MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Size: px
Start display at page:

Download "MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question."

Transcription

1 2004 BCOR 11 Exam 2 Name: Section: Please note that the chapters covered in this exam 2 (2004) are not the same chapters we are covering this year (2005). That means that you won't be getting more questions on cell membranes but will be getting questions on cell communication. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1. According to the first law of thermodynamics, A. the universe loses energy because of friction. B. matter can be neither created nor destroyed. C. energy is neither created nor destroyed. D. all processes increase the entropy of the universe. E. systems rich in energy are intrinsically unstable. 2. Whenever energy is transformed, there is always an increase in the A. entropy of the system. B. enthalpy of the universe. C. entropy of the universe. D. free energy of the universe. E. free energy of the system. 3. Which of the following is the most randomized form of energy? A. thermal (heat) energy B. light energy C. electrical energy D. mechanical energy E. chemical potential energy 4. Why is ATP an important molecule in metabolism? A. Its phosphate bonds are easily formed and broken. B. Hydrolysis of its phosphate groups is endergonic. C. It energizes other molecules by transferring phosphate groups. D. Two of the above. E. All of the above. 5. How can one increase the rate of a chemical reaction? A. Increase the entropy of reactants. B. Increase the activation energy needed. C. Add a catalyst. D. Decrease the concentration of reactants. E. Cool the reactants. 6. A solution of starch at room temperature does not decompose rapidly to a sugar solution because A. the activation energy barrier cannot be surmounted in most of the starch

2 molecules. B. the hydrolysis of starch to sugar is endergonic. C. the starch solution has less free energy than the sugar solution. D. starch hydrolysis is nonspontaneous. E. starch cannot be hydrolyzed in the presence of so much water. 7. All of the following are true of enzymes except A. Enzymes are essentially protein in their chemical compound. B. Enzyme function is dependent on the ph and temperature of the reaction environment. C. Enzyme function is dependent on the three-dimensional structure or conformation of the enzyme. D. Enzymes provide activation energy for the reaction they catalyze. E. Enzyme activity can be inhibited if their allosteric site is bound with a noncompetitive inhibitor. 8. How does an enzyme catalyze a reaction? A. by changing the equilibrium of a spontaneous reaction B. by lowering the energy of activation of a reaction C. by supplying the energy to speed up a reaction D. by lowering the G of a reaction E. by increasing the amount of free energy of a reaction 9. Consider the following: Succinic acid dehydrogenase catalyzes the reaction of succinic acid to fumaric acid. The reaction is inhibited by malonic acid, which resembles succinic acid but cannot be catalyzed by succinic dehydrogenase. Increasing the ratio of succinic acid to malonic acid reduces the inhibitory effect of malonic acid. Which of the following is correct? A. Malonic acid is the product, and fumaric acid is a competitive inhibitor. B. Succinic acid dehydrogenase is the enzyme, and fumaric acid is the substrate. C. Fumaric acid is the product, and malonic acid is a noncompetitive inhibitor. D. Succinic acid dehydrogenase is the enzyme, and malonic acid is the substrate. E. Succinic acid is the substrate, and fumaric acid is the product. The following question is based on the reaction A + B C + D shown in Figure1

3 Figure Which of the following best describes the reaction? A. G of zero, chemical equilibrium B. negative G, spontaneous C. positive G, exergonic D. positive G, nonspontaneous E. negative G, endergonic 11. Ions diffuse across membranes down their A. electrochemical gradients. B. concentration gradients. C. electrical gradients. D. chemical gradients. E. Both A and B are correct. 12. The oxygen consumed during cellular respiration is directly involved in A. the oxidation of pyruvate to acetyl CoA. B. glycolysis. C. accepting electrons at the end of the electron transport chain. D. the citric acid cycle. E. the phosphorylation of ADP. 13. All of the following substances are produced in a muscle cell under anaerobic conditions except A. NADH. B. pyruvate. C. ATP. D. acetyl CoA. E. lactate. 14. In addition to ATP, what are the end products of glycolysis? A. CO 2 and ethyl alcohol B. H 2 O and ethyl alcohol C. NADH and pyruvate D. CO 2 and NADH E. CO 2 and H 2 O 15. All of the following are functions of the Krebs cycle except A. production of ATP. B. production of NADH. C. adding electrons and protons to oxygen to form water. D. production of FADH 2. E. release of carbon dioxide.

