Margins in SBRT. Mischa Hoogeman

Size: px
Start display at page:

Download "Margins in SBRT. Mischa Hoogeman"

Transcription

1 Margins in SBRT Mischa Hoogeman

2 MARGIN CONCEPTS

3 Why do we use margins? Target / tumor To a-priori compensate for (unknown) deviations between the intended target position and the real target position during dose delivery Deviations are estimated from population-based measurements of geometrical errors (can be patient specific, e.g. respiratory motion) Healthy tissue To avoid unintended dose to a critical organs after aligning the beam to the displaced target (in case of differential motion between target and OAR)

4 How large should the margin be? What is the incentive? 99% of the target volume receives 95% of the prescribed dose or more (coverage probability) - Stroom et al. 90% of patients in the population receives a minimum cumulative CTV dose of at least 95% of the prescribed dose - van Herk et al. Not all patients will be treated to 100% of the prescription dose in all fractions M = 2.5S + 0.7s

5 Categorization of Errors: a 2D Example Systematic error S Systematic error M Random error s

6 Probability Density Function: Normal Distribution

7 Random Errors Only: M rand =0.7s The CTV experiences daily shifts of the dose distribution due to daily random variations in the position of the CTV If we add the daily shifted dose distributions the dose distribution appeares to be blurred (motion blurring) The effect of the random error can be calculated by convolving the random error distribution with the dose distribution => blurred dose distribution = random error s

8 Margin Recipe for Random Error Water s p = 3.2 mm Lung s p = 6.4 mm random error s penumbra s p block position 95% 50%

9 Margin Calculation: Random Component The margin that would be needed to ensure a coverage of at least 95% norminv p = 0.95, = 0, s = s p M = 0.7s M = 1.64 s 2 s s2 norminv p2 p = 0.95, = 0, s = s p p 2 s

10 Random Error and Minimum Dose Requirement The margin for random decreases with decreasing prescription isodose line / minimum dose requirement 95% M = b s 2 s - bs p2 73% p 50% Prescription level b 95% % % % 0.25

11 Random Margin and Prescription Level Prescription level b 95% % % % 0.25

12 Systematic Errors Only (M sys = 2.5 S) The systematic set-up errors are described by a 3D Gaussian distribution How to choose M sys to ensure a high probability that the prescribed dose is delivered to the CTV? 95% Choice: for 90% of all possible systematic set-up errors (treatments), the full CTV is within the PTV (=95% isodose)

13 Systematic Errors Only (M sys = 2.5 S) Spherical Tumor 0 M sys p Σ dr = M sys r 2 e π 2 Σ3 r 2 2Σ 2 dr = 0.9 Population (%) S

14 Margin Recipe: Systematic Error and Random Errors Cumulative minimum dose 95% M r = b s 2 +s p2 - bs p Systematic errors are assumed to have an independent effect on the blurred dose distribution 90% of population receives a cumulative CTV dose of 95% M = 2.5S + M r

15 How to Add Various Error Contributions? For a simple criteria as a probability level of the minimum dose the systematic error and random error are added linearly For various systematic errors and various random errors the errors (SDs) should be added in quadrature: S = S 2 a S 2 b S 2 c S = = 10.9(10) Emphasis on large errors!

16 APPLICATION TO SRT AND SBRT

17 Error (mm) Number of Fractions and Residual Systematic Error Limited number of fractions results in a residual shift of the dose distribution Fraction Number Residual error Error after 35 fractions = 0.1 mm Error after 5 fractions = -1.6 mm

18 Effective Standard Deviation of the Errors Effective Systematic Error Error in estimating the average S effective = 1 S 2 s 2 N Effective Random Error s effective 1 = 1 - s N 2 de Boer H C and Heijmen B J 2001 A protocol for the reduction of systematic patient setup errors with minimal portal imaging workload Int. J. Radiat. Oncol. Biol. Phys

19 Margin and Number of Fractions S eff s eff Margin S = 2 mm, s = 2 mm, P=80%

20 Including Error due to Respiratory Motion Respiratory motion modeled as sin 6 t The respiratory motion can be described as a standard deviation for a given amplitude s = 0.358A

21 Intra-fraction error vs. motion amplitude (CC) Intra-fraction error (1 SD) [mm] Without Synchrony Slope = Respiratory motion amplitude (mm) Hoogeman M, Prévost JB, Nuyttens J, Pöll J, Levendag P, Heijmen B, Clinical accuracy of the respiratory tumor tracking system of the cyberknife: assessment by analysis of log files. Int J Radiat Oncol Biol Phys May 1;74(1): t y = y cos 6 0 A ( - ) s = 0.358A

22 PRACTICAL EXAMPLES

23 A Practical Example: SRT Case Intracranial lesion: 3 x 8 80% SD of the penumbra is 3.2 mm E2E test device error (1 SD) = 0.4 mm (measured over a long period) Localization (delineation) error = 1.0 mm (1 SD) Systematic error = 0.5 mm (1 SD) [measured from 30-fraction treatments] Random error = 0.5 mm (1 SD) [measured from 30-fraction treatments] Intra-fraction error = 0.5 mm ( 1 SD) [measured from 30-fraction treatments at end of treatment]

24 A Practical Example: SRT Case Intracranial lesion: 3 x 8 80% N=3, b=0.84 SD of the penumbra is 3.2 mm s pen =3.2 mm E2E test device error (S) = 0.4 mm S 1 =0.4 mm Localization (delineation) error = 1.0 mm (1 SD) S 2 =1.0 mm Systematic error = 0.5 mm (1 SD) S eff =0.58 mm Random error = 0.5 mm (1 SD) s eff =0.41 mm Intra-fraction error = 0.5 mm ( 1 SD) s eff =0.20 mm

25 Results SRT Example No delineation error

26 Evaluation of Treatment Accuracy Seravalli E, van Haaren PM, van der Toorn PP, Hurkmans CW. A comprehensive evaluation of treatment accuracy, including end-to-end tests and clinical data, applied to intracranial stereotactic radiotherapy. Radiother Oncol Jul;116(1):131-8.

