Supplementary Figure 1. SybII and Ceb are sorted to distinct vesicle populations in astrocytes. Nature Neuroscience: doi: /nn.

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Supplementary Figure 1. SybII and Ceb are sorted to distinct vesicle populations in astrocytes. Nature Neuroscience: doi: /nn."

Transcription

1 Supplementary Figure 1 SybII and Ceb are sorted to distinct vesicle populations in astrocytes.

2 (a) Exemplary images for cultured astrocytes co-immunolabeled with SybII and Ceb antibodies. SybII accumulates at the cell s periphery, whereas Ceb is scattered throughout the cytoplasm. Note the lack of colocalization between the two v-snare proteins as depicted in the higher magnification image. (b) Ceb colocalizes with the large dense core (LDCV) marker protein NPY. (c) Coimmunolabeling of the vesicular glutamate transporter (vglut) and SybII shows a high degree of colocalization between the two proteins. (d) Cytofluorograms (pixel plotted in grey values) for the indicated groups underline the lack of colocalization between SybII and Ceb (r 2 =0,34) and a good colocalization between Ceb and NPY (r 2 =0,84) and SybII and vglut (r 2 =0,94). (e) Line scan analyses for the indicated antigens (dashed lines in a-c). (f) Syb and Ceb colocalize with their respective cargo significantly better than with the other v-snare variant (Data were collected from 3 preparations; SybII vs Ceb, n=12; Manders coeff.: Ceb vs NPY, n=11, p<0.0001; sybii vs vglut, n=12, p<0.0001, one-way ANOVA versus SybII vs Ceb). All data are represented as mean ± s.e.m.

3 Supplementary Figure 2 Antibodies are specific for their respective antigens. (a) Confocal images of sybiiko astrocytes co-immunolabelled with affinity purified antibodies for sybii and ceb. Note that sybii staining is abolished in ko astrocytes. (b) Exemplary images of co-staining with ceb and sybii in cebko astrocytes. Ceb staining is abrogated in cebko cells. (c) Coimmunolabeling of NPY and ceb in NPYko astrocytes. NPY immunoreactivity is abolished in NPYko astrocytes. (d) Line scan analyses for the indicated antigens (dashed lines in a-c).

4 Supplementary Figure 3 Ca 2+ signaling is unaffected in v-snare-deficient astrocytes. (a,b) Confocal high magnification images of a dko astrocyte transfected with either cebmrfp (a) or sybiimrfp (b) and subsequently immunolabeled with NPY. Lentiviral expressed ceb-mrfp and endogenous NPY display a high degree of colocalization (Pearson s coefficient: 0.98±0.02; n=12), whereas sybii-mrfp and NPY show little colocalization (Pearson s coefficient: 0.54±0.001; n=11). (c) Exemplary confocal images of astrocytes loaded with Fluo4AM (10 µm) before (upper image) and

5 after stimulation (lower image) with 1 mm glutamate. (d) Time-course of stimulus dependent increase in Fluo4AM fluorescence in WT, sybiiko, cebko, dko, dko+ceb and dko+sybii. No increase could be observed in WT cells treated with mglur5 antagonist MPEP (20 µm) and unstimulated cells. (e) Quantification of Fluo4AM fluorescence at the signal maximum for all groups in (d). No difference in the maximum fluorescence could be observed for any of the conditions. Note that in the absence of a stimulus or pre-incubation of cells with MPEP a metabotropic glutamate receptor antagonist abolished increase in Fluo4AM (Data were collected from 3 preparations; WT, n=17; sybiiko, n=18, p=0.48; cebko, n=21, p=0.38; dko, n=22, p=0.34; dko+sybii, n=15 p=0.41; dko+ceb, n=19, p=0.42; +MPEP, n=21, p<0.0001; not stim., n=22, p<0.0001, one-way ANOVA vs WT). ***p< All data are represented as mean ± s.e.m.

6 Supplementary Figure 4 iglusnfr monitors glutamate release in astrocytes and neurons. (a) Exemplary image of an astrocyte transfected with iglusnfr during stimulation with 20 µm DHPG. Arrows point to quantal-like glutamate release. Dashed lines indicate the cellular borders of the

7 astrocyte, where they could be visualized. (b) Exemplary traces of single regions of interest in WT, sybiiko and cebko astrocytes. WT and cebko cells respond to DHPG with discrete, quantal-like fluorescent signals monitoring glutamate release. The slowly developing fluorescence offset is likely due to increase in ambient glutamate. No fluorescence increase could be detected in sybiiko astrocytes. (c) Glutamate secretion is abolished in sybiiko, dko astrocytes and in the presence of 50 µm MPEP, but remained unchanged in cebko cells (vs WT, cebko, p=0.996; sybiiko, p<0.001; dko, p<0.001; WT+MPEP, p<0.001; one-way ANOVA). (d) iglusnfr expression is unchanged between the groups (versus WT: cebko, p=0.133; sybiiko, p=0.130; dko, p=0.141; WT+MPEP, p=0.198; one-way ANOVA). (e) The amplitude of the transient glutamate flashes is unaltered between WT and cebko cells (events: WT, 648; cebko, 668; threshold: 5xSD of noise, WT, ±1.3x10-3 ; cebko, ±3.2x10-3 ). Inset displays the average of 10 exemplary events. Bar, 0.1 F/F 0, 320 ms. (f) WT and cebko cells continuously secrete glutamate during DHPG application. Data was collected from 3 preparations; WT, n=13; cebko, n=12; sybiiko, n=13, dko, n=11, WT+MPEP, n=9. (g) Exemplary images of autaptic hippocampal neurons transfected with iglusnfr before (upper panel: F 0 ) and during electrical stimulation (lower panel: F). (h) Representative traces of iglusnfr fluorescence in WT and sybiiko neurons. Top trace indicates the stimulation frequency. Note the lack of fluorescence increase in the sybiiko neurons where glutamatergic signaling is abolished. (i) Mean fluorescence increase upon single action potentials (p= ). (j) Expression level is unchanged in sybiiko neurons. Data was collected from WT, n=9; sybiiko, n=7, p=48 from 2 preparations, student s t-test. ***p< All data are represented as mean ± s.e.m.

