numbe r Done by Corrected Docto Alia Shatnawi

Size: px
Start display at page:

Download "numbe r Done by Corrected Docto Alia Shatnawi"

Transcription

1 numbe r 9 Done by Nazek Hyasat Corrected Bahaa Najjar & mohammed AL-shrouf Docto Alia Shatnawi

2 HOW DO DRUGS WORK??? You know that receptor targets by the drugs, the question now how these drugs work on the receptor? Drugs either can activate or inhibit these receptors, which means they are either agonist or antagonist. *Some receptors are localised on the surface of the cells,others are intracellular receptors. *Antagonist: These words mean blocker or inhibitors, drugs can affect the receptor in certain way to give an opposite effect, so it going to inhibited or block the binding of the drugs, neurotransmitter or hormones to these receptors. *Agonist: is a drug that binds to receptor and activate it, so it initiate the signals. As example ; epinephrine (adrenaline) which bind to β-adrenergic receptor on smooth muscles Of bronchi causes dilation, we use as agonist for adrenaline drug called Abeturole which work the It work as adrenaline and use to treat asthmatic people to help them to breath. * ex- ibuprofen works through inhibiting enzyme called cyclooxygenase enzyme, so this is another drug target which is an enzyme, through inhibiting enzyme action we achieve the therapeutic effect which is analgesia, anti-inflammatory and antipruritic So these are two ways of how do drugs work either activate or inhibit the endogenous protein, the last way is that a few have unconventional mechanism of action. As example on the last way the drug we know as Gaviscon(commercial name) which is antacid used to treat the excessive acidity of the stomach, it is an alkali (calcium carbonate) chemically interacts with HCl present in the stomach so it reduce the acidity. So its not by interacting with enzyme or receptor, its another way.. HOW DO DRUGS ANTAGONIZE, BLOCK OR INHIBIT ENDOGENOUS PROTEINS? Antagonists of Cell Surface Receptors A CELL SURFACE RECEPTOR that is embedded in the cell membrane and functions to receive chemical information from the extracellular compartment and to transmit that information to the intracellular compartment. There are receptors are present on the cell surface because we have certain endogenous molecules in the body that need to interact with these receptors they are not created for drugs they are normally there, like acetylcholine, neurotransmitters, hormones and sometimes peptides like angiotensin. Once this endogenous molecule binds to the receptor it is going to transmit signals from outside to inside the cell. What happens? When ligand(any molecule that can bind and interact with the receptor either activate or inhibit it ) is bound to its receptor, if its agonist it will activate it ( activation means after its bound it will cause conformational changes in the receptor which will lead to transmition of the signal inside the cell) so it will cause activation of another kind of protein in the cell, G- protein coupled receptors. Remember G-protein consist of 3 subunits and its bind to GDP molecule, when it receives signals and activated it will bind to GTP and the 3 subunits will divide to βϒ complex and active ᾳ subunit, which will activate something else in the cell,that means the activate of these proteins will

3 activate further signalling events in the cell, finally will cause certain action like relaxation of smooth muscle for example. The antagonist binds to binding site of the endogenous molecules in the receptor and it doesn t turn it on, it doesn t do anything just blocked it.ex- it prevent adrenaline from activating the receptor, so the signal will stop and some of the muscle will be contracted so this is the opposite affect but it does not do so by initiating opposite mechanise in the cell, it block the action. β blockers (ex-propranolol), which block β adrenergic receptors of adrenaline (β2 in the bronchi which causes relaxation of smooth muscles and bronchodilation & β1 in the heart which causes increasing of heart rate), they bind to β1 and 2 adrenergic receptors(not selective) and occupied binding place of adrenaline and prevent it from binding and activating the receptor, so instead of having continuous signals of activation these signals will stop, so part of the smooth muscle cells of bronchi will not be relaxed and they will be contracted, in addition to decrease the heart rate (opposite effects ), but that doesn t mean these blockers initiated opposite machenesim of action in the cell, they don t cause something inside the cell will lead to decrease the concentration of C-AMP,they just block the action of adrenaline by preventing it from binding to receptor,so it wont be able to increase the C-AMP concentration which cause less contraction in the heart. so we use them in some cardiac conditions heart failure, angina,heart tension to decrease the effort that the heart is doing. propranolol antagonist must fits in the binding bocket of the adrenergic receptor so it has compatibility, so we have to have compatibility in shape and charge and we have to have affinity. Most antagonists attach to binding site on receptor for endogenous agonist and sterically (just by occupying) prevent endogenous agonist from binding. There are 2 types of binding between the antagonist and the receptor>> 1) Reversible binding >> the antagonist in this case has to be competitive (WHAT does that mean??? Propranolol for example, reversible means it will not block the β adrenergic receptors all the time, it will block them for certain time then it will get off and allow to adrenaline or other suitable drug to bind, competitive means that there is a competition between the adrenaline and propranolol, so the binding will affect by the concentrations,which mean if we increase the concentration of one of them more, more of it will be able to bind and occupy more receptors than the other. 2) Irreversible binding >> noncompetitive antagonist We have 2 situations of noncompetitive case : 1) ᾳ1 receptors of adrenaline in the vascular smooth muscle cells (activation of it will cause vascular constriction ), suppose we have drug that bind irreversibly to it,so no matter how the concentration of adrenaline is increased, it will not be able to break that bond between the irreversible antagonist and the receptor, which mean the drug will stay in the body for long time, we can get ride of the effect of the drug by recycling the receptors ( degrading them with the bound drug and then synthesise new receptors )and this is not the optimum situation. The reversible binding is the optimum situation, because the time of action will not be so long, if you take a lot of the irreversible binding drug it will occupy all the receptors so you will completely stop the effect of adrenaline on those receptor, you don t want that you have to have balance.

