Estimating Testicular Cancer specific Mortality by Using the Surveillance Epidemiology and End Results Registry

Size: px
Start display at page:

Download "Estimating Testicular Cancer specific Mortality by Using the Surveillance Epidemiology and End Results Registry"

Transcription

1 Appendix E1 Estimating Testicular Cancer specific Mortality by Using the Surveillance Epidemiology and End Results Registry To estimate cancer-specific mortality for 33-year-old men with stage I testicular cancer, we used publicly available Surveillance Epidemiology and End Results *Stat software to query the Surveillance Epidemiology and End Results national cancer registry (13). We elicited data from a pooled range of patient ages at diagnosis, from 23 to 43 years, to increase the sample size for estimates obtained (13). International Classification of Disease for Oncology, 3rd edition (or ICD-O-3) codes were used to identify cases of seminoma ( ) and NSGCT ( ) (13). We restricted cases to those in which a diagnosis was made from 1993 to 2003 to ensure adequate longitudinal follow-up and because inclusion of cases prior to and following 2003 would have led to a heterogeneous case mix due to changes in extent-of-disease coding that occurred after 2003 (13). The primary result of our approach was that patients with both normal and elevated tumor markers after orchiectomy were included in our analysis. Importantly, imaging surveillance (without empiric adjuvant therapy) remains an appropriate management option regardless. Extent-of-disease codes were selected to match stage I cancers and included 10, 15, 20, 30, 40, 45, 50, 60, and 70 for both seminoma and NSGCT (13). Cases in which patients had nodal or distant metastases were excluded. In total, 4146 patients constituted the patient group for seminoma, and 1882 patients constituted that for NSGCT. We extracted 5-year cause-specific survival estimates with 95% confidence intervals, computed by using Kaplan-Meier methods, and converted them to mortality rates by using standard exponential assumptions, as detailed in the article (13,14). Estimating Radiation-induced Cancer Risks in Multiple Organ Systems Radiation-induced Cancer Mortality We modeled cancer mortality risks for 13 solid organs (lung, esophagus, stomach, pancreas, liver, colon, rectum, kidney, bladder, prostate, central nervous system, thyroid, and oral cavity) and for leukemia (6). For the majority of organ systems considered in our analysis, we computed radiation-induced cancer mortality rates from a geometric mean of excess absolute risk (EAR) and excess relative risk (ERR), which was in keeping with Biological Effects of Ionizing Radiation VII methods of risk transport (Eqq [A1 A3]) (6). All exceptions are described below. The following equations were used: Page 1 of 6

2 EAR EAR ( / ) ( / 60) exp( * M I s D a e ), (A1) [ EAR] EAR ERR ( / 60) ERR exp( * M D a e ), and (A2) s[err] ERR Radiation-induced cancer mortality rate, per organ = EAR 0.3 ERR 0.7. In Equations (A1) (A3), M and I correspond to current organ-, age-, and sex-specific background U.S. cancer mortality and incidence rates, respectively, derived from Surveillance Epidemiology and End Results data (17 19); s[ear] and s[err] correspond to organ- and sexspecific empirically derived coefficients that indicate excess absolute and relative risks, respectively, per sievert, at attained age of 60 years and at age at exposure older than 30 years. D corresponds to the organ-specific equivalent dose, derived from the effective dose level of a CT scan (described below). a corresponds to attained age; EAR and ERR are empirically derived exponential factors controlling response to attained age for the excess absolute and relative risk models, respectively. e* equals (e 30)/10, if e is less than 30, or 0 if e is greater than 30, where e is age at exposure. EAR and ERR are coefficients controlling response to age at exposure for the excess absolute and relative risk models, respectively, when e is less than 30 (6). The majority of empirically derived coefficients used to populate Equations (A1) (A3) in our model were elicited from the Biological Effects of Ionizing Radiation VII report (Table E1), with exceptions described below (6). Exponents for excess relative risk and excess absolute risk designated in Equation (A3) were applied to the majority of cancers in our model and indicate greater weighting of excess relative risk relative to excess absolute risk. This relative weighting was reversed in the case of lung cancer, per Biological Effects of Ionizing Radiation VII recommendations, because differential smoking behaviors across societies and generations were thought to reduce the validity of excess relative risk predominant assumptions of risk transport (6). Risk transport for central nervous system and thyroid cancers was accomplished by using only an excess relative risk model (6). For thyroid cancer, the excess relative risk equation also differed from Equation (A2), as described below. All estimates of radiation-induced cancer mortality rates were further divided by a dose and dose rate effectiveness factor of 1.5 to account for further assumed reductions in the setting of low exposure levels, per Biological Effects of Ionizing Radiation VII recommendations (6). We deviated from Biological Effects of Ionizing Radiation VII input estimates in a subset of organ systems (central nervous system, oral cavity, esophagus, rectum, pancreas, and kidney), for which we instead incorporated organ-specific parameters from Berrington de González and colleagues to estimate cancer risks (16). In contrast, the Biological Effects of Ionizing Radiation VII report treats these cancers collectively as other solid cancers (6). Radiation-induced Cancer Incidence The probability of developing radiation-induced cancers was modeled in an analogous way to that described previously, by computing organ-specific estimates of incidence rates as a function of excess absolute risk and excess relative risk and then introducing cumulative rates into the Markov model. Importantly, excess absolute risk and excess relative risk equations were Page 2 of 6 (A3)

