called. Other organisms are composed of many cells, and are called. (SEE PAGE 6) Section: 1.1 Question of the Day: Name: Review of Old Information: N/A New Information: We tend to only think of animals as living. However, there is a great diversity of organisms that we consider living

More information

Summary Report for HIV Random Clinical Trial Conducted in

Summary Report for HIV Random Clinical Trial Conducted in Summary Report for HIV Random Clinical Trial Conducted in 9-2014 H.T. Banks and Shuhua Hu Center for Research in Scientific Computation North Carolina State University Raleigh, NC 27695-8212 USA Eric Rosenberg

More information

Modeling of HIV and CTL Response

Modeling of HIV and CTL Response Modeling of HIV and CTL Response Catherine Tran Diana Lubyanaya Advisors: Dr. Dominik Wodarz* and Dr. Frederic Wan** *Department of Ecology and Evolutionary Biology **Department of Mathematics University

More information

Influence of anti-viral drug therapy on the evolution of HIV-1 pathogens

Influence of anti-viral drug therapy on the evolution of HIV-1 pathogens Influence of anti-viral drug therapy on the evolution of HIV-1 pathogens and Libin Rong Department of Mathematics Purdue University Outline HIV-1 life cycle and Inhibitors Age-structured models with combination

More information

Dynamic Multidrug Therapies for HIV: Optimal and STI Control Approaches

Dynamic Multidrug Therapies for HIV: Optimal and STI Control Approaches Dynamic Multidrug Therapies for HIV: Optimal and STI Control Approaches B. M. Adams 1, H. T. Banks, Hee-Dae Kwon 3, and H. T. Tran Center for Research in Scientific Computation Box 85 North Carolina State

More information

LESSON 1.4 WORKBOOK. Viral structures. Just how small are viruses? Workbook Lesson 1.4 1

LESSON 1.4 WORKBOOK. Viral structures. Just how small are viruses? Workbook Lesson 1.4 1 Eukaryotes- organisms that contain a membrane bound nucleus and organelles Prokaryotes- organisms that lack a nucleus or other membrane-bound organelles Viruses-small acellular (lacking a cell) infectious

More information

5/6/17. Diseases. Disease. Pathogens. Domain Bacteria Characteristics. Bacteria Viruses (including HIV) Pathogens are disease-causing organisms

5/6/17. Diseases. Disease. Pathogens. Domain Bacteria Characteristics. Bacteria Viruses (including HIV) Pathogens are disease-causing organisms 5/6/17 Disease Diseases I. II. Bacteria Viruses (including HIV) Biol 105 Chapter 13a Pathogens Pathogens are disease-causing organisms Domain Bacteria Characteristics 1. Domain Bacteria are prokaryotic.

More information

The Effects of HIV 1 Infection on Latent Tuberculosis

The Effects of HIV 1 Infection on Latent Tuberculosis Mathematical Modelling of Natural Phenomena Issue- Name of The Issue Vol. 00, No. 00, Month Year, Page 00-00 Amy L. Bauer 1,2, Ian B. Hogue 3, Simeone Marino 3 and Denise E. Kirschner 3 1 Theoretical Division,

More information

Epidemiological Model of HIV/AIDS with Demographic Consequences

Epidemiological Model of HIV/AIDS with Demographic Consequences Advances in Applied Mathematical Biosciences. ISSN 2248-9983 Volume 5, Number 1 (2014), pp. 65-74 International Research Publication House http://www.irphouse.com Epidemiological Model of HIV/AIDS with

More information

Updated information and services can be found at: These include: Supplemental material

Updated information and services can be found at:  These include: Supplemental material SUPPLEMENTAL MATERIAL REFERENCES CONTENT ALERTS Reassessing the Human Immunodeficiency Virus Type 1 Life Cycle through Age-Structured Modeling: Life Span of Infected Cells, Viral Generation Time, and Basic

More information

Abstract. Keywords. Gelayol Nazari Golpayegani 1, Amir Homayoun Jafari 2,3*, Nader Jafarnia Dabanloo 1

Abstract. Keywords. Gelayol Nazari Golpayegani 1, Amir Homayoun Jafari 2,3*, Nader Jafarnia Dabanloo 1 J. Biomedical Science and Engineering, 2017, 10, 77-106 http://www.scirp.org/journal/jbise ISSN Online: 1937-688X ISSN Print: 1937-6871 Providing a Therapeutic Scheduling for HIV Infected Individuals with