4 2) In this situation the drug bind to receptor but it doesn t bind to the binding site of adrenaline (the receptor has certain site for it differ from the binding site), this binding will cause conformational changes in the receptor will prevent the endogenous agonist from binding to receptor. NO matter how much the concentration of adrenaline is increased, the antagonist change the structure of the receptor so it will not be able to bind to the agonist We called this antagonist>>allosteric antagonist Allosteric antagonist either prevent the agonist from binding to receptor by changing its structure or it can bind but it will inhibit the agonist effect. Note : not all receptors consist of more than one subunit If a Patient suffer from asthma and angina, would you give him propranolol??? This drug as mentioned previously is β adrenergic blocker affect both β1 and β2 receptor, which mean it will cause decrease the heart rate which is useful in the case of angina, but it also will cause bronchoconstriction and that is very dangerous because the patient suffer from asthma also, so we must be aware and give the patient a drug with selective effect. If we used a subtype of adrenergic receptor only target β1 receptors without β2 receptor ( more selectivity) you will not worry about the side effect. β1 agonist to treat asthma and β2 agonist to treat heart faliar. *Other important example on useful antagonist is ARB. Angiotensin 2 > peptide hormone> has 2 mechanism of working > -increase the absorption of Na from renal tubules >> increase the absorption of water to the blood circulation (increase the volume )>> increase the blood pressure -it has receptors(angiotensin receptor) on vascular smooth muscle cells >> it bind to its receptor and cause signaling mechanism which will increase the Ca concentration in the cell >> muscle contraction>> cause the constriction of blood vessels >>direct increasing of the pressure Drug ARB is important drug to treat the hypertension (elevated blood pressure more than 140/100) >>>it is angiotensin receptor blocker>>it is competitive antagonist for angiotensin 2 receptors so it will bind to receptor and inhibits it s action whether it is reabsorption of Na or constriction of blood vessel so this will cause decrease in the blood pressure. It is used to treat high blood pressure, heart faliar and cardiovascular conditions. Antagonists of Nuclear Receptors **There is other receptors that present intracellurly.. Sometimes they are nuclear transcription factor, some drugs bind to them and antagonise them.. For example: Steroid hormones >> they will bind to these transcription factors >> cause activation of transcription factors to bind to DNA and initiate transcription Steroid hormones are mineral corticoid.. Aldosterone is mineral corticoid that works on certain transporter and causes reabsorption of Na and water and excretion of K >>>it increases water retention and causes edema.. To get red of the excessive water that accumulate around vital organs >>must use antagonist of aldosterone which is called spironolactone>>it binds to aldosterone receptor >> prevents this signals from happening >>prevent the complex(nuclear transcription factors) from binding to DNA and activation transcription of certain genes. What are the genes that aldosterone was transcripted it?? They are genes form transporters responsible for the reabsorption of Na

5 Spironolactone (antagonist )>>decrease these transports >> decrease Na reabsorption >> more Na will excrete with the urine and take with it water It works similar to competitive inhibitor but it affects intracellular process.. Enzyme Inhibitors *some drugs modulate things other than receptors like enzymes *30% of drugs targets are enzymes *cyclooxygenase enzyme for example which catalyse the formation of prostaglandin >>the drug used here is ibuprofen (aspirin) Ibuprofen binds to COX and block its action >> less product (prostaglandin )>>less of cellular effect which is inflammation and pain *another example is angiotensin converting enzyme (ACE) which convert angiotensin 1 to angiotensin 2 Angiotensin 2 can cause some elevation in blood pressure if it is presented in the body in high concentration To get rid of this excessive effect of angiotensin 2 there are 2 ways : 1)block its receptors 2)inhibit the synthesise of angiotensin 2 (reduce its amount ) by inhibit ACE The question you might ask..why I have 2 options??? Because as we know these drugs have side effects and some people cant tolerate these side effects. For example >>ACE inhibitor >>> one important side effect of it that it causes cough ACE causes degradation of peptide released in the case of allergic reactions ( inflammatory mediator ), so when ACE inhibitor is used the concentration of this peptide will increase and that will cause releasing of histamine and increase cough. Ion Channel Blockers Transport Inhibitors Inhibitors of Signal Transduction Proteins Now lets talk about agonist.. *some drugs are working by activating endogenous protein Ex ; Nitroglycerin (drug for angina patient )>> it releases NO which is a gas and its small molecule so it can diffuse quickly through the membrane to go inside the cell (vascular smooth muscle cell ) then it is going to bind to enzyme called guanylate cyclase and activate it which will result in increasing the concentration of C-GMP which will cause activation of different channels and proteins and cause relaxation of smooth muscle cells, vasodilation and more perfusion of blood to different organ of the blood. It is used to treat angina when the heart does not work will because the heart does not get a good amount of blood. We use this drug as sublingual tablet to increase the bioavailability

6 If the patient take this drug orally the bioavailability will be low, so it must give sublingually to avoid the First Pass Effect Is a phenomenon of drug metabolism whereby the concentration of the drug is greatly reduced before it reaches the systematic circulation, that will cause decreasing the bioavailability so Nitroglycride takes sublingually > because the area under the tongue is highly vascularised so NO will go to the heart quickly, IF it takes through GI system it will be degraded and interact with other proteins causes modification of them and we will lose the purpose of the drug. some drugs are deactivated or degrade by lever or intestine, others by enzymes. Some hormones like insulin so they are degraded but the enzymes that is present in the stomach so we give it subcutaneously to avoid first pass metabolism NOTE: all drugs examples that are mentioned in the sheet are just for make the mechanism more clear and I mentioned them as doctor said them. Sorry for any mistake "Love your self and be proud of everything that you do, even your mistakes. Because even mistakes mean you're TRYING" The End

number Done by Corrected by Doctor

number Done by Corrected by Doctor number 9 Done by Nazek Hyasat Corrected by Bahaa Najjar & mohammed AL-shrouf Doctor Alia Shatnawi HOW DO DRUGS WORK??? You know that receptors are targeted by drugs, the question now is how do these drugs

More information

Pharmacologic Principles. Dr. Alia Shatanawi

Pharmacologic Principles. Dr. Alia Shatanawi Pharmacologic Principles Dr. Alia Shatanawi Definitions Drug: It is any chemical that affect living processes. It modifies an already existing function, and does not create a new function. 2 What is Pharmacology?

