Mesenchymal Stem Cell Therapy for Orthopedic Indications. Original Policy Date

Size: px
Start display at page:

Download "Mesenchymal Stem Cell Therapy for Orthopedic Indications. Original Policy Date"

Transcription

1 MP Mesenchymal Stem Cell Therapy for Orthopedic Indications Medical Policy Section Medicine Issue 12:2013 Original Policy Date 12:2013 Last Review Status/Date Local policy created/12:2013 Return to Medical Policy Index Disclaimer Our medical policies are designed for informational purposes only and are not an authorization, or an explanation of benefits, or a contract. Receipt of benefits is subject to satisfaction of all terms and conditions of the coverage. Medical technology is constantly changing, and we reserve the right to review and update our policies periodically. Description Mesenchymal stem cells or MSCs are multipotent stem cells that can differentiate into a variety of cell types. Mesenchymal stem cells have been classically obtained from the bone marrow, and have been shown to differentiate into various cell types, including osteoblasts, chondrocytes, myocytes, adipocytes, and neuronal cells. MSCs are being investigated as a regenerative biologic agent because of the ability to differentiate into multiple tissue types and to self-renew (Bonab, 2006). The MSC population in bone marrow is estimated at 1 in 3.1 x10 4 mononuclear cells, and is even lower in cord blood or peripheral blood (Bonab, 2006). Although other sources for MSCs have been identified, the bone marrow is currently the primary source of procurement. Mesenchymal stem cell therapy has been proposed as a treatment option for orthopedic indications that include torn cartilage, osteoarthritis, and bone grafting. The proposed benefits of mesenchymal stem cell therapy are improved healing and possible avoidance of surgical procedures with protracted recovery times. Optimal materials or grafts that promote bone growth and healing require the following properties (Shen, 2005): Osteogenic: contains osteoprogenitor cells that can lay down a new bone matrix Osteoinductive: provides signals required to induce differentiation of MSCs into mature osteoblasts Osteoconductive: passive scaffolding to promote vascular invasion and bone apposition on the surface for new bone formulation The available data has not yet established that mesenchymal stem cells, when infused or transplanted into an area, can 1) truly regenerate by incorporating themselves into the native tissue, surviving, and differentiating or 2) promote the preservation of injured tissue and tissue remodeling.

2 Currently, the risks of mesenchymal stem cell therapy for the treatment of orthopedic indications are unknown. Insufficient data has been reported to allow a proper understanding of how this technology may affect individuals either in the short or long term. However, there are known risks related to the various methods utilized to harvest mesenchymal stem cells from the bone marrow, including pain and hemorrhage. Policy Mesenchymal stem cell therapy is considered investigational and not medically necessary for treatment of orthopedic indications. Rationale Tendon, ligament, cartilage and bone defects have typically been surgically repaired and may be augmented by utilizing autologous grafts, cadaveric allografts or synthetic grafts. However, there have been limitations to the graft sources such as comorbid conditions, and limited autologous grafts as well as graft failures. Therefore, alternative regenerative technologies continue to be investigated. Various agents and techniques to procure and expand mesenchymal stem cells to achieve sufficient numbers for infusion or implantation are being studied and utilized in proprietary processes for diverse orthopedic indications. The processing of cadaveric allogeneic donor MSCs typically involves proprietary techniques and combination of MSCs with various transport medium. However, there is a paucity of randomized controlled trials in humans to support the safety and efficacy of using mesenchymal stem cell therapy for orthopedic indications, including cartilage and ligament repair and bone regeneration. At this time, the medical evidence supporting the use of mesenchymal stem cells for orthopedic indications is limited to a series of animal studies and small case series without long-term follow-up results. This novel approach has not demonstrated in randomized controlled trials an improved and durable health outcome benefit over standard therapies. In a pilot study of seven individuals with skeletal defects of the femur and tibia, Kitoh (2004) used mesenchymal stem cells in a gel suspension during ten distraction osteogenesis procedures to lengthen limbs. The goal was to reduce the treatment period and complications, which included pin loosening, pin track infections, delayed consolidation, joint contractures and fractures. Only three individuals were assessable after pin removal. The authors compared results from two of the three mesenchymal transplant individuals, to eight historic cases treated at the same institution, with an average healing index of 22.0 days/centimeter (cm) and 37.8 days/cm, respectively. The investigators noted the healing index is "based on various parameters such as the patient's age, amount of length gained, and the location of the osteotomy." Additional study is required to determine the optimal amount and type of mesenchymal stem cells for transplantation, and to evaluate long-term outcomes. Wakitani and colleagues (2004) conducted a pilot study using autologous bone marrow mesenchymal cell therapy to repair nine full-thickness cartilage defects in the patello-femoral joints of three individuals. The assessment of clinical symptoms were rated with the International Knee Documentation Committee Subjective Knee Evaluation Form (IKDC score), with zero being the worst and one hundred being the best rating. IKDC scores improved for all

3 three individuals during the follow-up period ranging from 7 to 20 months after receiving mesenchymal therapy. In all three cases, the investigators were unable to confirm the material covering the defects was in fact hyaline cartilage resulting from mesenchymal cell therapy. Currently, there are ongoing clinical trials to investigate the effects of mesenchymal stem cell therapy in open tibial fractures, lumbar fusion, osteoarthritis, cartilage defects and meniscectomy (U.S. National Institutes of Health). The American Academy of Orthopaedic Surgeons (2007) provides information on stem cells: Bone marrow stromal cells are mesenchymal stem cells that, in the proper environment, can differentiate into cells that are part of the musculoskeletal system. They can help to form trabecular bone, tendon, articular cartilage, ligaments and part of the bone marrow. At this point, stem cell procedures in orthopaedics are still at an experimental stage. Most procedures are performed at research centers as part of controlled clinical trials. In a systematic review by Longo and colleagues (2011), the use of MSC therapy for repair of tendon injuries "are at an early stage of development. Although these emerging technologies may develop into substantial clinical treatment options, their full impact needs to be critically evaluated in a scientific fashion." Although results of small case series suggest that MSC therapy may improve regeneration of bone or tissue in orthopedic indications, the lack of adequate controls, randomization and blinding and the small sample sizes preclude definitive conclusions regarding the net health benefit of MSC therapy. Helm and colleagues (2001) stated that although autologous bone remains the gold standard for stimulating bone repair and regeneration, the advent in molecular biology as well as bioengineering techniques has produced materials that exhibit potent osteogenic activities. Recombinant human osteogenic growth factors (e.g., BMP) are now produced in highly concentrated and pure forms and have been shown to be extremely potent bone-inducing agents when delivered in vivo in rats, dogs, primates, and humans. They noted that the delivery of MSCs, derived from adult bone marrow, to regions requiring bone formation is also compelling, and it has been shown to be successful in inducing osteogenesis in many preclinical animal studies. Finally, the identification of biological and non-biological scaffolding materials is a crucial component of future bone graft substitutes, not only as a delivery vehicle for bone growth factors and MSCs, but also as an osteo-conductive matrix to stimulate bone deposition directly. Recently, MSCs has been studied for its use in orthopedic application (e.g., healing long bone defects, intervertebral disc repair and regeneration as well as spinal arthrodesis procedures). Acosta et al (2005) noted that although important obstacles to the survival and proliferation of MSCs within the degenerating intervertebral disc need to be overcome, the potential for this therapy to slow or reverse the degenerative process remains substantial. Leung et al (2006) stated that in the past several years, significant progress has been made in the field of stem cell regeneration of the intervertebral disc. Autogenic MSCs in animal models can arrest intervertebral disc degeneration or even partially regenerate it, and the effect is suggested to be dependent on the severity of degeneration. Mesenchymal stem cells are able to escape alloantigen recognition which is an advantage for allogenic transplantation. A number of injectable scaffolds have been described and various methods to pre-modulate MSCs' activity