4 16. The Krebs cycle produces which of the following molecules that then transfer energy to the electron transport system? A. FADH 2 and NADH B. ATP and CO 2 C. NADH, FADH 2, and ATP D. NADH and ATP E. CO 2 and FAD 17. A young relative of yours has never had much energy. He goes to a doctor for help and is sent to the hospital for some tests. There they discover his mitochondria can use only fatty acids and amino acids for respiration, and his cells produce more lactate than normal. Of the following, which is the best explanation of his condition? A. His mitochondria lack the transport protein that moves pyruvate across the outer mitochondrial membrane. B. His cells have a defective electron transport chain, so glucose goes to lactate instead of to acetyl CoA. C. His cells contain something that inhibits oxygen use in his mitochondria. D. His cells lack the enzyme in glycolysis that forms pyruvate. E. His cells cannot move NADH from glycolysis into the mitochondria. 18. In chemiosmotic phosphorylation, what is the most direct source of energy that is used to convert ADP + P i to ATP? A. energy released as electrons flow through the electron transport system B. No external source of energy is required because the reaction is exergonic. C. energy released from substrate-level phosphorylation D. energy released from ATP synthase pumping hydrogen ions against their concentration gradient E. energy released from movement of protons through ATP synthase 19. Which metabolic process is most closely associated with intracellular membranes? A. glycolysis B. ethanolic fermentation C. the Krebs cycle D. oxidative phosphorylation E. substrate-level phosphorylation 20. How many moles of ATP are produced from the complete oxidation of a mole of glucose in cellular respiration? A. 30 B. 15 C. 12 D. 38 E Phosphofructokinase is an important control enzyme. All of the following statements concerning this enzyme are true except: A. It is inhibited by ATP. B. It is a coordinator of the processes of glycolysis and the Krebs cycle. C. It is activated by AMP. D. It is activated by citrate. E. It is an allosteric enzyme.

5 22. When a red blood cell is placed in an isotonic solution, which of the following will occur? A. The cell will shrivel. B. The cell will swell and burst C. The cell will shrivel and then return to normal D. The cell will swell and then return to normal. E. Nothing 23. Active transport is important because it can move molecules A. from a high concentration to a lower concentration. B. from a low concentration to a high concentration. C. that resist osmosis across the membrane. D. with less ATP than might otherwise be used to move the molecules. E. by increasing their diffusion coefficient. 24. Osmosis moves water from a region of A. high concentration of dissolved dissolved material to a region of low concentration. B. low concentration of dissolved material to a region of high concentration. C. hypertonic solution to a region of hypotonic solution D. negative osmotic potential to a region of positive osmotic potential E. low concentration of water to a region of high concentration of water. 25. How does a competitive inhibitor inhibit binding of a substrate to an enzyme? A. It binds to the substrate. B. It binds to an area of the enzyme different than the active site. C. It lowers the activation energy. D. It increases the delta G of the reaction. E. It competes with the substrate for the active site. 26. When a molecule gains hydrogen atoms (not hydrogen ions), it becomes A. Reduced B. Oxidized C. Redoxed. D. dehydrogenated. E. Hydrolyzed. 27. The formation of ethanol from pyruvate is an example of A. an exergonic reaction B. providing an extra source of energy from glycolysis C. a fermentation process that takes place in the absence of oxygen. D. cellular respiration E. None of the above. 28. In plants, the final electron acceptor in the light reactions is A. NADP + B. CO 2 C. H 2 O D. O 2 E. Rubisco

6 29. The mechanism by which electron transport is coupled to ATP production by means of a proton gradient is called A. chemiosmosis B. crassulacean acid metabolism C. fluorescence D. the C3 pathway E. the C4 pathway 30. The enzyme directly responsible for almost all carbon fixation on Earth is A. Rubisco B. PEP carboxylase C. ATP synthase D. Phophofructokinase E. Ligase 31. In C4 plants, C4 and C3 pathways occur at different, whereas in CAM plants, CAM and C3 pathways occur at different. A. times of day; locations within the leaf B. seasons; locations C. locations; times of day D. locations; seasons E. times of day; seasons 32. What accumulates in the thylakoid space during the light reactions? A. glucose B. RuBP C. Rubisco D. hydrogen ions E. carbon dioxide 33. Within chloroplasts, the semi-liquid medium in which the Calvin cycle occurs is called A. stroma B. thylakoids C. grana D. photosystem E. matrix 34. Oxygen is produced during photosynthesis when A. the carbon is removed from carbon dioxide to form carbohydrates B. hydrogen from water is added to carbon dioxide to make carbohydrates C. water molecules are split to provide electrons for Photosystem II D. water molecules are split to provide electrons for Photosystem I E. when electron in the electron transport chain reach the final acceptor 35. In cyclic electron flow A. oxygen gas is released B. ATP is formed C. water donates electrons and protons D. NADPH and H + form E. CO 2 reacts with RuBP

