Molecular Cell Biology Problem Drill 16: Intracellular Compartment and Protein Sorting

Size: px
Start display at page:

Download "Molecular Cell Biology Problem Drill 16: Intracellular Compartment and Protein Sorting"

Transcription

1 Molecular Cell Biology Problem Drill 16: Intracellular Compartment and Protein Sorting Question No. 1 of 10 Question 1. Which of the following statements about the nucleus is correct? Question #01 A. The nucleus is surrounded by a nuclear envelope, which is made up of a single lipid membrane. B. The nuclear envelope contains small openings called nuclear pores; these pores are aqueous channels that allow small molecules to pass in and out of the nucleus, while keeping the genetic material inside. C. The nuclear envelope contains large openings called nuclear pores; these pores allow the genetic material to exit the nucleus. D. The nucleolus is a small region inside the nucleus that is surrounded by 2 lipid membranes. The nucleus is surrounded by a nuclear envelope, which is made up of 2 lipid membranes. B. Correct! The nuclear envelope contains small openings called nuclear pores; these pores are aqueous channels that allow small molecules to pass in and out of the nucleus, while keeping the genetic material inside. The nuclear envelope contains small openings called nuclear pores; these pores are aqueous channels that allow small molecules to pass in and out of the nucleus, while keeping the genetic material inside. The nucleolus is a small region inside the nucleus that is not surrounded by a membrane.. The nucleus is usually located in the center of the cell and is the storage facility for the human genome. The nucleus is surrounded by a nuclear envelope, which is made up of 2 lipid membranes. The nuclear envelope contains small openings called nuclear pores; these pores are aqueous channels that allow small molecules to pass in and out of the nucleus, while keeping the genetic material inside. The nucleolus is a small region inside the nucleus that is not surrounded by a membrane. This is where ribosomal RNA is synthesized and assembled with other ribosome components.

2 Question No. 2 of 10 Question 2. Endoplasmic reticulum. Question #02 A. The endoplasmic reticulum (ER) is a network of sac-like structures, known as cisternae, that is physically separate from the nucleus. B. Rough ER, which has a lot of integral ribosomes that are irreversibly bound to its surface. C. Rough ER, which has a lot of ribosomes that are reversibly bound to its surface. These ribosomes bind to the rough ER during the synthesis of proteins, which need to be sorted within the cell. D. The rough ER works with the lysosomes to target proteins to their final destination. The endoplasmic reticulum (ER) is a network of sac-like structures, known as cisternae, and is continuous with the nucleus. Facilitates the movement of a molecule down its concentration gradient, this is a passive process. C. Correct! Is the process by which a carrier protein or channel protein facilitates the transport of a molecule down its concentration gradient. The rough ER works with the golgi apparatus to target proteins to their final destination. The endoplasmic reticulum (ER) is a network of sac-like structures, known as cisternae, and is continuous with the nucleus. There are 2 varieties of ER:(A) Smooth ER: which is made up of tubes that form a branching network. The smooth ER is involved in the synthesis of lipids, metabolism of carbohydrates and storage of large amounts of calcium in muscle cells. (B) Rough ER: which has a lot of ribosomes that are reversibly bound to its surface. These ribosomes bind to the rough ER during the synthesis of proteins, which need to be sorted within the cell. The rough ER works with the golgi apparatus to target proteins to their final destination.

3 Question No. 3 of 10 Question 3. Which of the following statements about mitochondria is correct? Question #03 A. The mitochondria do not contain genetic material and therefore must import all of the needed proteins it. B. The mitochondria contain its own genetic material and can synthesize some of the needed proteins it. C. The primary function of the mitochondria is GTP production, via the oxidation of pyruvate, utilizing electron transport and oxidative phosphorylation. D. The primary function of the mitochondria is ATP production, via the oxidation of lactose, utilizing electron transport and oxidative phosphorylation. The mitochondria contain its own genetic material and can synthesize some of the needed proteins it. B. Correct! The mitochondria contain its own genetic material and can synthesize some of the needed proteins it. The primary function of the mitochondria is ATP production, via the oxidation of pyruvate, utilizing electron transport and oxidative phosphorylation. The primary function of the mitochondria is ATP production, via the oxidation of pyruvate, utilizing electron transport and oxidative phosphorylation. The mitochondria are an organelle made up of an inner matrix surrounded by 2 membranes, in which there is an intermembrane space between. The mitochondria contain its own genetic material and can synthesize some of the needed proteins it. The primary function of the mitochondria is ATP production, via the oxidation of pyruvate, utilizing electron transport and oxidative phosphorylation.

4 Question No. 4 of 10 Question 4. Which of the following statements about lysosomes is correct? Question #04 A. The lysosome has a single lipid membrane containing H+ proton pumps, which pump in protons from the cytosol to keep the acidic ph of 4.8. B. The lysosome has a single lipid membrane containing H+ proton pumps, which pump out protons from the lysosomes to keep the basic ph of 7.8. C. Lysosomes fuse with phagocytic vesicles and synthesize new proteins. D. Lysosomes fuse with mitochondria and digest/destroy their contents. Lysosomes also are responsible for the degradation of old or damaged organelles. A. Correct! The lysosome has a single lipid membrane containing H+ proton pumps, which pump in protons from the cytosol to keep the acidic ph of 4.8. The lysosome has a single lipid membrane containing H+ proton pumps, which pump in protons from the cytosol to keep the acidic ph of 4.8. Lysosomes fuse with phagocytic vesicles and digest/destroy their contents. Lysosomes also are responsible for the degradation of old or damaged organelles. Lysosomes fuse with phagocytic vesicles and digest/destroy their contents. Lysosomes also are responsible for the degradation of old or damaged organelles. Lysosomes are organelles that contain digestive enzymes that, if not contained, would be harmful to the cell contents. The lysosome has a single lipid membrane containing H+ proton pumps, which pump in protons from the cytosol to keep the acidic ph of 4.8. Lysosomes fuse with phagocytic vesicles and digest/destroy their contents. Lysosomes also are responsible for the degradation of old or damaged organelles.

