Cell Membrane Study Guide

Size: px
Start display at page:

Download "Cell Membrane Study Guide"

Transcription

1 Cell Membrane Study Guide U1.3.1: Phospholipids form bilayers in water due to the amphipathic properties of phospholipid molecules (Oxford Biology Course Companion page 26). 1. Explain why phospholipids form bilayers in water, with reference to the amphipathic properties of phospholipids. The hydrophilic heads are attracted to water while the hydrophobic tails are repelled by water. The bilayer alignment allows the tails to be removed from water while the heads are exposed to extracellular fluid/cytosol NOS 1.3.1: Using models as representations of the real world-there are alternative models of membrane structures (Oxford Biology Course Companion page 26). 2. Describe the observations and conclusions drawn by Gorter and Grendel in discovering the structure of cell membranes. Gorter and Grendel (1925) investigated the surface area of membranes. They noticed that the surface area of an intact red blood cell was half of the surface area of the lipids when spread on a surface. They concluded that the cell membrane is made of a bilayer of lipids with head groups facing the inside and outside of the cell and the tails of each layer facing inward towards each other. S1.3.2: Analysis of evidence from electron microscopy that led to the proposal of the Davson- Danielli model (Oxford Biology Course Companion page 28).

2 3. Describe the observations and conclusions drawn by Davson and Danielli in discovering the structure of cell membranes. In 1935 Davson and Danielli proposed the protein-lipid sandwich model of the cell membrane. In electron micrographs, they observed two dark parallel lines with a light region in between. Since proteins appear dark and lipids appear light in micrographs, Davson and Danielli proposed that the phospholipid bilayer was embedded between two layers of proteins. S1.3.3: Analysis of the falsification of the Davson-Danielli model that led to the Singer- Nicolson model (Oxford Biology Course Companion page 29). 4. Compare the Davson-Danielli model of membrane structure with the Singer-Nicolson model.

3 Singer and Nicolson proposed a membrane model that incorporated evidence about membrane proteins that did not comply with the Davson-Danielle model. Rather than having proteins on the surface of the phospholipids, Singer-Nicolson proposed a model in which proteins were embedded within and through the membranes, called the Fluid-Mosaic Model. NOS1.3.2: Falsification of theories with one theory being superseded by another-evidence falsified the Davson-Danielli model (Oxford Biology Course Companion page 27). 5. Describe why the understanding of cell membrane structure has changed over time. As tools and technologies advance, our understanding of biological structures and functions also improves. Techniques such as freezefracture, cell fusion, fluorescent antibody tagging and protein extraction enabled scientists to gain a more accurate understanding of the structure of cell membrane proteins. S1.3.1: Drawing of the fluid mosaic model (Oxford Biology Course Companion page 31). 6. Draw and label the structure of membranes. Include: - Phospholipid bilayer - Integral proteins shown spanning the membrane - Peripheral proteins on membrane surface - Protein channels with a pore - Glycoproteins with a carbohydrate side chain - Cholesterol between phospholipids in the hydrophobic region - An indication of thickness ( 10nm) U1.3.2: Membrane proteins are diverse in terms of structure, position in the membranes and function (Oxford Biology Course Companion page 30).

4 7. State the primary function of the cell membrane. The cell membrane is semi-permeable and controls the movement of substances in and out of cells. 8. List at least four functions (with example) of membrane bound proteins. 1. Receptor proteins communicate signals between the cells internal and external environments (i.e. hormone receptors) 2. Transport proteins move ions and molecules across the membrane (i.e. aquaporin transports water) 3. Enzymes catalyze reactions (i.e. ATP synthase) 4. Adhesion molecules anchor the cell to other cells (i.e. adherin) 5. Recognition proteins identify the cell type (i.e. major histocompatibility complex proteins) 9. Contrast the two types of transport proteins: pumps and channels. Channel proteins are used for passive transport of molecules, often shaped like pores/tunnels. Move from high to low concentrations. Pump proteins are used for active transport of molecules. Move from low to high concentrations. U1.3.3: Cholesterol is a component of animal cell membranes (Oxford Biology Course Companion page 32). A1.3.1: Cholesterol in mammalian membranes reduces membrane fluidity and permeability to some solutes (Oxford Biology Course Companion page 33). 10. Describe the structural placement AND function of cholesterol within the cell membrane.

5 Cholesterol fits between phospholipids in the cell membrane with its hydroxyl (OH) group by the heads and the hydrophobic rings by the fatty acid tails. Cholesterol acts as a regulator of membrane fluidity (which is the viscosity of the cell membrane). At high temperatures, it stabilizes the membrane and raises the melting point. At low temperatures, it prevents phospholipids from packing too close together which would lead to stiffening. The membrane fluidity effects how permeable the structure is to solutes Too fluid too much permeability Too stiff not enough permeability U1.1.3: Cell Surface to volume is an important limitation to cell size (Oxford Biology Course Companion page 9). 11. Outline the activities occurring in the volume and at the surface of the cell. Volume: metabolic reactions occur in the cytoplasm which require nutrients and produce waste.