4 have been tested. They noted that more work is needed to address the use of MSCs in large animal models as well as the fate of the implanted MSCs, especially the long-term outcomes. Mclain et al (2005) noted that successful arthrodesis in challenging clinical scenarios is facilitated when the site is augmented with autograft bone. The iliac crest has long been the preferred source of autograft material, but graft harvest is associated with frequent complications and pain. Connective tissue progenitor cells aspirated from the iliac crest and concentrated with allograft matrix and demineralized bone matrix provide a promising alternative to traditional autograft harvest. The vertebral body, an even larger reservoir of myeloproliferative cells, should provide progenitor cell concentrations similar to those of the iliac crest. In this study, a total of 21 adults (11 men and 10 women with a mean age of 59 +/- 14 years) undergoing posterior lumbar arthrodesis and pedicle screw instrumentation underwent transpedicular aspiration of connective tissue progenitor cells. Aspirates were obtained from two depths within the vertebral body and were quantified relative to matched, bilateral aspirates from the iliac crest that were obtained from the same patient at the same time. Histochemical analysis was used to determine the prevalence of vertebral progenitor cells relative to the depth of aspiration, the vertebral level, age, and gender, as compared with the iliac crest standard. The cell count, progenitor cell concentration (cells/cc marrow), and progenitor cell prevalence (cells/million cells) were calculated. Aspirates of vertebral marrow demonstrated comparable or greater concentrations of progenitor cells compared with matched controls from the iliac crest. Progenitor cell concentrations were consistently higher than matched controls from the iliac crest (p = 0.05). The concentration of osteogenic progenitor cells was, on the average, 71 % higher in the vertebral aspirates than in the paired iliac crest samples (p = 0.05). With the numbers available, there were no significant differences relative to vertebral body level, the side aspirated, the depth of aspiration, or gender. An age-related decline in cellularity was suggested for the iliac crest aspirates. The authors concluded that the vertebral body is a suitable site for aspiration of bone marrow for graft augmentation during spinal arthrodesis. They also stated that future clinical studies will attempt to confirm the ability to obtain fusion using only this source of connective tissue progenitor cells. Anderson and colleagues (2005) reviewed the rationale and discussed the results of cellular strategies that have been proposed or investigated for disc degeneration. These investigators noted that although substantial work remains, the future of cellular therapies for symptomatic disc degeneration appears promising. They concluded that continued research is warranted to further define the optimal cell type, scaffolds, and adjuvants that will allow successful disc repair in human patients. Risbud and colleagues (2006) evaluated the osteogenic potential of MSCs isolated from the bone marrow of the human vertebral body (VB). Marrow samples from VB of patients undergoing lumbar spinal surgery were collected; marrow was also harvested from the iliac crest (IC). Progenitor cells were isolated and the number of colony forming unit-fibroblastic (CFU-F) determined. The osteogenic potential of the cells was characterized using biochemical and molecular biology techniques. Both the VB and IC marrow generated small, medium, and large sized CFU-F. Higher numbers of CFU-F were obtained from the VB marrow than the IC (p < 0.05). Progenitor cells from both anatomic sites expressed comparable levels of CD166, CD105, CD49a, and CD63. Moreover, progenitor cells from the VB exhibited an increased level of alkaline phosphatase activity. MSCs of the VB and the IC displayed similar levels of expression of Runx-2, collagen Type I, CD44, ALCAM, and ostecalcin. The level of expression of bone sialoprotein was higher in MSC from the IC than the VB. VB and IC cells mineralized their extracellular matrix to a similar extent. The authors concluded that their findings show that

5 CFU-F frequency is higher in the marrow of the VB than the IC. Progenitor cells isolated from both sites respond in a similar manner to an osteogenic stimulus and express common immunophenotypes. Based on these findings, these researchers proposed that progenitor cells from the lumbar vertebral marrow would be suitable candidate for osseous graft supplementation in spinal fusion procedures. They stated that studies must now be conducted using animal models to ascertain if cells of the VB are as effective as those of the IC for the fusion applications. Minamide et al (2007) examined the ability of BMP and basic fibroblast growth factor (FGF) to enhance the effectiveness of bone marrow-derived MSCs in lumbar arthrodesis. They found that MSCs cultured with BMP-2 and basic FGF act as a substitute for autograft in lumbar arthrodesis. This technique may yield a more consistent quality of fusion bone as compared to that with autograft. They stated that these results are encouraging and warrant further studies with the suitable dose of BMP-2 and basic FGF, and may provide a rational basis for their clinical application. Further investigation is needed to study the value of MSC therapy in orthopedic applications before it can be used in the clinical setting. References: 1. Bonab MM, Alimoghaddam K, Talebian F, et al. Aging of mesenchymal stem cell in vitro. BMC Cell Biol. 2006; 7: Kitoh H, Kitakoji T, Tsuchiya H, et al. Transplantation of marrow-derived mesenchymal stem cells and platelet-rich plasma during distraction osteogenesis-a preliminary result of three cases. Bone. 2004; 35(4): Longo UG, Lamberti A, Maffulli N, Denaro V. Tissue engineered biological augmentation for tendon healing: a systematic review. Br Med Bull. 2011; Noth U, Steinert AF, Tuan RS. Technology Insight: Adult mesenchymal stem cells for osteoarthritis therapy. Nat Clin Pract Rheumatol. 2008; 4(7): Rai B, Lin JL, Lim ZX, et al. Differences between in vitro viability and differentiation and in vivo bone-forming efficacy of human mesenchymal stem cells cultured on PCL-TCP scaffolds. Biomaterials. 2010; 31(31): Shen FH, Samartzis D, An HS. Cell technologies for spinal fusion. Spine J. 2005; 5(6 Suppl):231S-239S. 7. Wakitani S, Mitsuoka T, Nakamura N, et al. Autologous bone marrow and stromal cell transplantation for repair of full-thickness articular cartilage defects in human patellae: two case reports. Cell Transplant. 2004; 13(5): Helm GA, Dayoub H, Jane JA Jr. Bone graft substitutes for the promotion of spinal arthrodesis. Neurosurg Focus. 2001;10(4):E4. 9. Acosta FL Jr, Lotz J, Ames CP. The potential role of mesenchymal stem cell therapy for intervertebral disc degeneration: A critical overview. Neurosurg Focus. 2005;19(3):E4 10. Helm GA, Gazit Z. Future uses of mesenchymal stem cells in spine surgery. Neurosurg Focus. 2005;19(6):E13.