5 Question No. 5 of 10 Question 5. Which of the following statements about nuclear protein import is correct? Question #05 A. Proteins that are targeted for the nucleus contain a nuclear localization signal. This signal is an amino acid sequence, usually containing positively charged amino acids, such as histidine and proline. B. The nuclear receptor binds to the protein and lines the pore complex. Once the protein is inside the nucleus, the receptor remains bound to help protein with folding. C. Both import and export of proteins into the nucleus require energy from the hydrolysis of GTP. D. Both import and export of proteins into the nucleus require energy released from the hydrolysis of Acetyl CoA. Proteins that are targeted for the nucleus contain a nuclear localization signal. This signal is an amino acid sequence, usually containing positively charged amino acids, such as lysine and arginine. The nuclear receptor binds to the protein and lines the pore complex. Once the protein is inside the nucleus, the receptor protein dissociates and is able to guide further proteins into the nucleus. C. Correct! Both import and export of proteins into the nucleus require energy released from the hydrolysis of GTP. Both import and export of proteins into the nucleus require energy released from the hydrolysis of GTP. Nuclear import receptors bind the nuclear localization signal portion of the protein and facilitate its transport into the nucleus. The import receptors are soluble proteins that reside inside the nucleus and bind to the localization signal, sometimes with the help of adaptor proteins. The nuclear receptor binds to the protein and lines the pore complex. Once the protein is inside the nucleus, the receptor protein dissociates and is able to guide further proteins into the nucleus. Nuclear export is the reverse of this process and is dependent on nuclear export receptors. Both import and export of proteins into the nucleus require energy released from the hydrolysis of GTP.

6 Question No. 6 of 10 Question 6. Which of the following statements about mitochondrial protein transport is correct? Question #06 A. Chaperone proteins bind to proteins targeted for the mitochondria and stabilize them in their final folded state. B. Chaperone proteins bind to proteins targeted for the mitochondria and transfer a sugar residue to the NH 2 group of arginine. C. Proteins synthesized in the cytosol on ribosomes undergo posttranslational translocation into the mitochondria. D. Proteins synthesized in the cytosol on ribosomes undergo cotranslational translocation into the mitochondria. Chaperone proteins bind to proteins targeted for the mitochondria and stabilize them in an intermediate unfolded state. Chaperone proteins bind to proteins targeted for the mitochondria and stabilize them in an intermediate unfolded state. C. Correct! Proteins synthesized in the cytosol on ribosomes undergo posttranslational translocation into the mitochondria. Proteins synthesized in the cytosol on ribosomes undergo posttranslational translocation into the mitochondria. Although mitochondria and chloroplasts contain DNA and synthesize the majority of their own proteins, they also must import proteins from the cytosol. Proteins must be imported through both the outer and the inner mitochondrial membrane, based on their unique signal sequence. Proteins synthesized in the cytosol on ribosomes undergo posttranslational translocation into the mitochondria. Proteins are imported through multi-subunit protein complexes, known as translocators. There are specific translocators at the outer and inner mitochondrial membranes. Initially, special proteins in the cytosol, known as chaperones, bind to proteins targeted for the mitochondria and stabilize them in an intermediate unfolded state. Then, the protein binds to the specific outer membrane translocator.

7 Question No. 7 of 10 Question 7. Which of the following statements about peroxisomes is correct? Question #07 A. Peroxisomes are surrounded by a single lipid bilayer and must import some of their proteins. Peroxisomes are involved in the degradation of molecules, particularly the metabolism of fatty acids. B. Proteins targeted for peroxisomes contain a unique peroxisomal targeting sequence of 3 amino acids. C. Proteins targeted for peroxisomes contain a unique lactose binding region made up of 3 amino acids. D. Proteins have to be unfolded for import into peroxisomes. Peroxisomes are surrounded by a single lipid bilayer and must import all of their proteins. Peroxisomes are involved in the degradation of molecules, particularly the metabolism of fatty acids. B. Correct! Proteins targeted for peroxisomes contain a unique peroxisomal targeting sequence of 3 amino acids. Proteins targeted for peroxisomes contain a unique peroxisomal targeting sequence of 3 amino acids. Proteins imported into peroxisomes do not have to be unfolded, but rather are transported into the organelle in their final folded state. Peroxisomes are surrounded by a single lipid bilayer and must import all of their proteins. Peroxisomes are involved in the degradation of molecules, particularly the metabolism of fatty acids. Once the fatty acids are metabolized to acetyl CoA (ß Oxidation), the acetyl CoA is exported from the peroxisome for use elsewhere in the cell. Proteins targeted for peroxisomes contain a unique peroxisomal targeting sequence of 3 amino acids. The process involves soluble receptor proteins and docking proteins on the cytosolic surface of the peroxisome. Specific proteins called peroxins, of which there are at least 23 members, are involved in the ATP driven process. Proteins imported into peroxisomes do not have to be unfolded, but rather are transported into the organelle in their final folded state.

8 Question No. 8 of 10 Question 8. Which of the following statements about the role of a signal recognition particle in the import of proteins into the endoplasmic reticulum (ER) is correct? Question #08 A. Signal Recognition Particles (SRP) bind to the signal sequence on the protein as it is being translated. This pauses protein translation, to allow the ribosome-srp complex to binds to a receptor on the ER membrane. B. Signal Recognition Particles (SRP) bind to the signal sequence on the protein after translation is completed, to allow the ribosome-srp complex to binds to a receptor on the ER membrane. C. Signal Recognition Particles (SRP) bind irreversibly to proteins targeted for import into the ER. D. Signal Recognition Particles (SRP) stimulate protein translation when they bind to proteins targeted for import into the ER. A. Correct! Signal Recognition Particles (SRP) bind to the signal sequence on the protein as it is being translated. This pauses protein translation, to allow the ribosome-srp complex to binds to a receptor on the ER membrane. Signal Recognition Particles (SRP) bind to the signal sequence on the protein as it is being translated. This pauses protein translation, to allow the ribosome-srp complex to binds to a receptor on the ER membrane. Signal Recognition Particles (SRP) bind reversibly to proteins targeted for import into the ER. Signal Recognition Particles (SRP) pause protein translation when they bind to proteins targeted for import into the ER. Proteins are transported into the endoplasmic reticulum (ER) during translation, a process called Cotranslational Translocation. The translation of the protein is paused while the complex binds to the ER membrane. Signal Recognition Particles (SRP) bind to the signal sequence on the protein as it is being translated. This pauses protein translation, to allow the ribosome-srp complex to binds to a receptor on the ER membrane.

