Airway Inflammation in Asthma Chih-Yung Chiu 1,2, Kin-Sun Wong 2 1 Department of Pediatrics, Chang Gung Memorial Hospital, Keelung, Taiwan.

Size: px
Start display at page:

Download "Airway Inflammation in Asthma Chih-Yung Chiu 1,2, Kin-Sun Wong 2 1 Department of Pediatrics, Chang Gung Memorial Hospital, Keelung, Taiwan."

Transcription

1 REVIEW ARTICLE Chih-Yung Chiu 1,2, Kin-Sun Wong 2 1 Department of Pediatrics, Chang Gung Memorial Hospital, Keelung, Taiwan. 2 Division of Pediatric Pulmonology, Department of Pediatrics, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Taoyuan, Taiwan. Abstract Airway inflammation is a prominent feature of asthma characterized by infiltration of eosinophils and other inflammatory cells to the airways. Airway production of chemokines, cytokines and adhesion molecules play an important role in the modulation of acute and chronic airway inflammation. Blocking these inflammatory mediators is believed to be of clinical benefit for chronic airway inflammation. Corticosteroids are widely used to treat various immune and inflammatory diseases. The most effective use of corticosteroids is in the treatment of asthma; however, they are ineffective in suppressing the inflammation seen in severe asthma. This article reviews the cells involved in inflammation and immunity associated with asthma. Pro-inflammatory cytokines and chemokines involved in asthma are also discussed. A fully understanding of the relationship between inflammatory cells and their inflammatory mediators may not only provide a useful therapeutic strategy but also an alternative in the treatment of corticosteroid-resistant asthma.(j Pediatr Resp Dis 2014;10:19-23) Key words: asthma, inflammatory cell, airway hyper-responsiveness INTRODUCTION Airway inflammation is a feature of lung diseases characterized by airway obstruction and excessive airway secretions. Asthma is the most common airway disease characterized by airway hyper-responsiveness (AHR), intermittent and reversible airway obstruction, and airway inflammatio. 1 The inflammation in asthma is mainly located in the larger conducting airways and small airways in more severe asthma. The airway inflammation can be divided into three stages. First, in the acute phase, allergic reaction to stimuli such as allergens or viruses leads to edema, smooth muscle contraction, and an increase in mucus production in the lungs. Second, a residual stimulus leads to the chronic phase which is characterized by epithelial cell denudation and the influx of inflammatory cells Correspondence: Chih-Yung Chiu, M.D. Address: Division of Pediatric Pulmonology, Department of Pediatrics, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Taoyuan, Taiwan. No.222, Maijin Road, Keelung, Taiwan. Tel: ext Fax: pedchest@adm.cgmh.org.tw Received: May 26, Accepted: June 27, Journal compilation 2014 Taiwan Society of Pediatric Pulmonology such as mast cells, eosinophils and lymphocytes into airway tissue. In the third and final stage, chronic airway remodeling, which results from an increase in extracellular matrix proteins and vascular changes, may lead to a progressive loss of lung function. 2 Thickening of the airway smooth muscle cell layer, as a result of hyperplasia and hypertrophy, is more commonly seen in patients with severe asthma. 3 Airway inflammation can occur in response to exposure to particulates like pollens, pollutants, allergens and other substances. Airway epithelial cells are important in defense of the airways and are also activated by these stimuli to product inflammatory mediators. Airway production of chemokines, cytokines, adhesion molecules and inflammatory mediators play an important role in the modulation of airway inflammation in asthma. This article reviews the inflammatory and immune cells, and pro-inflammatory cytokines and chemokines involved in asthma. Inflammatory and Immune Cells in Asthma Many inflammatory cells are recruited to asthmatic airways or are activated in the airways. These include

2 Chiu CY, et al. mast cells, macrophages, eosinophils, T lymphocytes, dendritic cells, basophils, neutrophils, and platelets. 4 In asthmatic patients, bronchial biopsies reveal an inflammatory infiltration predominated by eosinophils, mast cells and activated Th2 type lymphocytes. The interactions of inflammatory and immune cells involved in asthma are illustrated in Figure 1. Mast Cells In asthma, mast cells have a key role in initiating the acute broncho-constrictor response to allergens as they release several broncho-constrictors, including histamine, leukotrienes and prostaglandin D2. 5 Mucosal mast cells are recruited and maintained at the mucosal surface of the airways by stem-cell factor (SCF) the latter being released from epithelial cells. Mast cells present in the airway smooth muscle have also been reported to be linked to the airway hyper-responsiveness seen in asthma. 5 Dendritic Cells Dendritic cells are very effective antigen-presenting cells and play an important role in the initiation of allergen-induced responses in asthma. 6 Allergens are processed by myeloid dendritic cells through thymic stromal lymphopoietin (TSLP) produced by epithelial cells and mast cells. The maturation of dendritic cells is accompanied by the production of chemokines CCchemokine ligand 17 (CCL17) and CCL22, which can recruit activated Th2 cells expressing C-C chemokine receptor type 4 (CCR4). 7 Increased expression of these chemokines has been reported in the bronchial mucosa Figure 1. Interactions of Inflammatory and Immune Cells Involved in Asthma. Inhaled allergens activate sensitized mast cells by crosslinking surface-bound IgE molecules to release several bronchoconstrictor mediators, including histamine, leukotrienes and prostaglandin D2. Epithelial cells release stem-cell factor (SCF) to maintain mucosal mast cells at the airway surface. Allergens are processed by myeloid dendritic cells and thymic stromal lymphopoietin (TSLP) secreted by epithelial cells and mast cells induce the release of chemokines CC chemokine ligand 17 (CCL17) and CCL22, which act on CC chemokine receptor 4 (CCR4) to attract T helper 2 (Th2) cells. Th2 cells releases interleukin 4 (IL 4) and IL 13 to stimulate B cells to synthesize IgE, IL 9 to stimulate mast-cell proliferation and IL 5 to recruit eosinophils. Eosinophils are also recruited by CCL11 secreted from epithelial cells via CCR3. 20