8 Supplementary Figure 5 Loss of gliotransmitter secretion differentially affects the pool of readily releasable vesicles and paired pulse ratio. (a) Representative traces of the average postsynaptic response to 5s application of hypertonic solution (500 mm sucrose) from neurons cultured on WT, sybiiko and cebko astrocytes. (b,c) v- SNARE dependent secretion affects the readily releasable pool charge and release probability (RRP, sucrose: sybiiko, p<0.001; cebko, p<0.001; P R : sybiiko, p<0.001; cebko, p=0.77, one-way ANOVA vs WT.). Data was collected from recordings with WT (n=20), sybiiko (n=19) and cebko (n=19) 3 preparations. (d) Normalized EPSCs measured with an inter-stimulation-interval of 50ms. (e) Paired pulse ratio is only increased for neurons grown on sybiiko astrocytes. Data was extracted from the first two EPSCs of the 20 Hz train (amplitude ratio: EPSC2/EPSC1) and collected from 3

9 preparations, WT, n=62; sybiiko, n=28; cebko, n=35; dko, n=29 (ANOVA vs wt: sybiiko, p=0.009; cebko,p=0.43; dko, p=0.5). All data are represented as mean ± s.e.m.

10 Supplementary Figure 6 Spontaneous release is unaffected by extracellular application of NPY and ATP.

11 (a) Representative recordings of quantal signaling from neurons grown on WT or cebko astrocytes treated daily with either the vehicle or 10 nm NPY. (b) mepsc frequency, amplitude and charge are unchanged for the indicated groups (Data were collected from 3 preparations; WT+vehicle, n=24; cebko+vehicle, n=25; cebko+npy, n=26; for mepsc frequency, amplitude and charge all p-values ranged between and 0.935, one-way ANOVA vs WT+vehicle). (c) Exemplary traces of spontaneous mepscs recorded in neurons plated on WT and cebko astrocytes treated daily either with 10 nm NPY/ATP in the medium or a vehicle. (d) mepsc frequency, amplitude and charge are unaffected by NPY/ATP co-application (Data were collected from 3 preparations; WT+vehicle, n=19; cebko+vehicle, n=20; cebko+npy/atp, n=21; for mepsc frequency, amplitude and charge all p- Values ranged between and 0.969, one-way ANOVA vs WT+vehicle). (e) Representative recordings of mepscs from WT neurons grown on WT and cebko astrocytes, treated with 150 nm DPCPX/BIIE0246 (Data were collected from 3 preparations; adenosine A1 and NPY Y2 receptor antagonists; WT+vehicle, n=24; cebko+vehicle, n=19; WT+150 nm, DPCPX/BIIE0246, n=18; cebko+150 nm DPCPX/BIIE0246, n=20). (f) mepsc frequency, amplitude and charge for the conditions described in (e) were unaffected by the treatment (for mepsc frequency, amplitude and charge all p-values ranged between 0.21 and 0.982, one-way ANOVA vs WT+vehicle). All data are represented as mean ± s.e.m.

12 Supplementary Figure 7 Tonic ATP/NPY and glutamate release from astrocytes regulates synaptic transmission.

13 (a) Consecutive trains of APs (20Hz; interval time 1 min) recorded either in the presence of Ringer s solution or ATP/NPY (10 µm). (b,c) Amplitude of the first evoked response and RRP size were significantly reduced in the presence of ATP/NPY in neurons grown on WT and cebko astrocytes. Data was collected from 2 preparations. (Ringer: WT, n=9; amp: p=0,641, RRP, p=1,0; cebko, n=9 amp: p=0,706; RRP, p=0,691; ATP/NPY: WT, n=9; amp: p<0.001; RRP, p<0.001; cebko, n=9; amp: p<0.001, RRP: p<0.001, t-test) (d) Acute application of the A1 antagonist DPCPX and NPY-receptor antagonist BIIE0246 (indicated by the bar) strongly and reversibly augmented the evoked EPSC amplitude (recorded at 0.2 Hz) of neurons grown on WT astrocytes. No effect was seen for neurons plated on cebko astrocytes. Scale bar, 2nA, 20ms (e,f) The EPSC amplitude is specifically increased for WT, but not for cebko astrocytes (WT,DPCPX/BIIW0246: p<0.001; cebko, DPCPX/BIIE0246 p=0,37; t-test). Data were collected from 3 preparations, WT, n=16; cebko, n=14 cells; ***p< (g) Acute application of the kainate receptor antagonist NS-102 (indicated by the bar) strongly suppressed the EPSC amplitude (recorded at 0.2 Hz) in neurons grown on WT astrocytes to levels of cells plated with sybiiko cells. No changes were observed in sybiiko cells; bar, 2nA; 15ms. (h,i) EPSC amplitude is only decreased during NS-102 application in neurons grown on WT astrocytes. NS-102 had no effect on neurons grown on sybiiko cells (WT, NS-102: p<0.001, recovery, p=0,272; sybiiko, NS-102 p=0.419; recovery, p=0.482, t-test). Data was collected from 3 preparations from WT, n=17 and sybiiko, n=19 cells. ***p<0.001, t-test. All data are represented as mean ± s.e.m.

14 Supplementary Figure 8 Loss of distinct secretion pathways in astrocytes modulates the number of readily releasable vesicles. (a) Schematic drawing of the experimental protocol. Neurons were electrically stimulated with the

15 patch pipette (20Hz/2s) while fluorescence changes were monitored at 10Hz simultaneously. At the end of the recording cells were perfused with NH 4 Cl to unquench syn-ph fluorescence. (b) Exemplary recordings of quantal signaling from neurons transfected with Syn-pH grown without glia, on sybiiko or cebko astrocytes. (c) mepsc frequency is strongly reduced in cells grown without or on sybiiko astrocytes (mepsc freq: no glia, p<0.001; sybiiko, p<0.001; cebko, p=0.53; mepsc ampl.: no glia, p=0.79; sybiiko, p=0.82; cebko, p=0.83; mepsc charge: no glia, p=0.73; sybiiko, p=0.76; cebko, p=0.68, one-way ANOVA vs WT) (d) Time course for the decline of the evoked amplitudes. (e,f) v- SNARE mediated astrocytic secretion similarly affects the evoked amplitude (1 st EPSC) and RRP (first EPSC ampl.: no glia, p<0.001; sybiiko, p=0.0031; cebko, p<0.001; RRP charge: no glia, p<0.001; sybiiko, p<0.001; cebko, p<0.001, one-way ANOVA vs WT). Data was collected from 4 preparations; WT, n=20; sybiiko, n=17; cebko, n=16; non-glia, n=9; not stimulated, n=5; **p<0.01, ***p< All data are represented as mean ± s.e.m.

16 Supplementary Figure 9 v-snare-dependent gliotransmitters release does not influence the number of synapses. (a) Exemplary confocal images of autaptic neuronal cultures grown without glia cells or on WT, sybiiko, cebko or dko astrocytes immunolabelled with the presynaptic marker protein anti-bassoon.

17 (b) The number of synapses per microisland is reduced in the absence of astrocytes but not affected by their v-snare deficiency (no glia, p<0.001; sybiiko, p=0.994; cebko, p=0.994; dko, p=0.985; oneway ANOVA vs WT). Data was collected from 3 preparations, WT, n=17; no-glia, n=16; sybiiko, n=19; cebko, n=19; dko, n=19; ***p<0.001 All data are represented as mean ± s.e.m.

