Bevacizumab: A Controversial Agent Against High-Grade Gliomas

Size: px
Start display at page:

Download "Bevacizumab: A Controversial Agent Against High-Grade Gliomas"

Transcription

1 Tumor Bevacizumab: A Controversial Agent Against High-Grade Gliomas Sussan Salas, MD 1, Miguel Guzman, MD 2, Kevin Judy, MD 1 1 Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA 2 Department of Pathology, St. Louis University School of Medicine, St. Louis, MO Introduction Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor in adults. Despite the current regimen of surgical resection with subsequent external beam radiotherapy and temozolomide, mean survival is 14.6 months and 2-year survival is 26%. 1 GBM is a highly vascular tumor, a result of its increased expression of vascular endothelial growth factor (VEGF) compared to other brain tumors. VEGF promotes endothelial cell proliferation, and is thought to have a pivotal role during tumor progression. Multiple treatment modalities have targeted VEGF and VEGF receptors (VEGFRs) due to their essential roles in the regulation of angiogenic processes. 2 Bevacizumab is a recombinant humanized monoclonal antibody that inhibits VEGF. Positive results from Phase II clinical trials with bevacizumab for recurrent GBM led to its U.S. Food and Drug Administration approval. 3,4 Bevacizumab can produce significant decrease in contrast enhancement as early as 1 to 2 days after the beginning of treatment, and often results in radiologic response rates of 25% to 60%. 3,5 However, it has been noted that rapid improvement in radiographic response is not directly correlated to decreased tumor burden or improved survival. Furthermore, there are significant adverse effects associated with this agent that must be considered when tailoring therapy. These topics and current studies evaluating the use of bevacizumab for high-grade gliomas are discussed. Criteria for Radiographic Response Macdonald, et al. published criteria in 1990 for assessment of response of high-grade gliomas to treatment. These criteria were developed in an effort to adopt more uniform and rigorous norms of treatment, and have become the standard for assessing response to therapy in high-grade gliomas. They are based on two-dimensional tumor measurements on contrast-enhanced computed tomographic (CT) or magnetic resonance imaging (MRI) scans, in conjunction with corticosteroid use and clinical assessment. Tumor size is measured as the largest cross-sectional area (largest cross-sectional diameter x largest diameter perpendicular to it). The Macdonald criteria define progression of disease as either a 25% or more increase in size of the contrast enhancing lesion on sequential MRI scans, or clinical deterioration that is unexplained (Table 1). 6 Table 1. Macdonald Criteria: Current response criteria for malignant gliomas Response Complete response Partial response Stable disease Progression Criteria Requires all of the following: complete disappearance of all enhancing measurable and non-measurable disease sustained for at least 4 weeks; no new lesions; no corticosteroids; and stable or improved clinically Requires all of the following: 50% decrease compared with baseline in the sum of products of perpendicular diameters of all measurable enhancing lesions sustained for at least 4 weeks; no new lesions; stable or reduced corticosteroid dose; and stable or improved clinically Requires all of the following: does not qualify for complete response, partial response, or progression; and stable clinically Defined by any of the following: 25% increase in sum of the products of perpendicular diameters of enhancing lesions; any new lesion; or clinical deterioration The Macdonald criteria have a number of important limitations. Contrast enhancement is nonspecific and can represent treatment-related inflammation, seizure activity, postsurgical changes, ischemia, and radiation necrosis, among others. Multiple factors can influence enhancement such as steroid doses, changes in radiologic techniques, and anti-angiogenic agents such as bevacizumab. By normalizing the abnormally permeable tumor vessels, anti-vegf therapy produces a rapid decrease in enhancement that does not correlate with a decrease in tumor size. Furthermore, a significant number of patients treated with bevacizumab who initially experience a decrease in tumor contrast enhancement subsequently develop progressive increase in non-enhancing T2 or FLAIR signals suggestive of infiltrative tumor (Figure 1). 7 It has been shown that a non-enhancing tumor pattern of progression after treatment with bevacizumab is correlated with worse survival. 8 These findings have triggered multiple studies examining the effect of bevacizumab on tumor cells and employing different imaging modalities to accurately assess tumor response. Physiologic effect of bevacizumab and resulting imaging characteristics There is a significant disparity between the unparalleled imaging response rates that bevacizumab produces in recurrent malignant gliomas and the modest survival benefits, if any, that have been reported. 9 These apparent responses to anti-angiogenic therapy may be partly a result of normalization of abnormally permeable tumor vessels and have been demonstrated not to be representative of an anti-glioma effect. By decreasing contrast leakage, anti-vegf therapy produces a rapid decrease in enhancement that does not always correlate with a decrease in tumor size. Therefore, caution needs to be exercised when evaluating imaging studies for response to antiangiogenic agents. 10 Iwamoto, et al. studied the effect of bevacizumab therapy on GBM growth by analyzing the imaging and histological characteristics of patients who discontinued bevacizumab therapy because of tumor progression. At the time bevacizumab was discontinued, the pattern 11

2 Figure 1 T1 GD of progression was predominantly nonenhancing tumors in 13 of 37 patients (35%). These results differ greatly from the typically observed pattern of increased enhancement at the site of recurrent disease that occurs in 90-95% of patients who do not receive bevacizumab. 11 Lower Karnofsky performance status (KPS) and a non-enhancing pattern of recurrence were associated with shorter overall survival after discontinuing bevacizumab (p values and 0.05, respectively). Iwamoto, Flair Progression of disease after bevacizumab treatment. The top row shows no Gd enhancement and minimal increased Flair signal. The middle row shows Gd-enhancing tumor and a bi-frontal pattern of increased Flair signal at the time of tumor recurrence. The bottom row shows resolution of the Gd enhancement with the progression of Flair signal in both frontal lobes presenting a confusing radiographic picture. Left frontal tumor after surgery, XRT and Temozolomide Tumor recurrence at 6 months Tumor after 5 months of Bevacizumab et al. stipulated that the apparent relationship between a non-enhancing pattern and shorter survival may reflect a change in tumor biology, particularly because non-enhancing tumor progression was a negative prognostic factor independent of performance status. 8 Histological analysis before and after treatment demonstrated a significant increase of hypoxia markers after bevacizumab failure. It has been well established in the literature that hypoxia is a promoter of angiogenesis, tumor invasion, and resistance to therapy. 12 These findings strongly suggest that the anti-angiogenic effect of bevacizumab resulted in an increase in tumor hypoxia, leading to more invasive tumor behavior. Other studies contend that bevacizumab and other anti-vegf therapies mediate temporary control of tumor growth but do not achieve a change in overall survival. Norden, et al. reported their analysis of 34 patients with recurrent malignant glioma that underwent treatment with either bevacizumab or cediranib (AZD2171, a pan-vegf receptor inhibitor) and compared them to 18 patients that underwent cytotoxic chemotherapy (with either edotecarin or gimatecan). Median progressionfree survival was 8 weeks in patients treated with cytotoxic therapy, compared to 22 weeks in patients treated with anti-angiogenic therapy (P=0.01). However, median overall survival was nearly identical in the two groups, with 39 weeks in the cytotoxic therapy group and 37 weeks in the anti-angiogenic therapy group. These results suggest that anti-angiogenic therapy does not prolong overall survival in patients with recurrent malignant glioma. 9 The increased progression-free survival observed could reflect the initial impairment of tumor growth that is short-lived (and may be seen in the rapid decrease in enhancement that is observed after the beginning of treatment), with eventual onset of different forms of resistance that inevitably result in progressive disease. 13 An increasing number of studies investigating the mechanisms of tumor resistance to anti-angiogenic agents suggest that anti- VEGF therapy may result in the co-option of normal vasculature, producing an invasive non-enhancing phenotype Rubenstein, et al. analyzed the histologic pattern of growth of human glioblastoma cells that were stereotactically implanted in the striatum of adult athymic rats that were then treated with systemic anti-vegf antibody. Although anti- VEGF treatment resulted in prolongation of survival (median survival of control vs. treated animals was 18.5 vs days, respectively, P<0.0001), tumors adopted a more infiltrative and invasive pattern on histological evaluation (Figure 2). Comparison of sections of control and anti-vegf treated tumors revealed that, instead of growing as a single confluent mass with a distinct border, anti-vegf treated tumors were surrounded by multiple satellite tumors that appeared to extend from the margin of the original tumor. Immunohistochemistry analysis demonstrated that greater than 90% of the satellite tumors were associated with at least one blood vessel, suggesting 12