7 36. Because bundle-sheath cells are relatively protected from atmospheric oxygen the level of is held to a minimum in C4 plants. A. glycolysis B. photosynthesis C. oxidative phosphorylation D. photorespiration E. decarboxilation of a four carbon organic acid 37. Some photosynthetic organisms contain chloroplasts that lack Photosystem II, yet are able to survive. The best way to detect the lack of Photosystem II in these organisms would be A. to determine if they have thylakoids in their chloroplasts B. to test for the release of O 2 in the light C. to test for CO 2 fixation in the dark D. to perform experiments that generate an action spectrum E. to test for the production of starch 38. In a plant cell, where is ATP synthase located? A. thylakoid membrane B. plasma membrane C. inner mitochondrial membrane D. a and c E. a, b, and c 39. In mitochondria, chemiosmosis translocates protons from the matrix into the intermembrane space, whereas in chloroplasts chemiosmosis translocates protons from A. the stroma to the chlorophyll B. the matrix to the stroma C. the stroma into the thylakoid compartment D. the intermembrane space to the matrix E. the light reactions to the Calvin cycle 40. The Calvin cycle requires all of the following molecules EXCEPT A. CO 2 B. ATP C. RuBP D. glucose E. NADPH 41. CAM plants can keep stomata closed in daytime, thus reducing loss of water. They can do this because they A. fix CO 2 into organic acids during the night B. fix CO 2 into sugars in the bundle-sheath cells C. fix CO 2 into pyruvic acid in the mesophyll cells D. use the enzyme phosphofructokinase which out-competes Rubisco for CO 2 E. use Photosystems I and II at night 42. In mechanism, photophosphorylation is most similar to A. substrate-level phosphorylation B. oxidative phosphorylation in cellular respiration

8 C. the Calvin cycle D. carbon fixation E. reduction of NADP + 43.The three substrates (normal reactants) for the enzyme RuBP carboxylase/oxidase (rubisco) are A.RuBP, ATP, and NADPH. B. CO2, O2, and RuBP. C. RuBP, CO2, and ATP. D.CO2, glucose, and RuBP. E. triose-p, glucose, and CO Why are C4 plants able to photosynthesize with no apparent photorespiration? A. They conserve water more efficiently. B. They are adapted to cold, wet climates. C. They use PEP carboxylase to initially fix CO2. D. They do not participate in the Calvin cycle. E. They exclude oxygen from their tissues. 45. The color of light least effective in driving photosynthesis is A. red. B. orange. C. blue. D. yellow. E. green. 46.Which process in eukaryotic cells will normally proceed whether O2 is present or absent? A. electron transport B. glycolysis C. fermentation D. oxidative phosphorylation E. the Krebs cycle 47. During aerobic respiration, electrons travel downhill in which sequence? A. food glycolysis Krebs cycle NADH ATP B. food NADH electron transport chain oxygen C. food Krebs cycle ATP NAD+ D. glucose ATP oxygen E. glucose ATP electron transport chain NADH 48.You have a friend who lost 15 pounds of fat on a diet. Where did the fat go (how was it lost)? A. Chemical energy was converted to heat and then released. B. It was released as CO2 and H2O. C. It was converted to ATP, which weighs much less than fat. D. It was converted to urine and eliminated from the body. E. It was broken down to amino acids and eliminated from the body.