27 A Practical Example: SBRT Lung Case T1 primary lung lesion: 3 x 18 80% Alignment on time-averaged tumor position by CBCT Tumor in lung tissue E2E test device error (1 SD) = 0.4 mm (measured over a long period) Localization (delineation) error = 2.0 mm (1 SD) Systematic error = 1.0 mm (1 SD) [measured from 3-fraction treatments] Random error = 1.0 mm (1 SD) [measured from 3-fraction treatments] Intra-fraction amplitude = 1 25 mm

28 A Practical Example: SBRT Lung Case T1 primary lung lesion: 3 x 18 80% N = 3, b = 0.84 Alignment on time-averaged tumor position by CBCT SD of the penumbra is 6.4 mm s pen = 6.4 mm E2E test device error (S) = 0.4 mm S 1 = 0.4 mm Localization (delineation) error = 2.0 mm (1 SD) S 2 = 2.0 mm Systematic error = 1.0 mm (1 SD) S eff = 1.0 mm Random error = 1.0 mm (1 SD) s eff = 1.0 mm Intra-fraction amplitude = 1 25 mm s r = mm

29 Margins SBRT Lung Case No breathing

30 INTERNAL TARGET VOLUME

31 ITV Concept in ICRU-62 Report PTV margin should be derived from Internal Margin (IM) or Internal Target Volume (ITV) Setup Margin IM or ITV should compensate for physiological movements and variations in size, shape, and position of the CTV in relation to an internal reference point ITV often applied in lung SBRT where it encloses the full CTV in all respiratory phases CTV ITV PTV

32 Margin (mm) Margin vs ITV for Perfect Inter-fraction Alignment Amplitude (mm) Margin ITV Margin Water Margin lung

33 Margin Recipe for Random Error % 50%

34 Some Concluding Remarks In radiosurgery often 0-mm margins are being advocated There will always be residual geometrical uncertainties Target definition Errors in image-guidance systems Indirect measures of tumor position Always verify the margin algorithm used in the Treatment Planning System 3D margin algorithm (and not 2D) What is the resolution of the margin algorithm (e.g. CT resolution?) Verify that margin are not truncated to voxel positions, especially in the superior-inferior direction

35 References for Further Reading Stroom JC, de Boer HC, Huizenga H, Visser AG. Inclusion of geometrical uncertainties in radiotherapy treatment planning by means of coverage probability. Int J Radiat Oncol Biol Phys Mar 1;43(4): Van Herk M, Remeijer P, Rasch C, Lebesque JV. The probability of correct target dosage: Dose population histograms for deriving margins in radiotherapy. Int J Radiat Oncol Biol Phys. 2000;47: van Herk M, Remeijer P, Lebesque JV. Inclusion of geometric uncertainties in treatment plan evaluation. Int J Radiat Oncol Biol Phys Apr 1;52(5): Witte MG, van der Geer J, Schneider C, Lebesque JV, van Herk M. The effects of target size and tissue density on the minimum margin required for random errors. Med Phys Nov;31(11): International Commission on Radiation Units and Measurements. Prescribing, recording and reporting photon beam therapy. ICRU Report 50. Bethesda; International Commission on Radiation Units and Measurements. Prescribing, recording and reporting photon beam therapy (Supplement to ICRU Report 50). ICRU Report 62 Bethesda; International Commission on Radiation Units and Measurements. Prescribing, recording and reporting Photon Beam Intensity- Modulated Radiation Therapy (IMRT). ICRU Report 83; Wolthaus JW, Sonke J-J, van Herk M, et al. Comparison of different strategies to use four-dimensional computed tomography in treatment planning for lung cancer patients. Int J Radiat Oncol Biol Phys 2008;70: van Herk M, Witte M, van der Geer J, Schneider C, Lebesque JV Int. J. Radiation Oncology Biol. Phys., Vol. 57, No. 5, pp , Wunderink W PhD Thesis Erasmus University, Rotterdam, The Netherlands Gordon JJ, Siebers JV. Convolution method and CTV-to-PTV margins for finite fractions and small systematic errors. Phys Med Biol Apr 7;52(7):

IGRT Protocol Design and Informed Margins. Conflict of Interest. Outline 7/7/2017. DJ Vile, PhD. I have no conflict of interest to disclose

IGRT Protocol Design and Informed Margins. Conflict of Interest. Outline 7/7/2017. DJ Vile, PhD. I have no conflict of interest to disclose IGRT Protocol Design and Informed Margins DJ Vile, PhD Conflict of Interest I have no conflict of interest to disclose Outline Overview and definitions Quantification of motion Influences on margin selection

More information

It s All About Margins. Maaike Milder, Ph.D. Accuray Symposium April 21 st 2018

It s All About Margins. Maaike Milder, Ph.D. Accuray Symposium April 21 st 2018 It s All About Margins Maaike Milder, Ph.D. Accuray Symposium April 21 st 2018 Why margins? The smaller the better! Short Introduction Erasmus MC has been using the CyberKnife Robotic Radiosurgery System

More information

Specification of Tumor Dose. Prescription dose. Purpose

Specification of Tumor Dose. Prescription dose. Purpose Specification of Tumor Dose George Starkschall, Ph.D. Department of Radiation Physics U.T. M.D. Anderson Cancer Center Prescription dose What do we mean by a dose prescription of 63 Gy? Isocenter dose

More information

CALCULATION OF OPTIMAL MARGINS BETWEEN CLINICAL TARGET VOLUME (CTV) AND PLANNING TARGET VOLUME (PTV)

CALCULATION OF OPTIMAL MARGINS BETWEEN CLINICAL TARGET VOLUME (CTV) AND PLANNING TARGET VOLUME (PTV) Available online at http://www.journalijdr.com ISSN: 2230-9926 International Journal of Development Research Vol. 07, Issue, 10, pp.15773-15779, October, 2017 ORIGINAL RESEARCH ARTICLE ORIGINAL RESEARCH

More information

Radiation therapy treatment plan optimization accounting for random and systematic patient setup uncertainties

Radiation therapy treatment plan optimization accounting for random and systematic patient setup uncertainties Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 211 Radiation therapy treatment plan optimization accounting for random and systematic patient setup uncertainties

More information

Image Fusion, Contouring, and Margins in SRS

Image Fusion, Contouring, and Margins in SRS Image Fusion, Contouring, and Margins in SRS Sarah Geneser, Ph.D. Department of Radiation Oncology University of California, San Francisco Overview Review SRS uncertainties due to: image registration contouring

More information

REVISITING ICRU VOLUME DEFINITIONS. Eduardo Rosenblatt Vienna, Austria

REVISITING ICRU VOLUME DEFINITIONS. Eduardo Rosenblatt Vienna, Austria REVISITING ICRU VOLUME DEFINITIONS Eduardo Rosenblatt Vienna, Austria Objective: To introduce target volumes and organ at risk concepts as defined by ICRU. 3D-CRT is the standard There was a need for a

More information

1 : : Medical Physics, Città della Salute e della Scienza, Torino, Italy

1 : : Medical Physics, Città della Salute e della Scienza, Torino, Italy Fusella M. 1, Badellino S. 2, Boschetti A. 1, Cadoni F. 1, Giglioli F. R. 1, Guarneri A. 3, Fiandra C. 2, Filippi A. 2, Ricardi U. 2, Ragona R. 2 1 : : Medical Physics, Città della Salute e della Scienza,

More information

Stereotaxy. Outlines. Establishing SBRT Program: Physics & Dosimetry. SBRT - Simulation. Body Localizer. Sim. Sim. Sim. Stereotaxy?