3 of asthma patients. 7 Eosinophils Eosinophil infiltration is a characteristic feature of asthmatic airways. Eosinophils are derived from bone marrow precursors. The IL-5 released from Th2 lymphocytes is a unique mediator of eosinophil differentiation and survival in response to allergen provocation. In asthma, airway epithelial cells secrete eosinophil chemotactic factors, such as CCL11 resulting in the recruitment and accumulation of eosinophils in the airways. Other mediators such as eotaxins, CCL5 (RANTES) and CCL13 (MCP-4), expressed in epithelial cells are also involved in the migration of eosinophils from the circulation to the surface of airways. 8 Neutrophils In exacerbations of asthma triggered by viruses, there are increases in the numbers of neutrophils and eosinophils. 9 There is also increasing evidence that neutrophilic inflammation, which is poorly responsive to corticosteroids, plays a major role in the pathogenesis of asthma exacerbations. 10 Several neutrophil chemotactic factors may play roles in neutrophil migration into the respiratory tract. These mediators include leukotriene B4, CXCL8, CXCL1 and CXCL5 and they are derived from alveolar macrophages and epithelial cells. 11 A neutrophilic pattern of inflammation is commonly seen in patients with severe asthma due to the release of the chemokine neutrophilic CXCL8 from airway epithelial cells through IL-17 produced by Th17 cells. 12 T cells In asthmatic patients, there is an increase in the number of CD4 + T cells (predominantly T helper 2 (Th2) cells) in the airways. Secreted cytokines IL-4 and IL-13 from Th2 cells drive IgE production by B cells. Secreted IL-5 is also necessary for eosinophilic inflammation whilst IL-9 attracts and stimulates mast cell proliferation. 13 The recruitment of Th2 cells in the airway is dependent on several chemotactic mediators including the chemokines CCL17 and CCL22. 7 Pro-inflammatory Cytokines and Chemokines in Asthma In patients with asthma, pro-inflammatory cytokines, such as TNF-α, IL-1β and IL-6 are found in increased levels in the sputum and bronchial alveolar lavage (BAL) fluid and amplify inflammation. 14 Blocking these cytokines is believed to be of clinical benefit for airway inflammation. In addition to cytokines, chemokines (chemotactic cytokines) play a crucial role in the recruitment of different types of inflammatory cells from the blood to the airways in asthma. 15 There are two major families of chemokines that are defined and distinguished by the position of four conserved cysteine residues. The largest family is the CC chemokines which are named because the first two of the four cysteine residues are adjacent to each other. The second family is the CXC chemokines which have two cysteine residues in the same region, but with an interposed amino acid. 16 The pro-inflammatory cytokines and chemokines involved in airway inflammation in asthma are detailed below. TNF-α Many cells including macrophages, mast cells, T cells, epithelial cells, and airway smooth muscle cells have the capacity to produce and secrete TNF-α. TNF-α may play a key role in the airway hyper-responsiveness (AHR) of asthma. Blocking TNF-α has been reported to reduce AHR and improve lung function in patients with severe asthma. 17 IL-1β In asthma, IL-1β levels are increased in the airways of asthma patients and the cytokine activates cell signaling pathways of inflammation. IL-1 receptor antagonist (IL-1Ra) administration has been shown to result in reduction of AHR in mice, although human recombinant IL-1 Ra results in no improvement of disease in asthma patients. 18 IL-6 IL-6 levels are increased in induced sputum of asthmatic patients and the cytokine may play a role in the expansion of Th2 cells. It is positively correlated 21

4 Chiu CY, et al. with increased IL-13 levels resulting in inflammatory amplification in asthma. 19 IL-6 is also found in increased levels in the serum of patients with asthma exacerbation, especially induced by virus infection. 20 CC Chemokines Eosinophils express CCR3 which mediates the chemotactic response to several chemokines, including CCL11 (also known as eotaxin) and CCL5 (also known as RANTES), all of which show increased levels in the airways of patients with asthma, especially in airway epithelial and smooth muscle cells CXC Chemokines CXCL8 and CXCL1 (also known as growth regulated oncogene α [GRO-α]) activate mainly CXCR1 and CXCR2 respectively and play a crucial role in the recruitment of neutrophils into the airways. CXCL1 and CXCL8 levels are shown to be positively correlated with increase in neutrophil count. 11 CXCL8 has also been reported to be increased in the airways and sputum of patients with severe asthma and during 24, 25 exacerbations. In conclusion, airway inflammation is a prominent feature of asthma characterized by infiltration of eosinophils and other inflammatory cells to the airways. Airway production of chemokines, cytokines and adhesion molecules play an important role in the modulation of acute and chronic airway inflammation. Blocking these inflammatory mediators is believed to be of clinical benefit for chronic airway inflammation. REFERENCES 1. Lundback B, Dahl R. Assessment of asthma control and its impact on optimal treatment strategy. Allergy 2007;62: Jeffery PK. Remodeling and inflammation of bronchi in asthma and chronic obstructive pulmonary disease. Proc Am Thorac Soc 2004;1: Benayoun L, Druilhe A, Dombret MC, Aubier M, Pretolani M. Airway structural alterations selectively associated with severe asthma. Am J Respir Crit Care Med 2003;167: Chedevergne F, Le Bourgeois M, de Blic J, Scheinmann P. The role of inflammation in childhood asthma. Arch Dis Child 2000;82 Suppl 2, II Brightling CE, et al. Mast-cell infiltration of airway smooth muscle in asthma. N Engl J Med 2002;346: Hammad H, Lambrecht BN. Dendritic cells and epithelial cells: linking innate and adaptive immunity in asthma. Nat Rev Immunol 2008;8: Ying S, et al. Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of Th2-attracting chemokines and disease severity. J Immunol 2005;174: Barnes PJ. Immunology of asthma and chronic obstructive pulmonary disease. Nat Rev Immunol 2008;8: Wark PA, Gibson PG. Asthma exacerbations. 3: Pathogenesis. Thorax 2006;61: Martinez FD. Managing childhood asthma: challenge of preventing exacerbations. Pediatrics 2009;123 Suppl 3:S Wu Q, et al. Elevated levels of the chemokine GRO-1 correlate with elevated oligodendrocyte progenitor proliferation in the jimpy mutant. J Neurosci 2000;20: Bullens DM, et al. IL-17 mrna in sputum of asthmatic patients: linking T cell driven inflammation and granulocytic influx? Respir Res 2006;7: Kouro T, Takatsu K. IL-5- and eosinophil-mediated inflammation: from discovery to therapy. Int Immunol 2009;21: Renauld JC. New insights into the role of cytokines in asthma. J Clin Pathol 2001;54: Blease K, Lukacs NW, Hogaboam CM, Kunkel SL. Chemokines and their role in airway hyperreactivity. Respir Res 2000;1: Charo IF, Ransohoff RM. The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 2006;354: Berry MA, et al. Evidence of a role of tumor necrosis factor alpha in refractory asthma. N Engl J Med 2006;354: Rosenwasser LJ. Biologic activities of IL-1 and