6 Surface:comprised of cell membrane through which nutrients and gases move into the cell and metabolic wastes exit. 12. Explain why cells are often limited in size by the SA:V ratio. If cell size increases, the surface area:volume ratio decreases. This means that with larger cells, there is less surface area relative to the amount of volume so materials may not move as efficiently as needed. 13. List three adaptations of cells that maximize the SA: volume ratio. Cell Division to maintain size, Cell Compartmentalization, Folding of plasma membrane on surface of cell (villi) U1.4.1: Particles move across membranes by simple diffusion, facilitated diffusion, osmosis and active transport (Oxford Biology Course Companion page 35). 14. Describe simple diffusion using two examples simple diffusion of molecules into and out of cells. Net movement of molecules from areas of higher concentration to lower concentration without the input of energy. Example: Alveoli cells and Cornea 15. Outline factors that regulate the rate of diffusion. Concentration of molecules, Temperature, and Pressure (all are direct relationships) 16. Describe one example of facilitated diffusion through a protein channel. Movement of molecules from higher to lower concentration through a channel protein without the use of energy. CFTR channel moves chloride ions from higher concentration inside the cell to areas of lower concentration outside the cell. 17. Define osmosis and predict the direction of water movement based upon differences in solute concentration. The movement of water by diffusion across a membrane. Water moves from hypotonic solutions into hypertonic solutions (moves toward the higher solute concentrations) 18. Compare active transport and passive transport with examples for each Active Transport: requires energy input, moves against the concentration gradient. EX: Protein pump

7 Passive Transport: does not require energy input, moves with the concentration gradient. EX: Aquapore A1.4.2: Tissues or organs to be used in medical procedures must be bathed in a solution with the same osmolarity as the cytoplasm to prevent osmosis (Oxford Biology Course Companion page 44). 19. Explain what happens to cells when placed in solutions of the same osmolarity, higher osmolarity and lower osmolarity. S1.4.1: Estimation of osmolarity in tissues by bathing samples in hypotonic and hypertonic solutions (Oxford Biology Course Companion page 41). 20. Determine osmolarity of a sample given changes in mass when placed in solutions of various tonicities. The osmolarity of a sample is the position at which the % change in mass is 0.

8 U1.4.2: The fluidity of membranes allows materials to be taken into cells by endocytosis or released by exocytosis (Oxford Biology Course Companion page 34/35). 21. Describe the fluid properties of the cell membrane and vesicles. Fluidity: viscosity flow of phospholipids in cell membrane and organelles of the endomembrane system (including vesicles). Fluidity is impacted by: temperature, fatty acid length, fatty acid fluidity, presence of chloresterol 22. Explain vesicle formation via endocytosis and give 2 examples of materials brought into the cell via endocytosis. Cells actively transport molecules into the cell. -Engulfs molecules into a vesicle form through the cell membrane capture and fusion. it includes the cell membrane Examples: 1) White blood cells eating bacteria to kill it. 2) Amoeba eating bacteria as a food source. 23. Explain release of materials from cells via exocytosis and give 2 examples of materials released from a cell via exocytosis. -Secretory vesicles. -Wastes moves towards the plasma membrane. Fuses with the membrane, releasing contents to extracellular space. Examples: -Secretion of neurotransmitters at synaptic terminus. -Secretion of digestive juices from exocrine cells.

Ch7: Membrane Structure & Function

Ch7: Membrane Structure & Function Ch7: Membrane Structure & Function History 1915 RBC membranes studied found proteins and lipids 1935 membrane mostly phospholipids 2 layers 1950 electron microscopes supported bilayer idea (Sandwich model)

More information

Membrane Structure and Function

Membrane Structure and Function Membrane Structure and Function Chapter 7 Objectives Define the following terms: amphipathic molecules, aquaporins, diffusion Distinguish between the following pairs or sets of terms: peripheral and integral

More information

MEMBRANE STRUCTURE AND FUNCTION

MEMBRANE STRUCTURE AND FUNCTION MEMBRANE STRUCTURE AND FUNCTION 2.4.2 Membranes organize the chemical activities of cells Membranes provide structural order for metabolism Form most of the cell's organelles Compartmentalize chemical

More information

The Plasma Membrane - Gateway to the Cell

The Plasma Membrane - Gateway to the Cell The Plasma Membrane - Gateway to the Cell 1 Photograph of a Cell Membrane 2 Cell Membrane The cell membrane is flexible and allows a unicellular organism to move 3 Homeostasis Balanced internal condition

More information

CH 7.2 & 7.4 Biology

CH 7.2 & 7.4 Biology CH 7.2 & 7.4 Biology LABEL THE MEMBRANE Phospholipids Cholesterol Peripheral proteins Integral proteins Cytoskeleton Cytoplasm Extracellular fluid Most of the membrane A phospholipid bi-layer makes up

More information

UNIT 6: Cell Membrane Transport Name: Essential Idea(s): Membranes control the composition of cells by active and passive transport

UNIT 6: Cell Membrane Transport Name: Essential Idea(s): Membranes control the composition of cells by active and passive transport UNIT 6: Cell Membrane Transport Name: Essential Idea(s): Membranes control the composition of cells by active and passive transport IB Assessment Statements 1.1.U3 1.4.U1 1.4.S1 1.4.NOS 1.4.A2 1.4.U2 Cell

More information

Cell Membrane Structure (1.3) IB Diploma Biology

Cell Membrane Structure (1.3) IB Diploma Biology Cell Membrane Structure (1.3) IB Diploma Biology Essential idea: The structure of biological membranes makes them fluid and dynamic http://www.flickr.com/photos/edsweeney/6346198056/ 1.3.1 Phospholipids

More information

Cell Membranes and Signaling

Cell Membranes and Signaling 5 Cell Membranes and Signaling Concept 5.1 Biological Membranes Have a Common Structure and Are Fluid A membrane s structure and functions are determined by its constituents: lipids, proteins, and carbohydrates.