6 11. Leung VY, Chan D, Cheung KM. Regeneration of intervertebral disc by mesenchymal stem cells: Potentials, limitations, and future direction. Eur Spine J. 2006;15 Suppl 3:S406-S Minamide A, Yosida M, Kawakami M, et al. The effects of bone morphogenic protein and basic fibroblast growth factor on cultured mesenchymal stem cells for spinal fusion. Spine. 2007;32(10): McLain RF, Fleming JE, Boehm CA, Muschler GF. Aspiration of osteoprogenitor cells for augmenting spinal fusion: Comparison of progenitor cell concentrations from the vertebral body and iliac crest. Bone Joint Surg Am. 2005;87(12): Anderson DG, Albert TJ, Fraser JK, et al. Cellular therapy for disc degeneration. Spine. 2005;30(17 Suppl):S14-S Risbud MV, Shapiro IM, Guttapalli A, et al. Osteogenic potential of adult human stem cells of the lumbar vertebral body and the iliac crest. Spine. 2006;31(1): Codes Number Description CPT ICD-10 Diagnosis (effective 10/1/13) M15.0-M19.93 M21.00-M M21.10-M M21.70-M M21.80-M M21.90-M M M23.92 M24.10-M M24.20-M24.28 M24.60-M Unlisted procedure, musculoskeletal system, general [specified as MSC implant] Blood-derived hematopoietic progenitor cell harvesting for transplantation, per collection; autologous Bone marrow harvesting for transplantation; allogeneic Bone marrow harvesting for transplantation; autologous Osteoarthritis Valgus deformity, not elsewhere classified Varus deformity, not elsewhere classified Unequal limb length (acquired) Other specified acquired deformities of limbs Unspecified acquired deformity of limb and hand Internal derangement of knee Other articular cartilage disorders Disorder of ligament Ankylosis of joint

7 M24.7 Protrusio acetabuli M24.80-M Other specific joint derangements, not elsewhere classified M24.9 Joint derangement, unspecified M25.50-M M75.00-M75.92 M87.00-M87.9 S43.401A-S43.499S Pain in joint Shoulder lesions Osteonecrosis Sprain of shoulder joint ICD-9 Diagnosis Osteoarthritis and allied disorders Pain in joint, stiffness of joint Disorders of bursae and tendons in shoulder region (rotator cuff syndrome) Partial tear of rotator cuff Aseptic necrosis of bone Nonunion of fracture Sprains and strains of shoulder, rotator cuff HCPCS No Code Type of Service Medical/Diagnostic Place of Service Outpatient/ Office

Most cells in the human body have an assigned purpose. They are liver cells, fat cells, bone cells,

Most cells in the human body have an assigned purpose. They are liver cells, fat cells, bone cells, What is a Stem Cell? Most cells in the human body have an assigned purpose. They are liver cells, fat cells, bone cells, and so on. These cells can replicate more of their own kind of cell, but they cannot

More information

Original Policy Date

Original Policy Date MP 8.01.30 Orthopedic Applications of Stem Cell Therapy Medical Policy Section Therapy Issue 12/2013 Original Policy Date 12/2013 Last Review Status/Date Reviewed with literature search/12/2013 Return

More information

ORTHOPEDICS BONE Recalcitrant nonunions In total hip replacement total knee surgery increased callus volume

ORTHOPEDICS BONE Recalcitrant nonunions In total hip replacement total knee surgery increased callus volume ORTHOPEDICS Orthopedics has to do with a variety of tissue: bone, cartilage, tendon, ligament, muscle. In this regard orthopedic and sports medicine share the same tissue targets. Orthopedics is mostly

More information

CONFORM FlEX. Demineralized cancellous bone

CONFORM FlEX. Demineralized cancellous bone CONFORM FlEX Demineralized cancellous bone TABlE OF CONTENTS introduction 2 FEATURES AND BENEFiTS 4 PROCESSiNg AND PACKAgiNg information 5 MUSCUlOSKElETAl TRANSPlANT FOUNDATiON (MTF) 6 ORDERiNg information

More information

Orthopedic & Sports Medicine, Bay Care Clinic, 501 N. 10th Street, Manitowoc, WI Procedure. Subtalar arthrodesis

Orthopedic & Sports Medicine, Bay Care Clinic, 501 N. 10th Street, Manitowoc, WI Procedure. Subtalar arthrodesis OSTEOAMP Allogeneic Morphogenetic Proteins Subtalar Nonunions OSTEOAMP Case Report SUBTALAR NONUNIONS Dr. Jason George DeVries and Dr. Brandon M. Scharer Orthopedic & Sports Medicine, Bay Care Clinic,

More information

AOFAS Resident Review Course September 28, Sheldon S. Lin, MD Associate Professor North Jersey Orthopaedic Institute University Hospital

AOFAS Resident Review Course September 28, Sheldon S. Lin, MD Associate Professor North Jersey Orthopaedic Institute University Hospital Course September 28, 2013 Sheldon S. Lin, MD Associate Professor North Jersey Orthopaedic Institute University Hospital Disclosures Research support from Biomimetic of Wright, Tissuegene Lab of UMDNJ has

More information

CONFORM SHEET. Demineralized cancellous bone

CONFORM SHEET. Demineralized cancellous bone CONFORM SHEET Demineralized cancellous bone TABLE OF CONTENTS INTRODUCTION 2 FEATURES AND BENEFITS 4 HYDRATION INFORMATION 5 PROCESSING AND PACKAGING INFORMATION 6 MUSCULOSKELETAL TRANSPLANT FOUNDATION

More information

Ankle and subtalar arthrodesis

Ankle and subtalar arthrodesis OSTEOAMP Allogeneic Morphogenetic Proteins Ankle Nonunions OSTEOAMP Case Report ANKLE NONUNIONS Dr. Jason George DeVries Orthopedic & Sports Medicine, Bay Care Clinic, 501 N. 10th Street, Manitowoc, WI

More information

AN INTRODUCTION TO REGENERATIVE MEDICINE

AN INTRODUCTION TO REGENERATIVE MEDICINE AN INTRODUCTION TO REGENERATIVE MEDICINE You ve undoubtedly come across some discussion of stem cells, likely with regard to stem cell research. But stem cells have a wide variety of uses in the medical

More information

New Directions in Osteoarthritis Research

New Directions in Osteoarthritis Research New Directions in Osteoarthritis Research Kananaskis October 22, 2015 Nick Mohtadi MD MSc FRCSC No conflicts of interest related to this presentation 1 Osteoarthritis: Disease? Fact of Life? Strong family

More information

Stem Cells and Sport Medicine

Stem Cells and Sport Medicine Stem Cells and Sport Medicine Rehal Abbas Bhojani, MD CAQSM Memorial Hermann Medical Group 2014 Sports Medicine Symposium of the Americas Stem cell biology Overview Potential applications of stem cells

More information

The Effect of Bone Marrow Aspirate Concentrate (BMAC) and Platelet-Rich Plasma (PRP) during Distraction Osteogenesis of the Tibia

The Effect of Bone Marrow Aspirate Concentrate (BMAC) and Platelet-Rich Plasma (PRP) during Distraction Osteogenesis of the Tibia The Effect of Bone Marrow Aspirate Concentrate (BMAC) and Platelet-Rich Plasma (PRP) during Distraction Osteogenesis of the Tibia Dong Hoon Lee, MD, Ph.D, Keun Jung Ryu MD Limb Lengthening and Deformity

More information

Anabolic Therapy With Teriparatide Indications Beyond Osteoporosis

Anabolic Therapy With Teriparatide Indications Beyond Osteoporosis Anabolic Therapy With Teriparatide Indications Beyond Osteoporosis Andreas Panagopoulos MD, PhD Upper Limb & Sports Medicine Orthopaedic Surgeon Assistant Professor, University of Patras Outline Teriparatide