5 its role in human disease. J Allergy Clin Immunol 1998;102: Neveu WA, et al. Elevation of IL-6 in the allergic asthmatic airway is independent of inflammation but associates with loss of central airway function. Respir Res 2010;11: Yamaya M. Virus infection-induced bronchial asthma exacerbation. Pulm Med 2012;2012: Ying S, et al. Eosinophil chemotactic chemokines (eotaxin, eotaxin-2, RANTES, monocyte chemoattractant protein-3 (MCP-3), and MCP- 4), and C-C chemokine receptor 3 expression in bronchial biopsies from atopic and nonatopic (Intrinsic) asthmatics. J Immunol 1999;163: Zhu J, et al. Exacerbations of Bronchitis: bronchial eosinophilia and gene expression for interleukin-4, interleukin-5, and eosinophil chemoattractants. Am J Respir Crit Care Med 2001;164: Berkman N, et al. Expression of RANTES mrna and protein in airways of patients with mild asthma. Am J Respir Crit Care Med 1996;154: Jatakanon A, et al. Neutrophilic inflammation in severe persistent asthma. Am J Respir Crit Care Med 1999;160: Norzila MZ, Fakes K, Henry RL, Simpson J, Gibson PG. Interleukin-8 secretion and neutrophil recruitment accompanies induced sputum eosinophil activation in children with acute asthma. Am J Respir Crit Care Med 2000;161:

Defining Asthma: Clinical Criteria. Defining Asthma: Bronchial Hyperresponsiveness

Defining Asthma: Clinical Criteria. Defining Asthma: Bronchial Hyperresponsiveness Defining Asthma: Clinical Criteria Atopy 34% Recent wheeze 20% Asthma 11% AHR 19% n = 807 From: Woolcock, AJ. Asthma in Textbook of Respiratory Medicine, 2nd ed. Murray, Nadel, eds.(saunders:philadelphia)

More information

Searching for Targets to Control Asthma

Searching for Targets to Control Asthma Searching for Targets to Control Asthma Timothy Craig Distinguished Educator Professor Medicine and Pediatrics Penn State University Hershey, PA, USA Inflammation and Remodeling in Asthma The most important

More information

Dr Rodney Itaki Lecturer Division of Pathology Anatomical Pathology Discipline

Dr Rodney Itaki Lecturer Division of Pathology Anatomical Pathology Discipline Pathology of Asthma Dr Rodney Itaki Lecturer Division of Pathology Anatomical Pathology Discipline Bronchial Asthma Definition: chronic, relapsing inflammatory lung disorder characterised by reversible

More information

E-1 Role of IgE and IgE receptors in allergic airway inflammation and remodeling

E-1 Role of IgE and IgE receptors in allergic airway inflammation and remodeling E-1 Role of IgE and IgE receptors in allergic airway inflammation and remodeling Ruby Pawankar, MD, Ph.D. FRCP, FAAAAI Prof. Div of Allergy, Dept of Pediatrics Nippon Medical School Tokyo, Japan pawankar.ruby@gmail.com

More information

Impact of Asthma in the U.S. per Year. Asthma Epidemiology and Pathophysiology. Risk Factors for Asthma. Childhood Asthma Costs of Asthma

Impact of Asthma in the U.S. per Year. Asthma Epidemiology and Pathophysiology. Risk Factors for Asthma. Childhood Asthma Costs of Asthma American Association for Respiratory Care Asthma Educator Certification Prep Course Asthma Epidemiology and Pathophysiology Robert C. Cohn, MD, FAARC MetroHealth Medical Center Cleveland, OH Impact of

More information

Implications on therapy. Prof. of Medicine and Allergy Faculty of Medicine, Cairo University

Implications on therapy. Prof. of Medicine and Allergy Faculty of Medicine, Cairo University Implications on therapy Dr. Hisham Tarraf MD,FRCP(Edinb.) Prof. of Medicine and Allergy Faculty of Medicine, Cairo University Need for better understanding Global health problem Impact on quality of life

More information

Immunology of Asthma. Kenneth J. Goodrum,Ph. Ph.D. Ohio University College of Osteopathic Medicine

Immunology of Asthma. Kenneth J. Goodrum,Ph. Ph.D. Ohio University College of Osteopathic Medicine Immunology of Asthma Kenneth J. Goodrum,Ph Ph.D. Ohio University College of Osteopathic Medicine Outline! Consensus characteristics! Allergens:role in asthma! Immune/inflammatory basis! Genetic basis!

More information

Defining Asthma: Clinical Criteria. Defining Asthma: Bronchial Hyperresponsiveness

Defining Asthma: Clinical Criteria. Defining Asthma: Bronchial Hyperresponsiveness Defining Asthma: Clinical Criteria Atopy 34% Recent wheeze 20% Asthma 11% AHR 19% n = 807 From: Woolcock, AJ. Asthma in Textbook of Respiratory Medicine, 2nd ed. Murray, Nadel, eds.(saunders:philadelphia)

More information

Defining Asthma: Bronchial Hyperresponsiveness. Defining Asthma: Clinical Criteria. Impaired Ventilation in Asthma. Dynamic Imaging of Asthma

Defining Asthma: Bronchial Hyperresponsiveness. Defining Asthma: Clinical Criteria. Impaired Ventilation in Asthma. Dynamic Imaging of Asthma Defining Asthma: Clinical Criteria Defining Asthma: Bronchial Hyperresponsiveness Atopy 34% Recent wheeze 20% Asthma 11% AHR 19% n = 807 From: Woolcock, AJ. Asthma in Textbook of Respiratory Medicine,

More information

Allergic rhinitis (Hay fever) Asthma Anaphylaxis Urticaria Atopic dermatitis

Allergic rhinitis (Hay fever) Asthma Anaphylaxis Urticaria Atopic dermatitis Hypersensitivity Disorders Hypersensitivity Disorders Immune Response IgE Disease Example Ragweed hay fever IgG Cytotoxic Immune complex T Cell Hemolytic anemia Serum sickness Poison ivy IgE-mediated Diseases

More information

Property of Presenter

Property of Presenter Have We Missed A Role For Neutrophils In Asthma? In Steroid-Refractory Asthma? Erwin W. Gelfand, MD Chairman, Department of Pediatrics National Jewish Health Professor of Pediatrics and Immunology University

More information

RESPIRATORY BLOCK. Bronchial Asthma. Dr. Maha Arafah Department of Pathology KSU

RESPIRATORY BLOCK. Bronchial Asthma. Dr. Maha Arafah Department of Pathology KSU RESPIRATORY BLOCK Bronchial Asthma Dr. Maha Arafah Department of Pathology KSU marafah@ksu.edu.sa Jan 2018 Objectives Define asthma (BA) Know the two types of asthma 1. Extrinsic or atopic allergic 2.