More information

The Plasma Membrane - Gateway to the Cell

The Plasma Membrane - Gateway to the Cell The Plasma Membrane - Gateway to the Cell 1 Photograph of a Cell Membrane 2 Cell Membrane The cell membrane is flexible and allows a unicellular organism to move 3 Homeostasis Balanced internal condition

More information

Gateway to the Cell 11/1/2012. The cell membrane is flexible and allows a unicellular organism to move FLUID MOSAIC MODEL

Gateway to the Cell 11/1/2012. The cell membrane is flexible and allows a unicellular organism to move FLUID MOSAIC MODEL Gateway to the Cell The cell membrane is flexible and allows a unicellular organism to move Isolates the cell, yet allows communication with its surroundings fluid mosaics = proteins (and everything else)

More information

Chapter 7 Membrane Structure and Function. The plasma membrane surrounds the living cells from their surroundings.

Chapter 7 Membrane Structure and Function. The plasma membrane surrounds the living cells from their surroundings. Chapter 7 Membrane Structure and Function The plasma membrane surrounds the living cells from their surroundings. Only 8 nm thick (8,000 to equal the thickness of a sheet of paper) Controls passage of

More information

Draw and label a diagram to show the structure of membranes

Draw and label a diagram to show the structure of membranes 2.4 Membranes 2.4.1 - Draw and label a diagram to show the structure of membranes Phospholipid Bilayer - This is arranged with the hydrophilic phosphate heads facing outwards, and the hydrophobic fatty

More information

MEMBRANE STRUCTURE & FUNCTION

MEMBRANE STRUCTURE & FUNCTION MEMBRANE STRUCTURE & FUNCTION Chapter 8 KEY CONCEPTS Cellular s are fluid mosaics of lipids and proteins Membrane structure results in selective permeability Passive transport is diffusion of a substance

More information

Membrane Structure and Function. Cell Membranes and Cell Transport

Membrane Structure and Function. Cell Membranes and Cell Transport Membrane Structure and Function Cell Membranes and Cell Transport 1895 1917 1925 Membrane models Membranes are made of lipids Phospholipids can form membranes Its actually 2 layers - there are proteins

More information

1.4 Page 1 Cell Membranes S. Preston 1

1.4 Page 1 Cell Membranes S. Preston 1 AS Unit 1: Basic Biochemistry and Cell Organisation Name: Date: Topic 1.3 Cell Membranes and Transport Page 1 1.3 Cell Membranes and Transport from your syllabus l. Cell Membrane Structure 1. Read and

More information

Phospholipids. Extracellular fluid. Polar hydrophilic heads. Nonpolar hydrophobic tails. Polar hydrophilic heads. Intracellular fluid (cytosol)

Phospholipids. Extracellular fluid. Polar hydrophilic heads. Nonpolar hydrophobic tails. Polar hydrophilic heads. Intracellular fluid (cytosol) Module 2C Membranes and Cell Transport All cells are surrounded by a plasma membrane. Eukaryotic cells also contain internal membranes and membrane- bound organelles. In this module, we will examine the

More information

Membranes 9/15/2016. Phospholipids. Phospholipid bilayer

Membranes 9/15/2016. Phospholipids. Phospholipid bilayer Membranes Phospholipids Type of complex lipid that forms biological membranes. Have a polar hydrophilic head and two nonpolar hydrophobic tails. Amphipathic. This causes the tails to cluster together in

More information

Lecture Series 4 Cellular Membranes

Lecture Series 4 Cellular Membranes Lecture Series 4 Cellular Membranes Reading Assignments Read Chapter 11 Membrane Structure Review Chapter 21 pages 709-717 717 (Animal( Cell Adhesion) Review Chapter 12 Membrane Transport Review Chapter

More information

Membranes. Chapter 5. Membrane Structure

Membranes. Chapter 5. Membrane Structure Membranes Chapter 5 Membrane Structure Lipid Bilayer model: - double phospholipid layer - Gorter & Grendel: 1925 Fluid Mosaic model: consist of -phospholipids arranged in a bilayer -globular proteins inserted

More information

The Cell Membrane and Cellular Transportation

The Cell Membrane and Cellular Transportation The Cell Membrane and Cellular Transportation Oct 20 7:07 PM Cell Membrane Forms a barrier between the cell and the external environment. Has three main functions: 1) helps the cell retain the molecules

More information

Phospholipids. Phosphate head. Fatty acid tails. Arranged as a bilayer. hydrophilic. hydrophobic. Phosphate. Fatty acid. attracted to water

Phospholipids. Phosphate head. Fatty acid tails. Arranged as a bilayer. hydrophilic. hydrophobic. Phosphate. Fatty acid. attracted to water The Cell Membrane Phospholipids Phosphate head hydrophilic Fatty acid tails hydrophobic Arranged as a bilayer Phosphate attracted to water Fatty acid repelled by water I want you to remember: Structure

More information

Membrane Structure and Membrane Transport of Small Molecules. Assist. Prof. Pinar Tulay Faculty of Medicine