More information

Delay Differential Model for Tumor-Immune Dynamics with HIV Infection of CD4 + T Cells

Delay Differential Model for Tumor-Immune Dynamics with HIV Infection of CD4 + T Cells Delay Differential Model for Tumor-Immune Dynamics with HIV Infection of CD4 + T Cells Fathalla A. Rihan Duaa H. Abdel-Rahman ICM 2012, 11-14 March, Al Ain Abstract In this paper, we introduce a mathematical

More information

Immuno-modulatory Strategies for Reduction of HIV Reservoir Cells

Immuno-modulatory Strategies for Reduction of HIV Reservoir Cells Immuno-modulatory Strategies for Reduction of HIV Reservoir Cells H.T. Banks, Kevin B. Flores and Shuhua Hu Center for Research in Scientific Computation North Carolina State University Raleigh, NC 27695-8212

More information

NOTE: You must show your work to receive full credit. Simply stating the answer will not suffice.

NOTE: You must show your work to receive full credit. Simply stating the answer will not suffice. MATH 1314 Review #3 Name NOTE: You must show your work to receive full credit. Simply stating the answer will not suffice. Graph the function by making a table of coordinates. 1) f() = 4 6 y 1) 4 2-6 -4-2

More information

Mathematical Models of Hepatitis B Virus Dynamics during Antiviral Therapy

Mathematical Models of Hepatitis B Virus Dynamics during Antiviral Therapy Mathematical Models of Hepatitis B Virus Dynamics during Antiviral Therapy Andrea Carracedo Rodriguez Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial

More information

HIV Infection and Epidemiology: Can There Be a Cure? Dr. Nedwidek

HIV Infection and Epidemiology: Can There Be a Cure? Dr. Nedwidek HIV Infection and Epidemiology: Can There Be a Cure? Dr. Nedwidek The Viral Life Cycle A typical virus (DNA or RNA + protein) enters the host cell, makes more of itself, and exits. There are two major

More information

Modeling Plasma Virus Concentration and CD4+ T Cell Kinetics during Primary HIV Infection

Modeling Plasma Virus Concentration and CD4+ T Cell Kinetics during Primary HIV Infection Modeling Plasma Virus Concentration and CD4+ T Cell Kinetics during Primary HIV Infection Max A. Stafford Yunzhen Cao David D. Ho Lawrence Corey Crystal L. Mackall SFI WORKING PAPER: 1999-05-036 SFI Working

More information

1) Complete the Table: # with Flu

1) Complete the Table: # with Flu Name: Date: The Math Behind Epidemics A Study of Exponents in Action Many diseases can be transmitted from one person to another in various ways: airborne, touch, body fluids, blood only, etc. How can

More information

Structure of viruses

Structure of viruses Antiviral Drugs o Viruses are obligate intracellular parasites. o lack both a cell wall and a cell membrane. o They do not carry out metabolic processes. o Viruses use much of the host s metabolic machinery.

More information

MODELLING VIRAL AND IMMUNE SYSTEM DYNAMICS

MODELLING VIRAL AND IMMUNE SYSTEM DYNAMICS MODELLING VIRAL AND IMMUNE SYSTEM DYNAMICS Alan S. Perelson During the past 6 years, there have been substantial advances in our understanding of human immunodeficiency virus 1 and other viruses, such

More information

Viruses. Picture from:

Viruses. Picture from: Viruses Understand the structure of bacteriophages & human immunodeficiency virus (HIV) Appreciate that viruses replicate in host cells (thereby destroying them) Picture from: http://eands.caltech.edu/articles/lxvii1/viruses.html

More information

Mathematical Models for Linking Within-Host and Between-Host Viral Dynamics

Mathematical Models for Linking Within-Host and Between-Host Viral Dynamics Mathematical Models for Linking Within-Host and Between-Host Viral Dynamics The Effect of Antibodies on the Probability of Transmission Aidan Backus Angelica Bloomquist Carlos Villanueva-Chavez J Montgomery

More information

A Comparison Study of the Mathematical Model of HIV Infection of CD 4 + T Cells Using Homotopy Perturbation and Variational Iteration Methods