More information

The cytokine network in asthma and chronic obstructive pulmonary disease

The cytokine network in asthma and chronic obstructive pulmonary disease Review series The cytokine network in asthma and chronic obstructive pulmonary disease Peter J. Barnes National Heart & Lung Institute, Imperial College London, London, United Kingdom. Asthma and chronic

More information

Medicine Dr. Kawa Lecture 1 Asthma Obstructive & Restrictive Pulmonary Diseases Obstructive Pulmonary Disease Indicate obstruction to flow of air

Medicine Dr. Kawa Lecture 1 Asthma Obstructive & Restrictive Pulmonary Diseases Obstructive Pulmonary Disease Indicate obstruction to flow of air Medicine Dr. Kawa Lecture 1 Asthma Obstructive & Restrictive Pulmonary Diseases Obstructive Pulmonary Disease Indicate obstruction to flow of air through the airways. As asthma, COPD ( chronic bronchitis

More information

Cell-Derived Inflammatory Mediators

Cell-Derived Inflammatory Mediators Cell-Derived Inflammatory Mediators Introduction about chemical mediators in inflammation Mediators may be Cellular mediators cell-produced or cell-secreted derived from circulating inactive precursors,

More information

DNA vaccine, peripheral T-cell tolerance modulation 185

DNA vaccine, peripheral T-cell tolerance modulation 185 Subject Index Airway hyperresponsiveness (AHR) animal models 41 43 asthma inhibition 45 overview 41 mast cell modulation of T-cells 62 64 respiratory tolerance 40, 41 Tregs inhibition role 44 respiratory

More information

Cytokines, adhesion molecules and apoptosis markers. A comprehensive product line for human and veterinary ELISAs

Cytokines, adhesion molecules and apoptosis markers. A comprehensive product line for human and veterinary ELISAs Cytokines, adhesion molecules and apoptosis markers A comprehensive product line for human and veterinary ELISAs IBL International s cytokine product line... is extremely comprehensive. The assays are

More information

Identifying Biologic Targets to Attenuate or Eliminate Asthma Exacerbations

Identifying Biologic Targets to Attenuate or Eliminate Asthma Exacerbations Identifying Biologic Targets to Attenuate or Eliminate Exacerbations exacerbations are a major cause of disease morbidity and costs. For both children and adults, viral respiratory infections are the major

More information

Exhaled Nitric Oxide: An Adjunctive Tool in the Diagnosis and Management of Asthma

Exhaled Nitric Oxide: An Adjunctive Tool in the Diagnosis and Management of Asthma Exhaled Nitric Oxide: An Adjunctive Tool in the Diagnosis and Management of Asthma Jason Debley, MD, MPH Assistant Professor, Pediatrics Division of Pulmonary Medicine University of Washington School of

More information

Immunology of Asthma. Kenneth J. Goodrum,Ph. Ph.D. Ohio University College of Osteopathic Medicine

Immunology of Asthma. Kenneth J. Goodrum,Ph. Ph.D. Ohio University College of Osteopathic Medicine Immunology of Asthma Kenneth J. Goodrum,Ph Ph.D. Ohio University College of Osteopathic Medicine Outline Consensus characteristics/incidence data Immune/inflammatory basis Etiology/Genetic basis Hygiene

More information

COPYRIGHTED MATERIAL. Definition and Pathology CHAPTER 1. John Rees

COPYRIGHTED MATERIAL. Definition and Pathology CHAPTER 1. John Rees CHAPTER 1 Definition and Pathology John Rees Sherman Education Centre, Guy s Hospital, London, UK OVERVIEW Asthma is an overall descriptive term but there are a number of more or less distinct phenotypes

More information

Kun Jiang 1, He-Bin Chen 1, Ying Wang 1, Jia-Hui Lin 2, Yan Hu 1, Yu-Rong Fang 1

Kun Jiang 1, He-Bin Chen 1, Ying Wang 1, Jia-Hui Lin 2, Yan Hu 1, Yu-Rong Fang 1 Original Article Changes in interleukin-17 and transforming growth factor beta 1 levels in serum and bronchoalveolar lavage fluid and their clinical significance among children with asthma Kun Jiang 1,

More information

Phenotypes of asthma; implications for treatment. Medical Grand Rounds Feb 2018 Jim Martin MD DSc

Phenotypes of asthma; implications for treatment. Medical Grand Rounds Feb 2018 Jim Martin MD DSc Phenotypes of asthma; implications for treatment Medical Grand Rounds Feb 2018 Jim Martin MD DSc No conflicts to declare Objectives To understand the varied clinical forms of asthma To understand the pathobiologic

More information

December 7, 2010 Future Use of Biologics in Allergy and Asthma

December 7, 2010 Future Use of Biologics in Allergy and Asthma December 7, 2010 Future Use of Biologics in Allergy and Asthma Lanny J. Rosenwasser, M.D. Dee Lyons/Missouri Endowed Chair in Immunology Research Professor of Pediatrics Allergy-Immunology Division Childrens

More information

Rising Incidence of Asthma

Rising Incidence of Asthma Controlling Severe Asthma through Advanced Diagnosis and Treatment Strategies James F. Donohue, MD Professor of Medicine Division of Pulmonary and Critical Care Medicine University of North Carolina at

More information

The recruitment of leukocytes and plasma proteins from the blood to sites of infection and tissue injury is called inflammation

The recruitment of leukocytes and plasma proteins from the blood to sites of infection and tissue injury is called inflammation The migration of a particular type of leukocyte into a restricted type of tissue, or a tissue with an ongoing infection or injury, is often called leukocyte homing, and the general process of leukocyte

More information

Systems Pharmacology Respiratory Pharmacology. Lecture series : General outline

Systems Pharmacology Respiratory Pharmacology. Lecture series : General outline Systems Pharmacology 3320 2017 Respiratory Pharmacology Associate Professor Peter Henry (Rm 1.34) Peter.Henry@uwa.edu.au Division of Pharmacology, School of Biomedical Sciences Lecture series : General

More information

COPD and Asthma: Similarities and differences Prof. Peter Barnes

COPD and Asthma: Similarities and differences Prof. Peter Barnes and Asthma: Similarities and Differences and Asthma: 1 Imperial College Peter Barnes FRS, FMedSci, National Heart & Lung Institute Imperial College, London, UK p.j.barnes@imperial.ac.uk Royal Brompton

More information

Diagnosis and Management of Fungal Allergy Monday, 9-139

Diagnosis and Management of Fungal Allergy Monday, 9-139 Diagnosis and Management of Fungal Allergy Monday, 9-139 13-2010 Alan P. Knutsen,, MD Director, Pediatric Allergy & Immunology Director, Jeffrey Modell Diagnostic Center for Primary Immunodeficiencies

More information

Question 1. Kupffer cells, microglial cells and osteoclasts are all examples of what type of immune system cell?