3 Tumor that these tumors infiltrated the brain to adopt or co-opt existing vessels in response to anti-angiogenic treatment (Figure 3). 15 A Paez-Ribes, et al. noted a similar pattern when analyzing the effects of anti-vegf treatment on an orthotopic mouse model of glioblastoma. A B highly invasive and qualitatively distinct tumor pattern was observed, with tumor cells found in close proximity to resident normal blood vessels.13 Further preclinical studies are necessary to elucidate the apparent ability of malignant gliomas to adapt to inhibition of angiogenesis by increased infiltration and cooption of host vessels. Diffusion weighted imaging as biomarker for bevacizumab treatment response C D Figure 2 Recurrent glioblastoma after treatment with bevacizumab and CPT-11. The original GBM shows pseudopalisading necrosis (A) and tumor around abnormal vessels (B). Histology after bevacizumab treatment shows malignant glial cells (C) and mesenchymal proliferation around vessels (D). Histological evaluation demonstrated tumor cells tacking along blood vessels, suggesting co-option of host vessels as a response to anti-angiogenic treatment. Note the profound mesenchymal proliferation around the tumor vessels following bevacizumab treatment. A B Imaging criteria that include non-enhancing components of tumors are necessary to assess the response to bevacizumab treatment. However, evaluating FLAIR or T2 signal abnormality can lead to an inaccurate analysis of response to treatment, since infiltrating tumor is difficult to differentiate from edema, gliosis, or treatment related leukoencephalopathy (Figure 4). Jain, et al. addressed this issue by obtaining volumetric measurements of contrast enhancing lesions and non-enhancing lesions of patients treated with bevacizumab alone or concurrent chemotherapy for a follow-up period of 1 year. These regions of interest were co-registered with corresponding diffusion weighted imaging (DWI) and apparent diffusion coefficient (ADC) maps (lower ADC values are suggestive of high cellularity and higher grade of the tumor, whereas the opposite is true for higher ADC values). Imaging analysis demonstrated a progressive decrease in ADC values especially early on (6 weeks and 3 months after treatment) in non-enhancing lesions in patients that had progression of disease, even though C Figure 3 (A) Original GBM histology showing positivity for VEGF immunohistochemistry; (B) In this recurrent GBM, the sarcomatoid vessels remain positive for endothelial marker CD34; (C) However VEGF immunostain is negative in the transformed vessels. In contrast to a glioblastoma without treatment (which shows strong and diffuse VEGF positive staining) this bevacizumab-treated tumor shows no reaction with VEGF immunostaining. 13

4 T1 GD Flair ADC DWI Recurrent left frontal GBM Left frontal GBM after 6 months of Bevacizumab Figure 4 This patient presented with a recurrent left frontal GBM with enhancing tumor and increased Flair signal of both frontal lobes. After 6 months of bevacizumab there was a dramatic resolution of the enhancing tumor. However, there has been progression of decreased ADC signal and increased DWI signal in the right frontal lobe that represented tumor progression. they showed a progressive decrease in size of contrast enhancing lesions. This suggests that ADC and DWI measurements can be used to determine early treatment failure by demonstrating non-enhancing infiltrative tumor growth. 16 Efforts are currently underway to identify more accurate radiographic means of evaluating the response of tumors to anti-angiogenic treatment. Studies suggest that advanced MRI techniques such as perfusion imaging (dynamic susceptibility MRI), permeability imaging (dynamic contrast-enhanced MRI), magnetic resonance spectroscopy, and [18F]-fluorothymidine and amino acid positron emission tomography may demonstrate tumor response or differentiate non-enhancing tumor from other causes of increased FLAIR signal. 10,17 Adverse Effects Studies have reported adverse effects such as brain hemorrhages, epistaxis, oral cavity bleeding, vaginal bleeding, proteinuria, spontaneous colon perforations, thromboembolic complications, hypertension, and impaired craniotomy wound healing, among others. Vredenburgh, et al. noted that 4 out of 32 patients (12.5%) undergoing treatment with bevacizumab for recurrent malignant glioma had thromboembolic complications, and 2 patients (6.25%) died one from a pulmonary embolus and the other from an arterial ischemic stroke.4 Kreisl, et al. reported thromboembolic events occurring in 6 out of 48 patients (12.5%) receiving bevacizumab therapy after glioblastoma recurrence. Three of these events were pulmonary emboli, and one was a cerebral vascular event; all patients were removed from the study for drug-associated toxicity. One patient had a bowel perforation. 3 Norden et al. also reported a colon perforation that necessitated emergent surgery on a patient undergoing bevacizumab therapy for malignant glioma. Nine out of 55 patients (16.4%) experienced hemorrhage, primarily epistaxis or other mucosal bleeding. Two patients had asymptomatic brain hemorrhages that were detected on routine imaging. 7 Patients with malignant gliomas have been demonstrated to be at a high risk of thromboembolic events regardless of therapy due to a tumor-induced hypercoagulable state; procoagulant an anti-fibrinolytic substances are preferentially secreted by malignant gliomas compared to other brain tumors. 18 Clearly, the role of anti-angiogenic agents in increasing the risk of thromboembolic and other adverse effects needs to be better defined. Conclusion New criteria for radiographic response, along with innovative imaging techniques, are necessary for future clinical trials employing anti-vegf therapy. Further studies elucidating the molecular interaction between tumor cells and anti-angiogenic agents such as bevacizumab are warranted. The incidence of adverse effects when undergoing bevacizumab therapy is significant and should be appropriately considered when tailoring therapy to an individual patient. References 1. Stupp R, Mason WP, van der Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005;352(10): Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med 2003;9(6): Kreisl TN, Kim L, Moore K, et al. Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol 2009;27:

5 Tumor 4. Vredenburgh JJ, Desjardins A, Herndon JE 2nd et al. Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol 2007;25(30): Vredenburgh JJ, Desjardins A, Herndon JE II, et al. Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin Cancer Res 2007;13: Macdonald DR, Cascino TL, Schold SJ, et al. Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 1990;8(7): Norden AD, Young GS, Setayesh K, et al. Bevacizumab for recurrent malignant gliomas. Neurology 2008; 70(10): Iwamoto FM, Abrey LE, Beal K, et al. Patterns of relapse and prognosis after bevacizumab failure in recurrent glioblastoma. Neurology 2009;73(15): Norden AD, Drappatz J, Muzikansky A, et al. An exploratory survival analysis of anti-angiogenic therapy for recurrent malignant glioma. J Neurooncol 2009;92(2): Wen PY, Macdonald DR, Reardon DA, et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 2010;28(11): Gaspar LE, Fisher BJ, Macdonald DR, et al. Supratentorial malignant glioma: patterns of recurrence and implications for external bean local treatment. Int J Radiat Oncol Biol Phys 1992;24: Maxwell PH, Dachs GU, Gleadle JM, et al. Hypoxiainducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc Natl Acad Sci USA 1997;94: Paez-Ribes M, Allen E, Hudock J, et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 2009;15(3): Bergers G, Hanahan D. Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8(8): , Rubenstein JL, Kim J, Ozawa T, et al. Anti-VEGF antibody treatment of glioblastoma prolongs survival but results in increased vascular cooption. Neoplasia 2000;2(4): Jain R, Scarpace LM, Ellika S, et al. Imaging response criteria for recurrent gliomas treated with bevacizumab: role of diffusion weighted imaging as an imaging biomarker. J Neurooncol 2010;96(3): Pope WB, Kim HJ, Huo J, et al. Recurrent glioblastoma multiforme: ADC histogram analysis predicts response to Bevacizumab treatment. Radiology 2009;252(1): Marras LC, Geerts WH, Perry JR. The risk of venous thromboembolism is increased throughout the course of malignant glioma. Cancer 2000;89(3): Brain power Jefferson neurosurgeons have helped to write the textbooks and set training standards referenced by other doctors around the world. No wonder our surgeons treat the largest combined volume of tumors, aneurysms and AVMs in the Philadelphia region. The region s only hospital with an experienced, specialized staff dedicated to neuroscience. Offices in Center City Philadelphia, Langhorne and Voorhees. Most insurance plans accepted, including Medicare. Thomas Jefferson University Hospital Jefferson Hospital for Neuroscience Methodist Hospital JEFF-NOW

Bevacizumab rescue therapy extends the survival in patients with recurrent malignant glioma

Bevacizumab rescue therapy extends the survival in patients with recurrent malignant glioma Original Article Bevacizumab rescue therapy extends the survival in patients with recurrent malignant glioma Lin-Bo Cai, Juan Li, Ming-Yao Lai, Chang-Guo Shan, Zong-De Lian, Wei-Ping Hong, Jun-Jie Zhen,

More information

Brain Tumors: Radiologic Perspective

Brain Tumors: Radiologic Perspective Brain Tumors: Radiologic Perspective Alberto Bizzi, M.D. Neuroradiology Humanitas Research Hospital Milan, Italy The job of the neuroradiologist in the work-up of brain tumors has quite changed in the

More information

Citation Pediatrics international (2015), 57.

Citation Pediatrics international (2015), 57. Title Long-term efficacy of bevacizumab a pediatric glioblastoma. Umeda, Katsutsugu; Shibata, Hirofum Author(s) Hiramatsu, Hidefumi; Arakawa, Yoshi Nishiuchi, Ritsuo; Adachi, Souichi; Ken-Ichiro Citation

More information

Clinical Trials for Adult Brain Tumors - the Imaging Perspective

Clinical Trials for Adult Brain Tumors - the Imaging Perspective Clinical Trials for Adult Brain Tumors - the Imaging Perspective Whitney B. Pope, M.D., Ph.D. Department of Radiology David Geffen School of Medicine at UCLA August 22, 2015 1 Disclosure of Financial Relationships

More information

Contemporary Management of Glioblastoma

Contemporary Management of Glioblastoma Contemporary Management of Glioblastoma Incidence Rates of Primary Brain Tumors Central Brain Tumor Registry of the United States, 1992-1997 100 Number of Cases per 100,000 Population 10 1 0.1 x I x I

More information

Magnetic Resonance Imaging for Prediction and Assessment of Treatment Response in Bevacizumab-Treated Recurrent Glioblastoma

Magnetic Resonance Imaging for Prediction and Assessment of Treatment Response in Bevacizumab-Treated Recurrent Glioblastoma Magnetic Resonance Imaging for Prediction and Assessment of Treatment Response in Bevacizumab-Treated Recurrent Glioblastoma The Harvard community has made this article openly available. Please share how

More information

Bevacizumab and dose-intense temozolomide in recurrent high-grade glioma

Bevacizumab and dose-intense temozolomide in recurrent high-grade glioma Annals of Oncology 21: 1723 1727, 2010 doi:10.1093/annonc/mdp591 Published online 11 January 2010 Bevacizumab and dose-intense temozolomide in recurrent high-grade glioma J. J. C. Verhoeff 1, C. Lavini

More information

Neuro-Oncology Advance Access published April 4, 2012

Neuro-Oncology Advance Access published April 4, 2012 Neuro-Oncology Advance Access published April 4, 2012 Neuro-Oncology doi:10.1093/neuonc/nos070 NEURO-ONCOLOGY Response assessment in recurrent glioblastoma treated with irinotecan-bevacizumab: comparative

More information

Malignant gliomas are the most common type of primary. Bevacizumab and Irinotecan in the Treatment of Recurrent Malignant Gliomas

Malignant gliomas are the most common type of primary. Bevacizumab and Irinotecan in the Treatment of Recurrent Malignant Gliomas PRACTICE OF ONCOLOGY: RECENT ADVANCES Bevacizumab and Irinotecan in the Treatment of Recurrent Malignant Gliomas John F. de Groot, MD, and Wai Kwan Alfred Yung, MD Abstract: Rapidly dividing glioma cells

More information

Protocol Abstract and Schema

Protocol Abstract and Schema Protocol Abstract and Schema Phase II study of Bevacizumab plus Irinotecan (Camptosar ) in Children with Recurrent, Progressive, or Refractory Malignant Gliomas, Diffuse/Intrinsic Brain Stem Gliomas, Medulloblastomas,

More information

National Horizon Scanning Centre. Bevacizumab (Avastin) for glioblastoma multiforme - relapsed. August 2008

National Horizon Scanning Centre. Bevacizumab (Avastin) for glioblastoma multiforme - relapsed. August 2008 Bevacizumab (Avastin) for glioblastoma multiforme - relapsed August 2008 This technology summary is based on information available at the time of research and a limited literature search. It is not intended

More information

It s s Always Something!

It s s Always Something! It s s Always Something! New Approaches in Brain Tumor Treatment Virginia Stark-Vance, M.D. When Something Is a Brain Tumor Brain tumors aren t rare: there are over 100,000/yr Most originate as other cancers

More information

Avastin. Avastin (bevacizumab) Description

Avastin. Avastin (bevacizumab) Description Federal Employee Program 1310 G Street, N.W. Washington, D.C. 20005 202.942.1000 Fax 202.942.1125 5.21.04 Subject: Avastin Page: 1 of 9 Last Review Date: September 20, 2018 Avastin Description Avastin

More information

Treatment with Tumor-Treating Fields therapy and pulse dose bevacizumab in patients with bevacizumab-refractory recurrent glioblastoma: A case series.