Stereotaxy. Outlines. Establishing SBRT Program: Physics & Dosimetry. SBRT - Simulation. Body Localizer. Sim. Sim. Sim. Stereotaxy? Establishing SBRT Program: Physics & Dosimetry Lu Wang, Ph.D. Radiation Oncology Department Fox Chase Cancer Center Outlines Illustrate the difference between SBRT vs. CRT Introduce the major procedures

More information

Measure the Errors of Treatment Set-Ups of Prostate Cancer Patient Using Electronic Portal Imaging Device (EPID)

Measure the Errors of Treatment Set-Ups of Prostate Cancer Patient Using Electronic Portal Imaging Device (EPID) IOSR Journal of Applied Physics (IOSR-JAP) e-issn: 2278-4861.Volume 10, Issue 2 Ver. I (Mar. Apr. 2018), PP 55-59 www.iosrjournals.org Measure the Errors of Treatment Set-Ups of Prostate Cancer Patient

More information

Defining Target Volumes and Organs at Risk: a common language

Defining Target Volumes and Organs at Risk: a common language Defining Target Volumes and Organs at Risk: a common language Eduardo Rosenblatt Section Head Applied Radiation Biology and Radiotherapy (ARBR) Section Division of Human Health IAEA Objective: To introduce

More information

JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 15, NUMBER 6, 2014

JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 15, NUMBER 6, 2014 JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 15, NUMBER 6, 2014 Inter- and intrafractional setup errors and baseline shifts of fiducial markers in patients with liver tumors receiving free-breathing

More information

Radiation treatment planning in lung cancer

Radiation treatment planning in lung cancer Radiation treatment planning in lung cancer Georg Dietmar 1,2 1 Div. Medical Rad. Phys., Dept. of Radiation Oncology / Medical Univ. Vienna & AKH Wien 2 Christian Doppler Laboratory for Medical Radiation

More information

Estimation of patient setup uncertainty using BrainLAB Exatrac X-Ray 6D system in image-guided radiotherapy

Estimation of patient setup uncertainty using BrainLAB Exatrac X-Ray 6D system in image-guided radiotherapy JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 16, NUMBER 2, 2015 Estimation of patient setup uncertainty using BrainLAB Exatrac X-Ray 6D system in image-guided radiotherapy Erminia Infusino, a Lucio

More information

Robust Optimization accounting for Uncertainties

Robust Optimization accounting for Uncertainties Robust Optimization accounting for Uncertainties Thomas Bortfeld Massachusetts General Hospital, Boston tbortfeld@mgh.harvard.edu Supported by: RaySearch Philips Medical Systems Outline 1. Optimality and

More information

Linac or Non-Linac Demystifying And Decoding The Physics Of SBRT/SABR

Linac or Non-Linac Demystifying And Decoding The Physics Of SBRT/SABR Linac or Non-Linac Demystifying And Decoding The Physics Of SBRT/SABR PhD, FAAPM, FACR, FASTRO Department of Radiation Oncology Indiana University School of Medicine Indianapolis, IN, USA Indra J. Das,

More information

The goal of three-dimensional conformal radiotherapy (3D-CRT) is to increase the likelihood

The goal of three-dimensional conformal radiotherapy (3D-CRT) is to increase the likelihood REVIEW ARTICLE UDC: 616-006.4:615.849.1:616-035.2 Arch Oncol 2005;13(3-4):140-4. DOI: 10.2298/AOO0503140M Verification and correction of geometrical uncertainties in conformal radiotherapy Du¹an Mileusniæ

More information

SBRT fundamentals. Outline 8/2/2012. Stereotactic Body Radiation Therapy Quality Assurance Educational Session

SBRT fundamentals. Outline 8/2/2012. Stereotactic Body Radiation Therapy Quality Assurance Educational Session Stereotactic Body Radiation Therapy Quality Assurance Educational Session J Perks PhD, UC Davis Medical Center, Sacramento CA SBRT fundamentals Extra-cranial treatments Single or small number (2-5) of

More information

SRS Uncertainty: Linac and CyberKnife Uncertainties

SRS Uncertainty: Linac and CyberKnife Uncertainties SRS Uncertainty: Linac and CyberKnife Uncertainties Sonja Dieterich, PhD Linac/CyberKnife Technological Uncertainties 1 Linac Mechanical/Radiation Isocenters Depuydt, Tom, et al. "Computer aided analysis

More information

Computational intelligence margin models for radiotherapeutic cancer treatment

Computational intelligence margin models for radiotherapeutic cancer treatment Computational intelligence margin models for radiotherapeutic cancer treatment Bongile Mzenda Institute of Industrial Research This thesis is submitted in partial fulfilment of the requirements of the

More information

8/2/2012. Transitioning from 3D IMRT to 4D IMRT and the Role of Image Guidance. Part II: Thoracic. Peter Balter, Ph.D.

8/2/2012. Transitioning from 3D IMRT to 4D IMRT and the Role of Image Guidance. Part II: Thoracic. Peter Balter, Ph.D. 8/2/2012 Transitioning from 3D IMRT to 4D IMRT and the Role of Image Guidance Part II: Thoracic Peter Balter, Ph.D. Disclosure Dr. Balter is Physics PI on a trial comparing Cyberknife based SBRT with surgery,

More information

Quantifying variability of intrafractional target motion in stereotactic body radiotherapy for lung cancers

Quantifying variability of intrafractional target motion in stereotactic body radiotherapy for lung cancers Title Quantifying variability of intrafractional target motion in stereotactic body radiotherapy for lung cancers Author(s) CHAN, KH; Kwong, DLW; Tam, E; Tong, A; Ng, CY Citation Journal of Applied Clinical

More information

8/3/2016. Outline. Site Specific IGRT Considerations for Clinical Imaging Protocols. Krishni Wijesooriya, PhD University of Virginia