A Comparison Study of the Mathematical Model of HIV Infection of CD 4 + T Cells Using Homotopy Perturbation and Variational Iteration Methods Applied Mathematical Sciences, Vol. 12, 218, no. 27, 1325-134 HIKARI Ltd, www.m-hikari.com https://doi.org/1.12988/ams.218.81136 A Comparison Study of the Mathematical Model of HIV Infection of CD 4 +

More information

Mathematical-Statistical Modeling to Inform the Design of HIV Treatment Strategies and Clinical Trials

Mathematical-Statistical Modeling to Inform the Design of HIV Treatment Strategies and Clinical Trials Mathematical-Statistical Modeling to Inform the Design of HIV Treatment Strategies and Clinical Trials Marie Davidian and H.T. Banks North Carolina State University Eric S. Rosenberg Massachusetts General

More information

Modeling of cancer virotherapy with recombinant measles viruses

Modeling of cancer virotherapy with recombinant measles viruses Modeling of cancer virotherapy with recombinant measles viruses Thomas W. Carr Department of Mathematics Southern Methodist University Dallas, TX Collaborators: Krešimir Josić Dept. of Mathematics, University

More information

Human Immunodeficiency Virus

Human Immunodeficiency Virus Human Immunodeficiency Virus Virion Genome Genes and proteins Viruses and hosts Diseases Distinctive characteristics Viruses and hosts Lentivirus from Latin lentis (slow), for slow progression of disease

More information

Hierarchical Bayesian Methods for Estimation of Parameters in a Longitudinal HIV Dynamic System

Hierarchical Bayesian Methods for Estimation of Parameters in a Longitudinal HIV Dynamic System Hierarchical Bayesian Methods for Estimation of Parameters in a Longitudinal HIV Dynamic System Yangxin Huang, Dacheng Liu and Hulin Wu Department of Biostatistics & Computational Biology University of

More information

Mathematical Model Approach To HIV/AIDS Transmission From Mother To Child

Mathematical Model Approach To HIV/AIDS Transmission From Mother To Child Mathematical Model Approach To HIV/AIDS Transmission From Mother To Child Basavarajaiah.D. M. B. Narasimhamurthy, K. Maheshappa. B. Leelavathy ABSTRACT:- AIDS is a devastating disease, more than 2.50 million

More information

ANTIRETROVIRAL therapy generally entails the application of drugs in a fixed

ANTIRETROVIRAL therapy generally entails the application of drugs in a fixed University of Pretoria etd Jeffrey, A M (2006) Chapter 5 Drug Dosage Design ANTIRETROVIRAL therapy generally entails the application of drugs in a fixed dosage regimen. A typical initial regimen would

More information

There are approximately 30,000 proteasomes in a typical human cell Each proteasome is approximately 700 kda in size The proteasome is made up of 3

There are approximately 30,000 proteasomes in a typical human cell Each proteasome is approximately 700 kda in size The proteasome is made up of 3 Proteasomes Proteasomes Proteasomes are responsible for degrading proteins that have been damaged, assembled improperly, or that are of no profitable use to the cell. The unwanted protein is literally

More information

A Model for the CD4 Cell Counts in an HIV/AIDS Patient and its Application in Treatment Interventions

A Model for the CD4 Cell Counts in an HIV/AIDS Patient and its Application in Treatment Interventions American Journal of Infectious Diseases (): 6-65, 5 ISSN: 553-63 5 Science Publications A Model for the CD4 Cell Counts in an HIV/AIDS Patient and its Application in Treatment Interventions Richard O.

More information

MedChem 401~ Retroviridae. Retroviridae

MedChem 401~ Retroviridae. Retroviridae MedChem 401~ Retroviridae Retroviruses plus-sense RNA genome (!8-10 kb) protein capsid lipid envelop envelope glycoproteins reverse transcriptase enzyme integrase enzyme protease enzyme Retroviridae The

More information

Antiviral Drugs Lecture 5

Antiviral Drugs Lecture 5 Antiviral Drugs Lecture 5 Antimicrobial Chemotherapy (MLAB 366) 1 Dr. Mohamed A. El-Sakhawy 2 Introduction Viruses are microscopic organisms that can infect all living cells. They are parasitic and multiply