More information

Drug Receptor Interactions and Pharmacodynamics

Drug Receptor Interactions and Pharmacodynamics Drug Receptor Interactions and Pharmacodynamics Dr. Raz Mohammed MSc Pharmacology School of Pharmacy 22.10.2017 Lec 6 Pharmacodynamics definition Pharmacodynamics describes the actions of a drug on the

More information

Pharmacodynamics. Dr. Alia Shatanawi

Pharmacodynamics. Dr. Alia Shatanawi Pharmacodynamics Dr. Alia Shatanawi Introduction Pharmacology is the study of the biochemical and physiological aspects of the drug effects including absorption, distribution, metabolism, elimination,

More information

Cell Signaling (part 1)

Cell Signaling (part 1) 15 Cell Signaling (part 1) Introduction Bacteria and unicellular eukaryotes respond to environmental signals and to signaling molecules secreted by other cells for mating and other communication. In multicellular

More information

number Done by Corrected by Doctor Alia Shatnawi

number Done by Corrected by Doctor Alia Shatnawi number 11 Done by Lojayn Salah Corrected by Doctor Alia Shatnawi The last thing we talked about in the previous lecture was the effect of a drug at a particular dose, and we took this equation: E= Emax

More information

Physiology Unit 1 CELL SIGNALING: CHEMICAL MESSENGERS AND SIGNAL TRANSDUCTION PATHWAYS

Physiology Unit 1 CELL SIGNALING: CHEMICAL MESSENGERS AND SIGNAL TRANSDUCTION PATHWAYS Physiology Unit 1 CELL SIGNALING: CHEMICAL MESSENGERS AND SIGNAL TRANSDUCTION PATHWAYS In Physiology Today Cell Communication Homeostatic mechanisms maintain a normal balance of the body s internal environment

More information

Dania Ahmad. Tamer Barakat + Dania Ahmad. Faisal I. Mohammed

Dania Ahmad. Tamer Barakat + Dania Ahmad. Faisal I. Mohammed 16 Dania Ahmad Tamer Barakat + Dania Ahmad Faisal I. Mohammed Revision: What are the basic types of neurons? sensory (afferent), motor (efferent) and interneuron (equaled association neurons). We classified

More information

Receptors Families. Assistant Prof. Dr. Najlaa Saadi PhD Pharmacology Faculty of Pharmacy University of Philadelphia

Receptors Families. Assistant Prof. Dr. Najlaa Saadi PhD Pharmacology Faculty of Pharmacy University of Philadelphia Receptors Families Assistant Prof. Dr. Najlaa Saadi PhD Pharmacology Faculty of Pharmacy University of Philadelphia Receptor Families 1. Ligand-gated ion channels 2. G protein coupled receptors 3. Enzyme-linked

More information

Chapter 11. Cell Communication. Signal Transduction Pathways

Chapter 11. Cell Communication. Signal Transduction Pathways Chapter 11 Cell Communication Signal Transduction Pathways Signal-Transduction Pathway Signal on a cell s surface is converted into a specific cellular response Local signaling (short distance) - Paracrine

More information

Lujain Hamdan. Ayman Musleh & Yahya Salem. Mohammed khatatbeh

Lujain Hamdan. Ayman Musleh & Yahya Salem. Mohammed khatatbeh 12 Lujain Hamdan Ayman Musleh & Yahya Salem Mohammed khatatbeh the last lecture, we have studied the differences between the two divisions of the ANS: sympathetic and parasympathetic pathways which work

More information

Hormones and Signal Transduction. Dr. Kevin Ahern

Hormones and Signal Transduction. Dr. Kevin Ahern Dr. Kevin Ahern Signaling Outline Signaling Outline Background Signaling Outline Background Membranes Signaling Outline Background Membranes Hormones & Receptors Signaling Outline Background Membranes

More information

-Mohammad Ashraf. -Anas Raed. -Alia Shatnawi. 1 P a g e

-Mohammad Ashraf. -Anas Raed. -Alia Shatnawi. 1 P a g e -1 -Mohammad Ashraf -Anas Raed -Alia Shatnawi 1 P a g e Dr. Alia started the lecture by talking about subjects we are going to cover through this course; you can refer to the record if you are interested.

More information

Assem Al Refaei. Sameer Emeish. Sameer Emeish. Alia Shatnawi

Assem Al Refaei. Sameer Emeish. Sameer Emeish. Alia Shatnawi 5 Assem Al Refaei Sameer Emeish Sameer Emeish Alia Shatnawi Sheet Checklist: - Lock And Key Model Explanation. - Specificity, Selectivity And Sensitivity Explanation. - Spare And Orphan Receptors. - Features

More information

Pharmacodynamics. OUTLINE Definition. Mechanisms of drug action. Receptors. Agonists. Types. Types Locations Effects. Definition

Pharmacodynamics. OUTLINE Definition. Mechanisms of drug action. Receptors. Agonists. Types. Types Locations Effects. Definition Pharmacodynamics OUTLINE Definition. Mechanisms of drug action. Receptors Types Locations Effects Agonists Definition Types Outlines of Pharmacodynamics Antagonists Definition Types Therapeutic Index Definition

More information

Receptors and Drug Action. Dr. Subasini Pharmacology Department Ishik University, Erbil

Receptors and Drug Action. Dr. Subasini Pharmacology Department Ishik University, Erbil Receptors and Drug Action Dr. Subasini Pharmacology Department Ishik University, Erbil Receptors and Drug Action Receptor Receptor is defined as a macromolecule or binding site located on the surface or

More information

By the name of Allah

By the name of Allah By the name of Allah Receptors function and signal transduction ( Hormones and receptors Types) We were talking about receptors of the neurotransmitters; we have 2 types of receptors: 1- Ionotropic receptors

More information

PHRM20001: Pharmacology - How Drugs Work!