9 The questions below are based on the stages of glucose oxidation listed below. A. stage I: glycolysis B. stage II: oxidation of pyruvate to acetyl CoA C. stage III: Krebs cycle D. stage IV: oxidative phosphorylation (chemiosmosis) 49.Which one of the stages produces the most ATP when glucose is completely oxidized to carbon dioxide and water? D 50. Which one of the stages occurs in the cytosol of the cell? A 51. Carbon dioxide is released during which stage(s)? A. stages III and IV B. stage III only C. stages II, III, and IV D. stages II and III E. stages I, II, and III 52. When a plant cell is placed in distilled water it will: A. develop high amounts of internal pressure B. burst C. shrink D. plasmolyse E. stay the same

AP Bio Photosynthesis & Respiration

AP Bio Photosynthesis & Respiration AP Bio Photosynthesis & Respiration Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. What is the term used for the metabolic pathway in which

More information

Cellular Respiration. 3. In the figure, which step of the citric acid cycle requires both NAD+ and ADP as reactants? a. Step 1. c. Step 3 b.

Cellular Respiration. 3. In the figure, which step of the citric acid cycle requires both NAD+ and ADP as reactants? a. Step 1. c. Step 3 b. Cellular Respiration 1. Enzymes are organic catalysts. How do they increase the rate of chemical reactions? a. By decreasing the free-energy change of the reaction b. By increasing the free-energy change

More information

4. Which step shows a split of one molecule into two smaller molecules? a. 2. d. 5

4. Which step shows a split of one molecule into two smaller molecules? a. 2. d. 5 1. Which of the following statements about NAD + is false? a. NAD + is reduced to NADH during both glycolysis and the citric acid cycle. b. NAD + has more chemical energy than NADH. c. NAD + is reduced

More information

III. 6. Test. Respiració cel lular

III. 6. Test. Respiració cel lular III. 6. Test. Respiració cel lular Chapter Questions 1) What is the term for metabolic pathways that release stored energy by breaking down complex molecules? A) anabolic pathways B) catabolic pathways

More information

BIOLOGY 311C - Brand Spring 2010

BIOLOGY 311C - Brand Spring 2010 BIOLOGY 311C - Brand Spring 2010 NAME (printed very legibly) KEY UT-EID EXAMINATION III Before beginning, check to be sure that this exam contains 8 pages (including front and back) numbered consecutively,

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Respiration Practice Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which of the following statements describes NAD+? A) NAD+ can donate

More information

True or False: 1. Reactions are called endergonic if they occur spontaneously and release free energy.

True or False: 1. Reactions are called endergonic if they occur spontaneously and release free energy. True or False: 1. Reactions are called endergonic if they occur spontaneously and release free energy. 2. Enzymes catalyze chemical reactions by lowering the activation energy 3. Biochemical pathways are

More information

1. Cyanide is introduced into a culture of cells and is observed binding to a mitochondrion, as shown in the diagram below.

1. Cyanide is introduced into a culture of cells and is observed binding to a mitochondrion, as shown in the diagram below. 1. Cyanide is introduced into a culture of cells and is observed binding to a mitochondrion, as shown in the diagram below. The following observations are made: Cyanide binds to and inhibits an enzyme

More information

2) The molecule that functions as the reducing agent (electron donor) in a redox or oxidationreduction

2) The molecule that functions as the reducing agent (electron donor) in a redox or oxidationreduction Campbell Biology in Focus (Urry) Chapter 7 Cellular Respiration and Fermentation 7.1 Multiple-Choice Questions 1) What is the term for metabolic pathways that release stored energy by breaking down complex

More information

CELLULAR RESPIRATION. Chapter 7

CELLULAR RESPIRATION. Chapter 7 CELLULAR RESPIRATION Chapter 7 7.1 GLYCOLYSIS AND FERMENTATION If I have a $10.00 bill and a $10.00 check, which is better? ATP is like cash in the cell Glucose, NADH, FADH2 are like checks in a cell.

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) What is the term for metabolic pathways that release stored energy by breaking down complex

More information

AP Biology Review: Theme 3- Energy

AP Biology Review: Theme 3- Energy AP Biology Review: Theme 3- Energy 3.1: All living systems require constant input of free energy. 3.2: Interactions between molecules affect their structure and function. 3.3: Organisms capture and store

More information

Chemical Energy. Valencia College

Chemical Energy. Valencia College 9 Pathways that Harvest Chemical Energy Valencia College 9 Pathways that Harvest Chemical Energy Chapter objectives: How Does Glucose Oxidation Release Chemical Energy? What Are the Aerobic Pathways of

More information

Reading Assignments. A. Energy and Energy Conversions. Lecture Series 9 Cellular Pathways That Harvest Chemical Energy. gasoline) or elevated mass.