Membrane Structure and Membrane Transport of Small Molecules. Assist. Prof. Pinar Tulay Faculty of Medicine Membrane Structure and Membrane Transport of Small Molecules Assist. Prof. Pinar Tulay Faculty of Medicine Introduction Cell membranes define compartments of different compositions. Membranes are composed

More information

Plasma Membrane Structure and Function

Plasma Membrane Structure and Function Plasma Membrane Structure and Function Chapter 7 Image from: http://www.biologie.uni-hamburg.de/b-online/ge22/03.gif Slide show modified from: http://www.explorebiology.com/pptap/2005/ http://facstaff.bloomu.edu/gdavis/links%20100.htm

More information

Controlled via the Cell Membrane

Controlled via the Cell Membrane CELL TRANSPORT 1 Controlled via the Cell Membrane Passive Transport Does NOT require energy, moves from HIGH concentrations to LOW concentrations Active Transport DOES require energy, moves from LOW concentrations

More information

Unit 1 Matter & Energy for Life

Unit 1 Matter & Energy for Life Unit 1 Matter & Energy for Life Chapter 2 Interaction of Cell Structure Biology 2201 Sept. 2011 Primary Membrane Function: Homeostasis Section 2.2 Conditions in the cell must remain more or less constant

More information

Diffusion, Osmosis and Active Transport

Diffusion, Osmosis and Active Transport Diffusion, Osmosis and Active Transport Particles like atoms, molecules and ions are always moving Movement increases with temperature (affects phases of matter - solid, liquid, gas) Solids - atoms, molecules

More information

CELL TRANSPORT and THE PLASMA MEMBRANE. SB1d. Explain the impact of water on life processes (i.e., osmosis, diffusion).

CELL TRANSPORT and THE PLASMA MEMBRANE. SB1d. Explain the impact of water on life processes (i.e., osmosis, diffusion). CELL TRANSPORT and THE PLASMA MEMBRANE SB1d. Explain the impact of water on life processes (i.e., osmosis, diffusion). What if What would happen if an organism could not get energy or get rid of wastes?

More information

Lecture Series 5 Cellular Membranes

Lecture Series 5 Cellular Membranes Lecture Series 5 Cellular Membranes Cellular Membranes A. Membrane Composition and Structure B. Animal Cell Adhesion C. Passive Processes of Membrane Transport D. Active Transport E. Endocytosis and Exocytosis

More information

A. Membrane Composition and Structure. B. Animal Cell Adhesion. C. Passive Processes of Membrane Transport. D. Active Transport

A. Membrane Composition and Structure. B. Animal Cell Adhesion. C. Passive Processes of Membrane Transport. D. Active Transport Cellular Membranes A. Membrane Composition and Structure Lecture Series 5 Cellular Membranes B. Animal Cell Adhesion E. Endocytosis and Exocytosis A. Membrane Composition and Structure The Fluid Mosaic

More information

Unit 1 Matter & Energy for Life

Unit 1 Matter & Energy for Life Unit 1 Matter & Energy for Life Chapter 2 Interaction of Cell Structures Biology 2201 Primary Membrane Function: Homeostasis Section 2.2 Conditions in the cell must remain more or less constant under many

More information

MEMBRANE STRUCTURE AND TRAFFIC. Cell Membrane Structure and Function

MEMBRANE STRUCTURE AND TRAFFIC. Cell Membrane Structure and Function MEMBRANE STRUCTURE AND TRAFFIC Cell Membrane Structure and Function 4.1 How Is the Structure of a Membrane Related to Its Function? 4.1.1 The Plasma Membrane Isolates the Cell While Allowing Communication

More information

Membrane Structure and Function

Membrane Structure and Function Chapter 7 Membrane Structure and Function PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

Cell Biology. The Plasma Membrane

Cell Biology. The Plasma Membrane Cell Biology The Plasma Membrane recall Fluid Mosiac Model S.J. Singer Semipermeable membrane fluid portion is double layer of phospholipids (=phospholipid bilayer) mosaic portion is the proteins and carbohydrates

More information

Cell Membrane Structure and Function. What is the importance of having a cell membrane?

Cell Membrane Structure and Function. What is the importance of having a cell membrane? Cell Membrane Structure and Function What is the importance of having a cell membrane? I. Membrane Structure a. Membranes contain proteins, lipids, and carbohydrates (which are all types of macromolecules)

More information

Plasma Membrane Structure and Function

Plasma Membrane Structure and Function Plasma Membrane Structure and Function The plasma membrane separates the internal environment of the cell from its surroundings. The plasma membrane is a phospholipid bilayer with embedded proteins. The

More information

I. Membrane Structure Figure 1: Phospholipid. Figure 1.1: Plasma Membrane. Plasma Membrane:

I. Membrane Structure Figure 1: Phospholipid. Figure 1.1: Plasma Membrane. Plasma Membrane: I. Membrane Structure Figure 1: Phospholipid Figure 1.1: Plasma Membrane Plasma Membrane: 1 II. Early Plasma Membrane Models Figure 2: Davson-Danielli Sandwich Model In the 1960 s new evidence suggested

More information

The Cell Membrane & Movement of Materials In & Out of Cells PACKET #11

The Cell Membrane & Movement of Materials In & Out of Cells PACKET #11 1 February 26, The Cell Membrane & Movement of Materials In & Out of Cells PACKET #11 Introduction I 2 Biological membranes are phospholipid bilayers with associated proteins. Current data support a fluid