PHRM20001: Pharmacology - How Drugs Work! PHRM20001: Pharmacology - How Drugs Work Drug: a chemical that affects physiological function in a specific way. Endogenous substances: hormones, neurotransmitters, antibodies, genes. Exogenous substances:

More information

Basics of Pharmacology

Basics of Pharmacology Basics of Pharmacology Pekka Rauhala Transmed 2013 What is pharmacology? Pharmacology may be defined as the study of the effects of drugs on the function of living systems Pharmacodynamics The mechanism(s)

More information

Laith Abu Shekha. Omar Sami. Ebaa Alzayadneh

Laith Abu Shekha. Omar Sami. Ebaa Alzayadneh 24 Laith Abu Shekha Omar Sami Ebaa Alzayadneh Signal Transduction Please note that it s very important to refer to the slides. Introduction: Through these five lectures, we should know the basics of signal

More information

Beta 1 Beta blockers A - Propranolol,

Beta 1 Beta blockers A - Propranolol, Pharma Lecture 3 Beta blockers that we are most interested in are the ones that target Beta 1 receptors. Beta blockers A - Propranolol, it s a non-selective competitive antagonist of beta 1 and beta 2

More information

Lojayn Salah. Razan Aburumman. Faisal Muhammad

Lojayn Salah. Razan Aburumman. Faisal Muhammad 20 Lojayn Salah Razan Aburumman Faisal Muhammad Note: I tried to include everything that's important from the doctor's slides but you can refer back to them after studying this sheet.. After you read this

More information

Lecture Outline. Hormones & Chemical Signaling. Communication Basics: Overview. Communication Basics: Methods. Four methods of cell communication

Lecture Outline. Hormones & Chemical Signaling. Communication Basics: Overview. Communication Basics: Methods. Four methods of cell communication Lecture Outline Hormones & Chemical Signaling Communication Basics Communication Overview Communication Methods Signal pathways Regulation (modulation) of signal pathways Homeostasis... again Endocrine

More information

ANATOMY & PHYSIOLOGY - CLUTCH CH. 6 - CELL COMMUNICATION.

ANATOMY & PHYSIOLOGY - CLUTCH CH. 6 - CELL COMMUNICATION. !! www.clutchprep.com CONCEPT: CELL-TO-CELL CONNECTIONS AND SIGNALING Gap and Tight Junctions: Adjacent cells communicate and hold on to each other via junctions. Two important kinds: Gap Junctions are

More information

G-Proteins Receptors and 2nd Messenger Mechanism

G-Proteins Receptors and 2nd Messenger Mechanism G-Proteins Receptors and 2nd Messenger Mechanism (A lot of information in this sheet is repeated over and over. In my opinion, this is the easiest lecture, enjoy ) Recap: Receptors are specific protein

More information

PHA2022. Pharmacology considers: - Pharmacotherapy: o Drug-response relationship o Selectivity of action o Structure-action relationship.

PHA2022. Pharmacology considers: - Pharmacotherapy: o Drug-response relationship o Selectivity of action o Structure-action relationship. PHA2022 Pharmacology considers: - Pharmacotherapy: o Drug-response relationship o Selectivity of action o Structure-action relationship Lecture 1 ONE 1. Define the terms pharmacodynamics and pharmacokinetics

More information

Life History of A Drug

Life History of A Drug DRUG ACTION & PHARMACODYNAMIC M. Imad Damaj, Ph.D. Associate Professor Pharmacology and Toxicology Smith 652B, 828-1676, mdamaj@hsc.vcu.edu Life History of A Drug Non-Specific Mechanims Drug-Receptor Interaction

More information

Chapter 20. Cell - Cell Signaling: Hormones and Receptors. Three general types of extracellular signaling. endocrine signaling. paracrine signaling

Chapter 20. Cell - Cell Signaling: Hormones and Receptors. Three general types of extracellular signaling. endocrine signaling. paracrine signaling Chapter 20 Cell - Cell Signaling: Hormones and Receptors Three general types of extracellular signaling endocrine signaling paracrine signaling autocrine signaling Endocrine Signaling - signaling molecules

More information

G protein-coupled Signal Transduction

G protein-coupled Signal Transduction Theresa Filtz, hd har 735, Winter 2006 G protein-coupled Signal Transduction Main Objectives (the big chunks) Describe in molecular detail the cascades of events in a generalized G protein-coupled signaling

More information

number Done by Corrected by Doctor Nayef Karadsheh

number Done by Corrected by Doctor Nayef Karadsheh number 15 Done by BaraaAyed Corrected by Mamoon Alqtamin Doctor Nayef Karadsheh 1 P a g e Regulation of glycogen synthesis and degradation Regulation of glycogen synthesis and degradation involves two

More information

Therefore, there is a strong interaction between pharmacodynamics and pharmacokinetics

Therefore, there is a strong interaction between pharmacodynamics and pharmacokinetics PHRM20001: How Drugs Work TOPIC 1 Mechanism of Drug Action Lecture 1: Introduction Key principles learned from the history of pharmacology: - Risk vs Reward when treating people with a drug, many drugs

More information

Define the term pharmacodynamics and identify which drug characteristics are pharmacodynamic characteristics.