More information

ORTHOPEDIC SPECIALISTS STEM CELLS FOR THE TREATMENT OF PAIN DISCOVERING A NEW PATH TO WELLNESS

ORTHOPEDIC SPECIALISTS STEM CELLS FOR THE TREATMENT OF PAIN DISCOVERING A NEW PATH TO WELLNESS ORTHOPEDIC SPECIALISTS STEM CELLS FOR THE TREATMENT OF PAIN DISCOVERING A NEW PATH TO WELLNESS A LETTER TO OUR PATIENTS Dear Patient, As your healthcare provider, it is our medical obligation to provide

More information

Osteocel. An introduction to

Osteocel. An introduction to An introduction to Osteocel This booklet provides general information on Osteocel cellular allografts as a bone graft substitute in your spinal fusion surgery. It is not meant to replace any personal conversations

More information

Inion BioRestore. Bone Graft Substitute. Product Overview

Inion BioRestore. Bone Graft Substitute. Product Overview Inion BioRestore Bone Graft Substitute Product Overview Inion BioRestore Introduction Inion BioRestore is a synthetic bone graft substitute, which remodels into bone and is easy to use. Inion BioRestore

More information

Clinical UM Guideline

Clinical UM Guideline Clinical UM Guideline Subject: Biological Materials to Aid in Soft and Hard Tissue Grafting Guideline #: 03-401 Current Effective Date: 03/24/2017 Status: New Last Review Date: 02/08/2017 Description This

More information

Policy #: 430 Latest Review Date: April 2014

Policy #: 430 Latest Review Date: April 2014 Name of Policy: Orthopedic Applications of Stem Cell Therapy Policy #: 430 Latest Review Date: April 2014 Category: Surgical Policy Grade: B Background/Definitions: As a general rule, benefits are payable

More information

Biological Rationale for the Intramedullary Canal as a Source of Autograft Material

Biological Rationale for the Intramedullary Canal as a Source of Autograft Material Biological Rationale for the Intramedullary Canal as a Source of Autograft Material David J. Hak, MD, MBA a, *, Jason L. Pittman, MD, PhD b KEYWORDS Autogenous bone graft Intramedullary bone graft harvest

More information

STEM CELLS. Dr Mohammad Ashfaq Konchwalla Consultant Orthopaedic Sports Surgeon

STEM CELLS. Dr Mohammad Ashfaq Konchwalla Consultant Orthopaedic Sports Surgeon STEM CELLS Dr Mohammad Ashfaq Konchwalla Consultant Orthopaedic Sports Surgeon www.dubaisportssurgery.com PRACTICE SAUDI GERMAN HOSPITAL, DUBAI MEDCARE HOSPITAL, DUBAI Totipotent cells are cells that can

More information

Središnja medicinska knjižnica.

Središnja medicinska knjižnica. Središnja medicinska knjižnica Pećina, M., Vukičević, S. (2007) Biological aspects of bone, cartilage and tendon regeneration. International Orthopaedics, 31 (6). pp. 719-720. The original publication

More information

Calcium Phosphate Cement

Calcium Phosphate Cement Calcium Phosphate Cement Fast-Setting Bone Graft and AutoGraft Extender. * Ossilix is a high performance next generation calcium phosphate cement indicated for filling bony defects in cancellous bone.

More information

The Use of Bone Marrow Aspirate in Bone Grafting. A Value Proposition

The Use of Bone Marrow Aspirate in Bone Grafting. A Value Proposition The Use of Bone Marrow Aspirate in Bone Grafting A Value Proposition Mesenchymal Cells Osteoblasts Tenocytes Chondrocytes Fibroblasts Myocytes Bone Tendon/Ligament Cartilage Muscle Connective Tissues Figure

More information

Developments in bone grafting in veterinary orthopaedics part one

Developments in bone grafting in veterinary orthopaedics part one Vet Times The website for the veterinary profession https://www.vettimes.co.uk Developments in bone grafting in veterinary orthopaedics part one Author : John Innes, Peter Myint Categories : Vets Date

More information

Sinus Augmentation Studies Methods and Definition

Sinus Augmentation Studies Methods and Definition FDA approved indications for Infuse Bone Graft in the Maxillofacial Skeleton Alveolar Ridge Augmentation (Buccal Wall Defects) in the Maxilla Maxillary Sinus Floor augmentation Sinus Augmentation Studies

More information

Orthopedic Applications of Stem Cell Therapy (Including Allografts and Bone Substitutes Used With Autologous Bone Marrow)

Orthopedic Applications of Stem Cell Therapy (Including Allografts and Bone Substitutes Used With Autologous Bone Marrow) Orthopedic Applications of Stem Cell Therapy (Including Allografts and Bone Substitutes Used With Autologous Bone Marrow) Policy Number: 8.01.52 Last Review: 9/1/18 Origination: 9/2018 Next Review: 9/1/19

More information

Choice of spacer material for HTO! P. Landreau, MD Chief of Surgery Aspetar, Orthopaedic and Sports Medicine Hospital Doha, Qatar

Choice of spacer material for HTO! P. Landreau, MD Chief of Surgery Aspetar, Orthopaedic and Sports Medicine Hospital Doha, Qatar Choice of spacer material for HTO! P. Landreau, MD Chief of Surgery Aspetar, Orthopaedic and Sports Medicine Hospital Doha, Qatar High Tibial Osteotomy: HTO! Valgisation HTO Intended to transfer the mechanical

More information

Iliac Crest: The Gold Standard

Iliac Crest: The Gold Standard Iliac Crest: The Gold Standard Iliac crest is often considered the gold standard for harvesting. The iliac crest contains bone marrow which is a rich source of regenerative cells, including: Endothelial

More information

Biologics in ACL: What s the Data?

Biologics in ACL: What s the Data? Biologics in ACL: What s the Data? Jo A. Hannafin, M.D., Ph.D. Professor of Orthopaedic Surgery, Weill Cornell Medical College Attending Orthopaedic Surgeon and Senior Scientist Sports Medicine and Shoulder

More information

Medical Practice for Sports Injuries and Disorders of the Knee

Medical Practice for Sports Injuries and Disorders of the Knee Sports-Related Injuries and Disorders Medical Practice for Sports Injuries and Disorders of the Knee JMAJ 48(1): 20 24, 2005 Hirotsugu MURATSU*, Masahiro KUROSAKA**, Tetsuji YAMAMOTO***, and Shinichi YOSHIDA****

More information

Turchányi Béla Head of Department of Traumatology and Hand Surgery

Turchányi Béla Head of Department of Traumatology and Hand Surgery Kenézy Gyula Hospital Department Turchányi Béla Head of Department of Traumatology and Hand Surgery Debrecen Trauma and Hand Department Ligament, bone and joint replacement. Metals and plastics in the

More information

TREATMENT OF CARTILAGE LESIONS

TREATMENT OF CARTILAGE LESIONS TREATMENT OF CARTILAGE LESIONS Angelo J. Colosimo, MD -Head Orthopaedic Surgeon University of Cincinnati Athletics -Director of Sports Medicine University of Cincinnati Medical Center -Associate Professor