3 modified such that they predicted excess risks of incidence rather than mortality, which meant that M / I was removed from Equation (A1) and that M was converted to I in Equation (A2) (6). Risk Models for Thyroid Cancer and Leukemia Risk models (eg, excess absolute risk and excess relative risk equations) for radiation-induced thyroid cancer and leukemia are distinct from those described previously. The Biological Effects of Ionizing Radiation VII model for thyroid cancer, which was used in our study, was based on analyses by investigators external to the Biological Effects of Ionizing Radiation VII committee and included pooled analyses of cohorts exposed to radiation in medical settings in addition to atomic bomb survivors (6). For leukemia, Biological Effects of Ionizing Radiation VII investigators determined that a linear-quadratic model (as opposed to a linear model) better fit data from the atomic bomb survivor cohort. As such, a linear-quadratic model was used to accomplish risk transport; relative weighting of excess absolute risk and excess relative risk was consistent with Equation (A3) (6). Importantly, current data indicate that chronic lymphocytic leukemia is rarely induced by radiation; chronic lymphocytic leukemia was thus excluded when calculating background incidence and mortality rates (6). Determination of Organ-specific Equivalent Doses from Effective Doses In our model, estimates of radiation-induced cancer mortality and incidence were computed at the organ level. Therefore, for every CT (eg, of abdomen and pelvis or chest), we needed to identify organ-specific equivalent doses (Eqq [A1, A2]) that corresponded to designated effective dose levels. This was accomplished by the use of commercially available dosimetry software (ImPACT CT, London, England) that enables a user to identify a set of organ-specific equivalent doses that correspond to a given effective dose for a designated anatomic region covered at a typical CT scan, by using simulation data derived from dosimetry studies of human phantoms and tissue-weighting coefficients derived from the International Commission on Radiation Protection (23,24). International Commission on Radiation Protection publication 60 tissue-weighting coefficients were used to maintain consistency in our methods; conversion factors used to estimate effective doses from institutional CT scans in our analysis (by using dose length product) also used International Commission on Radiation Protection publication 60 tissue-weighting coefficients (22,23). Markov Chain Monte Carlo Sensitivity Analysis We used a Markov Chain Monte Carlo method to estimate the composite uncertainty of the majority of parameters in our analysis, incorporating both cause-specific survival estimates from testicular cancer and the majority of radiation-related parameters (Table E1) (26). The Metropolis-Hastings search algorithm was used to identify one million unique parameter sets that accounted for the composite uncertainty of all model input parameters under consideration (26). For each imaging scenario, one million separate estimates were then generated for each outcome of interest (eg, life expectancy loss), thereby defining its associated uncertainty. In the Markov Chain Monte Carlo analysis, we incorporated distributions of all empirically derived parameters informing estimations of excess absolute risk and excess relative risk for which a quantitative estimate of uncertainty magnitude was available. We additionally incorporated uncertainty in the recommended weighting factors for excess absolute risk and Page 3 of 6

4 excess relative risk in all organ systems (Eqq [A3]). All incorporated radiation-related parameter estimates and their associated distributions are listed in Table E1. Subjective confidence intervals given in the Biological Effects of Ionizing Radiation VII report were used to inform uncertainty estimates for empirically derived model parameters (6). Uncertainty related to the propensity of developing or dying of solid cancers was reflected in organ-specific distributions, as well as in three distributions (corresponding to bladder, liver, and lung cancers in the excess absolute risk model) (6). Uncertainty related to the propensity of developing or dying of leukemia was reflected in distributions for multiple empirically derived parameters used in the linear-quadratic model for estimating leukemia risks (Table E1) (6). Page 4 of 6

5 Table E1. Radiation-related Parameter Estimates for Markov Chain Monte Carlo Analysis Parameter Distribution Male Parameter Estimate Excess relative risk model Bladder, Normal * Brain and central nervous system, Normal Colon, Normal Esophagus, Normal Kidney, Normal Leukemia, Normal * Leukemia, Normal * Leukemia, Normal Leukemia, Normal * Leukemia, Normal * Liver, Normal Lung, Normal Oral, Normal Pancreas, Normal Prostate, Normal * Rectum, Normal Stomach, Normal Thyroid, Normal * Excess absolute risk model Bladder, Normal * Bladder, n Normal Colon, Normal Esophagus, Normal Kidney, Normal Leukemia, Normal * Leukemia, Normal * Leukemia, Normal Leukemia, Normal * Liver, Normal Liver, n Normal Lung, Normal Lung, n Normal Oral, Normal Pancreas, Normal Prostate, Normal * Rectum, Normal Stomach, Normal Other Excess relative risk weighting factor, leukemia Excess relative risk weighting factor, lung cancer Excess relative risk weighting factor, solid cancer Triangular 0.7 (0.4 1) Triangular 0.3 (0 0.6) Triangular 0.7 (0.4 1) Page 5 of 6

6 Note. Unless otherwise indicated, parameter estimates are provided as means standard deviations. Point estimates for excess relative risk and excess absolute risk parameters and weighting factors are from the Biological Effects of Ionizing Radiation VII report (6), except excess relative risk and excess absolute risk parameters for the brain and central nervous system, oral cavity, esophagus, rectum, pancreas, and kidney, which are from Berrington de González et al (16). * Distributions truncated in the uncertainty analysis. Parameter estimates are provided as modes, with ranges in parentheses. In keeping with prior work by Berrington de González and colleagues (16), we elected to use normal distributions to represent the uncertainty in these parameters. Because the confidence intervals given in the Biological Effects of Ionizing Radiation VII report are asymmetric, we calculated an averaged standard deviation, from reported upper and lower confidence intervals, to generate corresponding symmetric distributions. Input parameter ranges were truncated in cases in which the calculated uncertainty range crossed zero. Importantly, to represent uncertainty surrounding organ-specific parameters derived from Berrington de González and colleagues (for organs that constituted the other solid cancers of the Biological Effects of Ionizing Radiation VII report), the confidence intervals given in the Biological Effects of Ionizing Radiation VII report for the other solid cancers category were proportionally applied to each individual value for these organ systems (6,16). A triangular distribution was chosen for the uncertainty surrounding weighting factors for the geometric mean of the excess absolute risk and excess relative risk models, which was in keeping with an approach used by Berrington de González and colleagues (51). Symmetric triangular distributions were generated for the weighting factors, with excess relative risk weights extending to zero (lung cancer) and one (other solid cancers and leukemia). Reference 51. Berrington de González A, Kim KP, Berg CD. Low-dose lung computed tomography screening before age 55: estimates of the mortality reduction required to outweigh the radiation-induced cancer risk. J Med Screen 2008;15(3): Page 6 of 6

BEIR VII: Epidemiology and Models for Estimating Cancer Risk

BEIR VII: Epidemiology and Models for Estimating Cancer Risk National Cancer Institute U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health BEIR VII: Epidemiology and Models for Estimating Cancer Risk Ethel S. Gilbert National Cancer Institute

More information

Cancer Risk Factors in Ontario. Other Radiation

Cancer Risk Factors in Ontario. Other Radiation Cancer Risk Factors in Ontario Other Radiation OTHer radiation risk factor/ exposure Radon-222 and decay products X-radiation, gamma radiation Cancer The context where high risks were reported Magnitude

More information

Sources of Data of Stochastic Effects of Radiation. Michael K O Connor, Ph.D. Dept. of Radiology, Mayo Clinic

Sources of Data of Stochastic Effects of Radiation. Michael K O Connor, Ph.D. Dept. of Radiology, Mayo Clinic Sources of Data of Stochastic Effects of Radiation Michael K O Connor, Ph.D. Dept. of Radiology, Mayo Clinic Biological Effects of Ionizing Radiation (BEIR) 2007 National Academy of Science National Research

More information

Epidemiology in Texas 2006 Annual Report. Cancer

Epidemiology in Texas 2006 Annual Report. Cancer Epidemiology in Texas 2006 Annual Report Cancer Epidemiology in Texas 2006 Annual Report Page 94 Cancer Incidence and Mortality in Texas, 2000-2004 The Texas Department of State Health Services Texas Cancer

More information

Radiation Related Second Cancers. Stephen F. Kry, Ph.D., D.ABR.