Define the term pharmacodynamics and identify which drug characteristics are pharmacodynamic characteristics. Week 1: Introduction Learning Objectives What is Pharmacology? The study of drugs Drug = anything that is administered to a person in order to bring about a therapeutic or diagnostic effect or control

More information

GENERAL CHARACTERISTICS OF THE ENDOCRINE SYSTEM FIGURE 17.1

GENERAL CHARACTERISTICS OF THE ENDOCRINE SYSTEM FIGURE 17.1 GENERAL CHARACTERISTICS OF THE ENDOCRINE SYSTEM FIGURE 17.1 1. The endocrine system consists of glands that secrete chemical signals, called hormones, into the blood. In addition, other organs and cells

More information

1 - Drug preparations and route of drug administration

1 - Drug preparations and route of drug administration 1 - Drug preparations and route of drug administration - There are many ways to administer drugs 1. Enteral > drugs taken into gastro-intestinal (GI) tract, e.g. swallowing a pill 2. Parenteral > drugs

More information

Lipids and Membranes

Lipids and Membranes Lipids and Membranes Presented by Dr. Mohammad Saadeh The requirements for the Pharmaceutical Biochemistry I Philadelphia University Faculty of pharmacy Membrane transport D. Endocytosis and Exocytosis

More information

2401 : Anatomy/Physiology

2401 : Anatomy/Physiology Dr. Chris Doumen Week 11 2401 : Anatomy/Physiology Autonomic Nervous System TextBook Readings Pages 533 through 552 Make use of the figures in your textbook ; a picture is worth a thousand words! Work

More information

number Done by Corrected by Doctor Dr. Diala

number Done by Corrected by Doctor Dr. Diala number 30 Done by Dergam Al-Tarawneh Corrected by Zaid Emad Doctor Dr. Diala 1 After we ve finished talking about lipids metabolism pathways, today we will start talking about another pathway that takes

More information

Cell Biology Lecture 9 Notes Basic Principles of cell signaling and GPCR system

Cell Biology Lecture 9 Notes Basic Principles of cell signaling and GPCR system Cell Biology Lecture 9 Notes Basic Principles of cell signaling and GPCR system Basic Elements of cell signaling: Signal or signaling molecule (ligand, first messenger) o Small molecules (epinephrine,

More information

PHRM20001 NOTES PART 1 Lecture 1 History of Pharmacology- Key Principles

PHRM20001 NOTES PART 1 Lecture 1 History of Pharmacology- Key Principles PHRM20001 NOTES PART 1 Lecture 1 History of Pharmacology- Key Principles Hippocrates (5 th century BCE):... benefit my patients according to my greatest ability and judgment, and I will do no harm or injustice

More information

Section 3, Lecture 2

Section 3, Lecture 2 59-291 Section 3, Lecture 2 Diuretics: -increase in Na + excretion (naturesis) Thiazide and Related diuretics -decreased PVR due to decreases muscle contraction -an economical and effective treatment -protect

More information

Plasma membranes. Plasmodesmata between plant cells. Gap junctions between animal cells Cell junctions. Cell-cell recognition

Plasma membranes. Plasmodesmata between plant cells. Gap junctions between animal cells Cell junctions. Cell-cell recognition Cell Communication Cell Signaling Cell-to-cell communication is essential for multicellular organisms Communicate by chemical messengers Animal and plant cells have cell junctions that directly connect

More information

Receptors Functions and Signal Transduction- L4- L5

Receptors Functions and Signal Transduction- L4- L5 Receptors Functions and Signal Transduction- L4- L5 Faisal I. Mohammed, MD, PhD University of Jordan 1 PKC Phosphorylates many substrates, can activate kinase pathway, gene regulation PLC- signaling pathway

More information

Chapter 6 Communication, Integration, and Homeostasis

Chapter 6 Communication, Integration, and Homeostasis Chapter 6 Communication, Integration, and Homeostasis About This Chapter Cell-to-cell communication Signal pathways Novel signal molecules Modulation of signal pathways Homeostatic reflex pathways Cell-to-Cell

More information

Chapter 11. Cell Communication

Chapter 11. Cell Communication Chapter 11 Cell Communication Overview: The Cellular Internet Cell-to-cell communication Is absolutely essential for multicellular organisms Concept 11.1: External signals are converted into responses

More information

Pharmacodynamics. Prof. Dr. Öner Süzer Cerrahpaşa Medical Faculty Department of Pharmacology and Clinical Pharmacology

Pharmacodynamics. Prof. Dr. Öner Süzer Cerrahpaşa Medical Faculty Department of Pharmacology and Clinical Pharmacology Pharmacodynamics Prof. Dr. Öner Süzer Cerrahpaşa Medical Faculty Department of Pharmacology and Clinical Pharmacology www.onersuzer.com Last updated: 13.05.2010 English Pharmacology Textbooks 2 2 1 3 3

More information

Lecture 9: Cell Communication I

Lecture 9: Cell Communication I 02.05.10 Lecture 9: Cell Communication I Multicellular organisms need to coordinate cellular functions in different tissues Cell-to-cell communication is also used by single celled organisms to signal

More information

Endocrine System Hormones

Endocrine System Hormones Endocrine System Hormones 2007-2008 Regulation Why are hormones needed? chemical messages from one body part to another communication needed to coordinate whole body homeostasis & regulation metabolism

More information

agonistic Summation: additive Potentiation synergism :

agonistic Summation: additive Potentiation synergism : 25 Two common types of agonistic drug interactions are : 1. Summation: When two drugs with similar mechanisms are given together, they typically produce additive effects. 2. Potentiation or synergism :

More information

HYPERTENSION: Sustained elevation of arterial blood pressure above normal o Systolic 140 mm Hg and/or o Diastolic 90 mm Hg

HYPERTENSION: Sustained elevation of arterial blood pressure above normal o Systolic 140 mm Hg and/or o Diastolic 90 mm Hg Lecture 39 Anti-Hypertensives B-Rod BLOOD PRESSURE: Systolic / Diastolic NORMAL: 120/80 Systolic = measure of pressure as heart is beating Diastolic = measure of pressure while heart is at rest between

More information

Pharmacodynamics Dr. Iman Lec. 2

Pharmacodynamics Dr. Iman Lec. 2 Pharmacodynamics Dr. Iman Lec. 2 Inverse agonist: drug that produces effects which are opposite to those of the agonist, e.g. β carbolines bind to benzodiazepine receptor leading to stimulation and anxiety

More information

Receptors. Dr. Sanaa Bardaweel

Receptors. Dr. Sanaa Bardaweel Receptors Types and Theories Dr. Sanaa Bardaweel Some terms in receptor-drug interactions Agonists: drugs that mimic the natural messengers and activate receptors. Antagonist: drugs that block receptors.

