Chapter MEMBRANE TRANSPORT

Size: px
Start display at page:

Download "Chapter MEMBRANE TRANSPORT"

Transcription

1 Chapter 3 I MEMBRANE TRANSPORT The cell membrane, or plasma membrane, is the outermost layer of the cell. It completely surrounds the protoplasm or living portion of the cell, separating the cell s interior from the environment. Because it is so thin, the plasma membrane is not visible under the light microscope. It is visible under the electron microscope, however, where it appears as a double line structure with a total width of approximately 7.5 nm. A widely accepted model of biological membranes, the fluid mosaic model, is shown in Figure 5-2. The basic structure of the membrane is a phospholipid bilayer. Embedded into this bilayer of lipids are proteins, some of which span the width of the membrane. The membrane can be envisaged as a two-dimensional fluid in which its constituents, lipids and proteins, can move around laterally, but cannot change their inside-out orientation ( flipflop ) easily. Figure 5-2. Fluid Mosaic Model As a result of the molecular composition and physical arrangement of its components, biological membranes have some very important properties. An essential one for the maintenance of life is called differential or selective permeability. This property, which results from the structure of the lipid bilayer and the presence of specific transport proteins, allows certain molecules to pass through the membrane (either into or out of the cell) and prevents the passage of others. Hence, the primary function of the cell membrane is to maintain the integrity of the cell in relation to its environment. Before discussing in more detail the function of the cell membrane, we must discuss the ways in which molecules move from one place to another. All molecules move by one of two processes: diffusion or active transport. Diffusion is merely the physical movement of molecules along a concentration gradient, from a high concentration to a low concentration. It is passive in the sense that it does not involve an outside source of energy. The movement is the result of the kinetic energy of the molecules themselves. Active transport on the other hand is a selective process in which molecules can move against a concentration gradient at the expense of an outside source of energy. In the cell, this outside source of energy is the energy derived from the cell's metabolism. In this exercise we will only concern ourselves with the passive movement of particles. Of particular importance in biological systems is the diffusion of molecules or ions in aqueous solution. The rate of diffusion (the speed with which the particles move) increases as the temperature increases, as the concentration gradient steepens, and as the size of the particles decreases. 5-1

2 In the cell the process of diffusion is complicated by the presence of the membrane system. All molecules moving into or out of the cell have to pass through the cell membrane. Because of its semi-permeable nature the membrane will allow water molecules and certain other small molecules in solution to pass through it freely, but it restricts the passage of ions and larger, polar molecules such as sugars. The diffusion of water molecules through the cell membrane is called osmosis. Osmosis is the process by which all molecules of water enter or leave the cell. The direction in which the water molecules move, either into the cell or out of the cell, is dependent upon the osmotic state of the cell's environment. When the concentration of water molecules is the same both inside the cell and outside of the cell, the condition is said to be isotonic and water molecules will move into and out of the cell at the same rate; there is no net change of the water concentration on either side of the membrane. When the concentration of water is higher outside than inside, the condition is hypotonic, and the cell gains water. This condition occurs, when there are more solutes in the cytoplasm than in the environment. A cell which is in a hypotonic solution will take up water and become turgid or rigid. In contrast, a cell in a hypertonic solution, a solution that has a higher solute concentration than the cytoplasm, will lose water and become plasmolyzed. The three osmotic states are illustrated in Figure 3-3. hypotonic solution isotonic solution hypertonic solution (Cell turgid) (Cell plasmolyzed) Figure 5-3. Osmotic states of the cell A. Diffusion Through an Artificial Membrane In this section you will design an experiment to test the abilities of various molecules to travel across an artificial membrane. Note that the artificial membrane selects only on the basis of size, while natural membranes also select on the basis of characteristics such as polarity or charge. The pores in the membrane will allow molecules smaller than daltons in molecular weight (approximately equivalent to a protein of 320 amino acids in size) to cross. Select one of the available solutions to put inside your dialysis bag, and predict which molecules you expect to move across the membrane and what results you expect to see as a result of the movement of those molecules. You should be able to note movement of molecules based on changes in the weight of the bag and the results of colorimetric tests for specific compounds. Once you have established your protocol, set up your experiment and let it incubate while you perform the rest of the laboratory. 5-2

3 Available solutions to place inside the dialysis bag: Albumin solution or 1/10 th strength albumin (protein; record % concentration for each). Albumin has a molecular weight of approximately 68,000 daltons. Glucose solution or 1/10 th strength glucose (sugar; record % concentration for each). Glucose has a molecular weight of 180 daltons. Tests to detect molecules present in your solution: PROCEDURE 1. As a group of four, select one pair of solutions from the above list. 2. Plan how to detect the presence or absence of protein or simple sugars in your chosen solution and in the distilled water from the beaker. Set up the appropriate test tubes, including controls. (Hint: You may wish to review some of the tests you did in Chapter 2) 3. Each pair should obtain a 15 cm piece of dialysis tubing that has been soaked in distilled water. Tie a knot in one end of the tubing, so that you have a leak proof seal. 4. One pair of your group: Fill the tubing about ½ full with the solution of your choice. 4a. Second pair: dilute the solution 1:10 with distilled water (1 ml solution to 9 ml distilled water for a total volume of 10 ml; make sure to rinse the graduated cylinder very well first!) and fill the tubing about ½ full with the diluted solution. 5. Squeeze out as much air as you can and tie the open end of each bag shut with another leak proof knot. Make sure the walls of your bag are not taut. Rinse the bag with distilled water and dry thoroughly with a paper towel. 6. Weigh your bags and record the starting conditions in Table Place each bag into a 250 ml beaker containing distilled water. Stir or swirl the beaker at 15 minute intervals for the next two hours. 8. Record your predictions for movement of molecules across the cellulose membrane. 9. After two hours, remove the bag and dry it thoroughly again, then weigh it. Record the ending weight in Table Using the same tests you set up in step 2, test the solution from inside the bag and from the beaker again. Record your results in Table 5.1. Carefully wash all your glassware. 11. Pair up with another group that did the experiment with the other molecule. Record their results in Table 5.1 and compare them with your results. 5-3