8/3/2016. Outline. Site Specific IGRT Considerations for Clinical Imaging Protocols. Krishni Wijesooriya, PhD University of Virginia Site Specific IGRT Considerations for Clinical Imaging Protocols Krishni Wijesooriya, PhD University of Virginia Outline Image registration accuracies for different modalities What imaging modality best

More information

Pitfalls in SBRT Treatment Planning for a Moving Target

Pitfalls in SBRT Treatment Planning for a Moving Target Pitfalls in SBRT Treatment Planning for a Moving Target Cynthia F. Chuang, Ph.D. Department of Radiation Oncology University of California-San Francisco I have no conflicts of interests to disclose In

More information

Therapy of Non-Operable early stage NSCLC

Therapy of Non-Operable early stage NSCLC SBRT Stage I NSCLC Therapy of Non-Operable early stage NSCLC Dr. Adnan Al-Hebshi MD, FRCR(UK), FRCP(C), ABR King Faisal Specialist Hospital & Research Centre This is our territory Early Stages NSCLC Surgical

More information

CyberKnife robotic spinal radiosurgery in prone position: dosimetric advantage due to posterior radiation access?

CyberKnife robotic spinal radiosurgery in prone position: dosimetric advantage due to posterior radiation access? JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 15, NUMBER 4, 2014 CyberKnife robotic spinal radiosurgery in prone position: dosimetric advantage due to posterior radiation access? Christoph Fürweger,

More information

Which Planning CT Should be Used for Lung SBRT? Ping Xia, Ph.D. Head of Medical Physics in Radiation Oncology Cleveland Clinic

Which Planning CT Should be Used for Lung SBRT? Ping Xia, Ph.D. Head of Medical Physics in Radiation Oncology Cleveland Clinic Which Planning CT Should be Used for Lung SBRT? Ping Xia, Ph.D. Head of Medical Physics in Radiation Oncology Cleveland Clinic Outline Image quality and image dose Free breathing CT, 4DCT, and synthetic

More information

8/2/2017. Improving Dose Prescriptions for Safety, Reporting, and Clinical Guideline Consistency. Part III

8/2/2017. Improving Dose Prescriptions for Safety, Reporting, and Clinical Guideline Consistency. Part III Improving Dose Prescriptions for Safety, Reporting, and Clinical Guideline Consistency Part III I Das, J Moran, M Langer Keeping Guidelines On Track: The Effect On Clinical Practice of Neglecting Guidelines

More information

Margins and margin recipes

Margins and margin recipes Margins and margin recipes Marcel van Herk On behalf of the image guidance group The Netherlands Cancer Institute Amsterdam, the Netherlands Classic radiotherapy procedure Tattoo, align and scan patient

More information

Overview of Advanced Techniques in Radiation Therapy

Overview of Advanced Techniques in Radiation Therapy Overview of Advanced Techniques in Radiation Therapy Jacob (Jake) Van Dyk Manager, Physics & Engineering, LRCP Professor, UWO University of Western Ontario Acknowledgements Glenn Bauman Jerry Battista

More information

IGRT Solution for the Living Patient and the Dynamic Treatment Problem

IGRT Solution for the Living Patient and the Dynamic Treatment Problem IGRT Solution for the Living Patient and the Dynamic Treatment Problem Lei Dong, Ph.D. Associate Professor Dept. of Radiation Physics University of Texas M. D. Anderson Cancer Center Houston, Texas Learning

More information

SBRT I: Overview of Simulation, Planning, and Delivery

SBRT I: Overview of Simulation, Planning, and Delivery Disclosure SBRT I: Overview of Simulation, Planning, and Delivery I have received research funding from NIH, the Golfers Against Cancer (GAC) foundation, and Philips Health System. Jing Cai, PhD Duke University

More information

Physics Treatment Margins. Laurence Court University of Texas MD Anderson Cancer Center

Physics Treatment Margins. Laurence Court University of Texas MD Anderson Cancer Center Physics Treatment Margins Laurence Court University of Texas MD Anderson Cancer Center Disclosure Employer: UT MD Anderson Cancer Center Grants from: NCI, CPRIT, Varian, Elekta, Mobius Learning Objectives

More information

Combination effects of tissue heterogeneity and geometric targeting error in stereotactic body radiotherapy for lung cancer using CyberKnife

Combination effects of tissue heterogeneity and geometric targeting error in stereotactic body radiotherapy for lung cancer using CyberKnife JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 16, NUMBER 5, 2015 Combination effects of tissue heterogeneity and geometric targeting error in stereotactic body radiotherapy for lung cancer using

More information

RTTs role in lung SABR

RTTs role in lung SABR RTTs role in lung SABR Bart van Baaren Lineke van der Weide VU Medical Centre SBRT symposium VUMC 16 December 2017 Flow chart lung SABR Pre-treatment imaging Treatment planning On-line imaging Treatment

More information

8/3/2016. Implementation of Pencil Beam Scanning (PBS) Proton Therapy Treatment for Liver Patients. Acknowledgement. Overview

8/3/2016. Implementation of Pencil Beam Scanning (PBS) Proton Therapy Treatment for Liver Patients. Acknowledgement. Overview Implementation of Pencil Beam Scanning (PBS) Proton Therapy Treatment for Liver Patients Liyong Lin, PhD, Assistant Professor Department of Radiation Oncology University of Pennsylvania Acknowledgement

More information

ICRU Report 91 Was ist neu, was ändert sich?

ICRU Report 91 Was ist neu, was ändert sich? DEGRO Stereotaxie Meeting 21.10.2017 ICRU Report 91 Was ist neu, was ändert sich? Lotte Wilke, Stephanie Tanadini-Lang, Matthias Guckenberger Klinik für Radio-Onkologie, Universitätsspital Zürich History

More information

Uncertainties and Quality Assurance of Localization and Treatment in Lung SBRT Jing Cai, PhD Duke University Medical Center

Uncertainties and Quality Assurance of Localization and Treatment in Lung SBRT Jing Cai, PhD Duke University Medical Center Uncertainties and Quality Assurance of Localization and Treatment in Lung SBRT Jing Cai, PhD Duke University Medical Center 2013 AAPM 55 th Annual Meeting, Educational Course, Therapy Track, MOC SAM Program

More information

Impact of Contouring Variability on Dose- Volume Metrics used in Treatment Plan Optimization of Prostate IMRT

Impact of Contouring Variability on Dose- Volume Metrics used in Treatment Plan Optimization of Prostate IMRT Open Access Original Article DOI: 10.7759/cureus.144 Impact of Contouring Variability on Dose- Volume Metrics used in Treatment Plan Optimization of Prostate IMRT Arvand Barghi, Carol Johnson 2, Andrew

More information

Accounting for center-of-mass target motion using convolution methods in Monte Carlo-based dose calculations of the lung

Accounting for center-of-mass target motion using convolution methods in Monte Carlo-based dose calculations of the lung Accounting for center-of-mass target motion using convolution methods in Monte Carlo-based dose calculations of the lung Indrin J. Chetty, a) Mihaela Rosu, Daniel L. McShan, Benedick A. Fraass, James M.