18 Supplementary Figure 10 Proposed model for v-snare-dependent gliotransmitter secretion pathways modulating synaptic efficacy. (a) Astrocytes release NPY and ATP through a ceb-dependent secretion pathway. NPY acts on presynaptic NPY Y2 receptors and ATP (rapidly converted into adenosine (ado)) may act on presynaptic adenosine A1 receptors to decrease the RRP. (b) SybII mediated glutamate release from astrocytic SLMVs exerts its potentiating effect of synaptic signaling (increasing the RRP size and P r )

19 through activation of presynaptic kainate receptors (KAR) or NMDA(NR2B) 2 and mglur receptors 6. (a)+(b) In the full protein context of WT cells the antagonistic effects of the v-snare dependent secretion pathways compensate each other (as evidenced by the dko phenotype) to increase the dynamic range of synaptic signaling.

Supplementary Materials for VAMP4 directs synaptic vesicles to a pool that selectively maintains asynchronous neurotransmission

Supplementary Materials for VAMP4 directs synaptic vesicles to a pool that selectively maintains asynchronous neurotransmission Supplementary Materials for VAMP4 directs synaptic vesicles to a pool that selectively maintains asynchronous neurotransmission Jesica Raingo, Mikhail Khvotchev, Pei Liu, Frederic Darios, Ying C. Li, Denise

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/317/5841/183/dc1 Supporting Online Material for Astrocytes Potentiate Transmitter Release at Single Hippocampal Synapses Gertrudis Perea and Alfonso Araque* *To whom

More information

Supplemental Information. Ca V 2.2 Gates Calcium-Independent. but Voltage-Dependent Secretion. in Mammalian Sensory Neurons

Supplemental Information. Ca V 2.2 Gates Calcium-Independent. but Voltage-Dependent Secretion. in Mammalian Sensory Neurons Neuron, Volume 96 Supplemental Information Ca V 2.2 Gates Calcium-Independent but Voltage-Dependent Secretion in Mammalian Sensory Neurons Zuying Chai, Changhe Wang, Rong Huang, Yuan Wang, Xiaoyu Zhang,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature11306 Supplementary Figures Supplementary Figure 1. Basic characterization of GFP+ RGLs in the dentate gyrus of adult nestin-gfp mice. a, Sample confocal images

More information

Supplemental information Acid-sensing ion channel 1a contributes to hippocampal LTP inducibility through multiple mechanisms

Supplemental information Acid-sensing ion channel 1a contributes to hippocampal LTP inducibility through multiple mechanisms Supplemental information Acid-sensing ion channel 1a contributes to hippocampal LTP inducibility through multiple mechanisms Ming-Gang Liu, Hu-Song Li, Wei-Guang Li, Yan-Jiao Wu, Shi-Ning Deng, Chen Huang,

More information

Supplementary Figure S1. Venn diagram analysis of mrna microarray data and mirna target analysis. (a) Western blot analysis of T lymphoblasts (CLS)

Supplementary Figure S1. Venn diagram analysis of mrna microarray data and mirna target analysis. (a) Western blot analysis of T lymphoblasts (CLS) Supplementary Figure S1. Venn diagram analysis of mrna microarray data and mirna target analysis. (a) Western blot analysis of T lymphoblasts (CLS) and their exosomes (EXO) in resting (REST) and activated

More information

Synaptic Transmission: Ionic and Metabotropic

Synaptic Transmission: Ionic and Metabotropic Synaptic Transmission: Ionic and Metabotropic D. Purves et al. Neuroscience (Sinauer Assoc.) Chapters 5, 6, 7. C. Koch. Biophysics of Computation (Oxford) Chapter 4. J.G. Nicholls et al. From Neuron to

More information

Supplemental Information. Memory-Relevant Mushroom Body. Output Synapses Are Cholinergic

Supplemental Information. Memory-Relevant Mushroom Body. Output Synapses Are Cholinergic Neuron, Volume 89 Supplemental Information Memory-Relevant Mushroom Body Output Synapses Are Cholinergic Oliver Barnstedt, David Owald, Johannes Felsenberg, Ruth Brain, John-Paul Moszynski, Clifford B.

More information

Wenqin Hu, Cuiping Tian, Tun Li, Mingpo Yang, Han Hou & Yousheng Shu

Wenqin Hu, Cuiping Tian, Tun Li, Mingpo Yang, Han Hou & Yousheng Shu Distinct contributions of Na v 1.6 and Na v 1.2 in action potential initiation and backpropagation Wenqin Hu, Cuiping Tian, Tun Li, Mingpo Yang, Han Hou & Yousheng Shu Supplementary figure and legend Supplementary

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Diverse anorexigenic signals induce c-fos expression in CEl PKC-δ + neurons

Nature Neuroscience: doi: /nn Supplementary Figure 1. Diverse anorexigenic signals induce c-fos expression in CEl PKC-δ + neurons Supplementary Figure 1 Diverse anorexigenic signals induce c-fos expression in CEl PKC-δ + neurons a-c. Quantification of CEl c-fos expression in mice intraperitoneal injected with anorexigenic drugs (a),

More information

Authors: K. L. Arendt, M. Royo, M. Fernández-Monreal, S. Knafo, C. N. Petrok, J.

Authors: K. L. Arendt, M. Royo, M. Fernández-Monreal, S. Knafo, C. N. Petrok, J. SUPPLEMENTARY INFORMATION Title: PIP 3 controls synaptic function by maintaining AMPA receptor clustering at the postsynaptic membrane Authors: K. L. Arendt, M. Royo, M. Fernández-Monreal, S. Knafo, C.

More information

Hormonal gain control of a medial preoptic area social reward circuit

Hormonal gain control of a medial preoptic area social reward circuit CORRECTION NOTICE Nat. Neurosci. 20, 449 458 (2017) Hormonal gain control of a medial preoptic area social reward circuit Jenna A McHenry, James M Otis, Mark A Rossi, J Elliott Robinson, Oksana Kosyk,

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Large-scale calcium imaging in vivo.