9 Question No. 9 of 10 Question 9. Which of the following statements about the endoplasmic reticulum import translocator is correct? Question #09 A. Proteins are imported into the ER through an aqueous pore called the translocator (translocon). B. Proteins are imported into the ER through a non-aqueous pore called the translocator (translocon). C. Accessory proteins, called BiP (binding protein), are chaperone-like proteins that bind irreversibly to the incoming polypeptide chain and facilitate its transport into the ER lumen. D. Accessory proteins, called BiP (binding protein), are chaperone-like proteins that bind to the signal recognition particle and facilitate the transport of the protein into the ER lumen. A. Correct! Proteins are imported into the ER through an aqueous pore called the translocator (translocon). Proteins are imported into the ER through an aqueous pore called the translocator (translocon). Accessory proteins, called BiP (binding protein), are chaperone-like proteins that bind and release, in cycles, to the incoming polypeptide chain and facilitate the transport of the protein into the ER lumen. Accessory proteins, called BiP (binding protein), are chaperone-like proteins that bind and release, in cycles, to the incoming polypeptide chain and facilitate the transport of the protein into the ER lumen. Proteins are imported into the ER through an aqueous pore in protein translocator (translocon). The translocator is made up of a group of 3-4 protein complexes, which assemble to form an aqueous pore. Accessory proteins, called BiP (binding protein), are chaperone-like proteins that bind and release, in cycles, to the incoming polypeptide chain and facilitate the transport of the protein into the ER lumen.

10 Question No. 10 of 10 Question 10. Which of the following statements about protein glycosylation is correct? Question #10 A. Most proteins synthesized in peroxisomes are modified by the addition of an N-linked oligosaccharide. B. Most proteins synthesized in the rough ER are modified by the addition of an N-linked oligosaccharide. C. This modification is used primarily for targeting old or damaged proteins for degradation in peroxisomes. D. The oligosaccharide is transferred onto a lipid within the protein being modified. Most proteins synthesized in the rough ER are modified by the addition of an N-linked oligosaccharide. B. Correct! Most proteins synthesized in the rough ER are modified by the addition of an N-linked oligosaccharide. This modification is used primarily for secreted proteins, such as glycoproteins, but is also involved in protein folding into its final form. The oligosaccharide is transferred onto the side chain of an asparagine amino acid. Most proteins synthesized in the rough ER are modified by the addition of an N-linked oligosaccharide. The oligosaccharide is transferred onto the side chain of an asparagine amino acid. This modification is used primarily for secreted proteins, such as glycoproteins, but is also involved in protein folding into its final form.

Intracellular Compartments and Protein Sorting

Intracellular Compartments and Protein Sorting Intracellular Compartments and Protein Sorting Intracellular Compartments A eukaryotic cell is elaborately subdivided into functionally distinct, membrane-enclosed compartments. Each compartment, or organelle,

More information

PROTEIN TRAFFICKING. Dr. SARRAY Sameh, Ph.D

PROTEIN TRAFFICKING. Dr. SARRAY Sameh, Ph.D PROTEIN TRAFFICKING Dr. SARRAY Sameh, Ph.D Overview Proteins are synthesized either on free ribosomes or on ribosomes bound to endoplasmic reticulum (RER). The synthesis of nuclear, mitochondrial and peroxisomal

More information

Summary of Endomembrane-system

Summary of Endomembrane-system Summary of Endomembrane-system 1. Endomembrane System: The structural and functional relationship organelles including ER,Golgi complex, lysosome, endosomes, secretory vesicles. 2. Membrane-bound structures

More information

AP Biology

AP Biology Tour of the Cell (1) 2007-2008 Types of cells Prokaryote bacteria cells - no organelles - organelles Eukaryote animal cells Eukaryote plant cells Cell Size Why organelles? Specialized structures - specialized

More information

The Cell Organelles. Eukaryotic cell. The plasma membrane separates the cell from the environment. Plasma membrane: a cell s boundary

The Cell Organelles. Eukaryotic cell. The plasma membrane separates the cell from the environment. Plasma membrane: a cell s boundary Eukaryotic cell The Cell Organelles Enclosed by plasma membrane Subdivided into membrane bound compartments - organelles One of the organelles is membrane bound nucleus Cytoplasm contains supporting matrix

More information

Protein sorting (endoplasmic reticulum) Dr. Diala Abu-Hsasan School of Medicine

Protein sorting (endoplasmic reticulum) Dr. Diala Abu-Hsasan School of Medicine Protein sorting (endoplasmic reticulum) Dr. Diala Abu-Hsasan School of Medicine dr.abuhassand@gmail.com An overview of cellular components Endoplasmic reticulum (ER) It is a network of membrane-enclosed

More information

4/12/17. Cells. Cell Structure. Ch. 2 Cell Structure and Func.on. Range of Cell Sizes BIOL 100

4/12/17. Cells. Cell Structure. Ch. 2 Cell Structure and Func.on. Range of Cell Sizes BIOL 100 Ch. 2 Cell Structure and Func.on BIOL 100 Cells Fundamental units of life Cell theory All living things are composed of one or more cells. The cell is the most basic unit of life. All cells come from pre-existing

More information

Endomembrane system 11/1/2018. Endomembrane System. Direct physical continuity. Transfer of membrane segments as vesicles. Outer Nuclear envelope

Endomembrane system 11/1/2018. Endomembrane System. Direct physical continuity. Transfer of membrane segments as vesicles. Outer Nuclear envelope Endomembrane system Endomembrane System Outer Nuclear envelope Direct physical continuity Transfer of membrane segments as vesicles Endoplasmic reticulum BUT membranes are not identical in structure and

More information

Practice Exam 2 MCBII

Practice Exam 2 MCBII 1. Which feature is true for signal sequences and for stop transfer transmembrane domains (4 pts)? A. They are both 20 hydrophobic amino acids long. B. They are both found at the N-terminus of the protein.

More information

Cell Structure & Function. Source:

Cell Structure & Function. Source: Cell Structure & Function Source: http://koning.ecsu.ctstateu.edu/cell/cell.html Definition of Cell A cell is the smallest unit that is capable of performing life functions. http://web.jjay.cuny.edu/~acarpi/nsc/images/cell.gif

More information

Essential Cell Biology

Essential Cell Biology Alberts Bray Hopkin Johnson Lewis Raff Roberts Walter Essential Cell Biology FOURTH EDITION Chapter 15 Intracellular Compartments and Protein Transport Copyright Garland Science 2014 CHAPTER CONTENTS MEMBRANE-ENCLOSED

More information

Biology 12 Cell Structure and Function. Typical Animal Cell

Biology 12 Cell Structure and Function. Typical Animal Cell Biology 12 Cell Structure and Function Typical Animal Cell Vacuoles: storage of materials and water Golgi body: a series of stacked disk shaped sacs. Repackaging centre stores, modifies, and packages proteins

More information

Don t Freak Out. Test on cell organelle on Friday!