More information

PMP. Quantitative Evaluation of Patient Positioning Error Using CBCT 3D Gamma Density Analysis in Radiotherapy. Original Article.

PMP. Quantitative Evaluation of Patient Positioning Error Using CBCT 3D Gamma Density Analysis in Radiotherapy. Original Article. Original Article PMP Progress in Medical Physics 8(4), December 17 https://doi.org/1.14316/pmp.17.8.4.149 pissn 58-4445, eissn 58-4453 Quantitative Evaluation of Patient Positioning Error Using CBCT 3D

More information

Image Guided Stereotactic Radiotherapy of the Lung

Image Guided Stereotactic Radiotherapy of the Lung Image Guided Stereotactic Radiotherapy of the Lung Jamie Marie Harris, MS DABR Avera McKennan Radiation Oncology September 25, 2015 Stereotactic Body Radiotherapy - Clinical Dose/Fractionation - Normal

More information

Dose prescription with spatial uncertainty for peripheral lung SBRT

Dose prescription with spatial uncertainty for peripheral lung SBRT Received: 12 February 2018 Revised: 16 October 2018 Accepted: 26 October 2018 DOI: 10.1002/acm2.12504 RADIATION ONCOLOGY PHYSICS Dose prescription with spatial uncertainty for peripheral lung SBRT James

More information

Dose-Guided Radiotherapy: Potential Benefit of Online Dose Recalculation for Stereotactic Lung Irradiation in Patients With Non-Small-Cell Lung Cancer

Dose-Guided Radiotherapy: Potential Benefit of Online Dose Recalculation for Stereotactic Lung Irradiation in Patients With Non-Small-Cell Lung Cancer International Journal of Radiation Oncology biology physics www.redjournal.org Physics Contribution Dose-Guided Radiotherapy: Potential Benefit of Online Dose Recalculation for Stereotactic Lung Irradiation

More information

Report of ICRU Committee on Volume and Dose Specification for Prescribing, Reporting and Recording in Conformal and IMRT A Progress Report

Report of ICRU Committee on Volume and Dose Specification for Prescribing, Reporting and Recording in Conformal and IMRT A Progress Report Report of ICRU Committee on Volume and Dose Specification for Prescribing, Reporting and Recording in Conformal and IMRT A Progress Report Paul M. DeLuca, Jr. 1, Ph.D., Vincent Gregoire 2, M.D., Ph.D.,

More information

RADIATION ONCOLOGY RESIDENCY PROGRAM Competency Evaluation of Resident

RADIATION ONCOLOGY RESIDENCY PROGRAM Competency Evaluation of Resident Resident s Name: RADIATION ONCOLOGY RESIDENCY PROGRAM Competency Evaluation of Resident Rotation: PHYS 703: Clinical Rotation 2 Inclusive dates of rotation: Feb. 26, 2016 Aug. 25, 2016 Director or Associate

More information

Clinical evaluation of interfractional variations for whole breast radiotherapy using 3-dimensional surface imaging

Clinical evaluation of interfractional variations for whole breast radiotherapy using 3-dimensional surface imaging Practical Radiation Oncology (2013) 3, 16 25 www.practicalradonc.org Original Report Clinical evaluation of interfractional variations for whole breast radiotherapy using 3-dimensional surface imaging

More information

UNIVERSITY OF WISCONSIN-LA CROSSE Graduate Studies

UNIVERSITY OF WISCONSIN-LA CROSSE Graduate Studies UNIVERSITY OF WISCONSIN-LA CROSSE Graduate Studies A SINGLE INSTITUTION S EXPERIENCE IN DEVELOPING A PURPOSEFUL AND EFFICIENT OFF-LINE TECHNIQUE FOR ADAPTIVE RADIOTHERAPY IN A CLINICAL ENVIRONMENT A Research

More information

From position verification and correction to adaptive RT Adaptive RT and dose accumulation

From position verification and correction to adaptive RT Adaptive RT and dose accumulation From position verification and correction to adaptive RT Adaptive RT and dose accumulation Hans de Boer Move away from Single pre-treatment scan Single treatment plan Treatment corrections by couch shifts

More information

A method to improve dose gradient for robotic radiosurgery

A method to improve dose gradient for robotic radiosurgery JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 16, NUMBER 6, 2015 A method to improve dose gradient for robotic radiosurgery Tianfang Li, a Cihat Ozhasoglu, Steven Burton, John Flickinger, Dwight

More information

A dosimetric comparison of stereotactic body radiation therapy techniques for lung cancer: robotic versus conventional linac-based systems

A dosimetric comparison of stereotactic body radiation therapy techniques for lung cancer: robotic versus conventional linac-based systems JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 11, NUMBER 3, Summer 2010 A dosimetric comparison of stereotactic body radiation therapy techniques for lung cancer: robotic versus conventional linac-based

More information

Silvia Pella, PhD, DABR Brian Doozan, MS South Florida Radiation Oncology Florida Atlantic University Advanced Radiation Physics Boca Raton, Florida

Silvia Pella, PhD, DABR Brian Doozan, MS South Florida Radiation Oncology Florida Atlantic University Advanced Radiation Physics Boca Raton, Florida American Association of Medical Dosimetrists 2015 Silvia Pella, PhD, DABR Brian Doozan, MS South Florida Radiation Oncology Florida Atlantic University Advanced Radiation Physics Boca Raton, Florida Most

More information

IMRT/IGRT Patient Treatment: A Community Hospital Experience. Charles M. Able, Assistant Professor

IMRT/IGRT Patient Treatment: A Community Hospital Experience. Charles M. Able, Assistant Professor IMRT/IGRT Patient Treatment: A Community Hospital Experience Charles M. Able, Assistant Professor Disclosures I have no research support or financial interest to disclose. Learning Objectives 1. Review

More information

Chapters from Clinical Oncology

Chapters from Clinical Oncology Chapters from Clinical Oncology Lecture notes University of Szeged Faculty of Medicine Department of Oncotherapy 2012. 1 RADIOTHERAPY Technical aspects Dr. Elemér Szil Introduction There are three possibilities