4 Table 5.1: Initial Conditions (molecules predicted to be present outside bag, and test results) Full strength albumin (protein) 1/10 th strength albumin (protein) Full strength glucose (sugar) 1/10 th strength glucose (sugar) Initial Conditions (molecules predicted to be present inside bag, and test results) Predicted Movement of Molecules (relative osmotic states) Initial Weight of Bag Ending Weight of Bag Ending Conditions (test results for molecules present outside bag) Ending Conditions (test results for molecules present inside bag) Deduced Movement of Molecules 5-4

5 QUESTIONS What did you predict would happen to the weight of the bag? Why? What molecules did you think would be able to move across the membrane? Why? Were you able to demonstrate the movement of molecules across the membrane? How? Is the membrane freely permeable to all molecules? Can you make any statements about the selection of which molecules are able to cross? 5-5

6 ln the above exercise we demonstrated the selective permeability of an artificial cellophane membrane. In the living cell this same type of selective permeability is accomplished by the cell membrane. B. Diffusion Through Living Membranes 1. Plant cells: Elodea Because plant cells have a cell well, they may become turgid as indicated in fig 5.3, but will not burst. The pressure of the cell against the cell wall is a major factor in the ability of plants to stand upright in absence of a solid structural support. When the plants lose water or are subjected to a hypertonic solution, the loss of turgor pressure causes the plant to wilt as the cells become plasmolyzed. In a plasmolyzed cell, the cell membrane pulls away from the cell walls. PROCEDURE 1. Make three wet mount preparations of single Elodea leaves as follows a. Elodea leaf in distilled water b. Elodea leaf in solution from its container c. Elodea leaf in 10% NaCl 2. Observe the slides under the microscope at low and high power. Focus in on a single Elodea leaf cell with the high power objective. 3. Note the distribution of the chloroplasts in the cytoplasm of the cell. Diagram a typical Elodea leaf cell in the solution from it s container in the space below. 4. Observe the leaf cells in distilled water and 10% NaCl. Diagram cells in each of these conditions and answer the questions below. 5. Add a drop of distilled water to the edge of coverslip on the 10%NaCl slide. Pull the solution through by touching a paper towel to the opposite edge of the coverslip. Make sure you have pulled in the entire drop, then allow the slide to sit for a few minutes. Observe the cells. Cell in container solution Cell in Distilled water Cell in 10% NaCl 5-6

7 QUESTIONS 1. What was the osmotic state of the cell in distilled water? In the salt solution? (Hint: see fig 5.3) 2. What was the condition of the cells in the leaf after being in the salt solution? 3. Describe exactly what happened to the cells in the salt solution. 4. Describe exactly what happened to the cells after the salt solution was replaced with distilled water. 2. Animal cells: Red Blood Cells Animal cells lack a cell wall and thus are less resistant to osmotic lysis. Red blood cells (RBCs) in particular tend to lyse (blow up) in hypotonic solutions, a process called hemolysis. In a hypertonic solution, the cells will shrink, a process called crenation. Compare the effects of these solutions on red blood cells with the effects on plant cells. 5-7

8 PROCEDURE 1. Dilute one drop of blood in 4-5 drops of 0.9% NaCl. Make four slides as follows: a. Wet mount: one drop of blood b. Smear: one drop of blood (your TA will demonstrate) c. Wet mount: blood mixed 1:2 with distilled water d. Wet mount: blood mixed 1:2 with 10% NaCl 2. Observe the slides of blood only under the microscope at low and high power. Focus in on a single red blood cell with the high power objective. Diagram the normal appearance of a red blood cell. 3. Compare your other slides to the first. Diagram a cell under each condition and answer the questions below. 4. Draw several drops of distilled water under the coverslip of the 10%NaCl slide and observe the cells after a few minutes. Make a note of any changes. Normal RBC RBC in water RBC in 10%NaCl QUESTIONS 1. What happened to the RBCs in distilled water? What is the osmotic condition of the RBC in distilled water? 2. What happened to the RBCs in 10%NaCl? What is the osmotic condition of the RBC in this solution? 5-8

9 3. What happened (or what would you have expected to happen) to the RBCs after the 10%NaCl was replaced with distilled water? Explain. The differential permeability of cell membranes is a result of their specific physical and chemical structure. When this structure is disrupted, the property of differential permeability is destroyed. The red color of a beet is due to the presence of a water soluble pigment, anthocyanin, which is located within the cells, (enclosed by a cell membrane). The following experiment will analyze the effects of membrane disruption on permeability using anthocyanin as an indicator substance. C. Differential Permeability of Membranes PROCEDURE 1. Label 3 large test tubes A, B, and C. 2. Dice a segment of red beet into small cubes. Rinse the cubes in cold water several times, removing as much anthocyanin as possible. 3. Divide the cubed sections equally among the three test tubes. 4. Cover the beets in tubes A and B with tap water, cover the beets in tube C with absolute ethanol. 5. Leave tubes A and C for 10 minutes at room temperature, heat tube B in an 80 o C water bath for 10 minutes. 6. Shake each tube briefly, and observe the color of the supernatant in each of the tubes. Record your observations in the table on the next page 5-9

10 Tube Liquid Temperature Initial Color Final Color A Water RT B Water 80 o C C Alcohol RT Table 2: Color Changes of the Liquid Supernatant after Exposing a Beet Sample to Membrane Disrupting Conditions. QUESTIONS 1. Describe the permeability of the membrane to anthocyanin in cool tap water? What is the effect of boiling water? What is the effect of alcohol? 2. Which component(s) of membrane structure is (are) likely to be disrupted by boiling water? Explain. 3. Which component(s) of membrane structure is (are) likely to be disrupted by alcohol? Explain. 5-10

Osmosis and Diffusion: How biological membranes are important This page is a lab preparation guide for instructors.