More information

PHSI3009 Frontiers in Cellular Physiology 2017

PHSI3009 Frontiers in Cellular Physiology 2017 Overview of PHSI3009 L2 Cell membrane and Principles of cell communication L3 Signalling via G protein-coupled receptor L4 Calcium Signalling L5 Signalling via Growth Factors L6 Signalling via small G-protein

More information

Signal Transduction Pathways

Signal Transduction Pathways Signal Transduction Pathways If it helps, think of signal transduction pathways like what happens when you get a text message: Reception = Your phone vibrates or dings. Transduction = You unlock the phone

More information

Cell Communication. Cell Communication. Communication between cells requires: ligand: the signaling molecule

Cell Communication. Cell Communication. Communication between cells requires: ligand: the signaling molecule Cell Communication Cell Communication Communication between cells requires: ligand: the signaling molecule receptor protein: the molecule to which the ligand binds (may be on the plasma membrane or within

More information

Leen Osama, Lujain Hamdan, Osama Mohd, Razi Kittaneh... Faisal Mohammad

Leen Osama, Lujain Hamdan, Osama Mohd, Razi Kittaneh... Faisal Mohammad 23 Leen Osama, Lujain Hamdan, Osama Mohd, Razi Kittaneh... Faisal Mohammad Revision of previous lectures G-proteins coupled receptors mechanism: When a hormone binds to G-protein coupled receptor, GTP

More information

Asma Karameh Omar Sami

Asma Karameh Omar Sami 5 Asma Karameh Omar Sami Mohammad khatatbeh Happy day friends! This lecture will be discussing what we have said in the previous lectures relating to different mechanisms of transport across a biological

More information

Laith Khreisat. Ahmad Ali Massad. Faisal Muhammad

Laith Khreisat. Ahmad Ali Massad. Faisal Muhammad 21 Laith Khreisat Ahmad Ali Massad Faisal Muhammad * Note: I tried my best to include everything mentioned in the slides, but feel free to refer back to them in case I missed anything. * Last time we talked

More information

BCOR 011 Lecture 19 Oct 12, 2005 I. Cell Communication Signal Transduction Chapter 11

BCOR 011 Lecture 19 Oct 12, 2005 I. Cell Communication Signal Transduction Chapter 11 BCOR 011 Lecture 19 Oct 12, 2005 I. Cell Communication Signal Transduction Chapter 11 External signal is received and converted to another form to elicit a response 1 Lecture Outline 1. Types of intercellular

More information

Comprehensive and Easy Course Notes for BIOL1040 Exams and Assessment

Comprehensive and Easy Course Notes for BIOL1040 Exams and Assessment Comprehensive and Easy Course Notes for BIOL1040 Exams and Assessment MODULE 1: PRINCIPLES OF CELL FUNCTION Membrane Structure & Function Cellular membranes are fluid mosaics of lipids and proteins Phospholipids

More information

Lab Results: 1. Document the initial and final egg masses. 2. Calculate the percent change

Lab Results: 1. Document the initial and final egg masses. 2. Calculate the percent change Lab Results: 1. Document the initial and final egg masses. 2. Calculate the percent change 3. Draw an arrow showing which way water traveled (in or out of the egg) on your post lab. CHI- SQUARE: What if

More information

niap Terms and Definitions

niap Terms and Definitions Our topic today is about analgesics. niap General concept: pain brings patients to the Doctors at the same time. Fear from the pain can keep the patient from going to the Doctors at appropriate time. We

More information

Goals and Challenges of Communication. Communication and Signal Transduction. How Do Cells Communicate?

Goals and Challenges of Communication. Communication and Signal Transduction. How Do Cells Communicate? Goals and Challenges of Communication Reaching (only) the correct recipient(s) Imparting correct information Timeliness Causing the desired effect Effective termination Communication and Signal Transduction

More information

HORMONES (Biomedical Importance)

HORMONES (Biomedical Importance) hormones HORMONES (Biomedical Importance) Hormones are the chemical messengers of the body. They are defined as organic substances secreted into blood stream to control the metabolic and biological activities.

More information

Potassium secretion. E k = -61 log ([k] inside / [k] outside).

Potassium secretion. E k = -61 log ([k] inside / [k] outside). 1 Potassium secretion In this sheet, we will continue talking about ultrafiltration in kidney but with different substance which is K+. Here are some informations that you should know about potassium;

More information

Chapter 5 Control of Cells by Chemical Messengers

Chapter 5 Control of Cells by Chemical Messengers Chapter 5 Control of Cells by Chemical Messengers = How hormones and other signals work Intercellular Communication = Intercellular Signal Transmission Chemical communication Electrical communication Intercellular

More information

Receptor Occupancy Theory

Receptor Occupancy Theory Pharmacodynamics 1 Receptor Occupancy Theory The Law of Mass Action Activation of membrane receptors and target cell responses is proportional to the degree of receptor occupancy. Assumptions: Association

More information

Chapter 16: Endocrine System 1

Chapter 16: Endocrine System 1 Ch 16 Endocrine System Bi 233 Endocrine system Endocrine System: Overview Body s second great controlling system Influences metabolic activities of cells by means of hormones Slow signaling Endocrine glands