Don t Freak Out. Test on cell organelle on Friday! Cell Structure 1 Don t Freak Out Test on cell organelle on Friday! This test should be a buffer test and help raise your overall test score. All information will come from this week! 2 Cells Provide Compartments

More information

Cells. Variation and Function of Cells

Cells. Variation and Function of Cells Cells Variation and Function of Cells Cell Theory states that: 1. All living things are made of cells 2. Cells are the basic unit of structure and function in living things 3. New cells are produced from

More information

Cytosol the fluid Cytoplasm cell interior, everything outside the nucleus but within the cell membrane, includes the organelles, cytosol, and

Cytosol the fluid Cytoplasm cell interior, everything outside the nucleus but within the cell membrane, includes the organelles, cytosol, and Cell Organelles Plasma Membrane comprised of a phospholipid bilayer and embedded proteins Outer surface has oligosaccharides separates the cells s contents from its surroundings Cytosol the fluid Cytoplasm

More information

A. Major parts 1. Nucleus 2. Cytoplasm a. Contain organelles (see below) 3. Plasma membrane (To be discussed in Cellular Transport Lecture)

A. Major parts 1. Nucleus 2. Cytoplasm a. Contain organelles (see below) 3. Plasma membrane (To be discussed in Cellular Transport Lecture) Lecture 5: Cellular Biology I. Cell Theory Concepts: 1. Cells are the functional and structural units of living organisms 2. The activity of an organism is dependent on both the individual and collective

More information

Types of cells. Cell size comparison. The Jobs of Cells 10/5/2015. Cells & Cell Organelles. Doing Life s Work

Types of cells. Cell size comparison. The Jobs of Cells 10/5/2015. Cells & Cell Organelles. Doing Life s Work Types of cells Prokaryote Cells & Cell Organelles bacteria cells Doing Life s Work Eukaryotes 2009-2010 animal cells plant cells Cell size comparison Animal cell Bacterial cell most bacteria (prokaryotic)

More information

2013 John Wiley & Sons, Inc. All rights reserved. PROTEIN SORTING. Lecture 10 BIOL 266/ Biology Department Concordia University. Dr. S.

2013 John Wiley & Sons, Inc. All rights reserved. PROTEIN SORTING. Lecture 10 BIOL 266/ Biology Department Concordia University. Dr. S. PROTEIN SORTING Lecture 10 BIOL 266/4 2014-15 Dr. S. Azam Biology Department Concordia University Introduction Membranes divide the cytoplasm of eukaryotic cells into distinct compartments. The endomembrane

More information

Human Epithelial Cells

Human Epithelial Cells The Cell Human Epithelial Cells Plant Cells Cells have an internal structure Eukaryotic cells are organized Protective membrane around them that communicates with other cells Organelles have specific jobs

More information

Mr. Powner Biology Cell Structure & Function Quiz Image Guide. Do NOT Write on this page. It is an Image guide for test questions.

Mr. Powner Biology Cell Structure & Function Quiz Image Guide. Do NOT Write on this page. It is an Image guide for test questions. Mr. Powner Biology Cell Structure & Function Quiz Prompts 1. The cell s managing structure; it contains most of the cell s genetic material (DNA, which stores information used to make proteins for cell

More information

CELL PART OF THE DAY. Chapter 7: Cell Structure and Function

CELL PART OF THE DAY. Chapter 7: Cell Structure and Function CELL PART OF THE DAY Chapter 7: Cell Structure and Function Cell Membrane Cell membranes are composed of two phospholipid layers. Cell membrane is flexible, not rigid The cell membrane has two major functions.

More information

Bio10 Cell Structure SRJC

Bio10 Cell Structure SRJC 3.) Cell Structure and Function Structure of Cell Membranes Fluid mosaic model Mixed composition: Phospholipid bilayer Glycolipids Sterols Proteins Fluid Mosaic Model Phospholipids are not packed tightly

More information

Protein Trafficking in the Secretory and Endocytic Pathways

Protein Trafficking in the Secretory and Endocytic Pathways Protein Trafficking in the Secretory and Endocytic Pathways The compartmentalization of eukaryotic cells has considerable functional advantages for the cell, but requires elaborate mechanisms to ensure

More information

1- Which of the following statements is TRUE in regards to eukaryotic and prokaryotic cells?

1- Which of the following statements is TRUE in regards to eukaryotic and prokaryotic cells? Name: NetID: Exam 3 - Version 1 October 23, 2017 Dr. A. Pimentel Each question has a value of 4 points and there are a total of 160 points in the exam. However, the maximum score of this exam will be capped

More information

Molecular Cell Biology - Problem Drill 17: Intracellular Vesicular Traffic

Molecular Cell Biology - Problem Drill 17: Intracellular Vesicular Traffic Molecular Cell Biology - Problem Drill 17: Intracellular Vesicular Traffic Question No. 1 of 10 1. Which of the following statements about clathrin-coated vesicles is correct? Question #1 (A) There are

More information

endomembrane system internal membranes origins transport of proteins chapter 15 endomembrane system

endomembrane system internal membranes origins transport of proteins chapter 15 endomembrane system endo system chapter 15 internal s endo system functions as a coordinated unit divide cytoplasm into distinct compartments controls exocytosis and endocytosis movement of molecules which cannot pass through

More information

Cellular compartments

Cellular compartments Cellular compartments 1. Cellular compartments and their function 2. Evolution of cellular compartments 3. How to make a 3D model of cellular compartment 4. Cell organelles in the fluorescent microscope

More information

Eukaryotic Cell Structures

Eukaryotic Cell Structures Comparing the Cell to a Factory Eukaryotic Cell Structures Structures within a eukaryotic cell that perform important cellular functions are known as organelles. Cell biologists divide the eukaryotic cell

More information

Chapter 3: Cell Structure and Function Assignment

Chapter 3: Cell Structure and Function Assignment Chapter 3: Cell Structure and Function Assignment Provide full detail and be specific for full marks. 1. How do these organelles work together? 2 marks each = 10 marks a. lysosomes and vacuoles When material