More information

Accuracy Requirements and Uncertainty Considerations in Radiation Therapy

Accuracy Requirements and Uncertainty Considerations in Radiation Therapy Departments of Oncology and Medical Biophysics Accuracy Requirements and Uncertainty Considerations in Radiation Therapy Introduction and Overview 6 August 2013 Jacob (Jake) Van Dyk Conformality 18 16

More information

Required target margins for image-guided lung SBRT: Assessment of target position intrafraction and correction residuals

Required target margins for image-guided lung SBRT: Assessment of target position intrafraction and correction residuals Practical Radiation Oncology (2013) 3, 67 73 www.practicalradonc.org Original Report Required target margins for image-guided lung SBRT: Assessment of target position intrafraction and correction residuals

More information

Dose prescription, reporting and recording in intensity-modulated radiation therapy: a digest of the ICRU Report 83

Dose prescription, reporting and recording in intensity-modulated radiation therapy: a digest of the ICRU Report 83 Special report Dose prescription, reporting and recording in intensity-modulated radiation therapy: a digest of the ICRU Report 83 Rapid development in imaging techniques, including functional imaging,

More information

Feasibility of 4D IMRT Delivery for Hypofractionated High Dose Partial Prostate Treatments

Feasibility of 4D IMRT Delivery for Hypofractionated High Dose Partial Prostate Treatments Feasibility of 4D IMRT Delivery for Hypofractionated High Dose Partial Prostate Treatments R.A. Price Jr., Ph.D., J. Li, Ph.D., A. Pollack, M.D., Ph.D.*, L. Jin, Ph.D., E. Horwitz, M.D., M. Buyyounouski,

More information

Implementing New Technologies for Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy

Implementing New Technologies for Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy Implementing New Technologies for Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy Implementation of radiosurgery and SBRT requires a fundamentally sound approach Errors don t blur out

More information

UvA-DARE (Digital Academic Repository) Towards image-guided radiotherapy of prostate cancer Smitsmans, M.H.P. Link to publication

UvA-DARE (Digital Academic Repository) Towards image-guided radiotherapy of prostate cancer Smitsmans, M.H.P. Link to publication UvA-DARE (Digital Academic Repository) Towards image-guided radiotherapy of prostate cancer Smitsmans, M.H.P. Link to publication Citation for published version (APA): Smitsmans, M. H. P. (2010). Towards

More information

IMRT Planning Basics AAMD Student Webinar

IMRT Planning Basics AAMD Student Webinar IMRT Planning Basics AAMD Student Webinar March 12, 2014 Karen Chin Snyder, MS Senior Associate Physicist Department of Radiation Oncology Disclosures The presenter has received speaker honoraria from

More information

IROC Liver Phantom. Guidelines for Planning and Irradiating the IROC Liver Phantom. Revised July 2015

IROC Liver Phantom. Guidelines for Planning and Irradiating the IROC Liver Phantom. Revised July 2015 IROC Liver Phantom Guidelines for Planning and Irradiating the IROC Liver Phantom. Revised July 2015 The study groups are requests that each institution keep the phantom for no more than 2 weeks. During

More information

Evaluation of Monaco treatment planning system for hypofractionated stereotactic volumetric arc radiotherapy of multiple brain metastases

Evaluation of Monaco treatment planning system for hypofractionated stereotactic volumetric arc radiotherapy of multiple brain metastases Evaluation of Monaco treatment planning system for hypofractionated stereotactic volumetric arc radiotherapy of multiple brain metastases CASE STUDY Institution: Odette Cancer Centre Location: Sunnybrook

More information

Radiotherapy Planning (Contouring Lung Cancer for Radiotherapy dose prescription) Dr Raj K Shrimali

Radiotherapy Planning (Contouring Lung Cancer for Radiotherapy dose prescription) Dr Raj K Shrimali Radiotherapy Planning (Contouring Lung Cancer for Radiotherapy dose prescription) Dr Raj K Shrimali Let us keep this simple and stick to some basic rules Patient positioning Must be reproducible Must be

More information

8/1/2017. Clinical Indications and Applications of Realtime MRI-Guided Radiotherapy

8/1/2017. Clinical Indications and Applications of Realtime MRI-Guided Radiotherapy Clinical Indications and Applications of Realtime MRI-Guided Radiotherapy Michael F Bassetti MD PhD Assistant Professor, Department of Human Oncology University of Wisconsin, Madison. Carbone Cancer Center

More information

THE TRANSITION FROM 2D TO 3D AND TO IMRT - RATIONALE AND CRITICAL ELEMENTS

THE TRANSITION FROM 2D TO 3D AND TO IMRT - RATIONALE AND CRITICAL ELEMENTS THE TRANSITION FROM 2D TO 3D AND TO IMRT - RATIONALE AND CRITICAL ELEMENTS ICTP SCHOOL ON MEDICAL PHYSICS FOR RADIATION THERAPY DOSIMETRY AND TREATMENT PLANNING FOR BASIC AND ADVANCED APPLICATIONS March

More information

IAEA RTC. PET/CT and Planning of Radiation Therapy 20/08/2014. Sarajevo (Bosnia & Hercegovina) Tuesday, June :40-12:20 a.

IAEA RTC. PET/CT and Planning of Radiation Therapy 20/08/2014. Sarajevo (Bosnia & Hercegovina) Tuesday, June :40-12:20 a. IAEA RTC PET/CT and Planning of Radiation Therapy Sarajevo (Bosnia & Hercegovina) Tuesday, June 17 2014 11:40-12:20 a.m María José García Velloso Servicio de Medicina Nuclear Clínica Universidad de Navarra

More information

CURRICULUM OUTLINE FOR TRANSITIONING FROM 2-D RT TO 3-D CRT AND IMRT

CURRICULUM OUTLINE FOR TRANSITIONING FROM 2-D RT TO 3-D CRT AND IMRT CURRICULUM OUTLINE FOR TRANSITIONING FROM 2-D RT TO 3-D CRT AND IMRT Purpose The purpose of this curriculum outline is to provide a framework for multidisciplinary training for radiation oncologists, medical

More information

The impact of dose prescription on treatment volume

The impact of dose prescription on treatment volume The impact of dose prescription on treatment volume Summer Chaudhari 1 st year medical physics resident University of Minnesota Medical Center Advisor: Dr. Patrick Higgins NCCAAPM chapter meeting April

More information

Potential systematic uncertainties in IGRT when FBCT reference images are used for pancreatic tumors