Nature Neuroscience: doi: /nn Supplementary Figure 1. Large-scale calcium imaging in vivo. Supplementary Figure 1 Large-scale calcium imaging in vivo. (a) Schematic illustration of the in vivo camera imaging set-up for large-scale calcium imaging. (b) High-magnification two-photon image from

More information

1.0. FSL NMDAR-fEPSP 0.8. amplitude (mv) Intensity (µa) 2.0 SD FSL Time (ms)

1.0. FSL NMDAR-fEPSP 0.8. amplitude (mv) Intensity (µa) 2.0 SD FSL Time (ms) a 2.5 1. AMPAR-fEPSP slope (mv/ms) 2. 1. NMDAR-fEPSP amplitude (mv).8.6.4.5.2. 2 4 6 8. 1 2 3 4 5 Intensity (µa) Intensity (µa) b 2. PPF Ratio (fepsp2/fepsp1) 1..5. 5 1 2 5 Time (ms) Supplementary Figure

More information

CELLULAR NEUROPHYSIOLOGY

CELLULAR NEUROPHYSIOLOGY CELLULAR NEUROPHYSIOLOGY CONSTANCE HAMMOND 4. SYNAPTIC TRANSMISSION II: GLUTAMATERGIC TRANSMISSION Video 4-1: Observations and glutamate receptor channels Synaptic transmission II 1 Constance Hammond Observation

More information

Alterations in Synaptic Strength Preceding Axon Withdrawal

Alterations in Synaptic Strength Preceding Axon Withdrawal Alterations in Synaptic Strength Preceding Axon Withdrawal H. Colman, J. Nabekura, J.W. Lichtman presented by Ana Fiallos Synaptic Transmission at the Neuromuscular Junction Motor neurons with cell bodies

More information

Social transmission and buffering of synaptic changes after stress

Social transmission and buffering of synaptic changes after stress SUPPLEMENTARY INFORMATION Articles https://doi.org/10.1038/s41593-017-0044-6 In the format provided by the authors and unedited. Social transmission and buffering of synaptic changes after stress Toni-Lee

More information

Vesicular Trafficking of Semaphorin 3A is Activity- Dependent and Differs Between Axons and Dendrites

Vesicular Trafficking of Semaphorin 3A is Activity- Dependent and Differs Between Axons and Dendrites Traffic 6; 7: 6 77 Blackwell Munksgaard Copyright # Blackwell Munksgaard 6 doi:./j.6-854.6.44.x Vesicular Trafficking of Semaphorin A is Activity- Dependent and Differs Between Axons and Dendrites Joris

More information

Supplementary Materials for

Supplementary Materials for www.sciencesignaling.org/cgi/content/full/6/283/ra57/dc1 Supplementary Materials for JNK3 Couples the Neuronal Stress Response to Inhibition of Secretory Trafficking Guang Yang,* Xun Zhou, Jingyan Zhu,

More information

Autonomous Function of Synaptotagmin 1 in Triggering Synchronous Release Independent of Asynchronous Release

Autonomous Function of Synaptotagmin 1 in Triggering Synchronous Release Independent of Asynchronous Release Neuron, Vol. 48, 547 554, November 23, 2005, Copyright ª2005 by Elsevier Inc. DOI 10.1016/j.neuron.2005.09.006 Autonomous Function of Synaptotagmin 1 in Triggering Synchronous Release Independent of Asynchronous

More information

Bioscience in the 21st century

Bioscience in the 21st century Bioscience in the 21st century Neurons, Synapses, and Signaling Dr. Michael Burger Outline: 1. Why neuroscience? 2. The neuron 3. Action potentials 4. Synapses 5. Organization of the nervous system 6.

More information

1) Drop off in the Bi 150 box outside Baxter 331 or to the head TA (jcolas).

1) Drop off in the Bi 150 box outside Baxter 331 or  to the head TA (jcolas). Bi/CNS/NB 150 Problem Set 3 Due: Tuesday, Oct. 27, at 4:30 pm Instructions: 1) Drop off in the Bi 150 box outside Baxter 331 or e-mail to the head TA (jcolas). 2) Submit with this cover page. 3) Use a

More information

Activity Dependent Changes At the Developing Neuromuscular Junction

Activity Dependent Changes At the Developing Neuromuscular Junction Activity Dependent Changes At the Developing Neuromuscular Junction (slides 16, 17 and 18 have been slightly modified for clarity) MCP Lecture 2-3 9.013/7.68 04 Neuromuscular Junction Development 1. Muscle

More information

Nature Biotechnology: doi: /nbt.3828

Nature Biotechnology: doi: /nbt.3828 Supplementary Figure 1 Development of a FRET-based MCS. (a) Linker and MA2 modification are indicated by single letter amino acid code. indicates deletion of amino acids and N or C indicate the terminus

More information

J. Cell Sci. 129: doi: /jcs : Supplementary information

J. Cell Sci. 129: doi: /jcs : Supplementary information Movie 1. AgLDL is contained in small sub-regions of the lysosomal synapse that are acidic. J774 cells were incubated with agldl dual labeled with a ph sensitive and a ph insensitive fluorophore for 1 hr.

More information

GABA from reactive astrocytes impairs memory in mouse models of Alzheimer disease

GABA from reactive astrocytes impairs memory in mouse models of Alzheimer disease SUPPLEMENTARY INFORMATION from reactive astrocytes impairs memory in mouse models of Alzheimer disease Seonmi Jo *, Oleg Yarishkin *, Yu Jin Hwang, Ye Eun Chun, Mijeong Park, Dong Ho Woo, Jin Young Bae,

More information

Increased Expression of a-synuclein Reduces Neurotransmitter Release by Inhibiting Synaptic Vesicle Reclustering after Endocytosis

Increased Expression of a-synuclein Reduces Neurotransmitter Release by Inhibiting Synaptic Vesicle Reclustering after Endocytosis Article Increased Expression of a-synuclein Reduces Neurotransmitter Release by Inhibiting Synaptic Vesicle Reclustering after Endocytosis Venu M. Nemani, 1 Wei Lu, 2 Victoria Berge, 3 Ken Nakamura, 1

More information

Desynchronization of Neocortical Networks by Asynchronous Release of GABA at Autaptic and Synaptic Contacts from Fast-Spiking Interneurons

Desynchronization of Neocortical Networks by Asynchronous Release of GABA at Autaptic and Synaptic Contacts from Fast-Spiking Interneurons Desynchronization of Neocortical Networks by Asynchronous Release of GABA at Autaptic and Synaptic Contacts from Fast-Spiking Interneurons Frédéric Manseau 1, Silvia Marinelli 1, Pablo Méndez 1, Beat Schwaller

More information

LPS LPS P6 - + Supplementary Fig. 1.