Treatment with Tumor-Treating Fields therapy and pulse dose bevacizumab in patients with bevacizumab-refractory recurrent glioblastoma: A case series. School of Medicine Digital Commons@Becker Open Access Publications 2016 Treatment with Tumor-Treating Fields therapy and pulse dose bevacizumab in patients with bevacizumab-refractory recurrent glioblastoma:

More information

Avastin (bevacizumab)

Avastin (bevacizumab) Avastin (bevacizumab) Policy Number: 5.02.502 Last Review: 04/2018 Origination: 03/2017 Next Review: 04/2019 Policy Blue Cross and Blue Shield of Kansas City (Blue KC) will provide coverage for Avastin

More information

Assessing Response of High-Grade Gliomas to Immune Checkpoint Inhibitors

Assessing Response of High-Grade Gliomas to Immune Checkpoint Inhibitors linicians may encounter unique challenges when evaluating the imaging response of GMs treated with immunotherapy and checkpoint inhibitors. Irena Orlov. Industrial feel 21. igital on canvas, 40" 60". ssessing

More information

Avastin. Avastin (bevacizumab) Description

Avastin. Avastin (bevacizumab) Description Federal Employee Program 1310 G Street, N.W. Washington, D.C. 20005 202.942.1000 Fax 202.942.1125 5.04.04 Subject: Avastin Page: 1 of 8 Last Review Date: December 3, 2015 Avastin Description Avastin (bevacizumab)

More information

CNS Tumors: The Med Onc Perspective. Ronald J. Scheff, MD Associate Clinical Professor Weill Medical College of Cornell U.

CNS Tumors: The Med Onc Perspective. Ronald J. Scheff, MD Associate Clinical Professor Weill Medical College of Cornell U. CNS Tumors: The Med Onc Perspective Ronald J. Scheff, MD Associate Clinical Professor Weill Medical College of Cornell U. Disclosure Speakers Bureau, Merck Basic Oncology Concepts Tissue Diagnosis Stage

More information

Assessment of treatment response in high grade gliomas: RANO criteria usage for an accurate radiology report.

Assessment of treatment response in high grade gliomas: RANO criteria usage for an accurate radiology report. Assessment of treatment response in high grade gliomas: RANO criteria usage for an accurate radiology report. Poster No.: C-2167 Congress: ECR 2014 Type: Educational Exhibit Authors: F. Facal de Castro,

More information

Goals for this Lecture. Case 1. Key Points MRI TECHNIQUES FOR DIFFERENTIAL DIAGNOSIS OF RECURRENT BRAIN LESIONS

Goals for this Lecture. Case 1. Key Points MRI TECHNIQUES FOR DIFFERENTIAL DIAGNOSIS OF RECURRENT BRAIN LESIONS MRI TECHNIQUES FOR DIFFERENTIAL DIAGNOSIS OF RECURRENT BRAIN LESIONS Goals for this Lecture 1. Review common appearances for recurrent tumor and treatment effects on conventional MRI 2. Discuss current

More information

THE EFFECTIVE OF BRAIN CANCER AND XAY BETWEEN THEORY AND IMPLEMENTATION. Mustafa Rashid Issa

THE EFFECTIVE OF BRAIN CANCER AND XAY BETWEEN THEORY AND IMPLEMENTATION. Mustafa Rashid Issa THE EFFECTIVE OF BRAIN CANCER AND XAY BETWEEN THEORY AND IMPLEMENTATION Mustafa Rashid Issa ABSTRACT: Illustrate malignant tumors that form either in the brain or in the nerves originating in the brain.

More information

UNIVERSITY OF MEDICINE AND PHARMACY CRAIOVA PhD SCHOOL. PhD THESIS

UNIVERSITY OF MEDICINE AND PHARMACY CRAIOVA PhD SCHOOL. PhD THESIS UNIVERSITY OF MEDICINE AND PHARMACY CRAIOVA PhD SCHOOL PhD THESIS THE IMPORTANCE OF TUMOR ANGIOGENESIS IN CEREBRAL TUMOR DIAGNOSIS AND THERAPY ABSTRACT PhD COORDINATOR: Prof. univ. dr. DRICU Anica PhD

More information

Brain Tumor Treatment

Brain Tumor Treatment Scan for mobile link. Brain Tumor Treatment Brain Tumors Overview A brain tumor is a group of abnormal cells that grows in or around the brain. Tumors can directly destroy healthy brain cells. They can

More information

MALIGNANT GLIOMAS: TREATMENT AND CHALLENGES

MALIGNANT GLIOMAS: TREATMENT AND CHALLENGES MALIGNANT GLIOMAS: TREATMENT AND CHALLENGES DISCLOSURE No conflicts of interest to disclose Patricia Bruns APRN, CNS Givens Brain Tumor Center Abbott Northwestern Hospital October 12, 2018 OBJECTIVES THEN

More information

Incidence of Early Pseudo-progression in a Cohort of Malignant Glioma Patients Treated With Chemoirradiation With Temozolomide

Incidence of Early Pseudo-progression in a Cohort of Malignant Glioma Patients Treated With Chemoirradiation With Temozolomide 405 Incidence of Early Pseudo-progression in a Cohort of Malignant Glioma Patients Treated With Chemoirradiation With Temozolomide Walter Taal, MD 1 Dieta Brandsma, MD, PhD 1 Hein G. de Bruin, MD, PhD

More information

Innovative Multimodal Imaging Techniques in Brain Tumor Clinical Trials

Innovative Multimodal Imaging Techniques in Brain Tumor Clinical Trials Innovative Multimodal Imaging Techniques in Brain Tumor Clinical Trials Benjamin M. Ellingson, Ph.D. Assistant Professor of Radiology, Biomedical Physics, and Bioengineering Brain Tumor Imaging Laboratory

More information

Glioblastoma: Adjuvant Treatment Abdulrazag Ajlan, MD, MSc, FRCSC, UCNS(D)

Glioblastoma: Adjuvant Treatment Abdulrazag Ajlan, MD, MSc, FRCSC, UCNS(D) Glioblastoma: Adjuvant Treatment Abdulrazag Ajlan, MD, MSc, FRCSC, UCNS(D) *Neurosurgery Consultant, King Saud University, Riyadh, KSA *Adjunct Teaching Faculty, Neurosurgery, Stanford School Of Medicine,

More information

Rebound tumour progression after the cessation of bevacizumab therapy in patients with recurrent high-grade glioma

Rebound tumour progression after the cessation of bevacizumab therapy in patients with recurrent high-grade glioma DOI 10.1007/s11060-010-0121-0 CLINICAL STUDY - PATIENT STUDY Rebound tumour progression after the cessation of bevacizumab therapy in patients with recurrent high-grade glioma Richard M. Zuniga Roy Torcuator

More information

Avastin. Avastin (bevacizumab) Description

Avastin. Avastin (bevacizumab) Description Federal Employee Program 1310 G Street, N.W. Washington, D.C. 20005 202.942.1000 Fax 202.942.1125 5.21.04 Subject: Avastin Page: 1 of 9 Last Review Date: September 15, 2017 Avastin Description Avastin

More information

J Clin Oncol 25: by American Society of Clinical Oncology INTRODUCTION

J Clin Oncol 25: by American Society of Clinical Oncology INTRODUCTION VOLUME 25 NUMBER 30 OCTOBER 20 2007 JOURNAL OF CLINICAL ONCOLOGY O R I G I N A L R E P O R T Bevacizumab Plus Irinotecan in Recurrent Glioblastoma Multiforme James J. Vredenburgh, Annick Desjardins, James

More information

Treatment With Bevacizumab and Irinotecan for Recurrent High-Grade Glial Tumors

Treatment With Bevacizumab and Irinotecan for Recurrent High-Grade Glial Tumors 2267 Treatment With Bevacizumab and Irinotecan for Recurrent High-Grade Glial Tumors Felix Bokstein, MD 1 Shulim Shpigel, MD 2 Deborah T. Blumenthal, MD 1 1 Neuro-Oncology Service, Tel Aviv Sourasky Medical

More information

Avastin. Avastin (bevacizumab) Description

Avastin. Avastin (bevacizumab) Description Federal Employee Program 1310 G Street, N.W. Washington, D.C. 20005 202.942.1000 Fax 202.942.1125 5.21.04 Subject: Avastin Page: 1 of 9 Last Review Date: June 22, 2017 Avastin Description Avastin (bevacizumab)

More information

A Single Institution s Experience with Bevacizumab in Combination with Cytotoxic Chemotherapy in Progressive Malignant Glioma

A Single Institution s Experience with Bevacizumab in Combination with Cytotoxic Chemotherapy in Progressive Malignant Glioma REVIEW A Single Institution s Experience with Bevacizumab in Combination with Cytotoxic Chemotherapy in Progressive Malignant Glioma Tina Mayer, Jill Lacy and Joachim Baehring Medical Oncology, Yale University

More information

New Approaches in Brain Tumor Treatment. Virginia Stark-Vance, M.D.