Osmosis and Diffusion: How biological membranes are important This page is a lab preparation guide for instructors. Osmosis and Diffusion: How biological membranes are important This page is a lab preparation guide for instructors. **All solutions and dialysis bags can easily be prepared prior to lab start to maximize

More information

DIFFUSON AND OSMOSIS INTRODUCTION diffusion concentration gradient. net osmosis water potential active transport

DIFFUSON AND OSMOSIS INTRODUCTION diffusion concentration gradient. net osmosis water potential active transport DIFFUSON AND OSMOSIS NAME DATE INTRODUCTION The life of a cell is dependent on efficiently moving material into and out of the cell across the cell membrane. Raw materials such as oxygen and sugars needed

More information

Lab #6: Cellular Transport Mechanisms Lab

Lab #6: Cellular Transport Mechanisms Lab Lab #6: Cellular Transport Mechanisms Lab OVERVIEW One of the major functions of the plasma membrane is to regulate the movement of substances into and out of the cell. This process is essential in maintaining

More information

BIOLOGY 12 - Cell Membrane and Cell Wall Function: Chapter Notes

BIOLOGY 12 - Cell Membrane and Cell Wall Function: Chapter Notes BIOLOGY 12 - Cell Membrane and Cell Wall Function: Chapter Notes The cell membrane is the gateway into the cell, and must allow needed things such as nutrients into the cell without letting them escape.

More information

BIOLOGY 12 - Cell Membrane and Cell Wall Function: Chapter Notes

BIOLOGY 12 - Cell Membrane and Cell Wall Function: Chapter Notes BIOLOGY 12 - Cell Membrane and Cell Wall Function: Chapter Notes The cell membrane is the gateway into the cell, and must allow needed things such as nutrients into the cell without letting them escape.

More information

DIFFUSION AND OSMOSIS

DIFFUSION AND OSMOSIS Lab 5 DIFFUSION AND OSMOSIS OBJECTIVES Describe the process of diffusion at the molecular level; State the physical factors that determine the direction and rate of diffusion; Discuss why diffusion rates,

More information

Passive Transport. Does not expend cellular energy for the movement to take place. Ex-rolling down a hill

Passive Transport. Does not expend cellular energy for the movement to take place. Ex-rolling down a hill Passive Transport Fluid Mosaic Model Passive Transport Does not expend cellular energy for the movement to take place Ex-rolling down a hill Parts of a Solution Solute: what gets dissolved Solvent: What

More information

LAB 04 Diffusion and Osmosis

LAB 04 Diffusion and Osmosis LAB 04 Diffusion and Osmosis Objectives: Describe the physical mechanisms of diffusion and osmosis. Understand the relationship between surface area and rate of diffusion. Describe how molar concentration

More information

INTERNATIONAL TURKISH HOPE SCHOOL ACADEMIC YEAR CHITTAGONG SENIOR SECTION BIOLOGY HANDOUT OSMOSIS, DIFFUSION AND ACTIVE TRANSPORT CLASS 9

INTERNATIONAL TURKISH HOPE SCHOOL ACADEMIC YEAR CHITTAGONG SENIOR SECTION BIOLOGY HANDOUT OSMOSIS, DIFFUSION AND ACTIVE TRANSPORT CLASS 9 INTERNATIONAL TURKISH HOPE SCHOOL 2014 2015 ACADEMIC YEAR CHITTAGONG SENIOR SECTION BIOLOGY HANDOUT OSMOSIS, DIFFUSION AND ACTIVE TRANSPORT CLASS 9 Name :... Date:... d) Movement of substances into and

More information

Diffusion and Osmosis

Diffusion and Osmosis Diffusion and Osmosis Introduction: In this exercise you will measure diffusion of small molecules through dialysis tubing, an example of a semi permeable membrane. The movement of a solute through a semi

More information

BIOLOGY 1101 LAB 1: OSMOSIS & DIFFUSION. READING: Please read pages & in your text prior to lab.

BIOLOGY 1101 LAB 1: OSMOSIS & DIFFUSION. READING: Please read pages & in your text prior to lab. BIOLOGY 1101 LAB 1: OSMOSIS & DIFFUSION READING: Please read pages 27-31 & 83-86 in your text prior to lab. INTRODUCTION: All living things depend on water. A water molecule is made up of an oxygen atom

More information

BIOLOGY 12 - Cell Membrane and Cell Wall Function: Chapter Notes

BIOLOGY 12 - Cell Membrane and Cell Wall Function: Chapter Notes BIOLOGY 12 - Cell Membrane and Cell Wall Function: Chapter Notes The cell membrane is the gateway into the cell, and must allow needed things such as nutrients into the cell without letting them escape.

More information

[S] [S] Hypertonic [H O] [H 2 O] g. Osmosis is the diffusion of water through membranes! 15. Osmosis. Concentrated sugar solution

[S] [S] Hypertonic [H O] [H 2 O] g. Osmosis is the diffusion of water through membranes! 15. Osmosis. Concentrated sugar solution Concentrated sugar solution Sugar molecules (Water molecules not shown) 100ml 100ml Hypertonic [S] g [H2 Hypotonic [H O] 2 O] [H 2 O] g Semipermeable Dilute sugar solution (100ml) Time 125ml Osmosis 75ml

More information

To understand osmosis, we must focus on the behavior of the solvent, not the solute.