Reading Assignments. A. Energy and Energy Conversions. Lecture Series 9 Cellular Pathways That Harvest Chemical Energy. gasoline) or elevated mass. Lecture Series 9 Cellular Pathways That Harvest Chemical Energy Reading Assignments Review Chapter 3 Energy, Catalysis, & Biosynthesis Read Chapter 13 How Cells obtain Energy from Food Read Chapter 14

More information

3.1: All living systems require constant input of free energy. 1. BIOENERGETIC THEORY

3.1: All living systems require constant input of free energy. 1. BIOENERGETIC THEORY Domain 3: Energy 3.1: All living systems require constant input of free energy. 1. BIOENERGETIC THEORY The First Law of Thermodynamics Energy cannot be created or destroyed, only transformed. Living systems

More information

1. Cyanide is introduced into a culture of cells and is observed binding to a mitochondrion, as shown in the diagram below.

1. Cyanide is introduced into a culture of cells and is observed binding to a mitochondrion, as shown in the diagram below. 1. Cyanide is introduced into a culture of cells and is observed binding to a mitochondrion, as shown in the diagram below. The following observations are made: Cyanide binds to and inhibits an enzyme

More information

1. Membrane proteins have a variety of functions. State four membrane protein functions. A. B. C. D.

1. Membrane proteins have a variety of functions. State four membrane protein functions. A. B. C. D. Part I: Short answers 1. Membrane proteins have a variety of functions. State four membrane protein functions. A. B. C. D. Part II: Label the components 2. Label the components of a biological membrane

More information

Structure of the Mitochondrion. Cell Respiration. Cellular Respiration. Catabolic Pathways. Photosynthesis vs. Cell Respiration ATP 10/14/2014

Structure of the Mitochondrion. Cell Respiration. Cellular Respiration. Catabolic Pathways. Photosynthesis vs. Cell Respiration ATP 10/14/2014 Structure of the Mitochondrion Cellular Respiration Chapter 9 Pgs. 163 183 Enclosed by a double membrane Outer membrane is smooth Inner, or cristae, membrane is folded - this divides the mitochondrion

More information

Biol 178 Exam 2 Sample Questions Fall 2007

Biol 178 Exam 2 Sample Questions Fall 2007 Biol 178 Exam 2 Sample Questions Fall 2007 FILL IN THE BLANKS 1. The lipid layer that forms the foundation of cell membranes is primarily composed of molecules called. 2. Due to the repellent nature of

More information

Respiration. Respiration. Respiration. How Cells Harvest Energy. Chapter 7

Respiration. Respiration. Respiration. How Cells Harvest Energy. Chapter 7 How Cells Harvest Energy Chapter 7 Organisms can be classified based on how they obtain energy: autotrophs: are able to produce their own organic molecules through photosynthesis heterotrophs: live on

More information

Chapter 5. Microbial Metabolism

Chapter 5. Microbial Metabolism Chapter 5 Microbial Metabolism Metabolism Collection of controlled biochemical reactions that take place within a microbe Ultimate function of metabolism is to reproduce the organism Metabolic Processes

More information

3.7.1 Define cell respiration [Cell respiration is the controlled release of energy from organic compounds in cells to form ATP]

3.7.1 Define cell respiration [Cell respiration is the controlled release of energy from organic compounds in cells to form ATP] 3.7 Cell respiration ( Chapter 9 in Campbell's book) 3.7.1 Define cell respiration [Cell respiration is the controlled release of energy from organic compounds in cells to form ATP] Organic compounds store

More information

Name: Block: Date: PACKET #8 Unit 3: Energy Transfer, Part II: Cellular Respiration

Name: Block: Date: PACKET #8 Unit 3: Energy Transfer, Part II: Cellular Respiration Name: Block: Date: PACKET #8 Unit 3: Energy Transfer, Part II: Cellular Respiration Reading: BSCS Text chapters 4, 5, and 2.8. Objectives: By the conclusion of this unit the student will be able to: Topic

More information

Chapter 9: Cellular Respiration

Chapter 9: Cellular Respiration Chapter 9: Cellular Respiration To perform their many tasks, living cells require energy from outside sources. Energy stored in food utimately comes from the sun. Photosynthesis makes the raw materials