More information

ACQUIRED IMMUNODEFICIENCY SYNDROME AND ITS OCULAR COMPLICATIONS

ACQUIRED IMMUNODEFICIENCY SYNDROME AND ITS OCULAR COMPLICATIONS ACQUIRED IMMUNODEFICIENCY SYNDROME AND ITS OCULAR COMPLICATIONS Acquired immunodeficiency syndrome (AIDS ) is an infectious disease caused by a retrovirus, the human immunodeficiency virus(hiv). AIDS is

More information

Mini Project 3. Understanding The Mathematics of HIV Transmission In Concentrated Settings. Dimitrios Voulgarelis

Mini Project 3. Understanding The Mathematics of HIV Transmission In Concentrated Settings. Dimitrios Voulgarelis CoMPLEX University College London Mini Project 3 Understanding The Mathematics of HIV Transmission In Concentrated Settings Dimitrios Voulgarelis Supervisors: Dr Jasmina Panovska-Griffiths, Dr Zindoga

More information

LESSON 4.6 WORKBOOK. Designing an antiviral drug The challenge of HIV

LESSON 4.6 WORKBOOK. Designing an antiviral drug The challenge of HIV LESSON 4.6 WORKBOOK Designing an antiviral drug The challenge of HIV In the last two lessons we discussed the how the viral life cycle causes host cell damage. But is there anything we can do to prevent

More information

Mathematical modeling of escape of HIV from cytotoxic T lymphocyte responses

Mathematical modeling of escape of HIV from cytotoxic T lymphocyte responses Mathematical modeling of escape of HIV from cytotoxic T lymphocyte responses arxiv:1207.5684v1 [q-bio.pe] 24 Jul 2012 Vitaly V. Ganusov 1, Richard A. Neher 2 and Alan S. Perelson 3 1 Department of Microbiology,

More information

Antiretroviral Prophylaxis and HIV Drug Resistance. John Mellors University of Pittsburgh

Antiretroviral Prophylaxis and HIV Drug Resistance. John Mellors University of Pittsburgh Antiretroviral Prophylaxis and HIV Drug Resistance John Mellors University of Pittsburgh MTN Annual 2008 Outline Two minutes on terminology Origins of HIV drug resistance Lessons learned from ART Do these

More information

A Mathematical Approach to Characterize the Transmission Dynamics of the Varicella-Zoster Virus

A Mathematical Approach to Characterize the Transmission Dynamics of the Varicella-Zoster Virus Proceedings of The National Conference On Undergraduate Research (NCUR) 2012 Weber State University, Ogden Utah March 29 31, 2012 A Mathematical Approach to Characterize the Transmission Dynamics of the

More information

The Global Viral Hepatitis Summit 15 th International Symposium on Viral Hepatitis and Liver Disease Presentation O-09

The Global Viral Hepatitis Summit 15 th International Symposium on Viral Hepatitis and Liver Disease Presentation O-09 REP 2139 monotherapy and combination therapy with pegylated interferon: Safety and potent reduction of HBsAg and HDV RNA in Caucasian Patients with chronic HBV / HDV co-infection M. Bazinet 1, V. Pântea

More information

Reduction of Mortality Rate Due to AIDS When Treatment Is Considered

Reduction of Mortality Rate Due to AIDS When Treatment Is Considered Pure and Applied Mathematics Journal 216; 5(4): 97-12 http://www.sciencepublishinggroup.com/j/pamj doi: 1.11648/j.pamj.21654.12 ISSN: 2326-979 (Print); ISSN: 2326-9812 (Online) Reduction of Mortality Rate

More information

A DYNAMIC MODEL FOR HIV INFECTION

A DYNAMIC MODEL FOR HIV INFECTION Technical Report, Department of Mathematics, University of Ioannina, Vol.... No...., pp.... A DYNAMIC MODEL FOR HIV INFECTION LAZAROS MOYSIS 1, IOANNIS KAFETZIS 1, AND MARIOS POLITIS Abstract. A dynamical

More information

Micropathology Ltd. University of Warwick Science Park, Venture Centre, Sir William Lyons Road, Coventry CV4 7EZ

Micropathology Ltd. University of Warwick Science Park, Venture Centre, Sir William Lyons Road, Coventry CV4 7EZ www.micropathology.com info@micropathology.com Micropathology Ltd Tel 24hrs: +44 (0) 24-76 323222 Fax / Ans: +44 (0) 24-76 - 323333 University of Warwick Science Park, Venture Centre, Sir William Lyons