New Approaches in Brain Tumor Treatment. Virginia Stark-Vance, M.D. New Approaches in Brain Tumor Treatment Virginia Stark-Vance, M.D. The Primary Brain Tumors es for PicturesMCD for 004.JPG 00 Meningioma 30% Glioblastoma 20% Astrocytoma 10% Nerve sheath 8% Pituitary 6%

More information

Bevacizumab for Recurrent Glioblastoma Multiforme: A Meta-Analysis

Bevacizumab for Recurrent Glioblastoma Multiforme: A Meta-Analysis 403 Multiforme: A Meta-Analysis Eric T. Wong, MD a ; Shiva Gautam, PhD b ; Christopher Malchow a ; Melody Lun c ; Edward Pan, MD d ; and Steven Brem, MD d ; Boston, Massachusetts, and Tampa, Florida Key

More information

PRINCESS MARGARET CANCER CENTRE CLINICAL PRACTICE GUIDELINES

PRINCESS MARGARET CANCER CENTRE CLINICAL PRACTICE GUIDELINES PRINCESS MARGARET CANCER CENTRE CLINICAL PRACTICE GUIDELINES CENTRAL NERVOUS SYSTEM ANAPLASTIC GLIOMAS CNS Site Group Anaplastic Gliomas Author: Dr. Norm Laperriere Date: February 20, 2018 1. INTRODUCTION

More information

Glioblastoma multiforme has been described as. Bevacizumab and irinotecan therapy in glioblastoma multiforme: a series of 13 cases

Glioblastoma multiforme has been described as. Bevacizumab and irinotecan therapy in glioblastoma multiforme: a series of 13 cases » This article has been updated from its originally published version to correct units of measure. See the corresponding erratum notice, DOI: 10.3171/2017.8.JNS08268a. «J Neurosurg 108:000 000, 109:268

More information

J Clin Oncol 27: by American Society of Clinical Oncology INTRODUCTION

J Clin Oncol 27: by American Society of Clinical Oncology INTRODUCTION VOLUME 27 NUMBER 28 OCTOBER 1 29 JOURNAL OF CLINICAL ONCOLOGY O R I G I N A L R E P O R T From the Brain Tumor Center, Duke University, Durham, NC; Department of Neurosurgery, University of California,

More information

John D. Hainsworth, MD, Kent C. Shih, MD, Gregg C. Shepard, MD, Guy W. Tillinghast, MD, Brett T. Brinker, MD, and David R. Spigel, MD.

John D. Hainsworth, MD, Kent C. Shih, MD, Gregg C. Shepard, MD, Guy W. Tillinghast, MD, Brett T. Brinker, MD, and David R. Spigel, MD. Phase II Study of Concurrent Radiation Therapy, Temozolomide, and Bevacizumab Followed by Bevacizumab/Everolimus as First- Line Treatment for Patients With Glioblastoma John D. Hainsworth, MD, Kent C.

More information

J Clin Oncol 28: by American Society of Clinical Oncology INTRODUCTION

J Clin Oncol 28: by American Society of Clinical Oncology INTRODUCTION VOLUME 28 NUMBER 11 APRIL 10 2010 JOURNAL OF CLINICAL ONCOLOGY S P E C I A L A R T I C L E From the Center for Neuro-Oncology, Dana-Farber/Brigham and Women s Cancer Center; Division of Neurology, Brigham

More information

성균관대학교삼성창원병원신경외과학교실신경종양학 김영준. KNS-MT-03 (April 15, 2015)

성균관대학교삼성창원병원신경외과학교실신경종양학 김영준. KNS-MT-03 (April 15, 2015) 성균관대학교삼성창원병원신경외과학교실신경종양학 김영준 INTRODUCTIONS Low grade gliomas (LGG) - heterogeneous group of tumors with astrocytic, oligodendroglial, ependymal, or mixed cellular histology - In adults diffuse, infiltrating

More information

Parisa Mirzadehgan, MPH, CCRP

Parisa Mirzadehgan, MPH, CCRP Parisa Mirzadehgan, MPH, CCRP Approved therapy for a newly diagnosed GBM patient includes surgical resection radiation & temozolomide Upon recurrence there are few approved options surgical implantation

More information

Response Assessment Criteria for Glioblastoma: Practical Adaptation and Implementation in Clinical Trials of Antiangiogenic Therapy

Response Assessment Criteria for Glioblastoma: Practical Adaptation and Implementation in Clinical Trials of Antiangiogenic Therapy Curr Neurol Neurosci Rep (2013) 13:347 DOI 10.1007/s11910-013-0347-2 NEURO-ONCOLOGY (LE ABREY, SECTION EDITOR) Response Assessment Criteria for Glioblastoma: Practical Adaptation and Implementation in

More information

BC Cancer Protocol Summary for Palliative Therapy for Recurrent Malignant Gliomas Using Bevacizumab With or Without Concurrent Etoposide or Lomustine

BC Cancer Protocol Summary for Palliative Therapy for Recurrent Malignant Gliomas Using Bevacizumab With or Without Concurrent Etoposide or Lomustine BC Cancer Protocol Summary for Palliative Therapy for Recurrent Malignant Gliomas Using Bevacizumab With or Without Concurrent Etoposide or Lomustine Protocol Code Tumour Group Contact Physician CNBEV

More information

Key words: recurrent glioblastoma multiforme, bevacizumab, irinotecan, monitoring therapeutic response, magnetic resonance imaging

Key words: recurrent glioblastoma multiforme, bevacizumab, irinotecan, monitoring therapeutic response, magnetic resonance imaging The Neuroradiology Journal 21: 350-361, 2008 www. centauro. it Peritumoral Apparent Diffusion Coefficient as a Metric of Response in Patients with Recurrent Glioblastoma Multiforme Treated with Bevacizumab

More information

CURRENT CONTROVERSIES IN THE MANAGEMENT OF HIGH GRADE GLIOMAS: AN INTERACTIVE CASE DISCUSSION *

CURRENT CONTROVERSIES IN THE MANAGEMENT OF HIGH GRADE GLIOMAS: AN INTERACTIVE CASE DISCUSSION * CURRENT CONTROVERSIES IN THE MANAGEMENT OF HIGH GRADE GLIOMAS: AN INTERACTIVE CASE DISCUSSION * Alessandro Olivi, MD, Jaishri Blakeley, MD, and Allen K. Sills, MD, FACS ABSTRACT The management of glioma