More information

Cytoskeleton. Provide shape and support for the cell. Other functions of the cytoskeleton. Nucleolus. Nucleus

Cytoskeleton. Provide shape and support for the cell. Other functions of the cytoskeleton. Nucleolus. Nucleus Chapter 4: Cell Structure and Function Cytoskeleton The cytoskeleton is a network of fibers that organizes structures and activities in the cell. Microtubules (the largest) Intermediate fibers Microfilaments

More information

BIO 5099: Molecular Biology for Computer Scientists (et al)

BIO 5099: Molecular Biology for Computer Scientists (et al) BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 15: Being a Eukaryote: From DNA to Protein, A Tour of the Eukaryotic Cell. Christiaan van Woudenberg Being A Eukaryote Basic eukaryotes

More information

The endoplasmic reticulum is a network of folded membranes that form channels through the cytoplasm and sacs called cisternae.

The endoplasmic reticulum is a network of folded membranes that form channels through the cytoplasm and sacs called cisternae. Endoplasmic reticulum (ER) The endoplasmic reticulum is a network of folded membranes that form channels through the cytoplasm and sacs called cisternae. Cisternae serve as channels for the transport of

More information

1. to understand how proteins find their destination in prokaryotic and eukaryotic cells 2. to know how proteins are bio-recycled

1. to understand how proteins find their destination in prokaryotic and eukaryotic cells 2. to know how proteins are bio-recycled Protein Targeting Objectives 1. to understand how proteins find their destination in prokaryotic and eukaryotic cells 2. to know how proteins are bio-recycled As a protein is being synthesized, decisions

More information

The Cell. Biology 105 Lecture 4 Reading: Chapter 3 (pages 47 62)

The Cell. Biology 105 Lecture 4 Reading: Chapter 3 (pages 47 62) The Cell Biology 105 Lecture 4 Reading: Chapter 3 (pages 47 62) Outline I. Prokaryotic vs. Eukaryotic II. Eukaryotic A. Plasma membrane transport across B. Main features of animal cells and their functions

More information

CELL BIOLOGY - CLUTCH CH INTRACELLULAR PROTEIN TRANSPORT.

CELL BIOLOGY - CLUTCH CH INTRACELLULAR PROTEIN TRANSPORT. !! www.clutchprep.com CONCEPT: MEMBRANE ENCLOSED ORGANELLES Table of eukaryotic organelles and their functions Organelle Function % volume of cell Cytosol Aqueous fluid where metabolic pathways and chemical

More information

10/13/11. Cell Theory. Cell Structure

10/13/11. Cell Theory. Cell Structure Cell Structure Grade 12 Biology Cell Theory All organisms are composed of one or more cells. Cells are the smallest living units of all living organisms. Cells arise only by division of a previously existing

More information

Chapters 2 and 3. Pages and Pages Prayer Attendance Homework

Chapters 2 and 3. Pages and Pages Prayer Attendance Homework Chapters 2 and 3 Pages 44-45 and Pages 59-62 Prayer Attendance Homework The Cell The cell is the basic unit of life on Earth, separated from its environment by a membrane and sometimes an outer wall. Prokaryotic

More information

Cell Structure and Organelles SBI4U 2016/10/14

Cell Structure and Organelles SBI4U 2016/10/14 Cell Structure and Organelles SBI4U 2016/10/14 Inside the cell These are generalizations, not rules! Everything inside the cell membrane besides the nucleus is called the cytoplasm; The liquid is known

More information

A Tour of the Cell. Chapter 6. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

A Tour of the Cell. Chapter 6. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 6 A Tour of the Cell PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

More information

5/12/2015. Cell Size. Relative Rate of Reaction

5/12/2015. Cell Size. Relative Rate of Reaction Cell Makeup Chapter 4 The Cell: The Fundamental Unit of Life We previously talked about the cell membrane The cytoplasm is everything inside the membrane, except the nucleus Includes Cytosol = liquid portion

More information

THE CELL Cells: Part 1

THE CELL Cells: Part 1 THE CELL Cells: Part 1 OBJECTIVES By the end of the lesson you should be able to: State the 2 types of cells Relate the structure to function for all the organelles TYPES OF CELLS There are two types of

More information

TRANSPORT PROCESSES. 1b. moving proteins into membranes and organelles

TRANSPORT PROCESSES. 1b. moving proteins into membranes and organelles 1b. moving proteins into membranes and organelles SLIDE 1 A typical mammalian cell contains up to 10,000 different kinds of proteins. The vast majority of these proteins are synthesized by cytosolic ribosomes,

More information

CELL PARTS TYPICAL ANIMAL CELL

CELL PARTS TYPICAL ANIMAL CELL AP BIOLOGY CText Reference, Campbell v.8, Chapter 6 ACTIVITY1.12 NAME DATE HOUR CELL PARTS TYPICAL ANIMAL CELL ENDOMEMBRANE SYSTEM TYPICAL PLANT CELL QUESTIONS: 1. Write the name of the cell part in the

More information

Early scientists who observed cells made detailed sketches of what they saw.

Early scientists who observed cells made detailed sketches of what they saw. Early scientists who observed cells made detailed sketches of what they saw. Early scientists who observed cells made detailed sketches of what they saw. CORK Early scientists who observed cells made detailed

More information

A Tour of the Cell Lecture 2, Part 1 Fall 2008

A Tour of the Cell Lecture 2, Part 1 Fall 2008 Cell Theory 1 A Tour of the Cell Lecture 2, Part 1 Fall 2008 Cells are the basic unit of structure and function The lowest level of structure that can perform all activities required for life Reproduction

More information

SBI3U7 Cell Structure & Organelles. 2.2 Prokaryotic Cells 2.3 Eukaryotic Cells

SBI3U7 Cell Structure & Organelles. 2.2 Prokaryotic Cells 2.3 Eukaryotic Cells SBI3U7 Cell Structure & Organelles 2.2 Prokaryotic Cells 2.3 Eukaryotic Cells No nucleus Prokaryotic Cells No membrane bound organelles Has a nucleus Eukaryotic Cells Membrane bound organelles Unicellular

More information

- two groups: - unicellular = most protists - multicellular = animals, plants (algae & fungi) - membrane-bound organelles:

- two groups: - unicellular = most protists - multicellular = animals, plants (algae & fungi) - membrane-bound organelles: Structure of Eukaryotic & Prokaryotic Cells Cells: similarities - all composed of the same sorts of molecules - all carry out the same basic chemistry - all store their genetic material as DNA - all have

More information

BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 15: Being A Eukaryote. Eukaryotic Cells. Basic eukaryotes have:

BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 15: Being A Eukaryote. Eukaryotic Cells. Basic eukaryotes have: BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 15: Being a Eukaryote: From DNA to Protein, A Tour of the Eukaryotic Cell. Christiaan van Woudenberg Being A Eukaryote Basic eukaryotes

More information

Lecture 6 - Intracellular compartments and transport I

Lecture 6 - Intracellular compartments and transport I 01.25.10 Lecture 6 - Intracellular compartments and transport I Intracellular transport and compartments 1. Protein sorting: How proteins get to their appropriate destinations within the cell 2. Vesicular

More information

Structure & Function of Cells

Structure & Function of Cells Anatomy & Physiology 101-805 Unit 4 Structure & Function of Cells Paul Anderson 2011 Anatomy of a Generalised Cell Attached or bound ribosomes Cilia Cytosol Centriole Mitochondrion Rough endoplasmic reticulum

More information

Zool 3200: Cell Biology Exam 4 Part I 2/3/15

Zool 3200: Cell Biology Exam 4 Part I 2/3/15 Name: Key Trask Zool 3200: Cell Biology Exam 4 Part I 2/3/15 Answer each of the following questions in the space provided, explaining your answers when asked to do so; circle the correct answer or answers

More information

Organelles Found in a Generalized Animal Cell

Organelles Found in a Generalized Animal Cell Organelles Found in a Generalized Animal Cell 1. Cell Membrane 2. Cytoplasm 3. Nucleus 4. Nuclear Membrane 5. Nucleoplasm 6. Nucleolus 7. Chromosomes 8. Vacuole 9. Ribosomes 10. Rough Endoplasmic Reticulum

More information

Lesson Overview. 7.2 Cell Structure

Lesson Overview. 7.2 Cell Structure 7.2 Cell Organization The eukaryotic cell can be divided into two major parts: the nucleus and the cytoplasm. The cytoplasm is the fluid portion of the cell outside the nucleus. Prokaryotes do not have

More information

First to View Cells. copyright cmassengale

First to View Cells. copyright cmassengale CELL THEORY All living things are made of cells Cells are the basic unit of structure and function in an organism (basic unit of life) Cells come from the reproduction of existing cells (cell division)

More information

Organelles. copyright cmassengale 1

Organelles. copyright cmassengale 1 Organelles copyright cmassengale 1 Organelles Very small (Microscopic) Perform various functions for a cell Found in the cytoplasm May or may not be membrane-bound 2 Animal Cell Organelles Nucleolus Nucleus

More information

Endomembrane system, *Chloroplasts, *Mitochondria. *Learn these from text/connect1. Fertilization of a human cell

Endomembrane system, *Chloroplasts, *Mitochondria. *Learn these from text/connect1. Fertilization of a human cell Key Concepts: - Cells are the Basic Unit of Life Cell Theory, Surface to Volume - 2 Cell Types Prokaryotic, Eukaryotic - Cell Membrane Membrane Structure - Cell Organelles Endomembrane system, *Chloroplasts,

More information

Cell morphology. Cell organelles structure and function. Chapter 1: UNIT 1. Dr. Charushila Rukadikar

Cell morphology. Cell organelles structure and function. Chapter 1: UNIT 1. Dr. Charushila Rukadikar UNIT 1 Cell morphology Cell organelles structure and function Chapter 1: Dr. Charushila Rukadikar Assistant Professor Department Of Physiology ZMCH, Dahod Physiology The science that is concerned with

More information

Structures in Cells. Cytoplasm. Lecture 5, EH1008: Biology for Public Health, Biomolecules

Structures in Cells. Cytoplasm. Lecture 5, EH1008: Biology for Public Health, Biomolecules Structures in Cells Lecture 5, EH1008: Biology for Public Health, Biomolecules Limian.zheng@ucc.ie 1 Cytoplasm Nucleus Centrioles Cytoskeleton Cilia Microvilli 2 Cytoplasm Cellular material outside nucleus

More information

Cell Structure. Present in animal cell. Present in plant cell. Organelle. Function. strength, resist pressure created when water enters

Cell Structure. Present in animal cell. Present in plant cell. Organelle. Function. strength, resist pressure created when water enters Cell Structure Though eukaryotic cells contain many organelles, it is important to know which are in plant cells, which are in animal cells and what their functions are. Organelle Present in plant cell

More information

Plasma Membrane. comprised of a phospholipid bilayer and embedded proteins separates the cells s contents from its surroundings

Plasma Membrane. comprised of a phospholipid bilayer and embedded proteins separates the cells s contents from its surroundings Cell Organelles Plasma Membrane comprised of a phospholipid bilayer and embedded proteins separates the cells s contents from its surroundings Cytosol the fluid Cytoplasm cell interior, everything outside

More information

Structures in Cells. Lecture 5, EH1008: Biology for Public Health, Biomolecules.

Structures in Cells. Lecture 5, EH1008: Biology for Public Health, Biomolecules. Structures in Cells Lecture 5, EH1008: Biology for Public Health, Biomolecules Limian.zheng@ucc.ie 1 Cytoplasm Nucleus Centrioles Cytoskeleton Cilia Microvilli 2 Cytoplasm Cellular material outside nucleus

More information

/searchlist/6850.html Tour of the Cell 1

/searchlist/6850.html Tour of the Cell 1 http://www.studiodaily.com/main /searchlist/6850.html Tour of the Cell 1 2011-2012 Cytology: science/study of cells To view cells: Light microscopy resolving power: measure of clarity Electron microscopy

More information

Cells & Cell Organelles. Doing Life s Work

Cells & Cell Organelles. Doing Life s Work Cells & Cell Organelles Doing Life s Work AP Biology 2009-2010 Types of cells bacteria cells Prokaryote - no organelles Eukaryotes - organelles animal cells plant cells Cell size comparison Animal cell

More information

BIOLOGY 111. CHAPTER 3: The Cell: The Fundamental Unit of Life

BIOLOGY 111. CHAPTER 3: The Cell: The Fundamental Unit of Life BIOLOGY 111 CHAPTER 3: The Cell: The Fundamental Unit of Life The Cell: The Fundamental Unit of Life Learning Outcomes 3.1 Explain the similarities and differences between prokaryotic and eukaryotic cells

More information

A Tour of the Cell. Ch. 7

A Tour of the Cell. Ch. 7 A Tour of the Cell Ch. 7 Cell Theory O All organisms are composed of one or more cells. O The cell is the basic unit of structure and organization of organisms. O All cells come from preexisting cells.