More information

Cellular Respiration

Cellular Respiration Cellular Respiration C 6 H 12 O 6 + 6O 2 -----> 6CO 2 + 6H 2 0 + energy (heat and ATP) 1. Energy Capacity to move or change matter Forms of energy are important to life include Chemical, radiant (heat

More information

7 Pathways That Harvest Chemical Energy

7 Pathways That Harvest Chemical Energy 7 Pathways That Harvest Chemical Energy Pathways That Harvest Chemical Energy How Does Glucose Oxidation Release Chemical Energy? What Are the Aerobic Pathways of Glucose Metabolism? How Is Energy Harvested

More information

How Cells Harvest Energy. Chapter 7. Respiration

How Cells Harvest Energy. Chapter 7. Respiration How Cells Harvest Energy Chapter 7 Respiration Organisms classified on how they obtain energy: autotrophs: produce their own organic molecules through photosynthesis heterotrophs: live on organic compounds

More information

Chapter 7 Cellular Respiration and Fermentation*

Chapter 7 Cellular Respiration and Fermentation* Chapter 7 Cellular Respiration and Fermentation* *Lecture notes are to be used as a study guide only and do not represent the comprehensive information you will need to know for the exams. Life Is Work

More information

MULTIPLE CHOICE QUESTIONS

MULTIPLE CHOICE QUESTIONS MULTIPLE CHOICE QUESTIONS 1. Which of the following statements concerning anabolic reactions is FALSE? A. They are generally endergonic. B. They usually require ATP. C. They are part of metabolism. D.

More information

Cellular Respiration. Biochemistry Part II 4/28/2014 1

Cellular Respiration. Biochemistry Part II 4/28/2014 1 Cellular Respiration Biochemistry Part II 4/28/2014 1 4/28/2014 2 The Mitochondria The mitochondria is a double membrane organelle Two membranes Outer membrane Inter membrane space Inner membrane Location

More information

Chapter Seven (Cellular Respiration)

Chapter Seven (Cellular Respiration) Chapter Seven (Cellular Respiration) 1 SECTION ONE: GLYCOLYSIS AND FERMENTATION HARVESTING CHEMICAL ENERGY Cellular respiration is the process in which cells make adenosine triphosphate (ATP) by breaking

More information

Cellular Respiration

Cellular Respiration Cellular Respiration 1. To perform cell work, cells require energy. a. A cell does three main kinds of work: i. Mechanical work, such as the beating of cilia, contraction of muscle cells, and movement

More information

Cellular Respiration: Harvesting Chemical Energy CHAPTER 9

Cellular Respiration: Harvesting Chemical Energy CHAPTER 9 Cellular Respiration: Harvesting Chemical Energy CHAPTER 9 9.1 Metabolic pathways that release energy are exergonic and considered catabolic pathways. Fermentation: partial degradation of sugars that occurs

More information

7/5/2014. Microbial. Metabolism. Basic Chemical Reactions Underlying. Metabolism. Metabolism: Overview

7/5/2014. Microbial. Metabolism. Basic Chemical Reactions Underlying. Metabolism. Metabolism: Overview PowerPoint Lecture Presentations prepared by Mindy Miller-Kittrell, North Carolina State University Basic Chemical Reactions Underlying Metabolism Metabolism C H A P T E R 5 Microbial Metabolism Collection

More information

3. Distinguish between aerobic and anaerobic in terms of cell respiration. Outline the general process of both.

3. Distinguish between aerobic and anaerobic in terms of cell respiration. Outline the general process of both. 3.7 Cell Respiration 1. Define cell respiration. Cell respiration is the controlled release of energy from organic molecules in cells to form ATP. 2. State the equation for the process of cell respiration.

More information

How Cells Release Chemical Energy. Chapter 7

How Cells Release Chemical Energy. Chapter 7 How Cells Release Chemical Energy Chapter 7 7.1 Overview of Carbohydrate Breakdown Pathways All organisms (including photoautotrophs) convert chemical energy of organic compounds to chemical energy of

More information

Ch. 9 Cell Respiration. Title: Oct 15 3:24 PM (1 of 53)

Ch. 9 Cell Respiration. Title: Oct 15 3:24 PM (1 of 53) Ch. 9 Cell Respiration Title: Oct 15 3:24 PM (1 of 53) Essential question: How do cells use stored chemical energy in organic molecules and to generate ATP? Title: Oct 15 3:28 PM (2 of 53) Title: Oct 19