To understand osmosis, we must focus on the behavior of the solvent, not the solute. GCC CHM 130LL Osmosis and Dialysis Purpose: The purpose of this experiment is to observe the closely related phenomena of osmosis and diffusion as it relates to dialysis. It is hoped that you will be able

More information

Text Reference, Campbell v.8, Chapter 7 CELL TRANSPORT MEMBRANE PROPERTIES PASSIVE TRANSPORT CHARACTERISTICS: DIFFUSION:

Text Reference, Campbell v.8, Chapter 7 CELL TRANSPORT MEMBRANE PROPERTIES PASSIVE TRANSPORT CHARACTERISTICS: DIFFUSION: AP BIOLOGY Text Reference, Campbell v.8, Chapter 7 ACTIVITY 1.14 NAME DATE HOUR CELL TRANSPORT MEMBRANE PROPERTIES PASSIVE TRANSPORT CHARACTERISTICS: DIFFUSION: OSMOSIS: ISOTONIC HYPOTONIC HYPERTONIC ANIMAL

More information

LAB: DIFFUSION ACROSS A SELECTIVELY PERMEABLE MEMBRANE

LAB: DIFFUSION ACROSS A SELECTIVELY PERMEABLE MEMBRANE LAB: DIFFUSION ACROSS A SELECTIVELY PERMEABLE MEMBRANE NAME: PERIOD: DATE: Building Background Knowledge: 1) SELECTIVELY PERMEABLE MEMBRANE: Every cell is surrounded by a selectively permeable membrane

More information

Ch. 7 Diffusion, Osmosis, and Movement across a Membrane

Ch. 7 Diffusion, Osmosis, and Movement across a Membrane Ch. 7 Diffusion, Osmosis, and Movement across a Membrane Diffusion Spontaneous movement of particles from an area of high concentration to an area of low concentration Does not require energy (exergonic)

More information

Chapter 3: Exchanging Materials with the Environment. Cellular Transport Transport across the Membrane

Chapter 3: Exchanging Materials with the Environment. Cellular Transport Transport across the Membrane Chapter 3: Exchanging Materials with the Environment Cellular Transport Transport across the Membrane Transport? Cells need things water, oxygen, balance of ions, nutrients (amino acids, sugars..building

More information

Lab 4: Osmosis and Diffusion

Lab 4: Osmosis and Diffusion Page 4.1 Lab 4: Osmosis and Diffusion Cells need to obtain water and other particles from the fluids that surround them. Water and other particles also move out of cells. Osmosis (for water) and diffusion

More information

Experimental Design and Investigating Diffusion and Osmosis

Experimental Design and Investigating Diffusion and Osmosis Bio 101 Name: Experimental Design and Investigating Diffusion and Osmosis OBJECTIVES: To practice applying hypothesis testing. To further your understanding of experimental design. To gain a better understanding

More information

LAB: DIFFUSION ACROSS A SELECTIVELY PERMEABLE MEMBRANE

LAB: DIFFUSION ACROSS A SELECTIVELY PERMEABLE MEMBRANE LAB: DIFFUSION ACROSS A SELECTIVELY PERMEABLE MEMBRANE NAME: PERIOD: DATE: Building Background Knowledge: 1) SELECTIVELY PERMEABLE MEMBRANE: Every cell is surrounded by a selectively permeable membrane

More information

Introduction diffusion osmosis. imbibe Diffusion The Cell Membrane and Osmosis selectively permeable membrane Osmosis 1. Isotonic 2.

Introduction diffusion osmosis. imbibe Diffusion The Cell Membrane and Osmosis selectively permeable membrane Osmosis 1. Isotonic 2. Topic 6. Diffusion Introduction: This exercise explores the physical phenomenon of diffusion and osmosis. Osmosis is simply the diffusion of water through a selectively permeable membrane. We will also

More information

1. How many fatty acid molecules combine with a glycerol to form a phospholipid molecule? A. 1 B. 2 C. 3 D. 4

1. How many fatty acid molecules combine with a glycerol to form a phospholipid molecule? A. 1 B. 2 C. 3 D. 4 Topic 3: Movement of substances across cell membrane 1. How many fatty acid molecules combine with a glycerol to form a phospholipid molecule? A. 1 B. 2 C. 3 D. 4 Directions: Questions 2 and 3 refer to

More information

Biology Movement across the Cell Membrane

Biology Movement across the Cell Membrane Biology 160 - Movement across the Cell Membrane Prelab Information Movement is one of the characteristics of life. The ability to control the movement of material across the cell membrane is an incredibly

More information

Safety. What You Need. What to do... Neo/SCI Student s Guide Name... Teacher/Section... Date... Step 1. Step 2

Safety. What You Need. What to do... Neo/SCI Student s Guide Name... Teacher/Section... Date... Step 1. Step 2 Diffusion & Osmosis Activity 1a Diffusion Lab 1 Background Diffusion occurs whenever concentrations of substances are not even throughout an area. This unequal distribution of particles is called a concentration

More information

LAB 4: OSMOSIS AND DIFFUSION

LAB 4: OSMOSIS AND DIFFUSION Page 4.1 LAB 4: OSMOSIS AND DIFFUSION Cells need to obtain water and other particles from the fluids that surround them. Water and other particles also move out of cells. Osmosis (for water) and diffusion

More information

Constant Motion of Molecules. Kinetic Theory of Matter Molecules move randomly and bump into each other and other barriers

Constant Motion of Molecules. Kinetic Theory of Matter Molecules move randomly and bump into each other and other barriers CELL TRANSPORT Constant Motion of Molecules Kinetic Theory of Matter Molecules move randomly and bump into each other and other barriers Solution homogenous liquid throughout which two or more substances

More information

Table of Contents Title Page Number Due Date Stamp

Table of Contents Title Page Number Due Date Stamp 1 Table of Contents Title Page Number Due Date Stamp Calendar 3 Warm - Ups 4 Carbon Based Molecules 5 02/20/2018 Notes Cell Membrane Notes 8 02/20/2018 Membrane Structure and Cell Signaling Worksheet Diffusion

More information

LAB #3 - DIFFUSION AND OSMOSIS

LAB #3 - DIFFUSION AND OSMOSIS DIFFUSION EXPERIMENT - pg. 4-6 LAB #3 - DIFFUSION AND OSMOSIS Definition of DIFFUSION - The natural tendency of particles to move from areas of high concentration to areas of lower concentration START