More information

Membrane Structure and Function. Selectively permeable membranes are key to the cell's ability to function

Membrane Structure and Function. Selectively permeable membranes are key to the cell's ability to function Membrane Structure and Function Selectively permeable membranes are key to the cell's ability to function Amphipathic Molecules Have both hydrophilic and hydrophobic regions Phospholipids have hydrophilic

More information

Cell membranes. Stef Elorriaga 4/11/2016 BIO102

Cell membranes. Stef Elorriaga 4/11/2016 BIO102 Cell membranes Stef Elorriaga 4/11/2016 BIO102 Announcements Lab report 2 is due now Quiz 2 is on Wednesday on cells, part of the cells, plasma membrane, and enzymes Outline of the day Activity on the

More information

Lecture Series 4 Cellular Membranes. Reading Assignments. Selective and Semi-permeable Barriers

Lecture Series 4 Cellular Membranes. Reading Assignments. Selective and Semi-permeable Barriers Lecture Series 4 Cellular Membranes Reading Assignments Read Chapter 11 Membrane Structure Review Chapter 12 Membrane Transport Review Chapter 15 regarding Endocytosis and Exocytosis Read Chapter 20 (Cell

More information

The Cell Membrane. Phospholipids. Chapter 7: Arranged as a Phospholipid bilayer. Cell membrane defines cell! Cell membrane separates living cell from

The Cell Membrane. Phospholipids. Chapter 7: Arranged as a Phospholipid bilayer. Cell membrane defines cell! Cell membrane separates living cell from Chapter 7: The Cell Membrane Phospholipids! Amphipathic Molecules: " Phosphate head! hydrophilic " Fatty acid tails! Hydrophobic! Arranged as a bilayer Phosphate attracted to water Fatty acid repelled

More information

Diffusion across cell membrane

Diffusion across cell membrane The Cell Membrane and Cellular Transport Diffusion across cell membrane Cell membrane is the boundary between inside & outside separates cell from its environment Can it be an impenetrable boundary? NO!

More information

The Cell Membrane. Cell membrane separates living cell from nonliving surroundings. Controls traffic in & out of the cell

The Cell Membrane. Cell membrane separates living cell from nonliving surroundings. Controls traffic in & out of the cell The Cell Membrane 1 Overview Cell membrane separates living cell from nonliving surroundings thin barrier = 8nm thick Controls traffic in & out of the cell selectively permeable allows some substances

More information

The Cell Membrane. Usman Sumo Friend Tambunan Arli Aditya Parikesit. Bioinformatics Group Faculty of Mathematics and Science University of Indonesia

The Cell Membrane. Usman Sumo Friend Tambunan Arli Aditya Parikesit. Bioinformatics Group Faculty of Mathematics and Science University of Indonesia The Cell Membrane Usman Sumo Friend Tambunan Arli Aditya Parikesit Bioinformatics Group Faculty of Mathematics and Science University of Indonesia Overview Cell membrane separates living cell from nonliving

More information

Division Ave High School Ms. Foglia AP Biology

Division Ave High School Ms. Foglia AP Biology The Cell Membrane Phospholipids Phosphate head hydrophilic Fatty acid tails hydrophobic Arranged as a bilayer Phosphate attracted to water Fatty acid repelled by water 2007-2008 Aaaah, one of those structure

More information

Cell Membrane: a Phospholipid Bilayer. Membrane Structure and Function. Fluid Mosaic Model. Chapter 5

Cell Membrane: a Phospholipid Bilayer. Membrane Structure and Function. Fluid Mosaic Model. Chapter 5 Membrane Structure and Function Chapter 5 Cell Membrane: a Phospholipid Bilayer Phospholipid Hydrophilic Head Hydrophobic Tail Lipid Bilayer Fluid Mosaic Model Mixture of saturated and unsaturated fatty

More information

The Cell Membrane AP Biology

The Cell Membrane AP Biology The Cell Membrane AP Biology! 2007-2008 Overview! Cell membrane separates living cell from nonliving surroundings " thin barrier = 8nm thick! Controls traffic in & out of the cell " selectively permeable

More information

Cell Transport & the Cell Membrane

Cell Transport & the Cell Membrane Cell Transport & the Cell Membrane I. Cell Membrane A. Structure Structure of the cell membrane is referred to as the Fluid Mosaic Model. It is made up of lipids, proteins and carbohydrates. The membrane

More information

Cell Structure and Function C H A P T E R 7

Cell Structure and Function C H A P T E R 7 Cell Structure and Function C H A P T E R 7 EQ: What Scientists and inventions helped aid in creating Cell Theory? 7.1 Cell Theory (Cells and Living Things) Cells are the basic building block of all life

More information

The Cell Membrane. Also known as the Plasma Membrane

The Cell Membrane. Also known as the Plasma Membrane Student Objectives Know the different parts of the cell membrane Understand the role of the cell membrane in cellular transport Understand diffusion and osmosis Determine what will happen to plant and

More information

Membrane Structure & Function (Learning Objectives)

Membrane Structure & Function (Learning Objectives) Membrane Structure & Function (Learning Objectives) Review the basic function and biochemical composition of the plasma membrane. Learn the fluid state of membranes and the movement of its lipids and proteins.