More information

Table of Contents. Section 1 Glycolysis and Fermentation. Section 2 Aerobic Respiration

Table of Contents. Section 1 Glycolysis and Fermentation. Section 2 Aerobic Respiration Table of Contents Section 1 Glycolysis and Fermentation Section 2 Aerobic Respiration Objectives Identify the two major steps of cellular respiration. Describe the major events in glycolysis. Compare lactic

More information

Cellular Pathways That Harvest Chemical Energy. Cellular Pathways That Harvest Chemical Energy. Cellular Pathways In General

Cellular Pathways That Harvest Chemical Energy. Cellular Pathways That Harvest Chemical Energy. Cellular Pathways In General Cellular Pathways That Harvest Chemical Energy A. Obtaining Energy and Electrons from Glucose Lecture Series 12 Cellular Pathways That Harvest Chemical Energy B. An Overview: Releasing Energy from Glucose

More information

Name Class Date. 1. Cellular respiration is the process by which the of "food"

Name Class Date. 1. Cellular respiration is the process by which the of food Name Class Date Cell Respiration Introduction Cellular respiration is the process by which the chemical energy of "food" molecules is released and partially captured in the form of ATP. Carbohydrates,

More information

Respiration. Respiration. How Cells Harvest Energy. Chapter 7

Respiration. Respiration. How Cells Harvest Energy. Chapter 7 How Cells Harvest Energy Chapter 7 Respiration Organisms can be classified based on how they obtain energy: autotrophs: are able to produce their own organic molecules through photosynthesis heterotrophs:

More information

Chapter 9. Cellular Respiration and Fermentation

Chapter 9. Cellular Respiration and Fermentation Chapter 9 Cellular Respiration and Fermentation Energy flows into an ecosystem as sunlight and leaves as heat Photosynthesis generates O 2 and organic molecules, which are used in cellular respiration

More information

What is Glycolysis? Breaking down glucose: glyco lysis (splitting sugar)

What is Glycolysis? Breaking down glucose: glyco lysis (splitting sugar) What is Glycolysis? Breaking down glucose: glyco lysis (splitting sugar) Most ancient form of energy capture. Starting point for all cellular respiration. Inefficient: generates only 2 ATP for every 1

More information

Cellular respiration and fermentation 04/18/2016 BI102

Cellular respiration and fermentation 04/18/2016 BI102 Cellular respiration and fermentation 04/18/2016 BI102 Announcements Exam 1 after lecture Don t forget to do the online assignments every week! Quiz 2 and lab 2 review Cellular Respiration Cells require

More information

Membranes: Membranes:

Membranes: Membranes: Membranes: organize the chemical activities of cells by organizing different metabolic processes Control the flow of substances into or out of the cell The plasma membrane of the cell is selectively permeable

More information

Cellular Respiration Harvesting Chemical Energy ATP

Cellular Respiration Harvesting Chemical Energy ATP Cellular Respiration Harvesting Chemical Energy ATP 2006-2007 What s the point? The point is to make ATP! ATP 2006-2007 Harvesting stored energy Energy is stored in organic molecules carbohydrates, fats,

More information

Chapter 9: Cellular Respiration: Harvesting Chemical Energy

Chapter 9: Cellular Respiration: Harvesting Chemical Energy AP Biology Reading Guide Name: Date: Period Chapter 9: Cellular Respiration: Harvesting Chemical Energy Overview: Before getting involved with the details of cellular respiration and photosynthesis, take

More information

Chapter 9: Cellular Respiration Overview: Life Is Work. Living cells. Require transfusions of energy from outside sources to perform their many tasks

Chapter 9: Cellular Respiration Overview: Life Is Work. Living cells. Require transfusions of energy from outside sources to perform their many tasks Chapter 9: Cellular Respiration Overview: Life Is Work Living cells Require transfusions of energy from outside sources to perform their many tasks Biology, 7 th Edition Neil Campbell and Jane Reece The

More information

AP Biology Review Session 2

AP Biology Review Session 2 AP Biology Review Session 2 The cell is sometimes described as a protein factory. Using the cell-as-factory analogy, which of the following accurately describes the functions of the endomembrane system?