Radiation Related Second Cancers. Stephen F. Kry, Ph.D., D.ABR. Radiation Related Second Cancers Stephen F. Kry, Ph.D., D.ABR. Objectives Radiation is a well known carcinogen Atomic bomb survivors Accidental exposure Occupational exposure Medically exposed Radiotherapy

More information

Long-term Epidemiological Studies on Radiation Effects in A-bomb Survivors

Long-term Epidemiological Studies on Radiation Effects in A-bomb Survivors Consultancy Meeting on Science, Technology and Society Perspectives on Nuclear Science, Radiation and Human Health: The International Perspective 23 May 2017 Hiroshima, Japan Long-term Epidemiological

More information

Epidemiological Studies on the Atomic-bomb Survivors (Handout)

Epidemiological Studies on the Atomic-bomb Survivors (Handout) Epidemiological Studies on the Atomic-bomb Survivors (Handout) Kotaro OZASA Department of Epidemiology Radiation Effects Research Foundation Hiroshima, JAPAN 1 Atomic-bombings in Hiroshima and Nagasaki

More information

Assessment of effective dose in paediatric CT examinations

Assessment of effective dose in paediatric CT examinations Assessment of effective dose in paediatric CT examinations E. Dougeni 1,2 CL. Chapple 1, J. Willis 1, G. Panayiotakis 2 1 Regional Medical Physics Department, Freeman Hospital, Freeman Road, Newcastle

More information

Second primary cancers in adults after radiotherapy an epidemiological review

Second primary cancers in adults after radiotherapy an epidemiological review Second primary cancers in adults after radiotherapy an epidemiological review Article 31 Group meeting Radiation induced long-term health effects after medical exposure Luxembourg, 19 November 2013 Mark

More information

Outline. Outline 3/30/12. Second Cancers from. Radiotherapy Procedures. Stephen F. Kry, Ph.D., D.ABR.

Outline. Outline 3/30/12. Second Cancers from. Radiotherapy Procedures. Stephen F. Kry, Ph.D., D.ABR. Second Cancers from Radiotherapy Procedures Stephen F. Kry, Ph.D., D.ABR. Outline Radiation and cancer induction Medically exposed people Estimating risk of second cancers Minimizing the risk Outline Radiation

More information

SMOKING AND CANCER RISK

SMOKING AND CANCER RISK SMOKING AND CANCER RISK The effects of smoking on health were documented in a landmark report by the Surgeon General in 1964. Since then the devastating effect from smoking on millions of American lives

More information

CANCER FACTS & FIGURES For African Americans

CANCER FACTS & FIGURES For African Americans CANCER FACTS & FIGURES For African Americans Pennsylvania, 2006 Pennsylvania Cancer Registry Bureau of Health Statistics and Research Contents Data Hightlights...1 Pennsylvania and U.S. Comparison...5

More information

Cancer Risks from CT Scans: Now We Have Data What Next?

Cancer Risks from CT Scans: Now We Have Data What Next? Cancer Risks from CT Scans: Now We Have Data What Next? David J. Brenner, PhD, DSc Center for Radiological Research Columbia University Medical Center djb3@columbia.edu There is no question that CT has

More information

Comparison of organ doses estimations in radiology with PCXMC application based on MIRD phantoms and CALDose-X application based on voxel phantoms

Comparison of organ doses estimations in radiology with PCXMC application based on MIRD phantoms and CALDose-X application based on voxel phantoms Comparison of organ doses estimations in radiology with PCXMC application based on MIRD phantoms and CALDose-X application based on voxel phantoms G. Gialousis 1, Z. Pappouli 2, A. Dimitriadis 2, E. Karavassilis

More information

Understanding radiation-induced cancer risks at radiological doses

Understanding radiation-induced cancer risks at radiological doses Understanding radiation-induced cancer risks at radiological doses David J. Brenner Center for Radiological Research Columbia University Medical Center New York, NY djb3@columbia.edu Let s distinguish

More information

Epidemiologic Studies. The Carcinogenic Effects of Radiation: Experience from Recent Epidemiologic Studies. Types of Epidemiologic Studies

Epidemiologic Studies. The Carcinogenic Effects of Radiation: Experience from Recent Epidemiologic Studies. Types of Epidemiologic Studies Division Of Cancer Epidemiology And Genetics Radiation Epidemiology Branch The Carcinogenic Effects of Radiation: Experience from Recent Epidemiologic Studies Elaine Ron Columbia University Radiation Course

More information

SMOKING AND CANCER RISK

SMOKING AND CANCER RISK SMOKING AND CANCER RISK The effects of smoking on health were documented in a landmark report by the Surgeon General in 1964. Since then the devastating effect from smoking on millions of American lives

More information

National Cancer Statistics in Korea, 2014

National Cancer Statistics in Korea, 2014 National Cancer Statistics in Korea, 2014 2016. 12. 20. Korea Central Cancer Registry Cancer Incidence in Korea, 2014 National Cancer Incidence, 2014 Trends in Cancer Incidence by Sex and Year * Dark colored

More information

Information Services Division NHS National Services Scotland

Information Services Division NHS National Services Scotland Cancer in Scotland October 2012 First published in June 2004, revised with each National Statistics publication Next due for revision April 2013 Information Services Division NHS National Services Scotland

More information

Overview of Epidemiological Studies and Trends in Paediatric CT use. Mark S. Pearce, PhD

Overview of Epidemiological Studies and Trends in Paediatric CT use. Mark S. Pearce, PhD Overview of Epidemiological Studies and Trends in Paediatric CT use Mark S. Pearce, PhD CT scan usage A very useful tool Introduced in 1973 for head scanning Available worldwide at over 30,000 centres

More information

Outcomes Report: Accountability Measures and Quality Improvements

Outcomes Report: Accountability Measures and Quality Improvements Outcomes Report: Accountability Measures and Quality Improvements The FH Memorial Medical Center s Cancer Committee ensures that patients with cancer are treated according to the nationally accepted measures.