More information

Bevacizumab in Recurrent Glioma: Patterns of Treatment Failure and Implications

Bevacizumab in Recurrent Glioma: Patterns of Treatment Failure and Implications RVIW RTIL rain Tumor Res Treat 2017;5(1):1-9 / pissn 2288-2405 / eissn 2288-2413 https://doi.org/10.14791/btrt.2017.5.1.1 evacizumab in Recurrent Glioma: Patterns of Treatment ailure and Implications Yi

More information

Reversal of cerebral radiation necrosis with bevacizumab treatment in 17 Chinese patients

Reversal of cerebral radiation necrosis with bevacizumab treatment in 17 Chinese patients Wang et al. European Journal of Medical Research 2012, 17:25 EUROPEAN JOURNAL OF MEDICAL RESEARCH RESEARCH Open Access Reversal of cerebral radiation necrosis with bevacizumab treatment in 17 Chinese patients

More information

Efficacy and safety of bevacizumab and etoposide combination in patients with recurrent malignant gliomas who have failed bevacizumab

Efficacy and safety of bevacizumab and etoposide combination in patients with recurrent malignant gliomas who have failed bevacizumab Reviews in Health Care 2014; 5(1): 23-32 Drugs Narrative review Efficacy and safety of bevacizumab and etoposide combination in patients with recurrent malignant gliomas who have failed bevacizumab Jose

More information

CPT-11/bevacizumab for the treatment of refractory brain metastases in patients with HER2 neu-positive breast cancer

CPT-11/bevacizumab for the treatment of refractory brain metastases in patients with HER2 neu-positive breast cancer CPT-11/bevacizumab for the treatment of refractory brain metastases in patients with HER2 neu-positive breast cancer The Harvard community has made this article openly available. Please share how this

More information

Modeling origin and natural evolution of low-grade gliomas

Modeling origin and natural evolution of low-grade gliomas Modeling origin and natural evolution of low-grade gliomas Mathilde Badoual Paris Diderot University, IMNC lab 2nd HTE workshop: Mathematical & Computer Modeling to study tumors heterogeneity in its ecosystem,

More information

21/03/2017. Disclosure. Practice Changing Articles in Neuro Oncology for 2016/17. Gliomas. Objectives. Gliomas. No conflicts to declare

21/03/2017. Disclosure. Practice Changing Articles in Neuro Oncology for 2016/17. Gliomas. Objectives. Gliomas. No conflicts to declare Practice Changing Articles in Neuro Oncology for 2016/17 Disclosure No conflicts to declare Frances Cusano, BScPharm, ACPR April 21, 2017 Objectives Gliomas To describe the patient selection, methodology

More information

Carmustine implants and Temozolomide for the treatment of newly diagnosed high grade glioma

Carmustine implants and Temozolomide for the treatment of newly diagnosed high grade glioma National Institute for Health and Clinical Excellence Health Technology Appraisal Carmustine implants and Temozolomide for the treatment of newly diagnosed high grade glioma Personal statement Conventional

More information

Imaging for suspected glioma

Imaging for suspected glioma Imaging for suspected glioma 1.1.1 Offer standard structural MRI (defined as T2 weighted, FLAIR, DWI series and T1 pre- and post-contrast volume) as the initial diagnostic test for suspected glioma, unless

More information

Recurrent Glioblastoma Multiforme: Implication of Nonenhancing Lesions on Bevacizumab Treatment

Recurrent Glioblastoma Multiforme: Implication of Nonenhancing Lesions on Bevacizumab Treatment J Interdiscipl Histopathol 2013; 1(4): 217-222 ISSN: 2146-8362 Case Report Recurrent Glioblastoma Multiforme: Implication of Nonenhancing Lesions on Bevacizumab Treatment Daniela Alexandru 1, Hung-Wen

More information

Colorectal Cancer Treatment

Colorectal Cancer Treatment Scan for mobile link. Colorectal Cancer Treatment Colorectal cancer overview Colorectal cancer, also called large bowel cancer, is the term used to describe malignant tumors found in the colon and rectum.

More information

Neuro Oncology neuro-oncology.oxfordjournals.org

Neuro Oncology neuro-oncology.oxfordjournals.org Neuro Oncology 203 Media Kit Advertising & Sales Contacts Allan Kolstein Corporate Account Manager e: allan.kolstein@oup.com Caroline Bracken Supplements Development Manager t: +44 (0)865 353794 e: caroline.bracken@oup.com

More information

Bevacizumab in combination with temozolomide and regional radiation therapy for up-front treatment of patients with newly-diagnosed glioblastoma

Bevacizumab in combination with temozolomide and regional radiation therapy for up-front treatment of patients with newly-diagnosed glioblastoma Bevacizumab in combination with temozolomide and regional radiation therapy for up-front treatment of patients with newly-diagnosed glioblastoma Design and analysis of single-arm Phase II clinical trial

More information

Going Past the Data for Temozolomide. J. Lee Villano, M.D., Ph.D., Nathalie Letarte, B.Pharm, M.Sc, Linda R. Bressler, Pharm. D.

Going Past the Data for Temozolomide. J. Lee Villano, M.D., Ph.D., Nathalie Letarte, B.Pharm, M.Sc, Linda R. Bressler, Pharm. D. Going Past the Data for Temozolomide J. Lee Villano, M.D., Ph.D., Nathalie Letarte, B.Pharm, M.Sc, Linda R. Bressler, Pharm. D. Departments of Medicine (JLV), Neurosurgery (JLV) and Pharmacy Practice (LRB)

More information

Integrating bevacizumab and radiation treatment of brain metastasis: is there sense and sensibility in this approach?

Integrating bevacizumab and radiation treatment of brain metastasis: is there sense and sensibility in this approach? Perspective Page 1 of 5 Integrating bevacizumab and radiation treatment of brain metastasis: is there sense and sensibility in this approach? Emil Lou 1, Paul W. Sperduto 2 1 Division of Hematology, Oncology

More information

Scottish Medicines Consortium

Scottish Medicines Consortium Scottish Medicines Consortium temozolomide 5, 20, 100 and 250mg capsules (Temodal ) Schering Plough UK Ltd No. (244/06) New indication: for the treatment of newly diagnosed glioblastoma multiforme concomitantly

More information

Imaging Cancer Treatment Complications in the Chest

Imaging Cancer Treatment Complications in the Chest Imaging Cancer Treatment Complications in the Chest Michelle S. Ginsberg, MD Objectives Imaging Cancer Treatment Complications in the Chest To understand the mechanisms of action of different classes of

More information

General Identification. Name: 江 X X Age: 29 y/o Gender: Male Height:172cm, Weight: 65kg Date of admission:95/09/27

General Identification. Name: 江 X X Age: 29 y/o Gender: Male Height:172cm, Weight: 65kg Date of admission:95/09/27 General Identification Name: 江 X X Age: 29 y/o Gender: Male Height:172cm, Weight: 65kg Date of admission:95/09/27 Chief Complaint Sudden onset of seizure for several minutes Present illness This 29-year

More information

Clinical Management Protocol Chemotherapy [Glioblastoma Multiforme (CNS)] Protocol for Planning and Treatment

Clinical Management Protocol Chemotherapy [Glioblastoma Multiforme (CNS)] Protocol for Planning and Treatment Protocol for Planning and Treatment The process to be followed when a course of chemotherapy is required to treat: GLIOBLASTOMA MULTIFORME (CNS) Patient information given at each stage following agreed