More information

PRP and Stem cells Injection : Its applications in discopathy

PRP and Stem cells Injection : Its applications in discopathy PRP and Stem cells Injection : Its applications in discopathy Congrès conjoint AQMSE-ACMSE meeting 2017 Dr André Roy Chef service de physiatrie du CHUM Clinique de physiatrie et de médecine du sport de

More information

OSTEOCHONDRAL ALLOGRAFT RECONSTRUCTION FOR MASSIVE BONE DEFECT

OSTEOCHONDRAL ALLOGRAFT RECONSTRUCTION FOR MASSIVE BONE DEFECT OSTEOCHONDRAL ALLOGRAFT RECONSTRUCTION FOR MASSIVE BONE DEFECT Angelo J. Colosimo, MD -Head Orthopaedic Surgeon University of Cincinnati Athletics -Director of Sports Medicine University of Cincinnati

More information

Promoting Fracture Healing Through Systemic or Local Administration of Allogeneic Mesenchymal Stem Cells

Promoting Fracture Healing Through Systemic or Local Administration of Allogeneic Mesenchymal Stem Cells Promoting Fracture Healing Through Systemic or Local Administration of Allogeneic Mesenchymal Stem Cells Gang Li Dept. of Orthopaedics and Traumatology School of Biomedical Sciences, The Chinese University

More information

CLINICAL EXPERIENCES OF SINGLE AND MULTI-LEVEL LUMBAR SPINE FUSIONS USING A DBM/CALCIUM SULFATE/BMA COMPOSITE GRAFT TO EXTEND LOCAL BONE

CLINICAL EXPERIENCES OF SINGLE AND MULTI-LEVEL LUMBAR SPINE FUSIONS USING A DBM/CALCIUM SULFATE/BMA COMPOSITE GRAFT TO EXTEND LOCAL BONE CLINICAL EXPERIENCES OF SINGLE AND MULTI-LEVEL LUMBAR SPINE FUSIONS USING A DBM/CALCIUM SULFATE/BMA COMPOSITE GRAFT TO EXTEND LOCAL BONE Bruce M. Frankel, MD and Susan G. Capps, PhD CLINICAL EXPERIENCES

More information

Jessica Jameson MD Post Falls, ID

Jessica Jameson MD Post Falls, ID Jessica Jameson MD Post Falls, ID Discuss the history of interventiona l pain Discuss previous tools to manage chronic pain Discuss current novel therapies to manage chronic pain and indications HISTORY

More information

An Owner's Guide to Natural Healing. Autologous Conditioned Plasma (ACP)

An Owner's Guide to Natural Healing. Autologous Conditioned Plasma (ACP) An Owner's Guide to Natural Healing Autologous Conditioned Plasma (ACP) Healing after an injury involves a well-orchestrated and complex series of events where proteins in the blood have primary roles,

More information

MP Orthopedic Applications of Stem Cell Therapy (Including Allografts and Bone Substitutes Used With Autologous Bone Marrow)

MP Orthopedic Applications of Stem Cell Therapy (Including Allografts and Bone Substitutes Used With Autologous Bone Marrow) Medical Policy MP 8.01.52 BCBSA Ref. Policy: 8.01.52 Last Review: 01/30/2018 Effective Date: 01/30/2018 Section: Therapy Related Policies 2.01.16 Recombinant and Autologous Platelet-Derived Growth Factors

More information

BONE OR SOFT TISSUE HEALING AND FUSION ENHANCEMENT PRODUCTS

BONE OR SOFT TISSUE HEALING AND FUSION ENHANCEMENT PRODUCTS BONE OR SOFT TISSUE HEALING AND FUSION ENHANCEMENT PRODUCTS UnitedHealthcare Commercial Medical Policy Policy Number: 2017T0410S Effective Date: March 1, 2017 Table of Contents Page INSTRUCTIONS FOR USE...

More information

Populations Interventions Comparators Outcomes Individuals: With cartilage defects

Populations Interventions Comparators Outcomes Individuals: With cartilage defects Orthopedic Applications of Stem Cell Therapy (Including Allografts and Bone Substitutes Used With Autologous Bone Marrow) (80152) Medical Benefit Effective Date: 10/01/15 Next Review Date: 07/18 Preauthorization

More information

Novel Technology to Increase Concentrations of Stem and Progenitor Cells in Marrow Aspiration

Novel Technology to Increase Concentrations of Stem and Progenitor Cells in Marrow Aspiration Novel Technology to Increase Concentrations of Stem and Progenitor Cells in Marrow Aspiration David B Harrell, PhD, Brt, OF, FAARM, FRIPH, DABRM*; Joseph R Purita, MD, FAAOS, FACS + ; Raphael Gonzalez,

More information

Medical Policy An independent licensee of the Blue Cross Blue Shield Association

Medical Policy An independent licensee of the Blue Cross Blue Shield Association Orthopedic Applications of Stem Cell Therapy Page 1 of 19 Medical Policy An independent licensee of the Blue Cross Blue Shield Association Title: Orthopedic Applications of Stem Cell Therapy Professional

More information

Exploring The Potential Of A New Modality For Harvesting Bone Autograft

Exploring The Potential Of A New Modality For Harvesting Bone Autograft Exploring The Potential Of A New Modality For Harvesting Bone Autograft podiatrytoday.com /exploring-potential-new-modality-harvesting-bone-autograft In an intriguing case study involving the referral

More information

Bone Marrow Aspiration

Bone Marrow Aspiration Bone Marrow Aspiration Surgical Technique Stuart D. Miller, M.D. Department of Orthopaedic Surgery Medstar Union Memorial Hospital Baltimore, Maryland 2 Bone Marrow Aspiration Surgical Technique Table

More information

ORTHOBIOLOGIC TREATMENTS IN BASEBALL. Casey G. Batten MD PBATS - January 19th, 2018

ORTHOBIOLOGIC TREATMENTS IN BASEBALL. Casey G. Batten MD PBATS - January 19th, 2018 ORTHOBIOLOGIC TREATMENTS IN BASEBALL Casey G. Batten MD PBATS - January 19th, 2018 The Problem Musculoskeletal injuries are common in sport Pressure to minimize down time, swift return Many injuries involve

More information

Corporate Medical Policy

Corporate Medical Policy Corporate Medical Policy Continuous Passive Motion in the Home Setting File Name: Origination: Last CAP Review: Next CAP Review: Last Review: continuous_passive_motion_in_the_home_setting 9/1993 6/2018

More information

Tobacco and Bone Health

Tobacco and Bone Health Tobacco and Bone Health Prof. Dr. Alok Chandra Agrawal MS Orthopaedics, DNB Orthopaedics, PhD Orthopaedics MAMS All India Institute of Medical Sciences Raipur CG Cigarette smoking is commonly identified

More information

ICD-10 CM Training. Orthopaedic

ICD-10 CM Training. Orthopaedic ICD-10 CM Training Orthopaedic ICD-10-CM Compliance Dates ICD-10-CM will be valid for dates of service on or after October 1, 2015 Outpatient dates of service of October 1, 2015 and beyond. Inpatient hospital

More information

Regenerative Therapies - Stem Cell & Platelet Rich Plasma (PRP)

Regenerative Therapies - Stem Cell & Platelet Rich Plasma (PRP) Regenerative Therapies - Stem Cell & Platelet Rich Plasma (PRP) An Introduction to Regenerative Medicine Platelet Rich Plasma (PRP) and Stem Cell injections are part of an emerging field called regenerative