More information

Cancer Facts & Figures for African Americans

Cancer Facts & Figures for African Americans Cancer Facts & Figures for African Americans What is the Impact of Cancer on African Americans in Indiana? Table 12. Burden of Cancer among African Americans Indiana, 2004 2008 Average number of cases

More information

Dose-equivalent equivalent = absorbed

Dose-equivalent equivalent = absorbed UCSF General Surgery 2010 Radiation Risks of Diagnostic Radiology in Trauma Robert A. Izenberg, M.D., FACS University of California, San Francisco San Francisco General Hospital Context Increasingly liberal

More information

Radiation-Related Cancer Risks From CT Colonography Screening: A Risk-Benefit Analysis

Radiation-Related Cancer Risks From CT Colonography Screening: A Risk-Benefit Analysis Gastrointestinal Imaging Original Research Berrington de González et al. Radiation-Related Cancer Risks From CTC Gastrointestinal Imaging Original Research Amy Berrington de González 1 Kwang Pyo Kim 2

More information

Cancer Incidence and Mortality in Los Alamos County and New Mexico By Catherine M. Richards, M.S. 8

Cancer Incidence and Mortality in Los Alamos County and New Mexico By Catherine M. Richards, M.S. 8 Cancer Incidence and Mortality in Los Alamos County and New Mexico 1970-1996 By Catherine M. Richards, M.S. 8 Introduction This report was written in response to community concerns about occurrences of

More information

A Real-Time Monte Carlo System for Internal Dose Evaluation Using an Anthropomorphic Phantom with Different Shapes of Tumors Inserted

A Real-Time Monte Carlo System for Internal Dose Evaluation Using an Anthropomorphic Phantom with Different Shapes of Tumors Inserted A Real-Time Monte Carlo System for Internal Dose Evaluation Using an Anthropomorphic Phantom with Different Shapes of Tumors Inserted J. Wu, S. J. Chang, B. J. Chang, I. J. Chen, J. H. Chiu Health Physics

More information

AAPM Task Group 180 Image Guidance Doses Delivered During Radiotherapy: Quantification, Management, and Reduction

AAPM Task Group 180 Image Guidance Doses Delivered During Radiotherapy: Quantification, Management, and Reduction AAPM Task Group 180 Image Guidance Doses Delivered During Radiotherapy: Quantification, Management, and Reduction Parham Alaei, Ph.D. Department of Radiation Oncology University of Minnesota NCCAAPM Fall

More information

Annual Report to the Nation on the Status of Cancer, , Featuring Survival Questions and Answers

Annual Report to the Nation on the Status of Cancer, , Featuring Survival Questions and Answers EMBARGOED FOR RELEASE CONTACT: Friday, March 31, 2017 NCI Media Relations Branch: (301) 496-6641 or 10:00 am EDT ncipressofficers@mail.nih.gov NAACCR: (217) 698-0800 or bkohler@naaccr.org ACS Press Office:

More information

Cancer in New Mexico 2017

Cancer in New Mexico 2017 Cancer in New Mexico 0 Please contact us! Phone: 0-- E-Mail: nmtr-info@salud.unm.edu URL: nmtrweb.unm.edu TABLE OF CONTENTS Introduction... New Cases of Cancer Estimated Number of New Cancer Cases Description

More information

The Linear No-Threshold Model (LNT): Made to Be Tested, Made to Be Questioned. Richard C. Miller, PhD Associate Professor The University of Chicago

The Linear No-Threshold Model (LNT): Made to Be Tested, Made to Be Questioned. Richard C. Miller, PhD Associate Professor The University of Chicago The Linear No-Threshold Model (LNT): Made to Be Tested, Made to Be Questioned Richard C. Miller, PhD Associate Professor The University of Chicago Regulatory Organizations NCRP (Nat l Council on Radiation

More information

Attachment #2 Overview of Follow-up

Attachment #2 Overview of Follow-up Attachment #2 Overview of Follow-up Provided below is a general overview of follow-up and this may vary based on specific patient or cancer characteristics. Of note, Labs and imaging can be performed closer

More information

Attachment #2 Overview of Follow-up

Attachment #2 Overview of Follow-up Attachment #2 Overview of Follow-up Provided below is a general overview of follow-up and this may vary based on specific patient or cancer characteristics. Of note, Labs and imaging can be performed closer

More information

Cancer in New Mexico 2014

Cancer in New Mexico 2014 Cancer in New Mexico 2014 Please contact us! Phone: 505-272-5541 E-Mail: info@nmtr.unm.edu http://som.unm.edu/nmtr/ TABLE OF CONTENTS Introduction... 1 New Cases of Cancer: Estimated Number of New Cancer

More information

JRPR. A Comparative Review of Radiation-induced Cancer Risk Models. Technical Paper. Introduction

JRPR. A Comparative Review of Radiation-induced Cancer Risk Models. Technical Paper. Introduction Journal of Radiation Protection and Research 2017;42(2):130-140 pissn 2508-1888 eissn 2466-2461 A Comparative Review of Radiation-induced Cancer Risk Models Seunghee Lee 1, Juyoul Kim 1, Seokjung Han 2,

More information

Where does the estimate of 29,000 cancers come from? Based on Table 12D from BEIR VII, + risk estimates for 56,900,000 patients

Where does the estimate of 29,000 cancers come from? Based on Table 12D from BEIR VII, + risk estimates for 56,900,000 patients BEIR VII: What It Does and Doesn t Say Michael K O Connor, Ph.D. Dept. of Radiology, Mayo Clinic Using BEIR VII report, estimated radiation-related incident cancers Estimated that 29,000 future cancers

More information

Impact and implications of Cancer Death Status Reporting Delay on Population- Based Relative Survival Analysis with Presumed-Alive Assumption

Impact and implications of Cancer Death Status Reporting Delay on Population- Based Relative Survival Analysis with Presumed-Alive Assumption Impact and implications of Cancer Death Status Reporting Delay on Population- Based Relative Survival Analysis with Presumed-Alive Assumption X Dong, Y Ren, R Wilson, and K Zhang NAACCR 6-20-2017 Introduction