More information

AP Biology. Overview. The Cell Membrane. Phospholipids. Phospholipid bilayer. More than lipids. Fatty acid tails. Phosphate group head

AP Biology. Overview. The Cell Membrane. Phospholipids. Phospholipid bilayer. More than lipids. Fatty acid tails. Phosphate group head Overview The Cell Membrane Cell separates living cell from nonliving surroundings thin barrier = 8nm thick Controls traffic in & out of the cell selectively permeable allows some substances to cross more

More information

Cells: The Living Units

Cells: The Living Units Cells: The Living Units Introduction Life in general occurs in an aqueous environment All chemical processes essential to life occur within the aqueous environment of the cell and surrounding fluids contained

More information

Transport: Cell Membrane Structure and Function. Biology 12 Chapter 4

Transport: Cell Membrane Structure and Function. Biology 12 Chapter 4 Transport: Cell Membrane Structure and Function Biology 12 Chapter 4 FLUID-MOSAIC MODEL OF MEMBRANE STRUCTURE The cell membrane (plasma membrane) is made of two layers of phospholipid molecules (bilayer)

More information

The Cell Membrane (Ch. 7)

The Cell Membrane (Ch. 7) The Cell Membrane (Ch. 7) Phospholipids Phosphate head hydrophilic Fatty acid tails hydrophobic Arranged as a bilayer Phosphate attracted to water Fatty acid repelled by water Aaaah, one of those structure

More information

Chapter 4: Cell Membrane Structure and Function

Chapter 4: Cell Membrane Structure and Function Chapter 4: Cell Membrane Structure and Function Plasma Membrane: Thin barrier separating inside of cell (cytoplasm) from outside environment Function: 1) Isolate cell s contents from outside environment

More information

Transport. Slide 1 of 47. Copyright Pearson Prentice Hall

Transport. Slide 1 of 47. Copyright Pearson Prentice Hall & Transport 1 of 47 Learning Targets TN Standard CLE 3216.1.3 Explain how materials move into and out of cells. CLE 3216.1.5 Investigate how proteins regulate the internal environment of a cell through

More information

UNIT 4 CELL BOUNDARIES AND TRANSPORT. Unit 4 test: October 16, 2018

UNIT 4 CELL BOUNDARIES AND TRANSPORT. Unit 4 test: October 16, 2018 UNIT 4 CELL BOUNDARIES AND TRANSPORT Unit 4 test: October 16, 2018 Cell Wall CELL BOUNDARIES support protect & the cell cell membrane Lies outside of the Is made of & carbohydrates proteins Plant cell

More information

Lecture Series 4 Cellular Membranes

Lecture Series 4 Cellular Membranes Lecture Series 4 Cellular Membranes Reading Assignments Read Chapter 11 Membrane Structure Review Chapter 12 Membrane Transport Review Chapter 15 regarding Endocytosis and Exocytosis Read Chapter 20 (Cell

More information

Unit 4 ~ Learning Guide

Unit 4 ~ Learning Guide Unit 4 ~ Learning Guide Name: INSTRUCTIONS Complete the following notes and questions as you work through the related lessons You are required to have this package completed BEFORE you write your unit

More information

Cell Membrane (Transport) Notes

Cell Membrane (Transport) Notes Cell Membrane (Transport) Notes Cell Membrane and Cell Wall: ALL cells have a cell membrane made of proteins and lipids protein channel Cell Membrane Layer 1 Layer 2 lipid bilayer protein pump SOME cells

More information

Chapter 7-3 Cell Boundaries

Chapter 7-3 Cell Boundaries Chapter 7-3 Cell Boundaries The Plasma Membrane: Cell Membrane Regulates what enters and leaves the cell. Provides protection and support. Highly selective barrier!!!! What the plasma membrane is made

More information

Membrane Structure and Function

Membrane Structure and Function Membrane Structure and Function Check Your Gummy Bears Ø Take Day One measurements l Same measurements you took yesterday Ø What type solution was the gummy bear in? Hyper, Hypo, or Isotonic? Ø Put your

More information

Transport Movement across the Cell Membrane

Transport Movement across the Cell Membrane Transport Movement across the Cell Membrane Lipids of cell membrane Membrane consists primarily of phosphos phospho bilayer inside cell phosphate hydrophilic outside cell hydrophobic S1 The Fluidity of

More information

Cellular Transport Notes

Cellular Transport Notes Cellular Transport Notes About Cell Membranes 1.All cells have a cell membrane a.controls what enters and exits the cell to maintain an internal balance called homeostasis b.provides protection and support

More information

Unit 1 Matter & Energy for Life

Unit 1 Matter & Energy for Life Unit 1 Matter & Energy for Life Chapter 2 Interaction of Cell Structure Biology 2201 Primary Membrane Function: Homeostasis Conditions in the cell must remain more or less constant under many different

More information

What do you remember about the cell membrane?