More information

CHAPTER 4 - CELLS. All living things are made up of one or more cells. A cell is the smallest unit that can carry on all of the processes of life.

CHAPTER 4 - CELLS. All living things are made up of one or more cells. A cell is the smallest unit that can carry on all of the processes of life. CHAPTER 4 - CELLS Objectives Name the scientists who first observed living and nonliving cells. Summarize the research that led to the development of the cell theory. State the three principles of the

More information

Study Guide for Biology Chapter 5

Study Guide for Biology Chapter 5 Class: Date: Study Guide for Biology Chapter 5 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following led to the discovery of cells? a.

More information

Cell Cell

Cell Cell Go to cellsalive.com. Select Interactive Cell Models: Plant and Animal. Fill in the information on Plant and Animal Organelles, then Click on Start the Animation Select Plant or Animal Cell below the box.

More information

Chapter 7. (7-1 and 7-2) A Tour of the Cell

Chapter 7. (7-1 and 7-2) A Tour of the Cell Chapter 7 (7-1 and 7-2) A Tour of the Cell Microscopes as Windows to the World of Cells Cells were first described in 1665 by Robert Hooke. By the mid-1800s, the accumulation of scientific evidence led

More information

CELLS. Cells. Basic unit of life (except virus)

CELLS. Cells. Basic unit of life (except virus) Basic unit of life (except virus) CELLS Prokaryotic, w/o nucleus, bacteria Eukaryotic, w/ nucleus Various cell types specialized for particular function. Differentiation. Over 200 human cell types 56%

More information

Renata Schipp Medical Biology Department

Renata Schipp Medical Biology Department Renata Schipp Medical Biology Department Deffinition of cell The cell is the smallest structural and functional unit of all known living organisms The cell was discovered by Robert Hooke in 1665 and also

More information

Look at the following images, what are some similarities and differences between the cells?

Look at the following images, what are some similarities and differences between the cells? Look at the following images, what are some similarities and differences between the cells? Name the two different types of cells 1. Prokaryotic Cells 2. Eukaryotic Cells Unit 3: Cells Objective: To

More information

Chapter 4: Cell Structure and Function

Chapter 4: Cell Structure and Function Chapter 4: Cell Structure and Function Robert Hooke Fig. 4-2, p.51 The Cell Smallest unit of life Can survive on its own or has potential to do so Is highly organized for metabolism Senses and responds

More information

10/5/2015. Cell Size. Relative Rate of Reaction

10/5/2015. Cell Size. Relative Rate of Reaction The Cell Biology 102 Fundamental unit of life Smallest unit that displays all the basic elements of life Lecture 5: Cells Cell Theory 1. All living things are made of one or more cells Cell Theory 2. The

More information

Nucleic acids. Nucleic acids are information-rich polymers of nucleotides

Nucleic acids. Nucleic acids are information-rich polymers of nucleotides Nucleic acids Nucleic acids are information-rich polymers of nucleotides DNA and RNA Serve as the blueprints for proteins and thus control the life of a cell RNA and DNA are made up of very similar nucleotides.

More information

4 A Tour of the Cell CAMPBELL BIOLOGY IN FOCUS. Urry Cain Wasserman Minorsky Jackson Reece

4 A Tour of the Cell CAMPBELL BIOLOGY IN FOCUS. Urry Cain Wasserman Minorsky Jackson Reece CAMPBELL BIOLOGY IN FOCUS Urry Cain Wasserman Minorsky Jackson Reece 4 A Tour of the Cell Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge Overview: The Fundamental Units of Life All

More information

Unit 2:The Cell. Section 3: Organelle Structure and Function Mrs. McNamara Biology

Unit 2:The Cell. Section 3: Organelle Structure and Function Mrs. McNamara Biology Unit 2:The Cell Section 3: Organelle Structure and Function Mrs. McNamara Biology Organelle-cell part that performs a specific function for the cell Most are surrounded by a membrane Each helps to maintain

More information

Objectives. To determine the differences between plant and animal cells To discover the structure and function of cellular organelles.

Objectives. To determine the differences between plant and animal cells To discover the structure and function of cellular organelles. Cell Organelles 3.2 Objectives To determine the differences between plant and animal cells To discover the structure and function of cellular organelles. Basic Cellular Structures Cell membrane (cytoplasmic

More information

Chapter 3 Review Assignment

Chapter 3 Review Assignment Class: Date: Chapter 3 Review Assignment Multiple Choice 40 MC = 40 Marks Identify the choice that best completes the statement or answers the question. 1. Which of the following organelles produces transport

More information

Eukaryotic cells contain organelles that allow the specializations and the separation of functions within the cell.

Eukaryotic cells contain organelles that allow the specializations and the separation of functions within the cell. Section 3: Eukaryotic cells contain organelles that allow the specializations and the separation of functions within the cell. K What I Know W What I Want to Find Out L What I Learned Essential Questions

More information

Human height. Length of some nerve and muscle cells. Chicken egg. Frog egg. Most plant and animal cells Nucleus Most bacteria Mitochondrion

Human height. Length of some nerve and muscle cells. Chicken egg. Frog egg. Most plant and animal cells Nucleus Most bacteria Mitochondrion 10 m 1 m 0.1 m 1 cm Human height Length of some nerve and muscle cells Chicken egg Unaided eye 1 mm Frog egg 100 µm 10 µm 1 µm 100 nm 10 nm Most plant and animal cells Nucleus Most bacteria Mitochondrion

More information

Organelles of the Cell & How They Work Together. Packet #7

Organelles of the Cell & How They Work Together. Packet #7 Organelles of the Cell & How They Work Together Packet #7 Introduction Introduction Organization of cells is basically similar in all cells. Additionally, most cells are tiny Ranging from 1 1000 cubic

More information

Cells and Tissues 3PART A. PowerPoint Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College