More information

Diffusion & Osmosis - Exercise 4

Diffusion & Osmosis - Exercise 4 Diffusion & Osmosis - Exercise 4 Objectives -Define: Solvent, Solute, and Solution -Define: Diffusion, Selectively permeable membrane, Osmosis, and Dialysis -Understand rule of thumb: Concentration will

More information

Plasma Membrane Function

Plasma Membrane Function Plasma Membrane Function Cells have to maintain homeostasis, they do this by controlling what moves across their membranes Structure Double Layer of phospholipids Head (polar) hydrophiliclikes water -

More information

Investigating Osmosis By Amy Dewees,Jenkintown.High School and Dr. Ingrid Waldron, Department of Biology, University of Pennsylvania, 20091

Investigating Osmosis By Amy Dewees,Jenkintown.High School and Dr. Ingrid Waldron, Department of Biology, University of Pennsylvania, 20091 Investigating Osmosis By Amy Dewees,Jenkintown.High School and Dr. Ingrid Waldron, Department of Biology, University of Pennsylvania, 20091 What is diffusion? What does it mean to say that a membrane is

More information

Big. Cellular Processes: Idea. Energy and Communication DIFFUSION AND OSMOSIS. What causes my plants to wilt if I forget to water them?

Big. Cellular Processes: Idea. Energy and Communication DIFFUSION AND OSMOSIS. What causes my plants to wilt if I forget to water them? Big Cellular Processes: Idea 2 Energy and Communication INVESTIGATION 4 DIFFUSION AND OSMOSIS What causes my plants to wilt if I forget to water them? BACKGROUND Cells must move materials through membranes

More information

Cellular Transport Worksheet

Cellular Transport Worksheet Cellular Transport Worksheet Name Section A: Cell Membrane Structure 1. Label the cell membrane diagram. You ll need to draw lines to some of the structures. **Draw cholesterol molecules in the membrane.**

More information

Passive Cellular Transport. Unit 2 Lesson 4

Passive Cellular Transport. Unit 2 Lesson 4 Unit 2 Lesson 4 Students will be able to: Define passive transport Enumerate the three types of passive transport Described each type of passive transport: osmosis, diffusion, and facilitated diffusion

More information

Name Date. In this lab investigation you will investigate the movement of water through a selectively permeable membrane.

Name Date. In this lab investigation you will investigate the movement of water through a selectively permeable membrane. This lab will be hand-written in your data book AP Osmosis Labs Part A (was done in previous a previous class: Dialysis tube + Starch + Glucose) Part B: Osmosis Unknowns In this lab investigation you will

More information

Movement of substances across the cell membrane

Movement of substances across the cell membrane Ch 4 Movement of substances across the cell membrane Think about (Ch 4, p.2) 1. The structure of the cell membrane can be explained by the fluid mosaic model. It describes that the cell membrane is mainly

More information

The Plasma Membrane. 5.1 The Nature of the Plasma Membrane. Phospholipid Bilayer. The Plasma Membrane

The Plasma Membrane. 5.1 The Nature of the Plasma Membrane. Phospholipid Bilayer. The Plasma Membrane 5.1 The Nature of the Plasma Membrane The Plasma Membrane Four principal components in animals Phospholipid bilayer Molecules of cholesterol interspersed within the bilayer. Membrane proteins embedded

More information

Biology Movement Across the Cell Membrane

Biology Movement Across the Cell Membrane Biology 160 - Movement Across the Cell Membrane Prelab Information Movement is one of the characteristics of life. The ability to control the movement of material across the cell membrane is an incredibly

More information

Chapter 3.4 & 3.5 Cell Transport (Osmosis and Diffusion) = only some molecules can get in or out of the cell

Chapter 3.4 & 3.5 Cell Transport (Osmosis and Diffusion) = only some molecules can get in or out of the cell Chapter 3.4 & 3.5 Cell Transport (Osmosis and Diffusion) I. Cell Membrane (cells need an inside and outside) a. separate cell from its environment b. cell membrane is the boundary c. cell membrane controls

More information

Investigation 4: Diffusion and Osmosis Notes From the teacher

Investigation 4: Diffusion and Osmosis Notes From the teacher Day 1: Investigation 4: Diffusion and Osmosis Notes From the teacher Before class: Read Learning Objectives through Procedure 1 and complete Day 1 Pre Lab. Pre-Lab: 1. What is diffusion? 2. What is kinetic

More information

CELL BOUNDARIES. Cells create boundaries through: Cell Membranes made of the phospholipid bilayer Cell Walls made of cellulose in plants

CELL BOUNDARIES. Cells create boundaries through: Cell Membranes made of the phospholipid bilayer Cell Walls made of cellulose in plants CELL BOUNDARIES CELL BOUNDARIES Cells create boundaries through: Cell Membranes made of the phospholipid bilayer Cell Walls made of cellulose in plants TYPES OF MEMBRANES Some substances = too large or

More information

Passive Transport Lab: Diffusion and Osmosis

Passive Transport Lab: Diffusion and Osmosis Name Date Period Passive Transport Lab: Diffusion and Osmosis OBJECTIVE: Apply your understanding of the processes of diffusion and osmosis to explain observational data. PART A: Starch and Iodine MATERIALS

More information

EXERCISE Transport Mechanisms in the Body

EXERCISE Transport Mechanisms in the Body EXERCISE Transport Mechanisms in the Body 2 OBJECTIVES After completing these activities, you should be able to: Understand the differences between passive and active processes of transport Define diffusion,

More information

Cell Transport. Movement of molecules

Cell Transport. Movement of molecules Cell Transport Movement of molecules TEKS Students will investigate and explain cellular processes, including homeostasis and transport of molecules Homeostasis The maintaining of a stable body system

More information

Name: Bio A.P. Lab Diffusion & Osmosis

Name: Bio A.P. Lab Diffusion & Osmosis Name: Bio A.P. Lab Diffusion & Osmosis BACKGROUND: Many aspects of the life of a cell depend on the fact that atoms and molecules are constantly in motion (kinetic energy). This kinetic energy results