LPS LPS P6 - + Supplementary Fig. 1. P6 LPS - - - + + + - LPS + + - - P6 + Supplementary Fig. 1. Pharmacological inhibition of the JAK/STAT blocks LPS-induced HMGB1 nuclear translocation. RAW 267.4 cells were stimulated with LPS in the absence

More information

SUPPLEMENTARY FIGURE LEGENDS

SUPPLEMENTARY FIGURE LEGENDS SUPPLEMENTARY FIGURE LEGENDS Supplemental FIG. 1. Localization of myosin Vb in cultured neurons varies with maturation stage. A and B, localization of myosin Vb in cultured hippocampal neurons. A, in DIV

More information

Introduction to Neurobiology

Introduction to Neurobiology Biology 240 General Zoology Introduction to Neurobiology Nervous System functions: communication of information via nerve signals integration and processing of information control of physiological and

More information

Sample Lab Report 1 from 1. Measuring and Manipulating Passive Membrane Properties

Sample Lab Report 1 from  1. Measuring and Manipulating Passive Membrane Properties Sample Lab Report 1 from http://www.bio365l.net 1 Abstract Measuring and Manipulating Passive Membrane Properties Biological membranes exhibit the properties of capacitance and resistance, which allow

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/331/6017/599/dc1 Supporting Online Material for Action-Potential Modulation During Axonal Conduction Takuya Sasaki, Norio Matsuki, Yuji Ikegaya* *To whom correspondence

More information

CD3 coated cover slips indicating stimulatory contact site, F-actin polymerization and

CD3 coated cover slips indicating stimulatory contact site, F-actin polymerization and SUPPLEMENTAL FIGURES FIGURE S1. Detection of MCs. A, Schematic representation of T cells stimulated on anti- CD3 coated cover slips indicating stimulatory contact site, F-actin polymerization and microclusters.

More information

Glutamate exocytosis from astrocytes controls synaptic strength

Glutamate exocytosis from astrocytes controls synaptic strength 27 Nature Publishing Group http://www.nature.com/natureneuroscience Glutamate exocytosis from astrocytes controls synaptic strength Pascal Jourdain 1,6, Linda H Bergersen 2,6, Khaleel Bhaukaurally 1,6,

More information

THE ROLE OF ALTERED CALCIUM AND mtor SIGNALING IN THE PATHOGENESIS OF CYSTINOSIS

THE ROLE OF ALTERED CALCIUM AND mtor SIGNALING IN THE PATHOGENESIS OF CYSTINOSIS Research Foundation, 18 month progress report THE ROLE OF ALTERED CALCIUM AND mtor SIGNALING IN THE PATHOGENESIS OF CYSTINOSIS Ekaterina Ivanova, doctoral student Elena Levtchenko, MD, PhD, PI Antonella

More information

Supplementary Figure 1: Steviol and stevioside potentiate TRPM5 in a cell-free environment. (a) TRPM5 currents are activated in inside-out patches

Supplementary Figure 1: Steviol and stevioside potentiate TRPM5 in a cell-free environment. (a) TRPM5 currents are activated in inside-out patches Supplementary Figure 1: Steviol and stevioside potentiate TRPM5 in a cell-free environment. (a) TRPM5 currents are activated in inside-out patches during application of 500 µm Ca 2+ at the intracellular

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/3/3/e1600955/dc1 Supplementary Materials for Flexible and stretchable nanowire-coated fibers for optoelectronic probing of spinal cord circuits Chi Lu, Seongjun

More information

PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland

PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland AD Award Number: W81XWH-11-1-0356 TITLE: New Treatments for Drug-Resistant Epilepsy that Target Presynaptic Transmitter Release PRINCIPAL INVESTIGATOR: Emilio R. Garrido Sanabria, MD, PhD CONTRACTING ORGANIZATION:

More information

Additional File 3. Description of methods used for co-localization analysis and additional co-localization figures.

Additional File 3. Description of methods used for co-localization analysis and additional co-localization figures. Additional File 3. Description of methods used for co-localization analysis and additional co-localization figures. Methods. In order to determine the interaction between EGFR and F-actin, four independent

More information

Intracellular Astrocyte Calcium Waves In Situ Increase the Frequency of Spontaneous AMPA Receptor Currents in CA1 Pyramidal Neurons

Intracellular Astrocyte Calcium Waves In Situ Increase the Frequency of Spontaneous AMPA Receptor Currents in CA1 Pyramidal Neurons 722 The Journal of Neuroscience, January 21, 2004 24(3):722 732 Cellular/Molecular Intracellular Astrocyte Calcium Waves In Situ Increase the Frequency of Spontaneous AMPA Receptor Currents in CA1 Pyramidal

More information

Synergistic Activation of Dopamine D1 and TrkB Receptors Mediate Gain Control of Synaptic Plasticity in the Basolateral Amygdala

Synergistic Activation of Dopamine D1 and TrkB Receptors Mediate Gain Control of Synaptic Plasticity in the Basolateral Amygdala Synergistic Activation of Dopamine D1 and TrkB Receptors Mediate Gain Control of Synaptic Plasticity in the Basolateral Amygdala Chenchen Li 1,2, Joanna Dabrowska 1,2, Rimi Hazra 1,2, Donald G. Rainnie

More information

IP: anti-gfp VPS29-GFP. IP: anti-vps26. IP: anti-gfp - + +

IP: anti-gfp VPS29-GFP. IP: anti-vps26. IP: anti-gfp - + + FAM21 Strump. WASH1 IP: anti- 1 2 3 4 5 6 FAM21 Strump. FKBP IP: anti-gfp VPS29- GFP GFP-FAM21 tail H H/P P H H/P P c FAM21 FKBP Strump. VPS29-GFP IP: anti-gfp 1 2 3 FKBP VPS VPS VPS VPS29 1 = VPS29-GFP

More information

F-actin VWF Vinculin. F-actin. Vinculin VWF

F-actin VWF Vinculin. F-actin. Vinculin VWF a F-actin VWF Vinculin b F-actin VWF Vinculin Supplementary Fig. 1. WPBs in HUVECs are located along stress fibers and at focal adhesions. (a) Immunofluorescence images of f-actin (cyan), VWF (yellow),

More information

Modeling Excitatory and Inhibitory Chemical Synapses

Modeling Excitatory and Inhibitory Chemical Synapses In review, a synapse is the place where signals are transmitted from a neuron, the presynaptic neuron, to another cell. This second cell may be another neuron, muscle cell or glandular cell. If the second

More information

Neurons, Synapses, and Signaling

Neurons, Synapses, and Signaling Chapter 48 Neurons, Synapses, and Signaling PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

Modelling Vesicular Release at Hippocampal Synapses

Modelling Vesicular Release at Hippocampal Synapses Modelling Vesicular Release at Hippocampal Synapses Suhita Nadkarni 1,2., Thomas M. Bartol 1,2., Terrence J. Sejnowski 1,2,3 *, Herbert Levine 1 1 Center for Theoretical Biological Physics, University

More information

An acetylcholine-activated microcircuit drives temporal dynamics of cortical activity

An acetylcholine-activated microcircuit drives temporal dynamics of cortical activity An acetylcholine-activated microcircuit drives temporal dynamics of cortical activity Naiyan Chen, Hiroki Sugihara, & Mriganka Sur Nature America, nc. All rights reserved. Cholinergic modulation of cortex

More information

Compensatory Contribution of Ca V. 2.3 Channels to Acetylcholine Release at the Neuromuscular Junction of Tottering Mice

Compensatory Contribution of Ca V. 2.3 Channels to Acetylcholine Release at the Neuromuscular Junction of Tottering Mice 5 Compensatory Contribution of 2.3 Channels to Acetylcholine Release at the Neuromuscular Junction of Tottering Mice Simon Kaja, 1,2 Rob C.G. van de Ven, 3 Michel D. Ferrari, 1 Rune R. Frants, 3 Arn M.J.M.