More information

Estimated Minnesota Cancer Prevalence, January 1, MCSS Epidemiology Report 04:2. April 2004

Estimated Minnesota Cancer Prevalence, January 1, MCSS Epidemiology Report 04:2. April 2004 MCSS Epidemiology Report 04:2 Suggested citation Perkins C, Bushhouse S.. Minnesota Cancer Surveillance System. Minneapolis, MN, http://www.health.state.mn.us/divs/hpcd/ cdee/mcss),. 1 Background Cancer

More information

Dosimetry for Epidemiology Cohorts Who Receive Radiation Therapy

Dosimetry for Epidemiology Cohorts Who Receive Radiation Therapy Dosimetry for Epidemiology Cohorts Who Receive Radiation Therapy Wayne Newhauser, PhD Eurados Winter School, Milan, 2016 Introduction About 1 in 2 men and women born today will be diagnosed with some form

More information

Core Concepts in Radiation Exposure 4/10/2015. Ionizing Radiation, Cancer, and. James Seward, MD MPP

Core Concepts in Radiation Exposure 4/10/2015. Ionizing Radiation, Cancer, and. James Seward, MD MPP Ionizing Radiation, Cancer, and Causation James P. Seward, MD MPP FACOEM Clinical Professor of Medicine, UCSF American Occupational Health Conf May 4, 2015 Ionizing Radiation, Cancer, and Causation James

More information

7/22/2014. Radiation Induced Cancer: Mechanisms. Challenges Identifying Radiogenic Cancers at Low Dose & Low Dose Rate (<100 mgy & <5 10 mgy/h)

7/22/2014. Radiation Induced Cancer: Mechanisms. Challenges Identifying Radiogenic Cancers at Low Dose & Low Dose Rate (<100 mgy & <5 10 mgy/h) Correlation, Causation and the Assessment of Radiation Risk From Epidemiological Investigations: The Good, the Bad & the Ugly 56 th AAPM Annual Meeting Jerrold Bushberg Ph.D., DABMP, FAAPM Clinical Professor

More information

Outcomes Report: Accountability Measures and Quality Improvements

Outcomes Report: Accountability Measures and Quality Improvements Outcomes Report: Accountability Measures and Quality Improvements The s Cancer Committee ensures that patients with cancer are treated according to the nationally accepted measures. Because we are an accredited

More information

Supplementary Appendix

Supplementary Appendix Supplementary Appendix This appendix has been provided by the authors to give readers additional information about their work. Supplement to: Schaapveld M, Aleman BMP, van Eggermond AM, et al. Second cancer

More information

Organ Dose Variability with Gender, Age and BMI

Organ Dose Variability with Gender, Age and BMI Organ Dose Variability with Gender, Age and BMI Dr Ted Lazo CRPPH Scientific Secretariat Article 31 Meeting, 17 May 2017, Luxembourg Background The ICRP system uses a generalised, gender and age averaged

More information

Cancer in Northeastern Pennsylvania: Incidence and Mortality of Common Cancers

Cancer in Northeastern Pennsylvania: Incidence and Mortality of Common Cancers Cancer in Northeastern Pennsylvania: Incidence and Mortality of Common Cancers Samuel M. Lesko, MD, MPH Medical Director Karen Ryczak, RN Surveillance Coordinator December 2014 334 Jefferson Avenue, Scranton,

More information

Radiation related cancer risk & benefit/risk assessment for screening procedures

Radiation related cancer risk & benefit/risk assessment for screening procedures WHO Workshop on Justification of CT for IHA 15-17 Oct 2014 Radiation related cancer risk & benefit/risk assessment for screening procedures Elke A. Nekolla BfS Federal Office for Radiation Protection Radiation

More information

Estimating Risks from CT Scans - in the Context of CT Scan Benefits

Estimating Risks from CT Scans - in the Context of CT Scan Benefits Estimating Risks from CT Scans - in the Context of CT Scan Benefits David J. Brenner Center for Radiological Research Columbia University Medical Center djb3@cumc.columbia.edu There is no question that

More information

Non-target dose from radiotherapy: Magnitude, Evaluation, and Impact. Stephen F. Kry, Ph.D., D.ABR.

Non-target dose from radiotherapy: Magnitude, Evaluation, and Impact. Stephen F. Kry, Ph.D., D.ABR. Non-target dose from radiotherapy: Magnitude, Evaluation, and Impact Stephen F. Kry, Ph.D., D.ABR. Goals Compare out-of-field doses from various techniques Methods to reduce out-of-field doses Impact of

More information

Skyscan 1076 in vivo scanning: X-ray dosimetry

Skyscan 1076 in vivo scanning: X-ray dosimetry Skyscan 1076 in vivo scanning: X-ray dosimetry DOSIMETRY OF HIGH RESOLUTION IN VIVO RODENT MICRO-CT IMAGING WITH THE SKYSCAN 1076 An important distinction is drawn between local tissue absorbed dose in

More information

Cancer in Northeastern Pennsylvania: Incidence and Mortality of Common Cancers

Cancer in Northeastern Pennsylvania: Incidence and Mortality of Common Cancers Cancer in Northeastern Pennsylvania: Incidence and Mortality of Common Cancers Samuel M. Lesko, MD, MPH Medical Director Karen Ryczak, RN Surveillance Coordinator November 2018 334 Jefferson Avenue, Scranton,

More information

Cancer in Northeastern Pennsylvania: Incidence and Mortality of Common Cancers

Cancer in Northeastern Pennsylvania: Incidence and Mortality of Common Cancers Cancer in Northeastern Pennsylvania: Incidence and Mortality of Common Cancers Samuel M. Lesko, MD, MPH Medical Director Karen Ryczak, RN Surveillance Coordinator December 2017 334 Jefferson Avenue, Scranton,

More information

CANCER INCIDENCE NEAR THE BROOKHAVEN LANDFILL

CANCER INCIDENCE NEAR THE BROOKHAVEN LANDFILL CANCER INCIDENCE NEAR THE BROOKHAVEN LANDFILL CENSUS TRACTS 1591.03, 1591.06, 1592.03, 1592.04 AND 1593.00 TOWN OF BROOKHAVEN, SUFFOLK COUNTY, NEW YORK, 1983-1992 WITH UPDATED INFORMATION ON CANCER INCIDENCE

More information

Estimating Risk of Low Radiation Doses (from AAPM 2013) María Marteinsdóttir Nordic Trauma,

Estimating Risk of Low Radiation Doses (from AAPM 2013) María Marteinsdóttir Nordic Trauma, Estimating Risk of Low Radiation Doses (from AAPM 2013) María Marteinsdóttir Nordic Trauma, 20140521 Stochastic effects Linear No Threshold - LNT-model Uncertain Material produced by William R. Hendee

More information

Setting The setting was not clear. The economic study was carried out in the USA.