Potential systematic uncertainties in IGRT when FBCT reference images are used for pancreatic tumors JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 16, NUMBER 3, 2015 Potential systematic uncertainties in IGRT when FBCT reference images are used for pancreatic tumors Ahmad Amoush, May Abdel-Wahab,

More information

8/1/2016. Motion Management for Proton Lung SBRT. Outline. Protons and motion. Protons and Motion. Proton lung SBRT Future directions

8/1/2016. Motion Management for Proton Lung SBRT. Outline. Protons and motion. Protons and Motion. Proton lung SBRT Future directions Motion Management for Proton Lung SBRT AAPM 2016 Outline Protons and Motion Dosimetric effects Remedies and mitigation techniques Proton lung SBRT Future directions Protons and motion Dosimetric perturbation

More information

JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 16, NUMBER 6, 2015

JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 16, NUMBER 6, 2015 JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 16, NUMBER 6, 2015 Determination of optimal PTV margin for patients receiving CBCT-guided prostate IMRT: comparative analysis based on CBCT dose calculation

More information

Would SBRT Hypofractionated Approach Be as Good? Then Why Bother With Brachytherapy?

Would SBRT Hypofractionated Approach Be as Good? Then Why Bother With Brachytherapy? Would SBRT Hypofractionated Approach Be as Good? Then Why Bother With Brachytherapy? Yasuo Yoshioka, MD Department of Radiation Oncology Osaka University Graduate School of Medicine Osaka, Japan Disclosure

More information

Dosimetric Analysis of 3DCRT or IMRT with Vaginal-cuff Brachytherapy (VCB) for Gynaecological Cancer

Dosimetric Analysis of 3DCRT or IMRT with Vaginal-cuff Brachytherapy (VCB) for Gynaecological Cancer Dosimetric Analysis of 3DCRT or IMRT with Vaginal-cuff Brachytherapy (VCB) for Gynaecological Cancer Tan Chek Wee 15 06 2016 National University Cancer Institute, Singapore Clinical Care Education Research

More information

Inter- and intrafractional dose uncertainty in hypofractionated Gamma Knife radiosurgery

Inter- and intrafractional dose uncertainty in hypofractionated Gamma Knife radiosurgery JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 17, NUMBER 2, 2016 Inter- and intrafractional dose uncertainty in hypofractionated Gamma Knife radiosurgery Taeho Kim, 1,3 Jason Sheehan, 2,1 and David

More information

Tomohisa FURUYA*, Satoru SUGIMOTO, Chie KUROKAWA, Shuichi OZAWA, Kumiko KARASAWA and Keisuke SASAI

Tomohisa FURUYA*, Satoru SUGIMOTO, Chie KUROKAWA, Shuichi OZAWA, Kumiko KARASAWA and Keisuke SASAI Journal of Radiation Research, 2013, 54, 157 165 doi: 10.1093/jrr/rrs064 Advance Access Publication 1 August 2012 The dosimetric impact of respiratory breast movement and daily setup error on tangential

More information

Quality assurance and credentialing requirements for sites using inverse planned IMRT Techniques

Quality assurance and credentialing requirements for sites using inverse planned IMRT Techniques TROG 08.03 RAVES Quality assurance and credentialing requirements for sites using inverse planned IMRT Techniques Introduction Commissioning and quality assurance of planning systems and treatment delivery

More information

Assessing Heterogeneity Correction Algorithms Using the Radiological Physics Center Anthropomorphic Thorax Phantom

Assessing Heterogeneity Correction Algorithms Using the Radiological Physics Center Anthropomorphic Thorax Phantom Assessing Heterogeneity Correction Algorithms Using the Radiological Physics Center Anthropomorphic Thorax Phantom David Followill, Ph.D. Associate Director Radiological Physics Center RPC History Lesson

More information

Lung Spine Phantom. Guidelines for Planning and Irradiating the IROC Spine Phantom. MARCH 2014

Lung Spine Phantom. Guidelines for Planning and Irradiating the IROC Spine Phantom. MARCH 2014 Lung Spine Phantom Guidelines for Planning and Irradiating the IROC Spine Phantom. MARCH 2014 The study groups are requesting that each institution keep the phantom for no more than 2 week. During this

More information

The Canadian National System for Incident Reporting in Radiation Treatment (NSIR-RT) Taxonomy March 11, 2015

The Canadian National System for Incident Reporting in Radiation Treatment (NSIR-RT) Taxonomy March 11, 2015 The Canadian National System for Incident Reporting in Radiation Treatment (NSIR-RT) Taxonomy March 11, 2015 Taxonomy Data Category Number Description Data Fields and Menu Choices 1. Impact 1.1 Incident

More information

RESEARCH ARTICLE. Abstract. Introduction

RESEARCH ARTICLE. Abstract. Introduction DOI:10.22034/APJCP.2017.18.1.37 RESEARCH ARTICLE Delineation of Margins for the Planning Target Volume (PTV) for Image-Guided Radiotherapy (IGRT) of Gastric Cancer Based on Intrafraction Motion Paulina

More information

Impact of sampling interval in training data acquisition on intrafractional predictive accuracy of indirect dynamic tumor-tracking radiotherapy*

Impact of sampling interval in training data acquisition on intrafractional predictive accuracy of indirect dynamic tumor-tracking radiotherapy* Impact of sampling interval in training data acquisition on intrafractional predictive accuracy of indirect dynamic tumor-tracking radiotherapy* Nobutaka Mukumoto a), Mitsuhiro Nakamura, Mami Akimoto,

More information

Intra- and inter-fractional liver and lung tumor motions treated with SBRT under active breathing control

Intra- and inter-fractional liver and lung tumor motions treated with SBRT under active breathing control Received: 30 May 2017 Revised: 22 August 2017 Accepted: 21 September 2017 DOI: 10.1002/acm2.12220 RADIATION ONCOLOGY PHYSICS Intra- and inter-fractional liver and lung tumor motions treated with SBRT under

More information

The Impact of Image Guided Radiotherapy in Breast Boost Radiotherapy

The Impact of Image Guided Radiotherapy in Breast Boost Radiotherapy The Impact of Image Guided Radiotherapy in Breast Boost Radiotherapy 1 Donovan EM, 1 Brooks C, 1 Mitchell A, 2 Mukesh M, 2 Coles CE, 3 Evans PM, 1 Harris EJ 1 Joint Department of Physics, The Royal Marsden/Institute

More information

Range Uncertainties in Proton Therapy

Range Uncertainties in Proton Therapy Range Uncertainties in Proton Therapy Harald Paganetti PhD Professor of Radiation Oncology, Harvard Medical School Director of Physics Research, Massachusetts General Hospital, Department of Radiation

More information

An analysis of geometric uncertainty calculations for prostate radiotherapy in clinical practice.