More information

Margaret A. Daugherty. Announcements! Fall Michaelis Menton Kinetics and Inhibition. Lecture 14: Enzymes & Kinetics III

Margaret A. Daugherty. Announcements! Fall Michaelis Menton Kinetics and Inhibition. Lecture 14: Enzymes & Kinetics III Lecture 14: Enzymes & Kinetics III Michaelis Menton Kinetics and Inhibition Margaret A. Daugherty Fall 2004 Announcements! Monday 10/11 lecture: starts at 10:15; Taught by Dr. Stephen Everse o ffice our/review

More information

ARV Mode of Action. Mode of Action. Mode of Action NRTI. Immunopaedia.org.za

ARV Mode of Action. Mode of Action. Mode of Action NRTI. Immunopaedia.org.za ARV Mode of Action Mode of Action Mode of Action - NRTI Mode of Action - NNRTI Mode of Action - Protease Inhibitors Mode of Action - Integrase inhibitor Mode of Action - Entry Inhibitors Mode of Action

More information

COINFECTIONS OF THE RESPIRATORY TRACT: VIRAL COMPETITION FOR RESOURCES

COINFECTIONS OF THE RESPIRATORY TRACT: VIRAL COMPETITION FOR RESOURCES COINFECTIONS OF THE RESPIRATORY TRACT: VIRAL COMPETITION FOR RESOURCES by LUBNA PINKY Bachelor of Science, 2010 Khulna University of Engineering and Technology Khulna, Bangladesh Submitted to the Graduate

More information

International Journal of Pharma and Bio Sciences V1(2)2010 A STUDY ON PRESCRIPTION PATTERN AND COST ANALYSIS OF ANTIRETROVIRAL DRUGS.

International Journal of Pharma and Bio Sciences V1(2)2010 A STUDY ON PRESCRIPTION PATTERN AND COST ANALYSIS OF ANTIRETROVIRAL DRUGS. SANKAR VEINTRAMUTHU 1 *, RUCKMANI KANDASAMY 2, VELAYUTHAM KANNIYAPPAN 1, NITHYANANTH MUNUSAMY 1 1 Department of Pharmaceutics, PSG College of Pharmacy, Coimbatore- 641004. 2 Department of Pharmaceutical

More information

Mathematical-Statistical Modeling to Inform the Design of HIV Treatment Strategies and Clinical Trials

Mathematical-Statistical Modeling to Inform the Design of HIV Treatment Strategies and Clinical Trials Mathematical-Statistical Modeling to Inform the Design of HIV Treatment Strategies and Clinical Trials 2007 FDA/Industry Statistics Workshop Marie Davidian Department of Statistics North Carolina State

More information

Find the slope of the line that goes through the given points. 1) (-9, -68) and (8, 51) 1)

Find the slope of the line that goes through the given points. 1) (-9, -68) and (8, 51) 1) Math 125 Semester Review Problems Name Find the slope of the line that goes through the given points. 1) (-9, -68) and (8, 51) 1) Solve the inequality. Graph the solution set, and state the solution set

More information

Antibacterials and Antivirals

Antibacterials and Antivirals Structure of a Bacterium: Antibacterials and Antivirals Capsule: protective layer made up of proteins, sugars and lipids Cell wall: provides the bacteria with its shape and structure Cell membrane: permeable

More information

Antiviral Chemotherapy

Antiviral Chemotherapy 12 Antiviral Chemotherapy Why antiviral drugs? Vaccines have provided considerable success in preventing viral diseases; However, they have modest or often no therapeutic effect for individuals who are

More information

A Simulation Model Including Vaccination and Seasonality for Influenza A-H1N1 Virus

A Simulation Model Including Vaccination and Seasonality for Influenza A-H1N1 Virus Applied Mathematical Sciences, Vol. 10, 2016, no. 26, 1269-1276 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2016.511694 A Simulation Model Including Vaccination and Seasonality for Influenza

More information

Ali Alabbadi. Bann. Bann. Dr. Belal

Ali Alabbadi. Bann. Bann. Dr. Belal 31 Ali Alabbadi Bann Bann Dr. Belal Topics to be discussed in this sheet: Particles-to-PFU Single-step and multi-step growth cycles Multiplicity of infection (MOI) Physical measurements of virus particles