More information

Regenerative Orthopedics

Regenerative Orthopedics Regenerative Orthopedics WHERE ARE WE NOW? W. SCOTT WAUGH, MD, CAQSM, RMSK NONOPORTHO.COM W. Scott Waugh, MD, RMSK Edmond, OK Integrative Medical Solutions and Nonop Ortho Baylor University Waco, TX University

More information

rhpdgf-bb/β-tcp TECHNOLOGY OVERVIEW AUGMENT Bone Graft THE FIRST AND ONLY PROVEN ALTERNATIVE TO AUTOGRAFT IN ANKLE AND HINDFOOT ARTHRODESIS

rhpdgf-bb/β-tcp TECHNOLOGY OVERVIEW AUGMENT Bone Graft THE FIRST AND ONLY PROVEN ALTERNATIVE TO AUTOGRAFT IN ANKLE AND HINDFOOT ARTHRODESIS rhpdgf-bb/β-tcp TECHNOLOGY OVERVIEW AUGMENT Bone Graft THE FIRST AND ONLY PROVEN ALTERNATIVE TO AUTOGRAFT IN ANKLE AND HINDFOOT ARTHRODESIS AUGMENT Bone Graft T HE F I R S T A ND O N LY PROV EN A LT ERN

More information

Osteochondritis Dissecans

Osteochondritis Dissecans Osteochondritis Dissecans Introduction Osteochondritis dissecans (OCD) is a problem that affects the knee, mostly at the end of the big bone of the thigh (the femur). A joint surface damaged by OCD doesn't

More information

BONE AUGMENTATION AND GRAFTING

BONE AUGMENTATION AND GRAFTING 1 A Computer-Guided Bone Block Harvesting Procedure: A Proof-of-Principle Case Report and Technical Notes Effectiveness of Lateral Bone Augmentation on the Alveolar Crest Dimension: A Systematic Review

More information

Specialists in Joint Replacement, Spinal Surgery, Orthopaedics and Sport Injuries. Cartilage Surgery. The Knee.

Specialists in Joint Replacement, Spinal Surgery, Orthopaedics and Sport Injuries. Cartilage Surgery. The Knee. Specialists in Joint Replacement, Spinal Surgery, Orthopaedics and Sport Injuries Cartilage Surgery The Knee CARTILAGE INJURY Treatment of cartilage injury remains one of the most significant challenges

More information

OSTEOCHONDRAL ALLOGRAFTS AND AUTOGRAFTS IN THE TREATMENT OF FOCAL ARTICULAR CARTILAGE LESIONS

OSTEOCHONDRAL ALLOGRAFTS AND AUTOGRAFTS IN THE TREATMENT OF FOCAL ARTICULAR CARTILAGE LESIONS Status Active Medical and Behavioral Health Policy Section: Surgery Policy Number: IV-115 Effective Date: 10/22/2014 Blue Cross and Blue Shield of Minnesota medical policies do not imply that members should

More information

Discovery of a Small Molecule Inhibitor of the Wnt Pathway as a Potential Disease Modifying Treatment for Knee Osteoarthritis

Discovery of a Small Molecule Inhibitor of the Wnt Pathway as a Potential Disease Modifying Treatment for Knee Osteoarthritis Discovery of a Small Molecule Inhibitor of the Wnt Pathway as a Potential Disease Modifying Treatment for Knee Osteoarthritis Charlene Barroga, Ph.D., Yong Hu, Ph.D., Vishal Deshmukh, Ph.D., and John Hood,

More information

GRAFTON DEMINERALIZED BONE: FIBER TECHNOLOGY AND PERFORMANCE IMPLICATIONS

GRAFTON DEMINERALIZED BONE: FIBER TECHNOLOGY AND PERFORMANCE IMPLICATIONS GRAFTON DEMINERALIZED BONE: FIBER TECHNOLOGY AND PERFORMANCE IMPLICATIONS Based Upon the Published Source: Martin GJ, Jr., Boden SD, Titus L, Scarborough NL. New formulations of demineralized bone matrix

More information

Re-growing the Skeleton: Approaches in Tissue Engineering and Regenerative Medicine

Re-growing the Skeleton: Approaches in Tissue Engineering and Regenerative Medicine Re-growing the Skeleton: Approaches in Tissue Engineering and Regenerative Medicine How we fix things now Total Knee Replacements Fracture Plates Fusing Joints Defining Regenerative Medicine restore form

More information

FEP Medical Policy Manual

FEP Medical Policy Manual FEP Medical Policy Manual Effective Date: April 15, 2018 Related Policies: 2.01.16 Recombinant and Autologous Platelet-Derived Growth Factors as a Primary Treatment of Wound Healing and Other Miscellaneous

More information

Rotator Cuff Tears. Dr. Anthony Levenda September, 2017

Rotator Cuff Tears. Dr. Anthony Levenda September, 2017 Rotator Cuff Tears Dr. Anthony Levenda September, 2017 Rotator cuff tears come in a variety of shapes and sizes. No two are exactly the same, and as such, they are not all treated the same. It is important

More information

Ricardo E. Colberg, MD, RMSK. PM&R Sports Medicine Physician Andrews Sports Medicine and Orthopedic Center American Sports Medicine Institute

Ricardo E. Colberg, MD, RMSK. PM&R Sports Medicine Physician Andrews Sports Medicine and Orthopedic Center American Sports Medicine Institute Ricardo E. Colberg, MD, RMSK PM&R Sports Medicine Physician Andrews Sports Medicine and Orthopedic Center American Sports Medicine Institute Pathophysiology of chronic orthopedic injuries Definition of

More information

ACL Athletic Career. ACL Rupture - Warning Features Intensive pain Immediate swelling Locking Feel a Pop Dead leg Cannot continue to play

ACL Athletic Career. ACL Rupture - Warning Features Intensive pain Immediate swelling Locking Feel a Pop Dead leg Cannot continue to play FIMS Ambassador Tour to Eastern Europe, 2004 Belgrade, Serbia Montenegro Acute Knee Injuries - Controversies and Challenges Professor KM Chan OBE, JP President of FIMS Belgrade ACL Athletic Career ACL

More information

NEW FIXATION STRATEGIES FOR OSTEOPOROTIC BONE

NEW FIXATION STRATEGIES FOR OSTEOPOROTIC BONE NEW FIXATION STRATEGIES FOR OSTEOPOROTIC BONE THE PROBLEMS Fixation failure Malunion F 83 yrs 2 Months 6 Months F 81 yrs 3 Months FIXATION AUGMENTATION TECHNIQUES (FATs) Surgical procedures aimed at increasing

More information

2018 Update: The use of bone marrow derived stem cells in irom (interventional regenerative orthopedic medicine)

2018 Update: The use of bone marrow derived stem cells in irom (interventional regenerative orthopedic medicine) 2018 Update: The use of bone marrow derived stem cells in irom (interventional regenerative orthopedic medicine) Thomas k. Bond, md, ms President, aaom 4/20/2018 Aaom 35th annual conference Clearwater

More information

Clinical Policy Title: Bone graft substitutes

Clinical Policy Title: Bone graft substitutes Clinical Policy Title: Bone graft substitutes Clinical Policy Number: 14.02.09 Effective Date: July 1, 2016 Initial Review Date: May 18, 2016 Most Recent Review Date: May 19, 2017 Next Review Date: May