An analysis of geometric uncertainty calculations for prostate radiotherapy in clinical practice. An analysis of geometric uncertainty calculations for prostate radiotherapy in clinical practice. McGarry, C. K., Cosgrove, V. P., Fleming, V. A. L., O'Sullivan, J., & Hounsell, A. R. (2009). An analysis

More information

Dosimetric effects of anatomical changes during fractionated photon radiation therapy in pancreatic cancer patients

Dosimetric effects of anatomical changes during fractionated photon radiation therapy in pancreatic cancer patients Received: 17 March 2017 Revised: 22 August 2017 Accepted: 29 August 2017 DOI: 10.1002/acm2.12199 RADIATION ONCOLOGY PHYSICS Dosimetric effects of anatomical changes during fractionated photon radiation

More information

IROC Lung Phantom 3D CRT / IMRT. Guidelines for Planning and Irradiating the IROC Lung Phantom. Revised Dec 2015

IROC Lung Phantom 3D CRT / IMRT. Guidelines for Planning and Irradiating the IROC Lung Phantom. Revised Dec 2015 IROC Lung Phantom 3D CRT / IMRT Guidelines for Planning and Irradiating the IROC Lung Phantom. Revised Dec 2015 The IROC requests that each institution keep the phantom for no more than 2 weeks. During

More information

doi: /j.ijrobp CLINICAL INVESTIGATION

doi: /j.ijrobp CLINICAL INVESTIGATION doi:10.1016/j.ijrobp.2006.11.004 Int. J. Radiation Oncology Biol. Phys., Vol. 67, No. 5, pp. 1430 1437, 2007 Copyright 2007 Elsevier Inc. Printed in the USA. All rights reserved 0360-3016/07/$ see front

More information

The effects of motion on the dose distribution of proton radiotherapy for prostate cancer

The effects of motion on the dose distribution of proton radiotherapy for prostate cancer JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 13, NUMBER 3, 2012 The effects of motion on the dose distribution of proton radiotherapy for prostate cancer Sima Qamhiyeh, 1a Dirk Geismar, 1 Christoph

More information

Utilization of cone-beam CT for offline evaluation of target volume coverage during prostate image-guided radiotherapy based on bony anatomy alignment

Utilization of cone-beam CT for offline evaluation of target volume coverage during prostate image-guided radiotherapy based on bony anatomy alignment reports of practical oncology and radiotherapy 1 7 (2 0 1 2) 134 140 Available online at www.sciencedirect.com journal homepage: http://www.elsevier.com/locate/rpor Original research article Utilization

More information

Impact of temporal probability in 4D dose calculation for lung tumors

Impact of temporal probability in 4D dose calculation for lung tumors JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 16, NUMBER 6, 2015 Impact of temporal probability in 4D dose calculation for lung tumors Ouided Rouabhi, 1 Mingyu Ma, 2 John Bayouth, 3,4 Junyi Xia 4a

More information

Considerations when treating lung cancer with passive scatter or active scanning proton therapy

Considerations when treating lung cancer with passive scatter or active scanning proton therapy Mini-Review Considerations when treating lung cancer with passive scatter or active scanning proton therapy Sara St. James, Clemens Grassberger, Hsiao-Ming Lu Department of Radiation Oncology, Massachusetts

More information

UvA-DARE (Digital Academic Repository) (Un-)certainties in radiotherapy of rectal cancer Nijkamp, J.A. Link to publication

UvA-DARE (Digital Academic Repository) (Un-)certainties in radiotherapy of rectal cancer Nijkamp, J.A. Link to publication UvA-DARE (Digital Academic Repository) (Un-)certainties in radiotherapy of rectal cancer Nijkamp, J.A. Link to publication Citation for published version (APA): Nijkamp, J. A. (2012). (Un-)certainties

More information

Treatment Planning for Lung. Kristi Hendrickson, PhD, DABR University of Washington Dept. of Radiation Oncology

Treatment Planning for Lung. Kristi Hendrickson, PhD, DABR University of Washington Dept. of Radiation Oncology Treatment Planning for Lung Kristi Hendrickson, PhD, DABR University of Washington Dept. of Radiation Oncology Outline of Presentation Dosimetric planning strategies for SBRT lung Delivery techniques Examples

More information

Hot Topics in SRS: Small Field Dosimetry & Other Treatment Uncertainties. Sonja Dieterich, PhD University of California Davis

Hot Topics in SRS: Small Field Dosimetry & Other Treatment Uncertainties. Sonja Dieterich, PhD University of California Davis Hot Topics in SRS: Small Field Dosimetry & Other Treatment Uncertainties Sonja Dieterich, PhD University of California Davis Lecture in Two Parts SRS Dosimetry Other Uncertainties SRS DOSIMETRY Outline

More information

A Thesis. entitled. based on CBCT Data Dose Calculation. Sukhdeep Kaur Gill. Master of Science Degree in Biomedical Science

A Thesis. entitled. based on CBCT Data Dose Calculation. Sukhdeep Kaur Gill. Master of Science Degree in Biomedical Science A Thesis entitled A Study of Evaluation of Optimal PTV Margins for Patients Receiving Prostate IGRT based on CBCT Data Dose Calculation by Sukhdeep Kaur Gill Submitted to the Graduate Faculty as partial

More information

Is internal target volume accurate for dose evaluation in lung cancer stereotactic body radiotherapy?

Is internal target volume accurate for dose evaluation in lung cancer stereotactic body radiotherapy? /, Vol. 7, No. 16 Is internal target volume accurate for dose evaluation in lung cancer stereotactic body radiotherapy? Jiayuan Peng 1,2, Zhen Zhang 1,2, Jiazhou Wang 1,2, Jiang Xie 1,2, Weigang Hu 1,2

More information

Evaluation of Whole-Field and Split-Field Intensity Modulation Radiation Therapy (IMRT) Techniques in Head and Neck Cancer

Evaluation of Whole-Field and Split-Field Intensity Modulation Radiation Therapy (IMRT) Techniques in Head and Neck Cancer 1 Charles Poole April Case Study April 30, 2012 Evaluation of Whole-Field and Split-Field Intensity Modulation Radiation Therapy (IMRT) Techniques in Head and Neck Cancer Abstract: Introduction: This study

More information