More information

Pharmacokinetics Overview

Pharmacokinetics Overview Pharmacokinetics Overview Disclaimer: This handout and the associated lectures are intended as a very superficial overview of pharmacokinetics. Summary of Important Terms and Concepts - Absorption, peak

More information

Dr. Ahmed K. Ali. Outcomes of the virus infection for the host

Dr. Ahmed K. Ali. Outcomes of the virus infection for the host Lec. 9 Dr. Ahmed K. Ali Outcomes of the virus infection for the host In the previous few chapters we have looked at aspects of the virus replication cycle that culminate in the exit of infective progeny

More information

Study population The patient population comprised HIV-positive pregnant women whose HIV status was known.

Study population The patient population comprised HIV-positive pregnant women whose HIV status was known. Prevention of mother-to-child transmission of HIV-1 infection: alternative strategies and their cost-effectiveness Ratcliffe J, Ades A E, Gibb D, Sculpher M J, Briggs A H Record Status This is a critical

More information

COMPETITIVE INTERFERENCE BETWEEN INFLUENZA VIRAL STRAINS

COMPETITIVE INTERFERENCE BETWEEN INFLUENZA VIRAL STRAINS CANADIAN APPLIED MATHEMATICS QUARTERLY Volume 17, Number 2, Summer 2009 COMPETITIVE INTERFERENCE BETWEEN INFLUENZA VIRAL STRAINS SEYED M. MOGHADAS, CHRISTOPHER S. BOWMAN AND JULIEN ARINO ABSTRACT. We propose

More information

Parasitism. Key concepts. Tasmanian devil facial tumor disease. Immunizing and non-immunizing pathogens. SI, SIS, and SIR epidemics

Parasitism. Key concepts. Tasmanian devil facial tumor disease. Immunizing and non-immunizing pathogens. SI, SIS, and SIR epidemics Parasitism Key concepts Immunizing and non-immunizing pathogens SI, SIS, and SIR epidemics Basic reproduction number, R 0 Tasmanian devil facial tumor disease The Tasmanian devil Sarcophilus harrisii is

More information

Population Viral Kinetic Modeling: SVR Prediction in HCV GT-3 Cirrhotic Patients With 24 Weeks of Daclatasvir + Sofosbuvir Administration

Population Viral Kinetic Modeling: SVR Prediction in HCV GT-3 Cirrhotic Patients With 24 Weeks of Daclatasvir + Sofosbuvir Administration Population Viral Kinetic Modeling: SVR Prediction in HCV GT-3 Cirrhotic Patients With 24 Weeks of Daclatasvir + Sofosbuvir Administration Emi Tafoya, Yasong Lu, Melody Luo, Premkumar Narasimhan, Neelima

More information

FOR TEACHERS ONLY. The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY

FOR TEACHERS ONLY. The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY FOR TEACHERS ONLY The University of the State of New Yk REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m., only SCORING KEY AND RATING GUIDE Mechanics of Rating

More information

Sensitivity analysis for parameters important. for smallpox transmission

Sensitivity analysis for parameters important. for smallpox transmission Sensitivity analysis for parameters important for smallpox transmission Group Members: Michael A. Jardini, Xiaosi Ma and Marvin O Ketch Abstract In order to determine the relative importance of model parameters

More information

The Mathematics of Flu, Explained

The Mathematics of Flu, Explained The Mathematics of Flu, Explained Richard C. Larson rclarson@mit.edu Massachusetts Institute of Technology Cambridge, Massachusetts 02139 USA September 5, 2009 Thank you for doing this exercise in your

More information

Mathematical modeling of viral infection dynamics in spherical organs

Mathematical modeling of viral infection dynamics in spherical organs J. Math. Biol. (2013) 67:1425 1455 DOI 10.1007/s00285-012-0593-y Mathematical Biology Mathematical modeling of viral infection dynamics in spherical organs Ricardo Dunia Roger Bonnecaze Received: 16 November

More information

A Delay-Differential Equation Model of

A Delay-Differential Equation Model of International Mathematical Forum, Vol. 7, 2012, no. 30, 1475-1481 A Delay-Differential Equation Model of HIV Infection of CD4 + T-Cells with Cure Rate 1 Mei Yan 2 and Zhongyi Xiang 1,2 1 Key Laboratory