More information

number Done by Corrected by Doctor Alia Shatnawi

number Done by Corrected by Doctor Alia Shatnawi number 10 Done by Mohammad Shatnawi Corrected by Doctor Alia Shatnawi Agonist: a drug or a molecule that binds to a receptor and causes the activation of the receptor, exp: adrenaline is an agonist for

More information

STEIN IN-TERM EXAM -- BIOLOGY FEBRUARY 15, PAGE

STEIN IN-TERM EXAM -- BIOLOGY FEBRUARY 15, PAGE STEIN IN-TERM EXAM -- BIOLOGY 3058 -- FEBRUARY 15, 2018 -- PAGE 1 of 8 There are 25 questions in this Biology 3058 exam. All questions are "A, B, C, D, E, F, G, H" questions worth one point each. There

More information

Principles of Anatomy and Physiology

Principles of Anatomy and Physiology Principles of Anatomy and Physiology 14 th Edition CHAPTER 27 Fluid, Electrolyte, and Acid Base Fluid Compartments and Fluid In adults, body fluids make up between 55% and 65% of total body mass. Body

More information

Cellular Messengers. Intracellular Communication

Cellular Messengers. Intracellular Communication Cellular Messengers Intracellular Communication Most common cellular communication is done through extracellular chemical messengers: Ligands Specific in function 1. Paracrines Local messengers (neighboring

More information

Chemistry 106: Drugs in Society Lecture 19: How do Drugs Elicit an Effect? Interactions between Drugs and Macromolecular Targets 11/02/17

Chemistry 106: Drugs in Society Lecture 19: How do Drugs Elicit an Effect? Interactions between Drugs and Macromolecular Targets 11/02/17 Chemistry 106: Drugs in Society Lecture 19: How do Drugs Elicit an Effect? Interactions between Drugs and Macromolecular Targets 11/02/17 Targets for Therapeutic Intervention: A Comparison of Enzymes to

More information

Biology 12 January 2003 Provincial Examination

Biology 12 January 2003 Provincial Examination Biology 12 January 2003 Provincial Examination ANSWER KEY / SCORING GUIDE CURRICULUM: Organizers 1. Cell Biology 2. Cell Processes and Applications 3. Human Biology Sub-Organizers A, B, C, D E, F, G, H

More information

Endocrine System Hormones (Ch. 45)

Endocrine System Hormones (Ch. 45) Endocrine System Hormones (Ch. 45) Regulation Why are hormones needed? chemical messages from one body part to another communication needed to coordinate whole body daily homeostasis & regulation of large

More information

January 25, Introduction to Pharmacology

January 25, Introduction to Pharmacology January 25, 2015 Introduction to Pharmacology Edward Fisher, Ph.D., R.Ph. Professor and Associate Dean for Academic Affairs Director MS Clinical Psychopharmacology University of Hawaii at Hilo College

More information

BIOCHEMISTRY #12 BY: AMMAR AL-HABAHBEH فيصل الخطيب. October 11, 2012

BIOCHEMISTRY #12 BY: AMMAR AL-HABAHBEH فيصل الخطيب. October 11, 2012 BIOCHEMISTRY #12 د. فيصل الخطيب October 11, 2012 BY: AMMAR AL-HABAHBEH The Beginning Degradation and synthesis does not occur in a single step but in several steps where sequence of steps converts starting

More information

Basic Pharmacology. Understanding Drug Actions and Reactions

Basic Pharmacology. Understanding Drug Actions and Reactions Basic Pharmacology Understanding Drug Actions and Reactions MARIA A. HERNANDEZ Ph.D. Pharmaceutical and Administrative College of Pharmacy Nova Southeastern University Ft. Lauderdale, Florida, U.S.A. APPU

More information

Cell Communication. Local and Long Distance Signaling

Cell Communication. Local and Long Distance Signaling Cell Communication Cell to cell communication is essential for multicellular organisms Some universal mechanisms of cellular regulation providing more evidence for the evolutionary relatedness of all life

More information

3.D- Cell Communication

3.D- Cell Communication 3.D- Cell Communication Big Idea 3: Living systems store, retrieve, transmit and respond to information essential to life processes. EU 3.A: Heritable information provides for continuity of life. EU 3.B:

More information

Revision. General functions of hormones. Hormone receptors. Hormone derived from steroids Small polypeptide Hormone

Revision. General functions of hormones. Hormone receptors. Hormone derived from steroids Small polypeptide Hormone االله الرحمن الرحيم بسم Revision General functions of hormones. Hormone receptors Classification according to chemical nature Classification according to mechanism of action Compare and contrast between

More information

Physiology (6) 2/4/2018. Rahmeh Alsukkar

Physiology (6) 2/4/2018. Rahmeh Alsukkar Physiology (6) 2/4/2018 Rahmeh Alsukkar **unfortunately the sheet does not involve the slides. ** the doctor repeat a lot of things from the previous lecture so this sheet will begin from slide 139 to

More information

It s Not Just Serotonin: Neurosignaling in Mental Illness

It s Not Just Serotonin: Neurosignaling in Mental Illness It s Not Just Serotonin: Neurosignaling in Mental Illness Barbara J. Limandri, DNSc, APRN, BC Professor of Nursing Linfield College Learning Outcomes Distinguish between metabotropic and ionotropic neuroreceptors

More information

Endocrine System Hormones. AP Biology

Endocrine System Hormones. AP Biology Endocrine System Hormones 2007-2008 Regulation Why are hormones needed? u chemical messages from one body part to another u communication needed to coordinate whole body u daily homeostasis & regulation

More information

RESPIRATORY PHARMACOLOGY - ASTHMA. Primary Exam Teaching - Westmead ED

RESPIRATORY PHARMACOLOGY - ASTHMA. Primary Exam Teaching - Westmead ED RESPIRATORY PHARMACOLOGY - ASTHMA Primary Exam Teaching - Westmead ED Sympathomimetic agents MOA: relax airway smooth muscle and inhibit broncho constricting mediators from mast cells May also inhibit