Question 1. Kupffer cells, microglial cells and osteoclasts are all examples of what type of immune system cell? Abbas Chapter 2: Sarah Spriet February 8, 2015 Question 1. Kupffer cells, microglial cells and osteoclasts are all examples of what type of immune system cell? a. Dendritic cells b. Macrophages c. Monocytes

More information

Chapter 3, Part A (Pages 37-45): Leukocyte Migration into Tissues

Chapter 3, Part A (Pages 37-45): Leukocyte Migration into Tissues Allergy and Immunology Review Corner: Chapter 3, Part A (pages 37-45) of Cellular and Molecular Immunology (Seventh Edition), by Abul K. Abbas, Andrew H. Lichtman and Shiv Pillai. Chapter 3, Part A (Pages

More information

Cytokines modulate the functional activities of individual cells and tissues both under normal and pathologic conditions Interleukins,

Cytokines modulate the functional activities of individual cells and tissues both under normal and pathologic conditions Interleukins, Cytokines http://highered.mcgraw-hill.com/sites/0072507470/student_view0/chapter22/animation the_immune_response.html Cytokines modulate the functional activities of individual cells and tissues both under

More information

THE PROMISE OF NEW AND NOVEL DRUGS. Pyng Lee Respiratory & Critical Care Medicine National University Hospital

THE PROMISE OF NEW AND NOVEL DRUGS. Pyng Lee Respiratory & Critical Care Medicine National University Hospital THE PROMISE OF NEW AND NOVEL DRUGS Pyng Lee Respiratory & Critical Care Medicine National University Hospital Pyng_lee@nuhs.edu.sg Asthma Prevalence, Morbidity, Mortality 235 million suffer from asthma

More information

Basis of Immunology and

Basis of Immunology and Basis of Immunology and Immunophysiopathology of Infectious Diseases Jointly organized by Institut Pasteur in Ho Chi Minh City and Institut Pasteur with kind support from ANRS & Université Pierre et Marie

More information

Effector T Cells and

Effector T Cells and 1 Effector T Cells and Cytokines Andrew Lichtman, MD PhD Brigham and Women's Hospital Harvard Medical School 2 Lecture outline Cytokines Subsets of CD4+ T cells: definitions, functions, development New

More information

Viral-Induced Asthma:

Viral-Induced Asthma: Viral-Induced : Sorting through the Studies Malcolm R. Sears, MB, FRACP, FRCPC Presented at the Respirology Update Continuing Education Program, January 2005 Viral-associated wheezing is common and not

More information

Life-long asthma and its relationship to COPD. Stephen T Holgate School of Medicine University of Southampton

Life-long asthma and its relationship to COPD. Stephen T Holgate School of Medicine University of Southampton Life-long asthma and its relationship to COPD Stephen T Holgate School of Medicine University of Southampton Definitions COPD is a preventable and treatable disease with some significant extrapulmonary

More information

IgE-mediated allergy in elderly patients with asthma

IgE-mediated allergy in elderly patients with asthma Allergology international (1997) 46: 237-241 Original Article IgE-mediated allergy in elderly patients with asthma Fumihiro Mitsunobu, Takashi Mifune, Yasuhiro Hosaki, Kouzou Ashida, Hirofumi Tsugeno,

More information

Air Flow Limitation. In most serious respiratory disease, a key feature causing morbidity and functional disruption is air flow imitation.

Air Flow Limitation. In most serious respiratory disease, a key feature causing morbidity and functional disruption is air flow imitation. Asthma Air Flow Limitation In most serious respiratory disease, a key feature causing morbidity and functional disruption is air flow imitation. True whether reversible, asthma and exercise-induced bronchospasm,

More information

Current Asthma Therapy: Little Need to Phenotype. Phenotypes of Severe Asthma. Cellular Phenotypes 12/7/2012

Current Asthma Therapy: Little Need to Phenotype. Phenotypes of Severe Asthma. Cellular Phenotypes 12/7/2012 Subbasement Membrane Thickness(µm) 12/7/212 Current Asthma Therapy: Little Need to Phenotype Phenotypes of Severe Asthma Most mild and to some degree moderate asthmatics respond well to currently available

More information

ACTIVATION AND EFFECTOR FUNCTIONS OF CELL-MEDIATED IMMUNITY AND NK CELLS. Choompone Sakonwasun, MD (Hons), FRCPT

ACTIVATION AND EFFECTOR FUNCTIONS OF CELL-MEDIATED IMMUNITY AND NK CELLS. Choompone Sakonwasun, MD (Hons), FRCPT ACTIVATION AND EFFECTOR FUNCTIONS OF CELL-MEDIATED IMMUNITY AND NK CELLS Choompone Sakonwasun, MD (Hons), FRCPT Types of Adaptive Immunity Types of T Cell-mediated Immune Reactions CTLs = cytotoxic T lymphocytes

More information

Asthma. - A chronic inflammatory disorder which causes recurrent episodes of wheezing, breathlessness, cough and chest tightness.

Asthma. - A chronic inflammatory disorder which causes recurrent episodes of wheezing, breathlessness, cough and chest tightness. Obstructive diseases Asthma - A chronic inflammatory disorder which causes recurrent episodes of wheezing, breathlessness, cough and chest tightness. - Characterized by Intermittent and reversible (the

More information

Inflammation in the clinic

Inflammation in the clinic Inflammation in the clinic Stephen T. Holgate MRC Clinical Professor of Immunopharmacology ILSI Europe Workshop, Seville, May 14-15 2012 The immune system acts in four general ways to ensure host defence

More information

Topics. Humoral Immune Response Part II Accessory cells Fc Receptors Opsonization and killing mechanisms of phagocytes NK, mast, eosynophils

Topics. Humoral Immune Response Part II Accessory cells Fc Receptors Opsonization and killing mechanisms of phagocytes NK, mast, eosynophils Topics Humoral Immune Response Part II Accessory cells Fc Receptors Opsonization and killing mechanisms of phagocytes NK, mast, eosynophils Immune regulation Idiotypic network 2/15/2005 MICR 415 / 515

More information

The Skinny of the Immune System

The Skinny of the Immune System The Skinny of the Immune System Robert Hostoffer, DO, FACOP, FAAP Associate Professor of Pediatrics Case Western Reserve University, Cleveland, Ohio Overview 1. Immune system of the skin 2. Immune Players

More information

Original Article Serum Levels of IL-17A Increase in Asthma But Don t Correlate with Serum Level of IgE and Asthma Severity

Original Article Serum Levels of IL-17A Increase in Asthma But Don t Correlate with Serum Level of IgE and Asthma Severity International Journal of Medical Laboratory 2015;2(1):25-33. Original Article Serum Levels of IL-17A Increase in Asthma But Don t Correlate with Serum Level of IgE and Asthma Severity Masouma Mowahedi

More information

ALLERGIC RHINITIS AND ASTHMA :

ALLERGIC RHINITIS AND ASTHMA : ALLERGIC RHINITIS AND ASTHMA : from the Link to Emerging Therapies Allergic rhinitis and asthma are both chronic heterogeneous disorders, with an overlapping epidemiology of prevalence, health care costs

More information

Immune System AP SBI4UP

Immune System AP SBI4UP Immune System AP SBI4UP TYPES OF IMMUNITY INNATE IMMUNITY ACQUIRED IMMUNITY EXTERNAL DEFENCES INTERNAL DEFENCES HUMORAL RESPONSE Skin Phagocytic Cells CELL- MEDIATED RESPONSE Mucus layer Antimicrobial