More information

BIOLOGICS STEM CELL AND PLATELET- RICH PLASMA FOR JOINT MANAGEMENT 1/10/ AAOS ANNUAL MEETING 2018 AAOS ANNUAL MEETING

BIOLOGICS STEM CELL AND PLATELET- RICH PLASMA FOR JOINT MANAGEMENT 1/10/ AAOS ANNUAL MEETING 2018 AAOS ANNUAL MEETING STEM CELL AND PLATELET- RICH PLASMA FOR JOINT MANAGEMENT BIOLOGICS o Injectable therapies that may suppress inflammation and promote regenerative pathways o Natural products that are harvested and are

More information

Bone Grafting and Bone Graft Substitutes. Original Author: James Krieg, MD Revision Author: David Hak, MD Last Revision May 2010

Bone Grafting and Bone Graft Substitutes. Original Author: James Krieg, MD Revision Author: David Hak, MD Last Revision May 2010 Bone Grafting and Bone Graft Substitutes Original Author: James Krieg, MD Revision Author: David Hak, MD Last Revision May 2010 Bone Graft Function Structural support of articular fracture Tibial plateau

More information

Versatile grafting Solutions

Versatile grafting Solutions Versatile grafting Solutions A Canadian company serving Canadian dentists since 1997 Here s why your colleagues are calling us for their bone regeneration needs Founded in 1997 Citagenix has been providing

More information

Care of the Foot and Ankle

Care of the Foot and Ankle Care of the Foot and Ankle DaVinci Christopher W. DiGiovanni, MD Chief, Division of Foot and Ankle Professor & Program Director, Dept. Orthopaedic Surgery The Warren Alpert School of Medicine at Brown

More information

synthetic CANCELLOUS BONE technical monograph Presented by Barbara Blum, Ph.D.

synthetic CANCELLOUS BONE technical monograph Presented by Barbara Blum, Ph.D. C E L L P L E X TCP synthetic CANCELLOUS BONE technical monograph Presented by Barbara Blum, Ph.D. TECHNICAL MONOGRAPH CELLPLEX TCP SYNTHETIC CANCELLOUS BONE CELLPLEX TCP synthetic CANCELLOUS BONE introduction

More information

Regenerative Medicine and the Future of Interventional Orthopaedics: Repair, Regenerate, Restore. Mark W. McFarland, D.O. Orthopaedic & Spine Center

Regenerative Medicine and the Future of Interventional Orthopaedics: Repair, Regenerate, Restore. Mark W. McFarland, D.O. Orthopaedic & Spine Center Regenerative Medicine and the Future of Interventional Orthopaedics: Repair, Regenerate, Restore Mark W. McFarland, D.O. Orthopaedic & Spine Center Overview Existing pain management treatments have been

More information

ORTHOBIOLOGICS AND CARTILAGE REPAIR NEW BUSINESS AND REGULATORY CHALLENGES

ORTHOBIOLOGICS AND CARTILAGE REPAIR NEW BUSINESS AND REGULATORY CHALLENGES ORTHOBIOLOGICS AND CARTILAGE REPAIR NEW BUSINESS AND REGULATORY CHALLENGES RALPH A. GAMBARDELLA, M.D. CHAIRMAN & PRESIDENT KERLAN-JOBE ORTHOPAEDIC CLINIC LOS ANGELES, CALIFORNIA Outline Review FDA regulations

More information

How to Manage Bone Marrow Aspirate Concentrate to Treat Musculoskeletal Disorders: A Systematic Review

How to Manage Bone Marrow Aspirate Concentrate to Treat Musculoskeletal Disorders: A Systematic Review How to Manage Bone Marrow Aspirate Concentrate to Treat Musculoskeletal Disorders: A Systematic Review Diego Costa Astur, Elton Luiz B. Cavalcante, Adilson Góes R. Júnior, Pedro Debieux, João Victor Novaretti,

More information

Research Article Evaluation of Amniotic-Derived Membrane Biomaterial as an Adjunct for Repair of Critical Sized Bone Defects

Research Article Evaluation of Amniotic-Derived Membrane Biomaterial as an Adjunct for Repair of Critical Sized Bone Defects Advances in Orthopedic Surgery, Article ID 572586, 4 pages http://dx.doi.org/10.1155/2014/572586 Research Article Evaluation of Amniotic-Derived Membrane Biomaterial as an Adjunct for Repair of Critical

More information

A Patient s Guide to Osteochondritis Dissecans of the Knee

A Patient s Guide to Osteochondritis Dissecans of the Knee A Patient s Guide to Osteochondritis Dissecans of the Knee 2350 Royal Boulevard Suite 200 Elgin, IL 60123 Phone: 847.931.5300 Fax: 847.931.9072 DISCLAIMER: The information in this booklet is compiled from

More information

Introduction. Castellvi Spine Current FDA Trials: Disc Regeneration DISCLOSURE 5/27/2016

Introduction. Castellvi Spine Current FDA Trials: Disc Regeneration DISCLOSURE 5/27/2016 Castellvi Spine Current FDA Trials: Disc Regeneration Dom Coric, M.D. Carolina Neurosurgery and Spine Associates Chief, Department of Neurosurgery, CMC Charlotte, NC 5/21/16 DISCLOSURE Spine Wave: Consultant/Stock/Royalties

More information

Post test for O&P 2 Hrs CE. The Exam

Post test for O&P 2 Hrs CE. The Exam Post test for O&P 2 Hrs CE The Exam This examination is taken in "open book" format. That means you are free to answer the questions after research or discussion with your fellow workers. We feel this

More information

Musculoskeletal System

Musculoskeletal System Musculoskeletal System CPT CPT copyright 2011 American Medical Association. All rights reserved. Fee schedules, relative value units, conversion factors and/or related components are not assigned by the

More information

CARTILAGE REPAIR PROCEDURES IN LARGE CARTILAGE DEFECTS

CARTILAGE REPAIR PROCEDURES IN LARGE CARTILAGE DEFECTS CARTILAGE REPAIR TECHNIQUES CARTILAGE REPAIR PROCEDURES IN LARGE CARTILAGE DEFECTS Written by Steffano Zaffagnini, Francesco Perdisa and Giuseppe Filardo, Italy Knee articular cartilage defects greater

More information

clevelandclinic.org/transplant

clevelandclinic.org/transplant Hannah Hicks bone and soft tissue TRANSPL ANT RECIPIENT Dr. Joyce said I could wear high heels in the future. I m just happy about that. Hannah Hicks, 15, Solon, Ohio. Hannah was diagnosed with a solid

More information

Bone Void Filler. Callos. The Next Generation in Calcium Phosphate Cement A COLSON ASSOCIATE

Bone Void Filler. Callos. The Next Generation in Calcium Phosphate Cement A COLSON ASSOCIATE Callos Bone Void Filler The Next Generation in Calcium Phosphate Cement A COLSON ASSOCIATE Callos Calcium Phosphate Cement Callos is a high performance next generation calcium phosphate cement indicated

More information

Abstract. Firas T. Ismaeel, Dept. of Surgery, College of Medicine, Tikrit University

Abstract. Firas T. Ismaeel, Dept. of Surgery, College of Medicine, Tikrit University Bone marrow injection in patients with delayed union and non-union of long Firas T. Ismaeel, Dept. of Surgery, College of Medicine, Tikrit University Abstract In the process of bone formation and healing

More information

Foot and Ankle Systems Coding Reference Guide

Foot and Ankle Systems Coding Reference Guide Foot and Ankle Systems Coding Reference Guide Physician Arthrodesis 27870 Arthrodesis, ankle, open 27871 Arthrodesis, tibiofibular joint, proximal or distal 28705 Arthrodesis; pantalar 28715 Arthrodesis;

More information

Basic science symposium I: bone graft substitutes.