More information

Passive Transport: Practice Problems PAP BIOLOGY

Passive Transport: Practice Problems PAP BIOLOGY Passive Transport: Practice Problems PAP BIOLOGY #1 Draw a diagram where the cell has low concentration of salt molecules and the environment it is in has a high concentration of salt molecules in a water

More information

Principles & Practice of Diffusion & Osmosis. Storage: Store entire experiment at room temperature. EXPERIMENT OBJECTIVE

Principles & Practice of Diffusion & Osmosis. Storage: Store entire experiment at room temperature. EXPERIMENT OBJECTIVE The Biotechnology Education Company Storage: Store entire experiment at room temperature. 281 EDVO-Kit # Principles & Practice of Diffusion & Osmosis EXPERIMENT OBJECTIVE The objective of this experiment

More information

Membranes. Chapter 5

Membranes. Chapter 5 Membranes Chapter 5 Membrane Structure The fluid mosaic model of membrane structure contends that membranes consist of: -phospholipids arranged in a bilayer -globular proteins inserted in the lipid bilayer

More information

Membrane Structure. Membrane Structure. Membrane Structure. Membranes

Membrane Structure. Membrane Structure. Membrane Structure. Membranes Membrane Structure Membranes Chapter 5 The fluid mosaic model of membrane structure contends that membranes consist of: -phospholipids arranged in a bilayer -globular proteins inserted in the lipid bilayer

More information

The Cell Membrane. Also known as the Plasma Membrane

The Cell Membrane. Also known as the Plasma Membrane Student Objectives Know the different parts of the cell membrane Understand the role of the cell membrane in cellular transport Understand diffusion and osmosis Determine what will happen to plant and

More information

Name: There are two things that will determine which particles will pass through and which will not:

Name: There are two things that will determine which particles will pass through and which will not: 18 Diffusion and Osmosis in Living Systems Name: Problem: How do substances move into and out of cells? Introduction: In order for cells to carry on their life processes, they must take in materials and

More information

Plasma Membrane Structure and Function

Plasma Membrane Structure and Function Plasma Membrane Structure and Function The plasma membrane separates the internal environment of the cell from its surroundings. The plasma membrane is a phospholipid bilayer with embedded proteins. The

More information

STATION 4: TONICITY due to OSMOSIS / Turgor Pressure in Plants

STATION 4: TONICITY due to OSMOSIS / Turgor Pressure in Plants STATION 4: TONICITY due to OSMOSIS / Turgor Pressure in Plants Tonicity is the concentration of solutions that determines the direction water will move across a semi-permeable membrane. A solution is a

More information

INVESTIGATION : Determining Osmolarity of Plant Tissue

INVESTIGATION : Determining Osmolarity of Plant Tissue INVESTIGATION : Determining Osmolarity of Plant Tissue AP Biology This lab investigation has two main components. In the first component, you will learn about the osmolarity of plant tissues and the property

More information

Equilibrium is a condition of balance. Changes in temperature, pressure or concentration can cause a shift in the equilibrium.

Equilibrium is a condition of balance. Changes in temperature, pressure or concentration can cause a shift in the equilibrium. Copy into Note Packet and Return to Teacher Cells and Their Environment Section 1: Passive Transport Objectives Relate concentration gradients, diffusion, and equilibrium. Predict the direction of water

More information

Diffusion across a Selectively Permeable Membrane

Diffusion across a Selectively Permeable Membrane Diffusion across a Selectively Permeable Membrane Each cell is surrounded by a selectively permeable cell membrane Cell Membrane which regulates what gets into and out of the cell. A selectively permeable

More information

Chapter 5 Homeostasis and Cell Transport

Chapter 5 Homeostasis and Cell Transport Chapter 5 Homeostasis and Cell Transport Palabra Palooza! Role #1: The Definer says: The word can be explained as Role #2: The Re-stater says: Then I understand (word) to mean Words: Passive transport

More information

Biology. Membranes.

Biology. Membranes. 1 Biology Membranes 2015 10 28 www.njctl.org 2 Vocabulary active transport carrier protein channel protein concentration gradient diffusion enzymatic activity facilitated diffusion fluid mosaic hypertonic

More information

8.8b Osmosis Project. Grade 8 Activity Plan

8.8b Osmosis Project. Grade 8 Activity Plan 8.8b Osmosis Project Grade 8 Activity Plan Reviews and Updates 2 8.8b Osmosis Project Objectives: 1. To demonstrate osmosis and the permeability of the cell membrane. 2. Use plant cells to demonstrate

More information

Slide 2 of 47. Copyright Pearson Prentice Hall. End Show

Slide 2 of 47. Copyright Pearson Prentice Hall. End Show 2 of 47 7-3 Cell Boundaries All cells are surrounded by a thin, flexible barrier known as the cell membrane. Many cells also produce a strong supporting layer around the membrane known as a cell wall.

More information

Cells and Their Environment Chapter 8. Cell Membrane Section 1

Cells and Their Environment Chapter 8. Cell Membrane Section 1 Cells and Their Environment Chapter 8 Cell Membrane Section 1 Homeostasis Key Idea: One way that a cell maintains homeostasis is by controlling the movement of substances across the cell membrane. Homeostasis

More information

1.14. Passive Transport

1.14. Passive Transport Passive Transport 1.14 Simple Diffusion Cell s are selectively permeable only certain substances are able to pass through them. As mentioned in section 1.2, cell s are largely composed of a phospholipid

More information

Measuring Osmotic Potential

Measuring Osmotic Potential Measuring Osmotic Potential INTRODUCTION All cells require essential materials to ensure their survival. Chemical, physical, and biological processes are used to move these materials inside of cells. Similar