More information

MCP-1/CCL2 in a Bulgarian Cohort of Children with Bronchial Asthma and Cystic Fibrosis

MCP-1/CCL2 in a Bulgarian Cohort of Children with Bronchial Asthma and Cystic Fibrosis Archives of Immunology and Allergy Volume 1, Issue 1, 2018, PP: 1-5 MCP-1/CCL2 in a Bulgarian Cohort of Children with Bronchial Asthma and Cystic Fibrosis Tsvetelina V. Velikova 1, Ekaterina Krasimirova

More information

Chemical aspects of the cell. Chemicals that control cell signaling: chemotaxis

Chemical aspects of the cell. Chemicals that control cell signaling: chemotaxis Chemical aspects of the cell Chemicals that control cell signaling: chemotaxis Cellular responses Chemotaxis Cellular response to an environmental substance with a directional movement. Chemokinesis Cellular

More information

and its clinical implications

and its clinical implications The Immunology of Allergy and its clinical implications By Dr Priya Bowry Sikand MBBS MRCGP DFFP DIC MSc(Allergy) Back to the Basics. Objectives Understand immunological mechanisms behind Type 1 Hypersensitivity

More information

HYPERSENSITIVITY REACTIONS D R S H O AI B R AZ A

HYPERSENSITIVITY REACTIONS D R S H O AI B R AZ A HYPERSENSITIVITY REACTIONS D R S H O AI B R AZ A HYPERSENSITIVITY REACTIONS Are exaggerated immune response upon antigenic stimulation Individuals who have been previously exposed to an antigen are said

More information

COPD: From Phenotypes to Endotypes. MeiLan K Han, M.D., M.S. Associate Professor of Medicine University of Michigan, Ann Arbor, MI

COPD: From Phenotypes to Endotypes. MeiLan K Han, M.D., M.S. Associate Professor of Medicine University of Michigan, Ann Arbor, MI COPD: From Phenotypes to Endotypes MeiLan K Han, M.D., M.S. Associate Professor of Medicine University of Michigan, Ann Arbor, MI Presenter Disclosures MeiLan K. Han Consulting Research support Novartis

More information

Understanding How Allergic Responses End: The Allergy Resolvome. Lipid mediators

Understanding How Allergic Responses End: The Allergy Resolvome. Lipid mediators Understanding How Allergic Responses End: The Allergy Resolvome Lipid mediators Koichiro Asano Tokai University School of Medicine, Kanagawa, JAPAN ko-asano@tokai-u.jp Resolution of granulocytic inflammation

More information

Disclosures. Learning Objective. Biological therapies. Biologics with action against 11/30/2011. Biologic Asthma Therapies and Individualized Medicine

Disclosures. Learning Objective. Biological therapies. Biologics with action against 11/30/2011. Biologic Asthma Therapies and Individualized Medicine Biologic Asthma Therapies and Individualized Medicine Mark S. Dykewicz, MD Director, Allergy & Immunology Fellowship Program Director Wake Forest University School of Medicine Winston-Salem, North Carolina

More information

Immune System. Presented by Kazzandra Anton, Rhea Chung, Lea Sado, and Raymond Tanaka

Immune System. Presented by Kazzandra Anton, Rhea Chung, Lea Sado, and Raymond Tanaka Immune System Presented by Kazzandra Anton, Rhea Chung, Lea Sado, and Raymond Tanaka Content Standards 35.1 In innate immunity, recognition and response rely on traits common to groups of pathogens 35.2

More information

Supplementary Information

Supplementary Information Supplementary Information TABLE S1. SUBJECT CHARACTERISTICS* Normal Control Subjects Subjects with Asthma p Value Number 23 48 Age (years) 35±10 35±10 0.75 Sex, M:F (% F) 9:12 (57) 17:26 (60) 0.76 FEV1

More information

2. Cytokines and chemokines

2. Cytokines and chemokines 2. Cytokines and chemokines Larry C. Borish, MD, and John W. Steinke, PhD Charlottesville, Va Cytokines and chemokines are redundant secreted proteins with growth, differentiation, and activation functions

More information

Hypersensitivity is the term used when an immune response results in exaggerated or inappropriate reactions harmful to the host.

Hypersensitivity is the term used when an immune response results in exaggerated or inappropriate reactions harmful to the host. Hypersensitivity is the term used when an immune response results in exaggerated or inappropriate reactions harmful to the host. Hypersensitivity vs. allergy Hypersensitivity reactions require a pre-sensitized

More information

Part III Innate and Adaptive Immune Cells: General Introduction

Part III Innate and Adaptive Immune Cells: General Introduction Innate and Adaptive Immune Cells: General Introduction Iván López-Expósito As an organ specialized in food digestion and nutrient absorption, the intestinal mucosa presents a huge surface area (almost

More information

Functions of T cells in asthma: more than just T H

Functions of T cells in asthma: more than just T H Functions of T cells in asthma: more than just 2 cells Clare M. Lloyd* and Edith M. Hessel Abstract Asthma has been considered a T helper 2 ( 2) cell-associated inflammatory disease, and 2-type cytokines,

More information

Triggers Allergens Allografts Helminths Viruses Tissue Injury

Triggers Allergens Allografts Helminths Viruses Tissue Injury Rothenberg et al. Adv Immunol; 2001 Triggers Allergens Allografts Helminths Viruses Tissue Injury Rothenberg et al. Adv Immunol; 2001 Triggers Allergens Allografts Helminths Viruses Tissue Injury Cytotoxic

More information

ACTIVATION OF T LYMPHOCYTES AND CELL MEDIATED IMMUNITY

ACTIVATION OF T LYMPHOCYTES AND CELL MEDIATED IMMUNITY ACTIVATION OF T LYMPHOCYTES AND CELL MEDIATED IMMUNITY The recognition of specific antigen by naïve T cell induces its own activation and effector phases. T helper cells recognize peptide antigens through

More information

Abstract. IgE. IgE Th2. x x IL-4 IL-5 IgE CD4 +

Abstract. IgE. IgE Th2. x x IL-4 IL-5 IgE CD4 + D. o ƒf 6,''!" # + % %$ '& ' '' & " k n k x k k k k k x k IgE k x IgE Ò1Ó k Ò2Ó v k x IgE Th2 x } x x IL-4 IL-5 IgE IgE j IFN-γ IgG j j CD4 + { k d «d j B7 w k k x IgE k 1 k Abstract Parental immunization

More information

Allergy and Immunology Review Corner: Chapter 75 of Middleton s Allergy Principles and Practice, 7 th Edition, edited by N. Franklin Adkinson, et al.