Basic science symposium I: bone graft substitutes. Basic science symposium I: bone graft substitutes. Todd Boyce, Osteotech, Inc. Joseph M. Lane, Hospital for Special Surgery New York Scott D Boden, Emory University Jeffrey C. Wang, UCLA Comprehensive

More information

Pattern of bone resorption after extraction

Pattern of bone resorption after extraction Teeth loss Pattern of bone resorption after extraction 50% in 1st year 2/ 3 in first 3 months Reich KM, Huber CD, Lippnig WR, Um C, Watzek G, Tangl S. (2011, 17). Atrophy of Residual Alveolar Ridge following

More information

Name of Policy: Orthopedic Applications of Stem Cell Therapy (Including Allograft and Bone Substitutes Used with Autologous Bone Marrow)

Name of Policy: Orthopedic Applications of Stem Cell Therapy (Including Allograft and Bone Substitutes Used with Autologous Bone Marrow) Name of Policy: Orthopedic Applications of Stem Cell Therapy (Including Allograft and Bone Substitutes Used with Autologous Bone Marrow) Policy #: 430 Latest Review Date: August 2017 Category: Surgical

More information

Adult Reconstruction Hip Education Tracks

Adult Reconstruction Hip Education Tracks Adult Reconstruction Hip Education Tracks Adult Reconstruction Hip Track for the Specialist - HIP1 ICL 281 A Case-based Approach to High Risk Total Hip - When Do I Do Something Differently? ICL 241 The

More information

High Tibial Osteotomy

High Tibial Osteotomy High Tibial Osteotomy With each step, forces equal to three to eight times your body weight travel between the thigh bone (femur) and shin bone (tibia) in your knee. These forces are dampened by a meniscus

More information

Anterior Cruciate Ligament (ACL) Injuries

Anterior Cruciate Ligament (ACL) Injuries Anterior Cruciate Ligament (ACL) Injuries Mark L. Wood, MD The anterior cruciate ligament (ACL) is one of the most commonly injured ligaments of the knee. The incidence of ACL injuries is currently estimated

More information

Total Knee Replacement

Total Knee Replacement Total Knee Replacement A total knee replacement, also known as total knee arthroplasty, involves removing damaged portions of the knee, and capping the bony surfaces with man-made prosthetic implants.

More information

Spine A Preliminary Study of the Efficacy of Beta-Tricalcium Phosphate as a Bone Graft Expander for Instrumented Posterolateral Fusions

Spine A Preliminary Study of the Efficacy of Beta-Tricalcium Phosphate as a Bone Graft Expander for Instrumented Posterolateral Fusions Bibliography Spine Epstein, N.E., A Preliminary Study of the Efficacy of Beta-Tricalcium Phosphate as a Bone Graft Expander for Instrumented Posterolateral Fusions. Journal of Spinal Disorders and Techniques,

More information

Disclosure. Endochondral Healing 4/28/2016. Fracture Healing Stimulation Where s the Evidence?

Disclosure. Endochondral Healing 4/28/2016. Fracture Healing Stimulation Where s the Evidence? Fracture Healing Stimulation Where s the Evidence? Thomas J Moore MD Atlanta Trauma Symposium April 23, 2016 Disclosure Member: AAOS Committee on Biologics Reviewer: Clinical Orthopaedics Related Research

More information

Osteoarthrosis, unspecified whether generalized or localized, lower leg. Osteoarthrosis, localized, not specified whether primary or secondary, pelvic

Osteoarthrosis, unspecified whether generalized or localized, lower leg. Osteoarthrosis, localized, not specified whether primary or secondary, pelvic Page 1 Appendix TABLE E-1 Codes (and Definitions) in Humana Database Used for Study Inclusion and Exclusion of Patients Who Underwent,, or 1 to 2-Level Inclusion ICD-9-P-8154 Total knee replacement ICD-9-D-71596

More information

Foot, Ankle, Knee & Hip Surgery Update. What s s New. Platelet Rich Plasma (PRP) Platelet Rich Plasma Total Ankle Replacement.

Foot, Ankle, Knee & Hip Surgery Update. What s s New. Platelet Rich Plasma (PRP) Platelet Rich Plasma Total Ankle Replacement. Foot, Ankle, Knee & Hip Surgery Update Geoffrey S. Landis D.O. April 29, 2010 Southwestern Conference on Medicine What s s New Platelet Rich Plasma Total Platelet Rich Plasma (PRP) Why- Need or Desire

More information

KNEE INJURIES IN SPORTS MEDICINE

KNEE INJURIES IN SPORTS MEDICINE KNEE INJURIES IN SPORTS MEDICINE Irving Raphael, MD June 13, 2014 RSM Medical Associates Head Team Physician Syracuse University Outline Meniscal Injuries anatomy Exam Treatment ACL Injuries Etiology Physical

More information

Clinical Policy Title: Bone graft substitutes

Clinical Policy Title: Bone graft substitutes Clinical Policy Title: Bone graft substitutes Clinical Policy Number: 14.02.09 Effective Date: July 1, 2016 Initial Review Date: May 18, 2016 Most Recent Review Date: May 1, 2018 Next Review Date: May

More information

PROCHONDRIX CARTILAGE RESTORATION MATRIX CONTAINS GROWTH FACTORS NECESSARY FOR HYALINE CARTILAGE REGENERATION

PROCHONDRIX CARTILAGE RESTORATION MATRIX CONTAINS GROWTH FACTORS NECESSARY FOR HYALINE CARTILAGE REGENERATION A L L O S O U R C E PROCHONDRIX CARTILAGE RESTORATION MATRIX CONTAINS GROWTH FACTORS NECESSARY FOR HYALINE CARTILAGE REGENERATION Ryan Delaney MS; Carolyn Barrett BS, MBA; Peter Stevens PhD, MBA AlloSource,

More information

STEM CELLS. Introduction. yet determined what it wants. nothing to me. ). An. needed to heal that structure FOUR LEG NEWS VOLUME 5, ISSUE 1

STEM CELLS. Introduction. yet determined what it wants. nothing to me. ). An. needed to heal that structure FOUR LEG NEWS VOLUME 5, ISSUE 1 2016 FOUR LEG NEWS VOLUME 5, ISSUE 1 STEM CELLS Introduction DONEC ARCU RISUS DIAM AMET SIT. CONGUE TORTOR CURSUS RISUS NISL, LUCTUS AUGUE To follow up on the information about PRP, I wanted to hunt down

More information

BIOACTIVE SYNTHETIC GRAFT

BIOACTIVE SYNTHETIC GRAFT B U I L D S T R O N G B O N E F A S T Putty Particulate Morsels A BIOACTIVE SYNTHETIC BONE FOR FASTER HEALING NovaBone is a 100% bioactive synthetic material composed from elements that occur naturally

More information