What do you remember about the cell membrane? Cell Membrane What do you remember about the cell membrane? Cell (Plasma) Membrane Separates the internal environment of the cell from the external environment All cells have a cell membrane Selectively

More information

LIFE IS CELLULAR. Cell Theory. Cells Are Small. Prokaryotic Cell 10/4/15. Chapter 7 Cell Structure and Function

LIFE IS CELLULAR. Cell Theory. Cells Are Small. Prokaryotic Cell 10/4/15. Chapter 7 Cell Structure and Function Chapter 7 Cell Structure and Function The cell basic unit of life, all living things are made of a cell (unicellular) or more than one cell (multicellular). LIFE IS CELLULAR The invention of the microscope

More information

I. Fluid Mosaic Model A. Biological membranes are lipid bilayers with associated proteins

I. Fluid Mosaic Model A. Biological membranes are lipid bilayers with associated proteins Lecture 6: Membranes and Cell Transport Biological Membranes I. Fluid Mosaic Model A. Biological membranes are lipid bilayers with associated proteins 1. Characteristics a. Phospholipids form bilayers

More information

TRANSPORT ACROSS MEMBRANES

TRANSPORT ACROSS MEMBRANES Unit 2: Cells, Membranes and Signaling TRANSPORT ACROSS MEMBRANES Chapter 5 Hillis Textbook TYPES OF TRANSPORT ACROSS THE CELL (PLASMA) MEMBRANE: What do you remember? Complete the chart with what you

More information

Cell Membranes. Q: What components of the cell membrane are in a mosaic pattern?

Cell Membranes. Q: What components of the cell membrane are in a mosaic pattern? Cell Membranes The cell / plasma membrane is. Selective in that it allows things in and some things out of the cell. Recall that phospholipids have hydrophobic and hydrophilic. The term to describe this

More information

E - Horton AP Biology

E - Horton AP Biology E - Bio @ Horton AP Biology Unit Cell Biology Notes Membrane Structure and Function A. Early Observations 1. At turn of the century, researchers noted lipid-soluble molecules entered cells more rapidly

More information

Describe the Fluid Mosaic Model of membrane structure.

Describe the Fluid Mosaic Model of membrane structure. Membranes and Cell Transport All cells are surrounded by a plasma membrane. Eukaryotic cells also contain internal membranes and membranebound organelles. In this topic, we will examine the structure and

More information

The Cell Membrane & Movement of Materials In & Out of Cells PACKET #11

The Cell Membrane & Movement of Materials In & Out of Cells PACKET #11 1 The Cell Membrane & Movement of Materials In & Out of Cells PACKET #11 Introduction I 2 Biological membranes are phospholipid bilayers with associated proteins. Current data support a fluid mosaic model

More information

What is the Surface Area to Volume Ratio of a sphere with a radius of 5mm? Of 10 mm? What sphere can eliminate wastes and move materials quicker?

What is the Surface Area to Volume Ratio of a sphere with a radius of 5mm? Of 10 mm? What sphere can eliminate wastes and move materials quicker? Warm Up What is the Surface Area to Volume Ratio of a sphere with a radius of 5mm? Of 10 mm? What sphere can eliminate wastes and move materials quicker? Cell Membrane and Function Chapter 7 Big Idea #2:

More information

Cell Membrane Diagram

Cell Membrane Diagram Cell Membrane Diagram Draw a diagram of the cell membrane. Please include (and label): - Phospholipid bilayer (hydrophilic and hydrophobic) Protein channel An ion pump Cholesterol Gylcoproteins* Define

More information

Cellular Transport Notes

Cellular Transport Notes Cellular Transport Notes About Cell Membranes All cells have a cell membrane Functions: a. Controls what enters and exits the cell to maintain an internal balance called homeostasis b. Provides protection

More information

Chapter 7. Movement across the Cell Membrane

Chapter 7. Movement across the Cell Membrane Chapter 7 Movement across the Cell Membrane 2005-2006 Diffusion 2nd Law of Thermodynamics governs biological systems u Universe tends towards disorder Diffusion u movement from high low concentration Diffusion

More information

Chapter 4 Skeleton Notes: Membrane Structure & Function

Chapter 4 Skeleton Notes: Membrane Structure & Function Chapter 4 Skeleton Notes: Membrane Structure & Function Overview/Objectives 4.1 Plasma Membrane Structure & Function o Structure and Function of the PM o Major functions of proteins 4.2- Permeability of

More information

Chapter 7: Membrane Structure and Function. Key Terms:

Chapter 7: Membrane Structure and Function. Key Terms: Key Terms: Selectively permeable Fluid mosaic model Amphipathic Phospholipid Bilayer Hydrophilic Hydrophobic Phosphate head Fatty acid tail Davson-Danielli Singer-Nicolson Freeze-Fracture EM Unsaturated

More information

Main Functions maintain homeostasis

Main Functions maintain homeostasis The Cell Membrane Main Functions The main goal is to maintain homeostasis. Regulates materials moving in and out of the cell. Provides a large surface area on which specific chemical reactions can occur.