More information

Chapter 7-3 Cell Boundaries

Chapter 7-3 Cell Boundaries Chapter 7-3 Cell Boundaries The Plasma Membrane: Cell Membrane Regulates what enters and leaves the cell. Provides protection and support. Highly selective barrier!!!! What the plasma membrane is made

More information

Diffusion, osmosis, transport mechanisms 43

Diffusion, osmosis, transport mechanisms 43 Diffusion, osmosis, transport mechanisms 43 DIFFUSION, OSMOSIS AND TRANSPORT MECHANISMS The cell membrane is a biological membrane that separates the interior of all cells from the outside environment

More information

Phospholipids. Extracellular fluid. Polar hydrophilic heads. Nonpolar hydrophobic tails. Polar hydrophilic heads. Intracellular fluid (cytosol)

Phospholipids. Extracellular fluid. Polar hydrophilic heads. Nonpolar hydrophobic tails. Polar hydrophilic heads. Intracellular fluid (cytosol) Module 2C Membranes and Cell Transport All cells are surrounded by a plasma membrane. Eukaryotic cells also contain internal membranes and membrane- bound organelles. In this module, we will examine the

More information

Homeostasis, Transport & The Cell Membrane. Chapter 4-2 (pg 73 75) Chapter 5

Homeostasis, Transport & The Cell Membrane. Chapter 4-2 (pg 73 75) Chapter 5 Homeostasis, Transport & The Cell Membrane Chapter 4-2 (pg 73 75) Chapter 5 Unit 5: Lecture 1 Topic: The Cell Membrane Covers: Chapter 5, pages 95-96 Chapter 4, pages 73-75 The Cell Membrane The chemistry

More information

Diffusion and Osmosis

Diffusion and Osmosis Diffusion and Osmosis During your first year of residency at Mountainside Hospital, you are treating a group of patients that exhibit signs of dehydration. You have to be sure to take note of all the solutes

More information

Diffusion and Osmosis

Diffusion and Osmosis Diffusion and Osmosis OBJECTIVES: 1. To explore how different molecules move by diffusion and osmosis through semi-permeable membranes. 2. To understand how concentration affects the movement of substances

More information

Bio10 Lab 2: Cells. Using your text and the cell models and posters in the lab, sketch an animal cell and a plant cell on the group results sheet.

Bio10 Lab 2: Cells. Using your text and the cell models and posters in the lab, sketch an animal cell and a plant cell on the group results sheet. Bio10 Lab 2: Cells Cells are the smallest living things and all living things are composed of cells. They are able to perform all necessary metabolic functions as well as specialized tasks such as moving,

More information

Transport: Cell Membrane Structure and Function. Biology 12 Chapter 4

Transport: Cell Membrane Structure and Function. Biology 12 Chapter 4 Transport: Cell Membrane Structure and Function Biology 12 Chapter 4 FLUID-MOSAIC MODEL OF MEMBRANE STRUCTURE The cell membrane (plasma membrane) is made of two layers of phospholipid molecules (bilayer)

More information

Membranes. Chapter 5. Membrane Structure

Membranes. Chapter 5. Membrane Structure Membranes Chapter 5 Membrane Structure Lipid Bilayer model: - double phospholipid layer - Gorter & Grendel: 1925 Fluid Mosaic model: consist of -phospholipids arranged in a bilayer -globular proteins inserted

More information

Cell Membrane and Transport Unit Cover Page (see guidelines on page 27)

Cell Membrane and Transport Unit Cover Page (see guidelines on page 27) 150 P a g e Cell Membrane and Transport Unit Cover Page (see guidelines on page 27) P a g e 151 Cell Membrane and Transport Unit Front Page At the end of this unit I will: Be able to classify the categories

More information

Diffusion, Osmosis and Active Transport

Diffusion, Osmosis and Active Transport Diffusion, Osmosis and Active Transport Particles like atoms, molecules and ions are always moving Movement increases with temperature (affects phases of matter - solid, liquid, gas) Solids - atoms, molecules

More information

Section 4: Cellular Transport. Cellular transport moves substances within the cell and moves substances into and out of the cell.

Section 4: Cellular Transport. Cellular transport moves substances within the cell and moves substances into and out of the cell. Section 4: Cellular transport moves substances within the cell and moves substances into and out of the cell. Essential Questions What are the processes of diffusion, facilitated diffusion, and active

More information

Chapter 7: Membranes

Chapter 7: Membranes Chapter 7: Membranes Roles of Biological Membranes The Lipid Bilayer and the Fluid Mosaic Model Transport and Transfer Across Cell Membranes Specialized contacts (junctions) between cells What are the

More information

Cellular Transport. Biology Honors

Cellular Transport. Biology Honors Cellular Transport Biology Honors Review of Concepts and Introduction to the Current Concepts https://www.youtube.com/watch?v=ptmlvtei 8hw Passive Active No energy Requires / needs energy Passive Transport-

More information

Cell Membranes: Diffusion and Osmosis

Cell Membranes: Diffusion and Osmosis STO-112 Cell Membranes: Diffusion and Osmosis Part 1: Diffusion Diffusion is a process by which molecules move into or out of cells. To diffuse into or out of a cell, molecules must pass through the cell

More information

Ch 4 Cells & Their Environment

Ch 4 Cells & Their Environment Ch 4 Cells & Their Environment Biology Mrs. Stolipher MEMBRANE STRUCTURE AND FUNCTION Membranes organize the chemical activities of cells Membranes are selectively permeable They control the flow of substances

More information

Cells & Transport. Chapter 7.1, 7.2, & 7.4

Cells & Transport. Chapter 7.1, 7.2, & 7.4 Cells & Transport Chapter 7.1, 7.2, & 7.4 Do Now How big is a cell? How many cells are we made of? How many cells is the smallest living organism made of? Objectives Describe how cells were discovered

More information

Membrane structure & function

Membrane structure & function Membrane structure & function Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The phospholipid bilayer describes a structure with. a. polar layers on the