More information

SYNAPTIC COMMUNICATION

SYNAPTIC COMMUNICATION BASICS OF NEUROBIOLOGY SYNAPTIC COMMUNICATION ZSOLT LIPOSITS 1 NERVE ENDINGS II. Interneuronal communication 2 INTERNEURONAL COMMUNICATION I. ELECTRONIC SYNAPSE GAP JUNCTION II. CHEMICAL SYNAPSE SYNAPSES

More information

Ionotropic glutamate receptors (iglurs)

Ionotropic glutamate receptors (iglurs) Ionotropic glutamate receptors (iglurs) GluA1 GluA2 GluA3 GluA4 GluN1 GluN2A GluN2B GluN2C GluN2D GluN3A GluN3B GluK1 GluK2 GluK3 GluK4 GluK5 The general architecture of receptor subunits Unique properties

More information

The Nervous System. Dr. ZHANG Xiong Dept. of Physiology ZJU School of Medicine.

The Nervous System. Dr. ZHANG Xiong Dept. of Physiology ZJU School of Medicine. The Nervous System Dr. ZHANG Xiong Dept. of Physiology ZJU School of Medicine Http://10.10.10.151 Part 1. Summary of the nervous system The Nervous System Central Nervous System Brain + Spinal Cord Peripheral

More information

Concept 48.1 Neuron organization and structure reflect function in information transfer

Concept 48.1 Neuron organization and structure reflect function in information transfer Name Chapter 48: Neurons, Synapses, and Signaling Period Chapter 48: Neurons, Synapses, and Signaling Concept 48.1 Neuron organization and structure reflect function in information transfer 1. What is

More information

Supplementary Figure 1. Rab27a-KD inhibits speed and persistence of HEp3 cells migrating in the chick CAM. (a) Western blot analysis of Rab27a

Supplementary Figure 1. Rab27a-KD inhibits speed and persistence of HEp3 cells migrating in the chick CAM. (a) Western blot analysis of Rab27a Supplementary Figure 1. Rab27a-KD inhibits speed and persistence of HEp3 cells migrating in the chick CAM. (a) Western blot analysis of Rab27a expression in GFP-expressing HEp3 cells. (b) Representative

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary s Supplementary 1 All three types of foods suppress subsequent feeding in both sexes when the same food is used in the pre-feeding test feeding. (a) Adjusted pre-feeding

More information

Nervous System. Master controlling and communicating system of the body. Secrete chemicals called neurotransmitters

Nervous System. Master controlling and communicating system of the body. Secrete chemicals called neurotransmitters Nervous System Master controlling and communicating system of the body Interacts with the endocrine system to control and coordinate the body s responses to changes in its environment, as well as growth,

More information

Properties of Synchronous and Asynchronous Release During Pulse Train Depression in Cultured Hippocampal Neurons

Properties of Synchronous and Asynchronous Release During Pulse Train Depression in Cultured Hippocampal Neurons Properties of Synchronous and Asynchronous Release During Pulse Train Depression in Cultured Hippocampal Neurons DONALD J. HAGLER, JR. AND YUKIKO GODA Division of Biology, University of California, San

More information

were isolated from the freshly drawn blood of healthy donors and ACS patients using the

were isolated from the freshly drawn blood of healthy donors and ACS patients using the Supplemental Figure 1. Quality control of CD4 + T-cell purification. CD4 + T cells were isolated from the freshly drawn blood of healthy donors and ACS patients using the RosetteSep CD4 + T Cell Enrichment

More information

Synaptic recruitment of gephyrin regulates surface GABA A receptor dynamics for the expression of inhibitory LTP

Synaptic recruitment of gephyrin regulates surface GABA A receptor dynamics for the expression of inhibitory LTP Received 21 Feb 214 Accepted 17 Apr 214 Published 4 Jun 214 DOI: 1.138/ncomms4921 OPEN Synaptic recruitment of gephyrin regulates surface GABA A receptor dynamics for the expression of inhibitory LTP Enrica

More information

vesicle diameter 0.5 nm 5 nm 50 nm 500 nm Lipid bilayer thickness.05 nm.5 nm 5 nm 50 nm

vesicle diameter 0.5 nm 5 nm 50 nm 500 nm Lipid bilayer thickness.05 nm.5 nm 5 nm 50 nm Harvard-MIT Division of Health Sciences and Technology HST.131: Introduction to Neuroscience Course Director: Dr. David Corey Name (write your name on every sheet) HST 131/Neuro 200 Exam I, Sept 29, 2004

More information

PRESYNAPTIC IONOTROPIC RECEPTORS AND CONTROL OF TRANSMITTER RELEASE

PRESYNAPTIC IONOTROPIC RECEPTORS AND CONTROL OF TRANSMITTER RELEASE PRESYNAPTIC IONOTROPIC RECEPTORS AND CONTROL OF TRANSMITTER RELEASE Holly S. Engelman and Amy B. MacDermott Presynaptic nerve terminals are dynamic structures that release vesicular packages of neurotransmitter,

More information

Correlation between Membrane Potential Responses and Tentacle Movement in the Dinoflagellate Noctiluca miliaris

Correlation between Membrane Potential Responses and Tentacle Movement in the Dinoflagellate Noctiluca miliaris ZOOLOGICAL SCIENCE 21: 131 138 (2004) 2004 Zoological Society of Japan Correlation between Membrane Potential Responses and Tentacle Movement in the Dinoflagellate Noctiluca miliaris Kazunori Oami* Institute

More information

VS : Systemische Physiologie - Animalische Physiologie für Bioinformatiker. Neuronenmodelle III. Modelle synaptischer Kurz- und Langzeitplastizität

VS : Systemische Physiologie - Animalische Physiologie für Bioinformatiker. Neuronenmodelle III. Modelle synaptischer Kurz- und Langzeitplastizität Bachelor Program Bioinformatics, FU Berlin VS : Systemische Physiologie - Animalische Physiologie für Bioinformatiker Synaptische Übertragung Neuronenmodelle III Modelle synaptischer Kurz- und Langzeitplastizität