Setting The setting was not clear. The economic study was carried out in the USA. Computed tomography screening for lung cancer in Hodgkin's lymphoma survivors: decision analysis and cost-effectiveness analysis Das P, Ng A K, Earle C C, Mauch P M, Kuntz K M Record Status This is a critical

More information

Cancer in Ontario. 1 in 2. Ontarians will develop cancer in their lifetime. 1 in 4. Ontarians will die from cancer

Cancer in Ontario. 1 in 2. Ontarians will develop cancer in their lifetime. 1 in 4. Ontarians will die from cancer Cancer in Ontario 1 in 2 Ontarians will develop cancer in their lifetime 1 in 4 Ontarians will die from cancer 14 ONTARIO CANCER STATISTICS 2016 1 Cancer in Ontario An overview Cancer is a group of more

More information

Table E1. Standardized Mortality Ratios for Total and Specific Causes of Death Parameter Radiologists Psychiatrists No. of Deaths

Table E1. Standardized Mortality Ratios for Total and Specific Causes of Death Parameter Radiologists Psychiatrists No. of Deaths RSNA, 2016 10.1148/radiol.2016152472 Table E1. Standardized Mortality Ratios for Total and Specific Causes of Death Parameter Radiologists Psychiatrists No. of Deaths Observed/Expected No. of Deaths Observed/Expected

More information

Estimated risk of radiation-induced lung cancer in paediatric patients following electron, photon and proton therapy

Estimated risk of radiation-induced lung cancer in paediatric patients following electron, photon and proton therapy U N I V E R S I T Y O F B E R G E N Estimated risk of radiation-induced lung cancer in paediatric patients following electron, photon and proton therapy Camilla H Stokkevåg 1, Grete-May Engeseth 1, Kristian

More information

Samuel M. Lesko, MD, MPH Director of Research/Medical Director

Samuel M. Lesko, MD, MPH Director of Research/Medical Director Cancer in Northeastern Pennsylvania: Incidence, Mortality and Survival for Common Cancers Samuel M. Lesko, MD, MPH Director of Research/Medical Director May 11 334 Jefferson Avenue, Scranton, PA 1851-57-941-7984

More information

Out-of-field organ doses from therapeutic irradiation during childhood: is there an excess risk for second cancer induction?

Out-of-field organ doses from therapeutic irradiation during childhood: is there an excess risk for second cancer induction? Out-of-field organ doses from therapeutic irradiation during childhood: is there an excess risk for second cancer induction? Poster No.: C-0096 Congress: ECR 2012 Type: Scientific Paper Authors: M. Mazonakis,

More information

D DAVID PUBLISHING. Uncertainties of in vivo Dosimetry Using Semiconductors. I. Introduction. 2. Methodology

D DAVID PUBLISHING. Uncertainties of in vivo Dosimetry Using Semiconductors. I. Introduction. 2. Methodology Journal of Life Sciences 9 (2015) 120-126 doi: 10.17265/1934-7391/2015.03.005 D DAVID PUBLISHING Uncertainties of in vivo Dosimetry Using Semiconductors Zeina Al Kattar, Hanna El Balaa and Saeed Zahran

More information

What is the Impact of Cancer on African Americans in Indiana? Average number of cases per year. Rate per 100,000. Rate per 100,000 people*

What is the Impact of Cancer on African Americans in Indiana? Average number of cases per year. Rate per 100,000. Rate per 100,000 people* What is the Impact of Cancer on African Americans in Indiana? Table 13. Burden of Cancer among African Americans Indiana, 2008 2012 Average number of cases per year Rate per 100,000 people* Number of cases

More information

Cancer Risks Following Low Dose Radiation Exposures: Lessons from Epi Studies

Cancer Risks Following Low Dose Radiation Exposures: Lessons from Epi Studies Cancer Risks Following Low Dose Radiation Exposures: Lessons from Epi Studies The Accidents at Fukushima Dai-Ichi Exploring the impacts of Radiation on the Ocean November 13, 2012 Dale L. Preston Hirosoft

More information

Information Services Division NHS National Services Scotland

Information Services Division NHS National Services Scotland Cancer in Scotland April 2013 First published in June 2004, revised with each National Statistics publication Next due for revision October 2013 Information Services Division NHS National Services Scotland

More information

Dosimetry of recently introduced CBCT Units for Oral and Maxillofacial Radiology

Dosimetry of recently introduced CBCT Units for Oral and Maxillofacial Radiology Dosimetry of recently introduced CBCT Units for Oral and Maxillofacial Radiology John B Ludlow, Laura E Davies-Ludlow, André Mol University of North Carolina, Chapel Hill, NC Background CBCT is seeing

More information

Review of TG-186 recommendations

Review of TG-186 recommendations Review of TG-186 recommendations Implementation of advanced brachytherapy dose calculation algorithms beyond TG-43 Rowan M. Thomson Carleton Laboratory for Radiotherapy Physics Carleton University Ottawa

More information

STUDIES OF LOW-DOSE RADIATION AND CANCER. E. Lubin

STUDIES OF LOW-DOSE RADIATION AND CANCER. E. Lubin STUDIES OF LOW-DOSE RADIATION AND CANCER E. Lubin 1 RELEVANT DATA BEIR VII 2006 UNSCEAR 2000 ICRP PIERCE D. PRESTON DL Japanese survivors. CARDIS E. IARC occupational exposure. BRENNER D. CT exposure and

More information

Cancer in Rural Illinois, Incidence, Mortality, Staging, and Access to Care. April 2014

Cancer in Rural Illinois, Incidence, Mortality, Staging, and Access to Care. April 2014 Cancer in Rural Illinois, 1990-2010 Incidence, Mortality, Staging, and Access to Care April 2014 Prepared by Whitney E. Zahnd, MS Research Development Coordinator Center for Clinical Research Southern

More information

Combining Risks from Several Tumors Using Markov Chain Monte Carlo

Combining Risks from Several Tumors Using Markov Chain Monte Carlo University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln U.S. Environmental Protection Agency Papers U.S. Environmental Protection Agency 2009 Combining Risks from Several Tumors

More information

Corporate Medical Policy

Corporate Medical Policy Corporate Medical Policy Intensity Modulated Radiation Therapy (IMRT) of Abdomen and File Name: Origination: Last CAP Review: Next CAP Review: Last Review: intensity_modulated_radiation_therapy_imrt_of_abdomen_and_pelvis

More information

Cancer prevalence. Chapter 7

Cancer prevalence. Chapter 7 Chapter 7 Cancer prevalence Prevalence measures the number of people diagnosed with cancer who are still alive. This chapter presents current and historical statistics on cancer prevalence in Ontario.