More information

Medical Necessity Guideline

Medical Necessity Guideline (MNG) Title: Electric Tumor Treatment Field Therapy MNG #: 003 SCO One Care Prior Authorization Needed? Yes No Clinical: Operational: Informational: Medicare Benefit: Yes No Last Revised Date: 1/25/2019;

More information

BY Mrs. K.SHAILAJA., M. PHARM., LECTURER DEPT OF PHARMACY PRACTICE, SRM COLLEGE OF PHARMACY

BY Mrs. K.SHAILAJA., M. PHARM., LECTURER DEPT OF PHARMACY PRACTICE, SRM COLLEGE OF PHARMACY BY Mrs. K.SHAILAJA., M. PHARM., LECTURER DEPT OF PHARMACY PRACTICE, SRM COLLEGE OF PHARMACY Cancer is a group of more than 100 different diseases that are characterized by uncontrolled cellular growth,

More information

Molecular Imaging and the Brain

Molecular Imaging and the Brain Molecular imaging technologies are playing an important role in neuroimaging, a branch of medical imaging, by providing a window into the living brain. Where CT and conventional MR imaging provide important

More information

Laura Tormoehlen, M.D. Neurology and EM-Toxicology Indiana University

Laura Tormoehlen, M.D. Neurology and EM-Toxicology Indiana University Laura Tormoehlen, M.D. Neurology and EM-Toxicology Indiana University Disclosures! No conflicts of interest to disclose Neuroimaging 101! Plain films! Computed tomography " Angiography " Perfusion! Magnetic

More information

CNS SESSION 3/8/ th Multidisciplinary Management of Cancers: A Case based Approach

CNS SESSION 3/8/ th Multidisciplinary Management of Cancers: A Case based Approach CNS SESSION Chair: Ruben Fragoso, MD/PhD UC Davis Fellow: Michael Cardenas, MD UC Davis Panel: Gordon Li, MD Stanford Seema Nagpal, MD Stanford Jennie Taylor, MD UCSF HPI: 46 yo right handed woman who

More information

Digital Washington University School of Medicine. Benjamin M. Ellingson University of California - Los Angeles

Digital Washington University School of Medicine. Benjamin M. Ellingson University of California - Los Angeles Washington University School of Medicine Digital Commons@Becker Open Access Publications 2015 Diffusion MRI quality control and functional diffusion map results in ACRIN 6677/RTOG 0625: A multicenter,

More information

Radiation Necrosis 11/29/2016. Disclosure statement. Memorial Sloan Kettering Cancer Center

Radiation Necrosis 11/29/2016. Disclosure statement. Memorial Sloan Kettering Cancer Center Radiation Necrosis Date: December 1 st, 2016 Wayne Quashie, MSN, CNS, ACNS-BC, AOCNS Clinical Nurse Specialist Neurology, Neurosurgery and Orthopedics www.mskcc.org Disclosure statement Presenter does

More information

Defining pseudoprogression in glioblastoma multiforme

Defining pseudoprogression in glioblastoma multiforme European Journal of Neurology 2013, 20: 1335 1341 CME ARTICLE doi:10.1111/ene.12192 Defining pseudoprogression in glioblastoma multiforme E. Van Mieghem a, A. Wozniak b, Y. Geussens c, J. Menten c, S.

More information

NEWS RELEASE Media Contact: Krysta Pellegrino (650) Investor Contact: Sue Morris (650) Advocacy Contact: Kristin Reed (650)

NEWS RELEASE Media Contact: Krysta Pellegrino (650) Investor Contact: Sue Morris (650) Advocacy Contact: Kristin Reed (650) NEWS RELEASE Media Contact: Krysta Pellegrino (650) 225-8226 Investor Contact: Sue Morris (650) 225-6523 Advocacy Contact: Kristin Reed (650) 467-9831 FDA APPROVES AVASTIN IN COMBINATION WITH CHEMOTHERAPY

More information

Mechanisms of Resistance to Antiangiogenic. Martin J. Edelman, MD University of Maryland Greenebaum Cancer Center Dresden, 2012

Mechanisms of Resistance to Antiangiogenic. Martin J. Edelman, MD University of Maryland Greenebaum Cancer Center Dresden, 2012 Mechanisms of Resistance to Antiangiogenic Agents Martin J. Edelman, MD University of Maryland Greenebaum Cancer Center Dresden, 2012 Angiogenesis: A fundamental attribute of cancer Premise of Anti-angiogenic

More information

SURGICAL MANAGEMENT OF BRAIN TUMORS

SURGICAL MANAGEMENT OF BRAIN TUMORS SURGICAL MANAGEMENT OF BRAIN TUMORS LIGIA TATARANU, MD, Ph D NEUROSURGICAL CLINIC, BAGDASAR ARSENI CLINICAL HOSPITAL BUCHAREST, ROMANIA SURGICAL INDICATIONS CONFIRMING HISTOLOGIC DIAGNOSIS REDUCING TUMOR

More information

Survival of High Grade Glioma Patients Treated by Three Radiation Schedules with Chemotherapy: A Retrospective Comparative Study

Survival of High Grade Glioma Patients Treated by Three Radiation Schedules with Chemotherapy: A Retrospective Comparative Study Original Article Research in Oncology June 2017; Vol. 13, No. 1: 18-22. DOI: 10.21608/resoncol.2017.552.1022 Survival of High Grade Glioma Patients Treated by Three Radiation Schedules with Chemotherapy:

More information

National Institute for Health and Clinical Excellence. Single Technology Appraisal (STA)

National Institute for Health and Clinical Excellence. Single Technology Appraisal (STA) National Institute for Health and Clinical Excellence Appendix C Comment 1: the draft scope Single Technology Appraisal (STA) Carmustine implants for the treatment of recurrent glioblastoma multiforme

More information

Diffusion Restriction Precedes Contrast Enhancement in Glioblastoma Multiforme

Diffusion Restriction Precedes Contrast Enhancement in Glioblastoma Multiforme Diffusion Restriction Precedes Contrast Enhancement in Glioblastoma Multiforme Adil Bata 1, Jai Shankar 2 1 Faculty of Medicine, Class of 2017 2 Department of Diagnostic Radiology, Division of Neuroradiology,

More information

1. Introduction. Correspondence should be addressed to Christopher M. Lee; Received 9 July 2013; Accepted 27 August 2013

1. Introduction. Correspondence should be addressed to Christopher M. Lee; Received 9 July 2013; Accepted 27 August 2013 Case Reports in Oncological Medicine Volume 2013, Article ID 431857, 5 pages http://dx.doi.org/10.1155/2013/431857 Case Report Long-Term Survival and Improved Quality of Life following Multiple Repeat

More information

Laser Interstitial Thermal Therapy (LITT) in Neuro-Oncology. Tim Lucas, MD, PhD Neurosurgery

Laser Interstitial Thermal Therapy (LITT) in Neuro-Oncology. Tim Lucas, MD, PhD Neurosurgery Laser Interstitial Thermal Therapy (LITT) in Neuro-Oncology Tim Lucas, MD, PhD Neurosurgery Timothy.Lucas@uphs.upenn.edu 2016 Laser Interstitial Thermal Therapy (LITT) in Neuro-Oncology Tim Lucas, MD,

More information

Hypofractionated radiation therapy for glioblastoma

Hypofractionated radiation therapy for glioblastoma Hypofractionated radiation therapy for glioblastoma Luis Souhami, MD, FASTRO Professor McGill University Department of Oncology, Division of Radiation Oncology Montreal Canada McGill University Health