More information

Membrane Structure. Membrane Structure. Membranes. Chapter 5

Membrane Structure. Membrane Structure. Membranes. Chapter 5 Membranes Chapter 5 Membrane Structure The fluid mosaic model of membrane structure contends that membranes consist of: -phospholipids arranged in a bilayer -globular proteins inserted in the lipid bilayer

More information

Lecture Series 4 Cellular Membranes

Lecture Series 4 Cellular Membranes Lecture Series 4 Cellular Membranes Reading Assignments Read Chapter 11 Membrane Structure Review Chapter 21 pages 709-717 717 (Animal( Cell Adhesion) Review Chapter 12 Membrane Transport Review Chapter

More information

CELL MEMBRANE & CELL TRANSPORT

CELL MEMBRANE & CELL TRANSPORT CELL MEMBRANE & CELL TRANSPORT Homeostasis: Maintaining a Balance Organisms must adjust to changes in their environment. If not DEATH! A formal definition is maintaining a stable internal condition despite

More information

Chapter 7: Membrane Structure and Function. Key Terms:

Chapter 7: Membrane Structure and Function. Key Terms: Key Terms: Selectively permeable Fluid mosaic model Amphipathic Phospholipid Bilayer Hydrophilic Hydrophobic Phosphate head Fatty acid tail Davson-Danielli Singer-Nicolson Freeze-Fracture EM Unsaturated

More information

CELL TRANSPORT and THE PLASMA MEMBRANE. SB1d. Explain the impact of water on life processes (i.e., osmosis, diffusion).

CELL TRANSPORT and THE PLASMA MEMBRANE. SB1d. Explain the impact of water on life processes (i.e., osmosis, diffusion). CELL TRANSPORT and THE PLASMA MEMBRANE SB1d. Explain the impact of water on life processes (i.e., osmosis, diffusion). What if What would happen if an organism could not get energy or get rid of wastes?

More information

Chapter 7 Cell Structure and Function. Chapter 7, Section 3 Cell Boundaries and Transport

Chapter 7 Cell Structure and Function. Chapter 7, Section 3 Cell Boundaries and Transport Chapter 7 Cell Structure and Function Chapter 7, Section 3 Cell Boundaries and Transport 1 7.3 A. Cell Membrane Is Described Three Ways: 1. Selectively Permeable Membrane: Limits what enters and exits

More information

Outline. Membrane Structure and Function. Membrane Models Fluid-Mosaic. Chapter 5

Outline. Membrane Structure and Function. Membrane Models Fluid-Mosaic. Chapter 5 Membrane Structure and Function Chapter 5 Membrane Models Fluid-Mosaic Outline Plasma Membrane Structure and Function Protein Functions Plasma Membrane Permeability! Diffusion! Osmosis! Transport Via Carrier

More information

Exam 2 Practice Problems

Exam 2 Practice Problems Exam 2 Practice Problems Cell Structure and Function Practice Questions 1. One of the relationships that exists between ribosomes and lysosomes is that a. ribosomes produce enzymes that could be stored

More information

What kind of things must pass into and out of cells?? Be careful not to go too fast.

What kind of things must pass into and out of cells?? Be careful not to go too fast. 1. A membrane s molecular organization results in selective permeability What kind of things must pass into and out of cells?? Be careful not to go too fast. Permeability of a molecule through a membrane

More information

BIOL 305L Spring 2019 Laboratory Six

BIOL 305L Spring 2019 Laboratory Six Please print Full name clearly: BIOL 305L Spring 2019 Laboratory Six Osmosis in potato and carrot samples Introduction Osmosis is the movement of water molecules through a selectively permeable membrane

More information

Name: Date Block Selective Permeability

Name: Date Block Selective Permeability LAB Name: Date Block Selective Permeability OBJECTIVES: Observe the selective permeability of an artificial membrane. Observe diffusion of substances across an artificial membrane. Devise a model for the

More information

Describe the Fluid Mosaic Model of membrane structure.

Describe the Fluid Mosaic Model of membrane structure. Membranes and Cell Transport All cells are surrounded by a plasma membrane. Eukaryotic cells also contain internal membranes and membranebound organelles. In this topic, we will examine the structure and

More information

Quotes from Next Generation Science Standards, available at

Quotes from Next Generation Science Standards, available at Teacher Preparation Notes for Diffusion across a Selectively Permeable Membrane Drs. Jennifer Doherty and Ingrid Waldron, Department of Biology, University of Pennsylvania, 2015 1 Students investigate

More information

AP Biology Lab 1c Water Potential

AP Biology Lab 1c Water Potential Page 1 of 9 AP Biology Lab 1c Water Potential In this part of the exercise you will use potato cores placed in different molar concentrations of sucrose in order to determine the water potential of potato

More information

What kind of things must pass into and out of cells?? Be careful not to go too fast.

What kind of things must pass into and out of cells?? Be careful not to go too fast. 1. A membrane s molecular organization results in selective permeability What kind of things must pass into and out of cells?? Be careful not to go too fast. Permeability of a molecule through a membrane

More information

Cell Membranes. Q: What components of the cell membrane are in a mosaic pattern?

Cell Membranes. Q: What components of the cell membrane are in a mosaic pattern? Cell Membranes The cell / plasma membrane is. Selective in that it allows things in and some things out of the cell. Recall that phospholipids have hydrophobic and hydrophilic. The term to describe this

More information

What do you remember about the cell membrane?

What do you remember about the cell membrane? Cell Membrane What do you remember about the cell membrane? Cell (Plasma) Membrane Separates the internal environment of the cell from the external environment All cells have a cell membrane Selectively

More information

Passive and Active transport across a cell membrane REVIEW MEMBRANE TRANSPORT

Passive and Active transport across a cell membrane REVIEW MEMBRANE TRANSPORT Passive and Active transport across a cell membrane REVIEW MEMBRANE TRANSPORT Cell (plasma) membrane Thin, flexible barrier Membranes also organize the interior of a cell. Cell organelles are defined by

More information