More information

In Vitro Analog of Operant Conditioning in Aplysia

In Vitro Analog of Operant Conditioning in Aplysia The Journal of Neuroscience, March 15, 1999, 19(6):2261 2272 In Vitro Analog of Operant Conditioning in Aplysia. II. Modifications of the Functional Dynamics of an Identified Neuron Contribute to Motor

More information

Supplemental Information. Melanopsin-Encoded Response Properties. of Intrinsically Photosensitive. Retinal Ganglion Cells

Supplemental Information. Melanopsin-Encoded Response Properties. of Intrinsically Photosensitive. Retinal Ganglion Cells Neuron, Volume 90 Supplemental Information Melanopsin-Encoded Response Properties of Intrinsically Photosensitive Retinal Ganglion Cells Ludovic S. Mure, Megumi Hatori, Quansheng Zhu, James Demas, Irene

More information

Defective glutamate and K+ clearance by cortical astrocytes in familial hemiplegic migraine type 2

Defective glutamate and K+ clearance by cortical astrocytes in familial hemiplegic migraine type 2 Defective glutamate and K+ clearance by cortical astrocytes in familial hemiplegic migraine type 2 Daniela Pietrobon Dept. of Biomedical Sciences, University of Padova CNR Institute of Neuroscience Migraine

More information

Supporting Information

Supporting Information Supporting Information Gerasimenko et al..73/pnas.39 SI Materials and Methods Reagents used in this study include Fluo-4/Fura- (Invitrogen), thapsigargin (albiochem), collagenase (Worthington), palmitoleic

More information

Gene Therapy (2004) 11, & 2004 Nature Publishing Group All rights reserved /04 $

Gene Therapy (2004) 11, & 2004 Nature Publishing Group All rights reserved /04 $ RESEARCH ARTICLE High Ca 2+ -phosphate transfection efficiency enables single neuron gene analysis M Jiang, L Deng and G Chen Department of Biology, The Pennsylvania State University, University Park,

More information

THE SYNAPTIC VESICLE CYCLE

THE SYNAPTIC VESICLE CYCLE Annu. Rev. Neurosci. 2004. 27:509 47 doi: 10.1146/annurev.neuro.26.041002.131412 Copyright c 2004 by Annual Reviews. All rights reserved First published online as a Review in Advance on March 12, 2004

More information

Activation of metabotropic GABA receptors increases the energy barrier for vesicle fusion

Activation of metabotropic GABA receptors increases the energy barrier for vesicle fusion JCS epress online publication date 18 August 2011 Research Article 1 Activation of metabotropic GABA receptors increases the energy barrier for vesicle fusion Benjamin R. Rost 1,2, Patrick Nicholson 1,2,

More information

Synapse Formation. Steven McLoon Department of Neuroscience University of Minnesota

Synapse Formation. Steven McLoon Department of Neuroscience University of Minnesota Synapse Formation Steven McLoon Department of Neuroscience University of Minnesota 1 Course News Midterm Exam Monday, Nov 13 9:30-11:30am Bring a #2 pencil!! 2 Course News Lecture schedule: Mon (Oct 31)

More information

Activity Coregulates Quantal AMPA and NMDA Currents at Neocortical Synapses

Activity Coregulates Quantal AMPA and NMDA Currents at Neocortical Synapses Neuron, Vol. 26, 659 670, June, 2000, Copyright 2000 by Cell Press Activity Coregulates Quantal AMPA and NMDA Currents at Neocortical Synapses Alanna J. Watt, Mark C. W. van Rossum, Katrina M. MacLeod,

More information

Vesicles derived via AP-3-dependent recycling contribute to asynchronous release and influence information transfer

Vesicles derived via AP-3-dependent recycling contribute to asynchronous release and influence information transfer Vesicles derived via AP-3-dependent recycling contribute to asynchronous release and influence information transfer Alesya Evstratova, Laval University Simon Chamberland, Laval University Victor Faundez,

More information

Short-term synaptic plasticity is important for synaptic communication

Short-term synaptic plasticity is important for synaptic communication Paired-pulse depression of unitary quantal amplitude at single hippocampal synapses Gong Chen*, Nobutoshi C. Harata*, and Richard W. Tsien* *Department of Molecular and Cellular Physiology, Beckman Center,

More information

Neurotransmitter Systems II Receptors. Reading: BCP Chapter 6

Neurotransmitter Systems II Receptors. Reading: BCP Chapter 6 Neurotransmitter Systems II Receptors Reading: BCP Chapter 6 Neurotransmitter Systems Normal function of the human brain requires an orderly set of chemical reactions. Some of the most important chemical

More information

Neurons of the Bed Nucleus of the Stria Terminalis (BNST)

Neurons of the Bed Nucleus of the Stria Terminalis (BNST) Neurons of the Bed Nucleus of the Stria Terminalis (BNST) Electrophysiological Properties and Their Response to Serotonin DONALD G. RAINNIE a Harvard Medical School and Department of Psychiatry, Brockton

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature12024 entary Figure 1. Distribution of the number of earned cocaine Supplementary Figure 1. Distribution of the number of earned cocaine infusions in Shock-sensitive

More information

Vesicular Neurotransmitter Transporter Expression in Developing Postnatal Rodent Retina: GABA and Glycine Precede Glutamate

Vesicular Neurotransmitter Transporter Expression in Developing Postnatal Rodent Retina: GABA and Glycine Precede Glutamate 518 The Journal of Neuroscience, January 15, 2003 23(2):518 529 Vesicular Neurotransmitter Transporter Expression in Developing Postnatal Rodent Retina: GABA and Glycine Precede Glutamate Juliette Johnson,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature11775 Supplementary Discussion Based on our data, we propose that LTP requires a large extrasynaptic pool of surface receptors regardless of their subunit composition.

More information

THE REGULATION AND PACKAGING OF SYNAPTIC VESICLES AS RELATED TO RECRUITMENT WITHIN GLUTAMATERGIC SYNAPSES

THE REGULATION AND PACKAGING OF SYNAPTIC VESICLES AS RELATED TO RECRUITMENT WITHIN GLUTAMATERGIC SYNAPSES Neuroscience 225 (2012) 185 198 THE REGULATION AND PACKAGING OF SYNAPTIC VESICLES AS RELATED TO RECRUITMENT WITHIN GLUTAMATERGIC SYNAPSES W.-H. WU AND R. L. COOPER * Department of Biology and Center for

More information

Supplementary Table 1. List of primers used in this study

Supplementary Table 1. List of primers used in this study Supplementary Table 1. List of primers used in this study Gene Forward primer Reverse primer Rat Met 5 -aggtcgcttcatgcaggt-3 5 -tccggagacacaggatgg-3 Rat Runx1 5 -cctccttgaaccactccact-3 5 -ctggatctgcctggcatc-3

More information

PKCλ Is Critical in AMPA Receptor Phosphorylation and Synaptic Incorporation during LTP