More information

Plasma Membrane & Movement of Materials in Cells

Plasma Membrane & Movement of Materials in Cells Plasma Membrane & Movement of Materials in Cells Why do cells need to control what enters and exits? Plasma membrane boundary between the cell and its environment Homeostasis maintaining the cells environment

More information

MEMBRANE STRUCTURE AND FUNCTION

MEMBRANE STRUCTURE AND FUNCTION MEMBRANE STRUCTURE AND FUNCTION selective permeability permits some substances to cross it more easily than others Figure 7.1 Scientists studying the plasma Reasoned that it must be a phospholipid bilayer

More information

Monday, September 30 th :

Monday, September 30 th : Monday, September 30 th : QUESTION TO PONDER: Differentiate between a pro- and eukaryotic organism. List 4 organelles that each type of organism has in common. The Cell Membrane Modified from Kim Foglia

More information

Biology 12 Cell Structure and Function. Typical Animal Cell

Biology 12 Cell Structure and Function. Typical Animal Cell Biology 12 Cell Structure and Function Typical Animal Cell Vacuoles: storage of materials and water Golgi body: a series of stacked disk shaped sacs. Repackaging centre stores, modifies, and packages proteins

More information

The Plasma Membrane. 5.1 The Nature of the Plasma Membrane. Phospholipid Bilayer. The Plasma Membrane

The Plasma Membrane. 5.1 The Nature of the Plasma Membrane. Phospholipid Bilayer. The Plasma Membrane 5.1 The Nature of the Plasma Membrane The Plasma Membrane Four principal components in animals Phospholipid bilayer Molecules of cholesterol interspersed within the bilayer. Membrane proteins embedded

More information

Concept 7.1: Cellular membranes are fluid mosaics of lipids and proteins

Concept 7.1: Cellular membranes are fluid mosaics of lipids and proteins Concept 7.1: Cellular membranes are fluid mosaics of lipids and proteins Lipids: Non-polar substances such as fat that contain C, H, O. Phospholipids: Lipid with phosphate group, very abundant in plasma

More information

Outline. Membrane Structure and Function. Membrane Models Fluid-Mosaic. Chapter 5

Outline. Membrane Structure and Function. Membrane Models Fluid-Mosaic. Chapter 5 Membrane Structure and Function Chapter 5 Membrane Models Fluid-Mosaic Outline Plasma Membrane Structure and Function Protein Functions Plasma Membrane Permeability! Diffusion! Osmosis! Transport Via Carrier

More information

CWDHS Mr. Winch Grade 12 Biology

CWDHS Mr. Winch Grade 12 Biology The Cell Membrane Overview Cell separates living cell from nonliving surroundings thin barrier = 8nm thick Controls traffic in & out of the cell selectively permeable allows some substances to cross more

More information

Membrane Structure and Function

Membrane Structure and Function LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 7 Membrane Structure and Function

More information

The Cell Membrane. Why cells must control materials. Living cells must maintain homeostasis for survival.

The Cell Membrane. Why cells must control materials. Living cells must maintain homeostasis for survival. The Cell Membrane Why cells must control materials Living cells must maintain homeostasis for survival. The cell membrane is the boundary between the cell and its environment. It is the cell membrane s

More information

Name: Period: Date: Cell Transport Tutorials CELL MEMBRANE

Name: Period: Date: Cell Transport Tutorials CELL MEMBRANE Cell Transport Tutorials CELL MEMBRANE http://www.wisc-online.com/objects/index.asp?objid=ap1101 Click through the animation. As you do, answer the following questions: 1. What is the fundamental unit

More information

Membrane Structure and Function

Membrane Structure and Function Chapter 7 Membrane Structure and Function PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

Membrane Structure and Function. Eukaryotic Cell: Neuron

Membrane Structure and Function. Eukaryotic Cell: Neuron Membrane Structure and Function Eukaryotic Cell: Neuron Membrane Structure and Function All cells have a plasma or cell membrane, which contains the cell. Scanning electron micrograph (SEM) of adipocytes

More information

CHAPTER 8 MEMBRANE STUCTURE AND FUNCTION

CHAPTER 8 MEMBRANE STUCTURE AND FUNCTION CHAPTER 8 MEMBRANE STUCTURE AND FUNCTION Plasma Membrane Plasma membrane is selectively permeable, (allowing some substances to cross more easily than others) PM is flexible bends and changes shape

More information

Membrane Structure and Function

Membrane Structure and Function LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 7 Membrane Structure and Function

More information

Membranes. Chapter 5

Membranes. Chapter 5 Membranes Chapter 5 Membrane Structure The fluid mosaic model of membrane structure contends that membranes consist of: -phospholipids arranged in a bilayer -globular proteins inserted in the lipid bilayer

More information

Lipids are macromolecules, but NOT polymers. They are amphipathic composed of a phosphate head and two fatty acid tails attached to a glycerol

Lipids are macromolecules, but NOT polymers. They are amphipathic composed of a phosphate head and two fatty acid tails attached to a glycerol d 1 2 Lipids are macromolecules, but NOT polymers. They are amphipathic composed of a phosphate head and two fatty acid tails attached to a glycerol backbone. The phosphate head group is hydrophilic water

More information

Biology Kevin Dees. Chapter 7 Membrane Structure and Function

Biology Kevin Dees. Chapter 7 Membrane Structure and Function Chapter 7 Membrane Structure and Function The plasma membrane surrounds the living cells from their surroundings. Only 8 nm thick (8,000 to equal the thickness of a sheet of paper) Controls passage of

More information

Diffusion. Chapter 7. Movement across the Cell Membrane. Cell (plasma) membrane. diffusion. Building a membrane. Diffusion of 2 solutes

Diffusion. Chapter 7. Movement across the Cell Membrane. Cell (plasma) membrane. diffusion. Building a membrane. Diffusion of 2 solutes WH Chapter 7 Diffusion Move for HIGH to LOW concentration passive transport no energy needed Movement across the Cell Membrane 2005-2006 diffusion osmosis Diffusion 2nd Law of Thermodynamics governs biological

More information