More information

8/13/2009. Diseases. Disease. Pathogens. Domain Bacteria Characteristics. Bacteria Shapes. Domain Bacteria Characteristics

8/13/2009. Diseases. Disease. Pathogens. Domain Bacteria Characteristics. Bacteria Shapes. Domain Bacteria Characteristics Disease Diseases I. Bacteria II. Viruses including Biol 105 Lecture 17 Chapter 13a are disease-causing organisms Domain Bacteria Characteristics 1. Domain Bacteria are prokaryotic 2. Lack a membrane-bound

More information

Originally published as:

Originally published as: Originally published as: Ratsch, B.A., Bock, C.-T. Viral evolution in chronic hepatitis B: A branched way to HBeAg seroconversion and disease progression? (2013) Gut, 62 (9), pp. 1242-1243. DOI: 10.1136/gutjnl-2012-303681

More information

Mathematical Model of Hepatitis B in. the Bosomtwe District of Ashanti Region, Ghana

Mathematical Model of Hepatitis B in. the Bosomtwe District of Ashanti Region, Ghana Applied Mathematical Sciences, Vol. 8, 2014, no. 67, 3343-3358 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.44263 Mathematical Model of Hepatitis B in the Bosomtwe District of Ashanti

More information

Ch. 19 Viruses & Bacteria: What Is a Virus?

Ch. 19 Viruses & Bacteria: What Is a Virus? Ch. 19 Viruses & Bacteria: What Is a Virus? A virus is an invective agent consisting of a nucleic acid in a protein coat, able to multiply only within the living cells of a host. A bacteriophage ( bacteria

More information

Introduction to the Impact of Resistance in Hepatitis C

Introduction to the Impact of Resistance in Hepatitis C Introduction to the Impact of Resistance in Hepatitis C Sponsored by AbbVie 2/1/2017 Presented by Sammy Saab, MD, MPH, FACG, AGAF, FAASLD February 1 st, 2017 1 AbbVie disclosures This is an Abbvie sponsored

More information

Understand the physiological determinants of extent and rate of absorption

Understand the physiological determinants of extent and rate of absorption Absorption and Half-Life Nick Holford Dept Pharmacology & Clinical Pharmacology University of Auckland, New Zealand Objectives Understand the physiological determinants of extent and rate of absorption

More information

Stochastic and Numerical Modeling of HIV/AIDS. Spread in a Complex System and Its Application to. the HIV Cases in Indonesia

Stochastic and Numerical Modeling of HIV/AIDS. Spread in a Complex System and Its Application to. the HIV Cases in Indonesia Applied Mathematical Sciences, Vol. 9, 2015, no. 122, 6095-6106 HIKAI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2015.59564 Stochastic and Numerical Modeling of HIV/AIDS Spread in a Complex System

More information

APPLICATION OF FUZZY DIFFERENTIAL EQUATION IN HIV INFECTION

APPLICATION OF FUZZY DIFFERENTIAL EQUATION IN HIV INFECTION RESEARCH ARTICE APPICATION OF FZZY DIFFERENTIA EQATION IN HIV INFECTION Dr. EMAN A. HSSIAN 1, MAZIN H. SHHIEM 2 1 Department of Mathematics, College of Sciences, A-Mustansiriyah niversity, Baghdad, Iraq

More information

Search for the Mechanism of Genetic Variation in the pro Gene of Human Immunodeficiency Virus

Search for the Mechanism of Genetic Variation in the pro Gene of Human Immunodeficiency Virus JOURNAL OF VIROLOGY, Oct. 1999, p. 8167 8178 Vol. 73, No. 10 0022-538X/99/$04.00 0 Copyright 1999, American Society for Microbiology. All Rights Reserved. Search for the Mechanism of Genetic Variation

More information

Investigations in Number, Data, and Space, Grade 4, 2nd Edition 2008 Correlated to: Washington Mathematics Standards for Grade 4

Investigations in Number, Data, and Space, Grade 4, 2nd Edition 2008 Correlated to: Washington Mathematics Standards for Grade 4 Grade 4 Investigations in Number, Data, and Space, Grade 4, 2nd Edition 2008 4.1. Core Content: Multi-digit multiplication (Numbers, Operations, Algebra) 4.1.A Quickly recall multiplication facts through

More information