PKCλ Is Critical in AMPA Receptor Phosphorylation and Synaptic Incorporation during LTP Manuscript EMBO-2012-82900 PKCλ Is Critical in AMPA Receptor Phosphorylation and Synaptic Incorporation during LTP Si-Qiang Ren, Jing-Zhi Yan, Xiao-Yan Zhang, Yun-Fei Bu, Wei-Wei Pan, Wen Yao, Tian Tian

More information

Supplementary Information. Tissue-wide immunity against Leishmania. through collective production of nitric oxide

Supplementary Information. Tissue-wide immunity against Leishmania. through collective production of nitric oxide Supplementary Information Tissue-wide immunity against Leishmania through collective production of nitric oxide Romain Olekhnovitch, Bernhard Ryffel, Andreas J. Müller and Philippe Bousso Supplementary

More information

Supplemental Information. b Cell Aging Markers Have Heterogeneous. Distribution and Are Induced by Insulin Resistance

Supplemental Information. b Cell Aging Markers Have Heterogeneous. Distribution and Are Induced by Insulin Resistance Cell Metabolism, Volume 25 Supplemental Information b Cell Aging Markers Have Heterogeneous Distribution and Are Induced by Insulin Resistance Cristina Aguayo-Mazzucato, Mark van Haaren, Magdalena Mruk,

More information

El Azzouzi et al., http ://www.jcb.org /cgi /content /full /jcb /DC1

El Azzouzi et al., http ://www.jcb.org /cgi /content /full /jcb /DC1 Supplemental material JCB El Azzouzi et al., http ://www.jcb.org /cgi /content /full /jcb.201510043 /DC1 THE JOURNAL OF CELL BIOLOGY Figure S1. Acquisition of -phluorin correlates negatively with podosome

More information

Lisa M. Giocomo & Michael E. Hasselmo

Lisa M. Giocomo & Michael E. Hasselmo Mol Neurobiol (2007) 36:184 200 DOI 10.1007/s12035-007-0032-z Neuromodulation by Glutamate and Acetylcholine can Change Circuit Dynamics by Regulating the Relative Influence of Afferent Input and Excitatory

More information

ANSC (FSTC) 607 Physiology and Biochemistry of Muscle as a Food MOTOR INNERVATION AND MUSCLE CONTRACTION

ANSC (FSTC) 607 Physiology and Biochemistry of Muscle as a Food MOTOR INNERVATION AND MUSCLE CONTRACTION ANSC (FSTC) 607 Physiology and Biochemistry of Muscle as a Food MOTOR INNERVATION AND MUSCLE CONTRACTION I. Motor innervation of muscle A. Motor neuron 1. Branched (can innervate many myofibers) à terminal

More information

Two Modes of Vesicle Recycling in the Rat Calyx of Held

Two Modes of Vesicle Recycling in the Rat Calyx of Held 10164 The Journal of Neuroscience, November 5, 2003 23(31):10164 10173 Cellular/Molecular Two Modes of Vesicle Recycling in the Rat Calyx of Held R. P. J. de Lange, 1 A. D. G. de Roos, 2 and J. G. G. Borst

More information

Recurrent Mossy Fibers Establish Aberrant Kainate Receptor-Operated Synapses on Granule Cells from Epileptic Rats

Recurrent Mossy Fibers Establish Aberrant Kainate Receptor-Operated Synapses on Granule Cells from Epileptic Rats The Journal of Neuroscience, September 7, 2005 25(36):8229 8239 8229 Neurobiology of Disease Recurrent Mossy Fibers Establish Aberrant Kainate Receptor-Operated Synapses on Granule Cells from Epileptic

More information

Lecture 14. Insect nerve system (II)

Lecture 14. Insect nerve system (II) Lecture 14. Insect nerve system (II) Structures (Anatomy) Cells Anatomy How NS functions Signal transduction Signal transmission Overview More on neurons: ions, ion channel, ligand receptor Signal transduction:

More information

Elizabeth Biopsychology (PSY 302) The Synapses 08/29/2017. The Synapses

Elizabeth Biopsychology (PSY 302) The Synapses 08/29/2017. The Synapses Elizabeth Biopsychology (PSY 302) The Synapses 08/29/2017 The Synapses Conduction of a Depolarization o In dendrites: passive propagation : There is attenuation of signal transmission -Further away they

More information

MCB 160 MIDTERM EXAM 1 KEY Wednesday, February 22, 2012

MCB 160 MIDTERM EXAM 1 KEY Wednesday, February 22, 2012 MCB 160 MIDTERM EXAM 1 KEY Wednesday, February 22, 2012 Name: SID: Instructions: - Write in pen. (No regrades if written in pencil.) - Write name on top of each page. - Clearly label any illustrations.

More information

Axon Initial Segment Kv1 Channels Control Axonal Action Potential Waveform and Synaptic Efficacy

Axon Initial Segment Kv1 Channels Control Axonal Action Potential Waveform and Synaptic Efficacy Article Axon Initial Segment Kv1 Channels Control Axonal Action Potential Waveform and Synaptic Efficacy Maarten H.P. Kole, 1,2 Johannes J. Letzkus, 1,2 and Greg J. Stuart 1, * 1 Division of Neuroscience,

More information

Desynchronization of Multivesicular Release Enhances Purkinje Cell Output

Desynchronization of Multivesicular Release Enhances Purkinje Cell Output Article Desynchronization of Multivesicular Release Enhances Purkinje Cell Output Stephanie Rudolph,, Linda Overstreet-Wadiche, and Jacques I. Wadiche, Department of Biology, University of Freiburg, 79

More information

Abstract Introduction

Abstract Introduction Decreased colocalization of synapsin I and Munc13 within presynaptic axon terminals of the earthworm neuromuscular junction when stimulated could help determine how the two proteins interact during neurotransmitter

More information

Nervous system function Central and peripheral nervous system. Myelinated neurons Nerve signal transmission Nerve Synapse

Nervous system function Central and peripheral nervous system. Myelinated neurons Nerve signal transmission Nerve Synapse Outline Nervous System - Neurons Biol 105 Lecture Packet 9 Chapter 7 I. II. III. IV. V. VI. Nervous system function Central and peripheral nervous system Nervous system cells Myelinated neurons Nerve signal

More information

Coexistence of Two Forms of LTP in ACC Provides a Synaptic Mechanism for the Interactions between Anxiety and Chronic Pain

Coexistence of Two Forms of LTP in ACC Provides a Synaptic Mechanism for the Interactions between Anxiety and Chronic Pain Article Coexistence of Two Forms of LTP in ACC Provides a Synaptic Mechanism for the Interactions between Anxiety and Chronic Pain Highlights d Long-lasting anxiety induced by chronic pain depends on presynaptic

More information