Allergy and Immunology Review Corner: Chapter 75 of Middleton s Allergy Principles and Practice, 7 th Edition, edited by N. Franklin Adkinson, et al. Allergy and Immunology Review Corner: Chapter 75 of Middleton s Allergy Principles and Practice, 7 th Edition, edited by N. Franklin Adkinson, et al. Chapter 75: Approach to Infants and Children with Asthma

More information

Distinction and Overlap. Allergy Dpt, 2 nd Pediatric Clinic, University of Athens

Distinction and Overlap. Allergy Dpt, 2 nd Pediatric Clinic, University of Athens Asthma Phenotypes: Distinction and Overlap Nikos Papadopoulos Allergy Dpt, 2 nd Pediatric Clinic, University of Athens Asthma as a syndrome From the Iliad to ADAM 33 and back again Bronchoconstriction,

More information

Chemokines and asthma: redundancy of function or a coordinated effort?

Chemokines and asthma: redundancy of function or a coordinated effort? Chemokines and asthma: redundancy of function or a coordinated effort? Nicholas W. Lukacs, Sandra H.P. Oliveira, and Cory M. Hogaboam Department of Pathology, University of Michigan Medical School, Ann

More information

Systems Pharmacology Respiratory Pharmacology. Lecture series : General outline

Systems Pharmacology Respiratory Pharmacology. Lecture series : General outline Systems Pharmacology 3320 2017 Respiratory Pharmacology Associate Professor Peter Henry (Rm 1.34) Peter.Henry@uwa.edu.au Division of Pharmacology, School of Biomedical Sciences Lecture series : General

More information

NIH Public Access Author Manuscript J Invest Dermatol. Author manuscript; available in PMC 2014 April 01.

NIH Public Access Author Manuscript J Invest Dermatol. Author manuscript; available in PMC 2014 April 01. NIH Public Access Author Manuscript Published in final edited form as: J Invest Dermatol. 2013 October ; 133(10): 2311 2314. doi:10.1038/jid.2013.239. Mechanisms of contact sensitization offer insights

More information

Basic mechanisms disturbing lung function and gas exchange

Basic mechanisms disturbing lung function and gas exchange Basic mechanisms disturbing lung function and gas exchange Blagoi Marinov, MD, PhD Pathophysiology Department, Medical University of Plovdiv Respiratory system 1 Control of breathing Structure of the lungs

More information

Lymphoid System: cells of the immune system. Answer Sheet

Lymphoid System: cells of the immune system. Answer Sheet Lymphoid System: cells of the immune system Answer Sheet Q1 Which areas of the lymph node have most CD3 staining? A1 Most CD3 staining is present in the paracortex (T cell areas). This is towards the outside

More information

Prepared by Cyrus H. Nozad, MD, University of Tennessee and John Seyerle, MD, Ohio State University

Prepared by Cyrus H. Nozad, MD, University of Tennessee and John Seyerle, MD, Ohio State University Allergy and Immunology Review Corner: Chapter 21 of Middleton s Allergy Principles and Practice, Seventh Edition, edited by N. Franklin Adkinson, et al. Chapter 21: Antigen-Presenting Dendritic Cells (Pages

More information

Induced sputum to assess airway inflammation: a study of reproducibility

Induced sputum to assess airway inflammation: a study of reproducibility Clinical and Experimental Allergy. 1997. Volume 27. pages 1138-1144 Induced sputum to assess airway inflammation: a study of reproducibility A. SPANEVELLO, G. B. MIGLIORI. A. SHARARA*, L. BALLARDlNIt,

More information

Jamie Lee Memorial Lecture ( ) Targets and Outcomes: Mepolizumab, Benralizumab, Reslizumab

Jamie Lee Memorial Lecture ( ) Targets and Outcomes: Mepolizumab, Benralizumab, Reslizumab Jamie Lee Memorial Lecture (1958-2017) Targets and Outcomes: Mepolizumab, Benralizumab, Reslizumab Larry Borish, M.D. Professor of Medicine and Microbiology University of Virginia Conflict of Interest

More information

The role of dendritic cells in asthma

The role of dendritic cells in asthma Mechanisms of allergic diseases Series editors: Joshua A. Boyce, MD, Fred Finkelman, MD, William T. Shearer, MD, and Donata Vercelli, MD The role of dendritic cells in asthma Michelle Ann Gill, MD, PhD

More information

Chapter 1. Chapter 1 Concepts. MCMP422 Immunology and Biologics Immunology is important personally and professionally!

Chapter 1. Chapter 1 Concepts. MCMP422 Immunology and Biologics Immunology is important personally and professionally! MCMP422 Immunology and Biologics Immunology is important personally and professionally! Learn the language - use the glossary and index RNR - Reading, Note taking, Reviewing All materials in Chapters 1-3

More information

Bronchial asthma is a chronic inflammatory disorder

Bronchial asthma is a chronic inflammatory disorder Increased Expression of the Chemoattractant Cytokines Eotaxin, Monocyte Chemotactic Protein-4, and Interleukin-16 in Induced Sputum in Asthmatic Patients* Rame A. Taha, MD; Sophie Laberge, MD; Qutayba

More information

Management of Bronchial Asthma in Adults..emerging role of anti-leukotriene

Management of Bronchial Asthma in Adults..emerging role of anti-leukotriene Management of Bronchial Asthma in Adults..emerging role of anti-leukotriene Han-Pin Kuo MD, PhD Department of Thoracic Medicine Chang Gung University Chang Gung Memorial Hospital Taipei, Taiwan Bronchial

More information

immunity defenses invertebrates vertebrates chapter 48 Animal defenses --

immunity defenses invertebrates vertebrates chapter 48 Animal defenses -- defenses Animal defenses -- immunity chapter 48 invertebrates coelomocytes, amoebocytes, hemocytes sponges, cnidarians, etc. annelids basophilic amoebocytes, acidophilic granulocytes arthropod immune systems

More information

CYTOKINES. Based on: Cellular and Molecular Immunology, 4 th ed.,abbas A.K., Lichtman A.H. and Pober J.S. Sounders company; Philadelphia, 2010.

CYTOKINES. Based on: Cellular and Molecular Immunology, 4 th ed.,abbas A.K., Lichtman A.H. and Pober J.S. Sounders company; Philadelphia, 2010. CYTOKINES Based on: Cellular and Molecular Immunology, 4 th ed.,abbas A.K., Lichtman A.H. and Pober J.S. Sounders company; Philadelphia, 2010. 1 What are cytokines? Glycoproteins (15 25 kda): Interleukins

More information

2010 Health Press Ltd.

2010 Health Press Ltd. Fast Facts Fast Facts: Asthma Third edition Stephen T Holgate MD DSc FRCP FMedSci MRC Clinical Professor of Immunopharmacology School of Medicine Southampton General Hospital Southampton, UK Jo Douglass

More information

airway structural cells in asthma

airway structural cells in asthma The expression and function of RAGE and HMGB1 in airway structural cells in asthma Thesis submitted for the degree of Doctor of Philosophy at the University of Leicester by Leonarda Di Candia (MSc) Department