Cells and Tissues 3PART A. PowerPoint Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College PowerPoint Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College Cells and Tissues 3PART A Cells and Tissues Carry out all chemical activities needed to sustain life

More information

Plants, Animals, Fungi and Protists have Eukaryotic Cell(s)

Plants, Animals, Fungi and Protists have Eukaryotic Cell(s) Cell Structure Plants, Animals, Fungi and Protists have Eukaryotic Cell(s) Plant Cell Animal Cell straight edges curved edges Cell Organization cytoplasm cell membrane Eukaryotic cells have 3 major parts:

More information

Anatomy Chapter 2 - Cells

Anatomy Chapter 2 - Cells Cells Cells are the basic living structural, functional unit of the body Cytology is the branch of science that studies cells The human body has 100 trillion cells 200 different cell types with a variety

More information

Objectives. By the end of the lesson you should be able to: State the 2 types of cells Relate the structure to function for all the organelles

Objectives. By the end of the lesson you should be able to: State the 2 types of cells Relate the structure to function for all the organelles Biology 11 THE Cell Objectives By the end of the lesson you should be able to: State the 2 types of cells Relate the structure to function for all the organelles Types of Cells There are two types of cells:

More information

Cell Structure and Function. Biology 12 Unit 1 Cell Structure and Function Inquiry into Life pages and 68-69

Cell Structure and Function. Biology 12 Unit 1 Cell Structure and Function Inquiry into Life pages and 68-69 Cell Structure and Function Biology 12 Unit 1 Cell Structure and Function Inquiry into Life pages 45 59 and 68-69 Assignments for this Unit Pick up the notes/worksheet for this unit and the project There

More information

(A) Cell membrane (B) Ribosome (C) DNA (D) Nucleus (E) Plasmids. A. Incorrect! Both prokaryotic and eukaryotic cells have cell membranes.

(A) Cell membrane (B) Ribosome (C) DNA (D) Nucleus (E) Plasmids. A. Incorrect! Both prokaryotic and eukaryotic cells have cell membranes. High School Biology - Problem Drill 03: The Cell No. 1 of 10 1. Which of the following is NOT found in prokaryotic cells? #01 (A) Cell membrane (B) Ribosome (C) DNA (D) Nucleus (E) Plasmids Both prokaryotic

More information

Cells & Cell Organelles

Cells & Cell Organelles Cells & Cell Organelles The Building Blocks of Life AP Biology 2008-2009 Types of cells bacteria cells Prokaryote - no organelles Eukaryotes - organelles animal cells plant cells Cell size comparison Animal

More information

Organelles of the Cell & How They Work Together. Packet #5

Organelles of the Cell & How They Work Together. Packet #5 Organelles of the Cell & How They Work Together Packet #5 Developed by Mr. Barrow 2018 1 Introduction Organization of cells is basically similar in all cells. Additionally, most cells are tiny Ranging

More information

Looking Inside Cells

Looking Inside Cells Looking Inside Cells Inner Life of a Cell http://www.bing.com/videos/search?q=inside +cell+animation&form=hdrsc3#view=detail &mid=4ba834420ea307a061374ba834420ea 307A06137 Cell Defined Cells-Basic unit

More information

Cell Theory. Cells are the basic unit of life.

Cell Theory. Cells are the basic unit of life. 3.1 7.1 Cell Theory Cells are the basic unit of life. 3.1 7.1 Cell Theory The cell theory grew out of the work of many scientists Galileo (1610) made the first microscope Hooke (1665) made up the term

More information

Cell are made up of organelles. An ORGANELLE is a specialized subunit within a cell that has a specific function.

Cell are made up of organelles. An ORGANELLE is a specialized subunit within a cell that has a specific function. Plant and Animal Cells The Cell Theory All living things are made up of one or more cells. All cells come from other cells. Organization of Living Things Cell are made up of organelles. An ORGANELLE is

More information

LIFE IS CELLULAR. Cell Theory. Cells Are Small. Prokaryotic Cell 10/4/15. Chapter 7 Cell Structure and Function

LIFE IS CELLULAR. Cell Theory. Cells Are Small. Prokaryotic Cell 10/4/15. Chapter 7 Cell Structure and Function Chapter 7 Cell Structure and Function The cell basic unit of life, all living things are made of a cell (unicellular) or more than one cell (multicellular). LIFE IS CELLULAR The invention of the microscope

More information

By: Brooke Sheppard

By: Brooke Sheppard By: Brooke Sheppard What is a Cell? Cells are the basic structure of life for all organisms. Cells are microscopic, which means we can only view cells under a microscope. There are animal cells and plant

More information

Cells & Cell Transport. Cells

Cells & Cell Transport. Cells Cells & Cell Transport Cells Cell Membrane Cell membrane (plasma membrane): a phospholipid bilayer surrounding the cell Each phospholipid has a polar phosphate head and lipid tails Selectively permeable:

More information

Organelles of the Cell & How They Work Together. Packet #5

Organelles of the Cell & How They Work Together. Packet #5 Organelles of the Cell & How They Work Together Packet #5 Developed by Mr. Barrow 2018 1 Introduction Organization of cells is basically similar in all cells. Additionally, most cells are tiny Ranging

More information

The Study of Cells The diversity of the cells of the body The following figure shows the proportion of cell size of the variety of cells in the body

The Study of Cells The diversity of the cells of the body The following figure shows the proportion of cell size of the variety of cells in the body Adapted from Martini Human Anatomy 7th ed. Chapter 2 Foundations: The Cell Introduction There are trillions of cells in the body Cells are the structural building blocks of all plants and animals Cells

More information

6. What surrounds the nucleus? How many membranes does it have?

6. What surrounds the nucleus? How many membranes does it have? Biology-R track Study Guide: 7.2 Cell Structure Cell Organization 1. What are the 2 major parts that you can divide the eukaryotic cell into? 2. What part is the fluid portion of the cell outside the nucleus?

More information

17/01/2017. Protein trafficking between cell compartments. Lecture 3: The cytosol. The mitochondrion - the power plant of the cell

17/01/2017. Protein trafficking between cell compartments. Lecture 3: The cytosol. The mitochondrion - the power plant of the cell ell biology 2017 version 13/1 2017 ote endosome vs lysosome handout Lecture 3: Text book Alberts et al.: hapter 12-14 (Topics covered by the lecture) A lot of reading! Focus on principles ell Biology interactive

More information