More information

Modifying EPA Radiation Risk Models Based on BEIR VII. Draft White Paper

Modifying EPA Radiation Risk Models Based on BEIR VII. Draft White Paper Modifying EPA Radiation Risk Models Based on BEIR VII Draft White Paper Prepared by: Office of Radiation and Indoor Air U.S. Environmental Protection Agency August 1, 2006 Contents I. Introduction A. Current

More information

From Epidemiology to Risk Factors aka DDREF: Light and Shadows

From Epidemiology to Risk Factors aka DDREF: Light and Shadows From Epidemiology to Risk Factors aka DDREF: Light and Shadows MELODI 2011, Rome November 2, 2011 Dale L. Preston Hirosoft International Eureka, CA Outline DDREF Origins and Background DDREF in Practice

More information

Plan-Specific Correction Factors for Small- Volume Ion Chamber Dosimetry in Modulated Treatments on a Varian Trilogy

Plan-Specific Correction Factors for Small- Volume Ion Chamber Dosimetry in Modulated Treatments on a Varian Trilogy Plan-Specific Correction Factors for Small- Volume Ion Chamber Dosimetry in Modulated Treatments on a Varian Trilogy Vimal K. Desai, M.S. Under the supervision of Dr. Wesley Culberson NCCAAPM 2017 Fall

More information

Forum for Health Economics & Policy

Forum for Health Economics & Policy Forum for Health Economics & Policy Volume 13, Issue 2 2010 Article 11 (HEALTH ECONOMICS) Are Increasing 5-Year Survival Rates Evidence of Success Against Cancer? A Reexamination Using Data from the U.S.

More information

Save Our Sievert! Ches Mason BHP Billiton Uranium, 55 Grenfell Street, Adelaide, SA5000, Australia

Save Our Sievert! Ches Mason BHP Billiton Uranium, 55 Grenfell Street, Adelaide, SA5000, Australia Save Our Sievert! Ches Mason BHP Billiton Uranium, 55 Grenfell Street, Adelaide, SA5000, Australia Abstract The protection quantity effective dose was devised by the International Commission on Radiological

More information

Physician Follow-Up and Guideline Adherence in Post- Treatment Surveillance of Colorectal Cancer

Physician Follow-Up and Guideline Adherence in Post- Treatment Surveillance of Colorectal Cancer Physician Follow-Up and Guideline Adherence in Post- Treatment Surveillance of Colorectal Cancer Gabriela M. Vargas, MD Kristin M. Sheffield, PhD, Abhishek Parmar, MD, Yimei Han, MS, Kimberly M. Brown,

More information

Annual Report. Cape Cod Hospital and Falmouth Hospital Regional Cancer Network Expert physicians. Quality hospitals. Superior care.

Annual Report. Cape Cod Hospital and Falmouth Hospital Regional Cancer Network Expert physicians. Quality hospitals. Superior care. Annual Report Cape Cod Hospital and Falmouth Hospital Regional Cancer Network 2013 Expert physicians. Quality hospitals. Superior care. Cape Cod Hospital s Davenport- Mugar Hematology/Oncology Center and

More information

Brief Update on Cancer Occurrence in East Metro Communities

Brief Update on Cancer Occurrence in East Metro Communities Brief Update on Cancer Occurrence in East Metro Communities FEBRUARY, 2018 Brief Update on Cancer Occurrence in East Metro Communities Minnesota Department of Health Minnesota Cancer Reporting System PO

More information

Cancer survival in Hong Kong SAR, China,

Cancer survival in Hong Kong SAR, China, Chapter 5 Cancer survival in Hong Kong SAR, China, 1996 2001 Law SC and Mang OW Abstract The Hong Kong cancer registry was established in 1963, and cancer registration is done by passive and active methods.

More information

Risk Models for Radiationinduced

Risk Models for Radiationinduced Risk Models for Radiationinduced Leukaemia Richard Wakeford Visiting Professor in Epidemiology, Dalton Nuclear Institute, The University of Manchester, UK (Richard.Wakeford@manchester.ac.uk) Measures of

More information

Medical Dosimetry Graduate Certificate Program IU Graduate School & The Department of Radiation Oncology IU Simon Cancer Center

Medical Dosimetry Graduate Certificate Program IU Graduate School & The Department of Radiation Oncology IU Simon Cancer Center Medical Dosimetry Graduate Certificate Program IU Graduate School & The Department of Radiation Oncology IU Simon Cancer Center All students accepted into the Medical Dosimetry Graduate Certificate Program

More information

Cancer Risk. Klaus-Rüdiger Trott Università degli Studi di Pavia And University College London Cancer Isntitue and Technische Universität München

Cancer Risk. Klaus-Rüdiger Trott Università degli Studi di Pavia And University College London Cancer Isntitue and Technische Universität München Cancer Risk Klaus-Rüdiger Trott Università degli Studi di Pavia And University College London Cancer Isntitue and Technische Universität München The aims of Radiation Protection The aims of Radiation Protection

More information

Measurement of organ dose in abdomen-pelvis CT exam as a function of ma, KV and scanner type by Monte Carlo method

Measurement of organ dose in abdomen-pelvis CT exam as a function of ma, KV and scanner type by Monte Carlo method Iran. J. Radiat. Res., 2004; 1(4): 187-194 Measurement of organ dose in abdomen-pelvis CT exam as a function of ma, KV and scanner type by Monte Carlo method M.R. Ay 1, M. Shahriari 2, S. Sarkar 3, P.