More information

Potent and Selective CRTh2 Antagonists are Efficacious in Models of Asthma, Allergic Rhinitis and Atopic Dermatitis

Potent and Selective CRTh2 Antagonists are Efficacious in Models of Asthma, Allergic Rhinitis and Atopic Dermatitis Potent and Selective CRTh2 Antagonists are Efficacious in Models of Asthma, Allergic Rhinitis and Atopic Dermatitis Laura L. Carter, Yoshi Shiraishi, Yooseob Shin, Laurence Burgess, Christine Eberhardt,

More information

Recent insights into atopic dermatitis and implications for management of infectious complications

Recent insights into atopic dermatitis and implications for management of infectious complications Mark Boguniewicz, MD Professor, Division of Allergy-Immunology Department of Pediatrics National Jewish Health and University of Colorado School of Medicine Denver, Colorado USA Recent insights into atopic

More information

Chapter 23 Immunity Exam Study Questions

Chapter 23 Immunity Exam Study Questions Chapter 23 Immunity Exam Study Questions 1. Define 1) Immunity 2) Neutrophils 3) Macrophage 4) Epitopes 5) Interferon 6) Complement system 7) Histamine 8) Mast cells 9) Antigen 10) Antigens receptors 11)

More information

1. Specificity: specific activity for each type of pathogens. Immunity is directed against a particular pathogen or foreign substance.

1. Specificity: specific activity for each type of pathogens. Immunity is directed against a particular pathogen or foreign substance. L13: Acquired or adaptive (specific) immunity The resistance, which absent at the time of first exposure to a pathogen, but develops after being exposed to the pathogen is called acquired immunity. It

More information

The Link Between Viruses and Asthma

The Link Between Viruses and Asthma The Link Between Viruses and Asthma CATHERINE KIER, MD Professor of Clinical Pediatrics Division Chief, Pediatric Pulmonary, and Cystic Fibrosis Center Director, Pediatric Sleep Disorders Center SUNY Stony

More information

ASTHMA ASTHMA DISEASE SUMMARY. Risk Factors

ASTHMA ASTHMA DISEASE SUMMARY. Risk Factors ASTHMA Risk Factors Family history of asthma or other atopic diseases (eczema, hayfever) Having eczema or hayfever currently or as a child Living in an industrialised area more exposure to airborne pollutants,

More information

The Immune System. These are classified as the Innate and Adaptive Immune Responses. Innate Immunity

The Immune System. These are classified as the Innate and Adaptive Immune Responses. Innate Immunity The Immune System Biological mechanisms that defend an organism must be 1. triggered by a stimulus upon injury or pathogen attack 2. able to counteract the injury or invasion 3. able to recognise foreign

More information

How immunology informs the design of immunotherapeutics.

How immunology informs the design of immunotherapeutics. How immunology informs the design of immunotherapeutics. Stephen R Durham Allergy and Clinical Immunology, Royal Brompton Hospital and Imperial College London WAO Cancun Mon Dec 5 th 2011 How immunology

More information

The immunology of virus infection in asthma

The immunology of virus infection in asthma Eur Respir J 2001; 18: 1013 1025 Copyright #ERS Journals Ltd 2001 DOI: 10.1183/09031936.01.00228701 European Respiratory Journal Printed in UK all rights reserved ISSN 0903-1936 SERIES 0LUNG INFECTIONS

More information

Chapter 24 The Immune System

Chapter 24 The Immune System Chapter 24 The Immune System The Immune System Layered defense system The skin and chemical barriers The innate and adaptive immune systems Immunity The body s ability to recognize and destroy specific

More information

Pulmonary Immunology. Chad Steele, Ph.D ; THT 437A

Pulmonary Immunology. Chad Steele, Ph.D ; THT 437A Pulmonary Immunology Chad Steele, Ph.D. 6-9598; THT 437A chadsteele@uab.edu Outline Significance of lung diseases Uniqueness of the lung: MCC, alveolar macrophages Asthma COPD/emphysema Intermingled Steele

More information

Ocular allergy pathogenesis and diagnosis

Ocular allergy pathogenesis and diagnosis Ocular allergy pathogenesis and diagnosis Luís Delgado, MD PhD departament of Immunology and Immunoallergology Unit Hospital de S. Joao. Porto (Portugal) Marzo 2006 www.alergomurcia.com Good morning, Mr.

More information

Comparative Study of Nasal Smear and Biopsy in Patients of Allergic Rhinitis

Comparative Study of Nasal Smear and Biopsy in Patients of Allergic Rhinitis Indian J Allergy Asthma Immunol 2002; 16(1) : 27-31 Comparative Study of Nasal Smear and Biopsy in Patients of Allergic Rhinitis Rakesh Chanda, Ajay Kumar Aggarwal, G.S. Kohli, T.S. Jaswal*, and K.B. Gupta**

More information

Chronic Cough Due to Nonasthmatic Eosinophilic Bronchitis. ACCP Evidence-Based Clinical Practice Guidelines

Chronic Cough Due to Nonasthmatic Eosinophilic Bronchitis. ACCP Evidence-Based Clinical Practice Guidelines Chronic Cough Due to Nonasthmatic Eosinophilic Bronchitis ACCP Evidence-Based Clinical Practice Guidelines Christopher E. Brightling, MBBS, PhD, FCCP Objectives: Nonasthmatic eosinophilic bronchitis is

More information

In review. Mechanisms mediating pediatric severe asthma and potential novel therapies. Aldara Martin Alonso 1 1, 2* , Sejal Saglani

In review. Mechanisms mediating pediatric severe asthma and potential novel therapies. Aldara Martin Alonso 1 1, 2* , Sejal Saglani Mechanisms mediating pediatric severe asthma and potential novel therapies Aldara Martin Alonso 1 1, 2*, Sejal Saglani 1 National Heart and Lung Institute, Imperial College London, United Kingdom, 2 Respiratory

More information

Physiology Unit 3. ADAPTIVE IMMUNITY The Specific Immune Response

Physiology Unit 3. ADAPTIVE IMMUNITY The Specific Immune Response Physiology Unit 3 ADAPTIVE IMMUNITY The Specific Immune Response In Physiology Today The Adaptive Arm of the Immune System Specific Immune Response Internal defense against a specific pathogen Acquired

More information

Innate Immunity: Nonspecific Defenses of the Host

Innate Immunity: Nonspecific Defenses of the Host PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College C H A P T E R 16 Innate Immunity: Nonspecific Defenses of the Host Host Response to Disease Resistance- ability

More information

Effector mechanisms of cell-mediated immunity: Properties of effector, memory and regulatory T cells

Effector mechanisms of cell-mediated immunity: Properties of effector, memory and regulatory T cells ICI Basic Immunology course Effector mechanisms of cell-mediated immunity: Properties of effector, memory and regulatory T cells Abul K. Abbas, MD UCSF Stages in the development of T cell responses: induction

More information