More information

Session ID: 1001 June 14, 2012

Session ID: 1001 June 14, 2012 It s Not Just Serotonin: Neurosignaling in Mental Illness Barbara J. Limandri, DNSc, APRN, BC Professor of Nursing Linfield College Learning Outcomes Distinguish between metabotropic and ionotropic neuroreceptors

More information

General Principles of Endocrine Physiology

General Principles of Endocrine Physiology General Principles of Endocrine Physiology By Dr. Isabel S.S. Hwang Department of Physiology Faculty of Medicine University of Hong Kong The major human endocrine glands Endocrine glands and hormones

More information

FUNDAMENTALS OF BIOCHEMISTRY, CELL BIOLOGY AND BIOPHYSICS Vol. I - Biochemistry of Vitamins, Hormones and Other Messenger Molecules - Chris Whiteley

FUNDAMENTALS OF BIOCHEMISTRY, CELL BIOLOGY AND BIOPHYSICS Vol. I - Biochemistry of Vitamins, Hormones and Other Messenger Molecules - Chris Whiteley BIOCHEMISTRY OF VITAMINS, HORMONES AND OTHER MESSENGER MOLECULES Chris Whiteley Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa Keywords: phosphorylation, phosphorylase,

More information

This presentation will be posted to the website.

This presentation will be posted to the website. This presentation will be posted to the website. 1. Steroid hormones operate by: A. crossing the cell membrane and triggering transcription for the appropriate protein B. attaching to the cell membrane

More information

Membrane Structure and Function

Membrane Structure and Function BIOL1040 Page 1 Membrane Structure and Function Friday, 6 March 2015 2:58 PM Cellular Membranes Fluid mosaics of lipids and proteins Phospholipids - abundant Phospholipids are amphipathic molecules (has

More information

Cellular Signaling Pathways. Signaling Overview

Cellular Signaling Pathways. Signaling Overview Cellular Signaling Pathways Signaling Overview Signaling steps Synthesis and release of signaling molecules (ligands) by the signaling cell. Transport of the signal to the target cell Detection of the

More information

Chapter 19 The Urinary System Fluid and Electrolyte Balance

Chapter 19 The Urinary System Fluid and Electrolyte Balance Chapter 19 The Urinary System Fluid and Electrolyte Balance Chapter Outline The Concept of Balance Water Balance Sodium Balance Potassium Balance Calcium Balance Interactions between Fluid and Electrolyte

More information

BIOH111. o Cell Module o Tissue Module o Skeletal system o Muscle system o Nervous system o Endocrine system o Integumentary system

BIOH111. o Cell Module o Tissue Module o Skeletal system o Muscle system o Nervous system o Endocrine system o Integumentary system BIOH111 o Cell Module o Tissue Module o Skeletal system o Muscle system o Nervous system o Endocrine system o Integumentary system Endeavour College of Natural Health endeavour.edu.au 1 Textbook and required/recommended

More information

Neurotransmitter Systems II Receptors. Reading: BCP Chapter 6

Neurotransmitter Systems II Receptors. Reading: BCP Chapter 6 Neurotransmitter Systems II Receptors Reading: BCP Chapter 6 Neurotransmitter Systems Normal function of the human brain requires an orderly set of chemical reactions. Some of the most important chemical

More information

Chapter 17. Lecture and Animation Outline

Chapter 17. Lecture and Animation Outline Chapter 17 Lecture and Animation Outline To run the animations you must be in Slideshow View. Use the buttons on the animation to play, pause, and turn audio/text on or off. Please Note: Once you have

More information

CHAPTER II PDL 101 HUMAN ANATOMY & PHYSIOLOGY. Ms. K. GOWRI. M.Pharm., Lecturer.

CHAPTER II PDL 101 HUMAN ANATOMY & PHYSIOLOGY. Ms. K. GOWRI. M.Pharm., Lecturer. CHAPTER II PDL 101 HUMAN ANATOMY & PHYSIOLOGY Ms. K. GOWRI. M.Pharm., Lecturer. Structure of cell: Human body develops from a single cell zygote which results from fusion of the ovum andd the spermatozoan.

More information

Class 5 the neurotransmitters (drugs)

Class 5 the neurotransmitters (drugs) Victoria September 7th 2017 Class 5 the neurotransmitters (drugs) psychopharmacology: study of the effects of a drug on behavior pharmacokinetics: study of the fate / movement of substances administered

More information

*Today s lecture is from chapter 15 from a book called Stryer the doctor gave us the website:

*Today s lecture is from chapter 15 from a book called Stryer the doctor gave us the website: *Today s lecture is from chapter 15 from a book called Stryer the doctor gave us the website: You can Google it (Pubmed) or www.ncbi.nlm.nih.gov/books/nbk21205/,the book also has lots of medical articles

More information

Autonomic Nervous System (ANS):

Autonomic Nervous System (ANS): Autonomic Nervous System (ANS): ANS is the major involuntary, unconscious, automatic portion of the nervous system. involuntary voluntary The motor (efferent)portion of the ANS is the major pathway for

More information

Cofactors and coenzymes. Reversible, irreversible, competitive, and noncompetitive inhibitors. Allosteric enzymes. Feedback inhibition.

Cofactors and coenzymes. Reversible, irreversible, competitive, and noncompetitive inhibitors. Allosteric enzymes. Feedback inhibition. Enzyme regulation Cofactors and coenzymes. Reversible, irreversible, competitive, and noncompetitive inhibitors. Allosteric enzymes. Feedback inhibition. Introduction The genome of a typical organism,

More information

Hormones, Receptors and Receptor-Hormone Interactions

Hormones, Receptors and Receptor-Hormone Interactions Classification of Hormones Hormones, Receptors and Receptor-Hormone Interactions Synthesis of Protein Hormones and Amine Hormones Hormone Activity Locations of Receptors Mechanisms of Hormone Action Types

More information