More information

Thyroid Cancer after Exposure to External Radiation: A Pooled Analysis of Seven Studies

Thyroid Cancer after Exposure to External Radiation: A Pooled Analysis of Seven Studies RADIATION RESEARCH 141, 259 277 (1995) Thyroid Cancer after Exposure to External Radiation: A Pooled Analysis of Seven Studies Elaine Ron,* Jay H. Lubin,* Roy E. Shore, Kiyohiko Mabuchi, Baruch Modan,

More information

Cancer projections National Cancer Registry

Cancer projections National Cancer Registry Cancer projections 25-235 National Cancer Registry Published by the National Cancer Registry 28 Building 68, Cork Airport Business Park, Kinsale Road, Cork, Ireland Telephone 21-431814 Email Web site info@ncri.ie

More information

Corporate Medical Policy

Corporate Medical Policy Corporate Medical Policy Intensity Modulated Radiation Therapy (IMRT) of Head and Neck File Name: Origination: Last CAP Review: Next CAP Review: Last Review: intensity_modulated_radiation_therapy_imrt_of_head_and_neck

More information

Machine Learning Powered Automatic Organ Classification for Patient Specific Organ Dose Estimation

Machine Learning Powered Automatic Organ Classification for Patient Specific Organ Dose Estimation Machine Learning Powered Automatic Organ Classification for Patient Specific Organ Dose Estimation Junghwan Cho, Eunmi Lee, Hyunkwang Lee, Bob Liu, Xinhua Li, Shahein Tajmir, Dushyant Sahani, and Synho

More information

Lauriston S. Taylor Lecture

Lauriston S. Taylor Lecture Lauriston S. Taylor Lecture Radiation Protection and Public Policy in an Uncertain World Charles Land Scientific Consultant Division of Cancer Epidemiology & Genetics Radiation Epidemiology Branch March

More information

Radiation Effects Research Foundation Life Span Study Solid Cancer Incidence Data Set (all solid cancers) March 2017

Radiation Effects Research Foundation Life Span Study Solid Cancer Incidence Data Set (all solid cancers) March 2017 Radiation Effects Research Foundation Life Span Study Solid Cancer Incidence Data Set 1958-2009 (all solid cancers) This documentation describes data files and analysis scripts used to produce the results

More information

*

* Introduction Cancer is complex, can have many possible causes, and is increasingly common. For the U.S. population, 1 in 2 males and 1 in 3 females is at risk of developing cancer in their lifetime. The

More information

Organ Dose Reconstruction for Wilms Tumor Patients Treated with Radiation Therapy

Organ Dose Reconstruction for Wilms Tumor Patients Treated with Radiation Therapy Organ Dose Reconstruction for Wilms Tumor Patients Treated with Radiation Therapy Rasha Makkia Biomedical Physics Ph.D. student East Carolina University March 3 rd, 2016 Outlines The Purpose Wilms Tumor,

More information

Suggested Citation: Copyright Information:

Suggested Citation: Copyright Information: This report was prepared by the CalCARES Program, Institute for Population Health Improvement, UC Davis Health System, for the Chronic Disease Surveillance and Research Branch, California Department of

More information

A. DeWerd. Michael Kissick. Larry. Editors. The Phantoms of Medical. and Health Physics. Devices for Research and Development.

A. DeWerd. Michael Kissick. Larry. Editors. The Phantoms of Medical. and Health Physics. Devices for Research and Development. Larry Editors A. DeWerd Michael Kissick The Phantoms of Medical and Health Physics Devices for Research and Development ^ Springer Contents 1 Introduction to Phantoms of Medical and Health Physics 1 1.1

More information

Rare Urological Cancers Urological Cancers SSCRG

Rare Urological Cancers Urological Cancers SSCRG Rare Urological Cancers Urological Cancers SSCRG Public Health England South West Knowledge & Intelligence Team 1 Introduction Rare urological cancers are defined here as cancer of the penis, testes, ureter

More information

Cancer Prevention & Control in Adolescent & Young Adult Survivors

Cancer Prevention & Control in Adolescent & Young Adult Survivors + Cancer Prevention & Control in Adolescent & Young Adult Survivors NCPF Workshop July 15-16, 2013 Patricia A. Ganz, MD UCLA Schools of Medicine & Public Health Jonsson Comprehensive Cancer Center + Overview

More information

Report on Cancer Statistics in Alberta. Kidney Cancer

Report on Cancer Statistics in Alberta. Kidney Cancer Report on Cancer Statistics in Alberta Kidney Cancer November 29 Surveillance - Cancer Bureau Health Promotion, Disease and Injury Prevention Report on Cancer Statistics in Alberta - 2 Purpose of the Report

More information

Chapter II: Overview

Chapter II: Overview : Overview Chapter II: Overview This chapter provides an overview of the status of cancer in Minnesota, using cases reported to the Minnesota Cancer Surveillance System (MCSS) and deaths reported to the

More information

AN EMPIRICAL EVALUATION OF PERIOD SURVIVAL ANALYSIS USING DATA FROM THE CANADIAN CANCER REGISTRY. Larry F. Ellison MSc, Statistics Canada

AN EMPIRICAL EVALUATION OF PERIOD SURVIVAL ANALYSIS USING DATA FROM THE CANADIAN CANCER REGISTRY. Larry F. Ellison MSc, Statistics Canada AN EMPIRICAL EVALUATION OF PERIOD SURVIVAL ANALYSIS USING DATA FROM THE CANADIAN CANCER REGISTRY Larry F. Ellison MSc, Statistics Canada Introduction Long-term survival rates are important outcome measures

More information

Second Neoplasms Working Group. CCSS Investigators Meeting June 2017

Second Neoplasms Working Group. CCSS Investigators Meeting June 2017 Second Neoplasms Working Group CCSS Investigators Meeting June 2017 Second Neoplasms Working Group Overview Ongoing review, adjudication and entry of reported neoplasms into data set Initial review of

More information

American Cancer Society Estimated Cancer Deaths by Sex and Age (years), 2013

American Cancer Society Estimated Cancer Deaths by Sex and Age (years), 2013 American Cancer Society Estimated Cancer Deaths by Sex and Age (years), 2013 All ages Younger than 45 45 and Older Younger than 65 65 and Older All sites, men 306,920 9,370 297,550 95,980 210,940 All sites,

More information

LANDMARK MEDICAL CENTER CANCER PROGRAM YEAR IN REVIEW 2013

LANDMARK MEDICAL CENTER CANCER PROGRAM YEAR IN REVIEW 2013 LANDMARK MEDICAL CENTER CANCER PROGRAM YEAR IN REVIEW 2013 Landmark Medical Center offers a comprehensive cancer care services to our patients. LMC Cancer program is committed to ensure that patients receive

More information