More information

Intensity modulated radiotherapy (IMRT) for treatment of post-operative high grade glioma in the right parietal region of brain

Intensity modulated radiotherapy (IMRT) for treatment of post-operative high grade glioma in the right parietal region of brain 1 Carol Boyd March Case Study March 11, 2013 Intensity modulated radiotherapy (IMRT) for treatment of post-operative high grade glioma in the right parietal region of brain History of Present Illness:

More information

Evaluation of Lung Cancer Response: Current Practice and Advances

Evaluation of Lung Cancer Response: Current Practice and Advances Evaluation of Lung Cancer Response: Current Practice and Advances Jeremy J. Erasmus I have no financial relationships, arrangements or affiliations and this presentation will not include discussion of

More information

NEURORADIOLOGY Part I

NEURORADIOLOGY Part I NEURORADIOLOGY Part I Vörös Erika University of Szeged Department of Radiology SZEGED BRAIN IMAGING METHODS Plain film radiography Ultrasonography (US) Computer tomography (CT) Magnetic resonance imaging

More information

Oligodendrogliomas & Oligoastrocytomas

Oligodendrogliomas & Oligoastrocytomas Oligodendrogliomas & Oligoastrocytomas ABOUT THE AMERICAN BRAIN TUMOR ASSOCIATION Founded in 1973, the American Brain Tumor Association (ABTA) was the first national nonprofit organization dedicated solely

More information

Molecular Imaging and Cancer

Molecular Imaging and Cancer Molecular Imaging and Cancer Cancer causes one in every four deaths in the United States, second only to heart disease. According to the U.S. Department of Health and Human Services, more than 512,000

More information

Avastin Sample Coding

Avastin Sample Coding First- and Second-line Metastatic Colorectal Cancer C18.0 Malignant neoplasm of the cecum C18.1 Malignant neoplasm of appendix C18.2-C18.9 C19 C20 C21.8 Malignant neoplasm of the colon, various sites Malignant

More information

Case Report Glioblastoma Presenting with Steroid-Induced Pseudoregression of Contrast Enhancement on Magnetic Resonance Imaging

Case Report Glioblastoma Presenting with Steroid-Induced Pseudoregression of Contrast Enhancement on Magnetic Resonance Imaging Case Reports in Neurological Medicine Volume 2012, Article ID 816873, 6 pages doi:10.1155/2012/816873 Case Report Glioblastoma Presenting with Steroid-Induced Pseudoregression of Contrast Enhancement on

More information

Dosimetry, see MAGIC; Polymer gel dosimetry. Fiducial tracking, see CyberKnife radiosurgery

Dosimetry, see MAGIC; Polymer gel dosimetry. Fiducial tracking, see CyberKnife radiosurgery Subject Index Acoustic neuroma, neurofibromatosis type 2 complications 103, 105 hearing outcomes 103, 105 outcome measures 101 patient selection 105 study design 101 tumor control 101 105 treatment options

More information

Temozolomide in the treatment of recurrent malignant glioma in Chinese patients!"#$%&'()*+,-./0,1234

Temozolomide in the treatment of recurrent malignant glioma in Chinese patients!#$%&'()*+,-./0,1234 Key words: Astrocytoma; Brain neoplasms; Disease-free survival; Glioblastoma; Neoplasm recurrence!!"!"!"#$ DTM Chan WS Poon YL Chan HK Ng Hong Kong Med J 2005;11:452-6 The Chinese University of Hong Kong,

More information

Antibody-Drug Conjugates in Glioblastoma Multiforme: Finding Ways Forward

Antibody-Drug Conjugates in Glioblastoma Multiforme: Finding Ways Forward Transcript Details This is a transcript of a continuing medical education (CME) activity accessible on the ReachMD network. Additional media formats for the activity and full activity details (including

More information

Clinical Policy: Electric Tumor Treating Fields (Optune) Reference Number: PA.CP.MP.145

Clinical Policy: Electric Tumor Treating Fields (Optune) Reference Number: PA.CP.MP.145 Clinical Policy: Electric Tumor Treating Fields (Optune) Reference Number: PA.CP.MP.145 Effective Date: 01/18 Last Review Date: 04/18 Coding Implications Revision Log Description Electric tumor treating

More information

The Value of a Chest CT in the Evaluation of a Newly Detected Brain Tumor

The Value of a Chest CT in the Evaluation of a Newly Detected Brain Tumor Southern Adventist Univeristy KnowledgeExchange@Southern Senior Research Projects Southern Scholars 1999 The Value of a Chest CT in the Evaluation of a Newly Detected Brain Tumor Jennifer L. White John

More information

Neurosurgical Management of Brain Tumours. Nicholas Little Neurosurgeon RNSH

Neurosurgical Management of Brain Tumours. Nicholas Little Neurosurgeon RNSH Neurosurgical Management of Brain Tumours Nicholas Little Neurosurgeon RNSH General Most common tumours are metastatic 10x more common than primary Incidence of primary neoplasms is 20 per 100000 per year

More information

Enormous effort has been invested in clinical trials for malignant

Enormous effort has been invested in clinical trials for malignant Published February 13, 2008 as 10.3174/ajnr.A0963 REVIEW ARTICLE J.W. Henson S. Ulmer G.J. Harris Brain Tumor Imaging in Clinical Trials SUMMARY: There are substantial challenges in the radiologic evaluation

More information

PRESURGICAL PLANNING. Strongly consider neuropsychological evaluation before functional imaging study Strongly consider functional imaging study

PRESURGICAL PLANNING. Strongly consider neuropsychological evaluation before functional imaging study Strongly consider functional imaging study NOTE: Consider Clinical Trials as treatment options for eligible patients. Page 1 of 6 RADIOLOGICAL PRESENTATION PRESURGICAL PLANNING TREATMENT Imaging study suggestive of glioma 1 Left hemisphere speech/motor

More information

Cerebel trial Any impact on the clinical practice? Antonio Frassoldati Oncologia Clinica - Ferrara

Cerebel trial Any impact on the clinical practice? Antonio Frassoldati Oncologia Clinica - Ferrara Cerebel trial Any impact on the clinical practice? Antonio Frassoldati Oncologia Clinica - Ferrara CNS metastases in HER2+ BC The proportion of patients with HER2+ advanced breast cancer who have CNS metastases

More information

Glioblastoma: Current Treatment Approach 8/20/2018

Glioblastoma: Current Treatment Approach 8/20/2018 Glioblastoma: Current Treatment Approach 8/20/2018 Overview What is Glioblastoma? How is it diagnosed How is it treated? Principles of Treatment Surgery, Radiation, Chemotherapy Current Standard of care

More information

Perfusion CT and perfusion MRI combined study in patients treated for glioblastoma multiforme: a pilot study

Perfusion CT and perfusion MRI combined study in patients treated for glioblastoma multiforme: a pilot study Perfusion CT and perfusion MRI combined study in patients treated for glioblastoma multiforme: a pilot study Poster No.: C-0789 Congress: ECR 2012 Type: Scientific Paper Authors: P. AMATUZZO, S. Zizzari,

More information

Cancer Cell Research 14 (2017)

Cancer Cell Research 14 (2017) Available at http:// www.cancercellresearch.org ISSN 2161-2609 Efficacy and safety of bevacizumab for patients with advanced non-small cell lung cancer Ping Xu, Hongmei Li*, Xiaoyan Zhang Department of

More information