More information

Cellular Respiration- -conversion of stored energy in glucose to usable energy for the cell -energy in cells is stored in the form of ATP

Cellular Respiration- -conversion of stored energy in glucose to usable energy for the cell -energy in cells is stored in the form of ATP Cellular Respiration Notes Chapter 7 How Cells Make ATP Energy Releasing Pathways Cellular Respiration- -conversion of stored energy in glucose to usable energy for the cell -energy in cells is stored

More information

10/25/2010 CHAPTER 9 CELLULAR RESPIRATION. Life is Work. Types of cellular respiration. Catabolic pathways = oxidizing fuels

10/25/2010 CHAPTER 9 CELLULAR RESPIRATION. Life is Work. Types of cellular respiration. Catabolic pathways = oxidizing fuels CHAPTER 9 CELLULAR RESPIRATION Life is Work Living cells require transfusions of energy from outside sources to perform their many tasks: Chemical work Transport work Mechanical work Energy stored in the

More information

Cellular Respiration. Overview of Cellular Respiration. Lecture 8 Fall Overview of Cellular Respiration. Overview of Cellular Respiration

Cellular Respiration. Overview of Cellular Respiration. Lecture 8 Fall Overview of Cellular Respiration. Overview of Cellular Respiration Overview of Cellular Respiration 1 Cellular Respiration Lecture 8 Fall 2008 All organisms need ATP to do cellular work Cellular Respiration: The conversion of chemical energy of carbon compounds into another

More information

Chapter 9 Cellular Respiration Overview: Life Is Work Living cells require energy from outside sources

Chapter 9 Cellular Respiration Overview: Life Is Work Living cells require energy from outside sources Chapter 9 Cellular Respiration Overview: Life Is Work Living cells require energy from outside sources Some animals, such as the giant panda, obtain energy by eating plants, and some animals feed on other

More information

AP BIOLOGY Chapter 7 Cellular Respiration =

AP BIOLOGY Chapter 7 Cellular Respiration = 1 AP BIOLOGY Chapter 7 Cellular Respiration = Day 1 p. I. Overview A. Cellular Respiration 1. Respiration breathing, exchange of O 2 for CO 2 2. Cellular respiration aerobic harvesting of energy from food

More information

1 Which pathway for aerobic cellular respiration is located in the cytoplasm of the cell?

1 Which pathway for aerobic cellular respiration is located in the cytoplasm of the cell? 1 Which pathway for aerobic cellular respiration is located in the cytoplasm of the cell? glycolysis citric cycle 2 Which of the following statements is NOT correct regarding aerobic cellular respiration?

More information

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 9 Cellular Respiration and Fermentation Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Figure 9.2 Light energy

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy You should be able to: 1. Explain how redox reactions are involved in energy exchanges. Name and describe the three stages of cellular respiration;

More information

2/9/15 CONCEPTS OF BIOLOGY BIOSC 10 ANNOUNCEMENTS 2/9 CHAPTER 3 REVIEW. Review Q3 (chapter 3- notes allowed!)

2/9/15 CONCEPTS OF BIOLOGY BIOSC 10 ANNOUNCEMENTS 2/9 CHAPTER 3 REVIEW. Review Q3 (chapter 3- notes allowed!) BIOSC 10 ANNOUNCEMENTS /9 Review Q3 (chapter 3- notes allowed!) Lecture: chapter 4 Wed: Quiz covering chapters 3-4 Next Wed (/18)- Exam 1 (chapters 1-4) Extra Credit: answer all study guide Q s (guide

More information

Objective: You will be able to construct an explanation for how each phase of respiration captures and stores free energy.

Objective: You will be able to construct an explanation for how each phase of respiration captures and stores free energy. Objective: You will be able to construct an explanation for how each phase of respiration captures and stores free energy. Do Now: Compare and contrast the three black equations below ADP + P + Energy

More information

Chapter 7 How Cells Release Chemical Energy

Chapter 7 How Cells Release Chemical Energy Chapter 7 How Cells Release Chemical Energy 7.1 Mighty Mitochondria More than forty disorders related to defective mitochondria are known (such as Friedreich s ataxia); many of those afflicted die young

More information

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 7 Cellular Respiration and Fermentation Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION

More information

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 7 Cellular Respiration and Fermentation Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION

More information

Harvesting energy: photosynthesis & cellular respiration

Harvesting energy: photosynthesis & cellular respiration Harvesting energy: photosynthesis & cellular respiration Learning Objectives Know the relationship between photosynthesis & cellular respiration Know the formulae of the chemical reactions for photosynthesis

More information

Foundations in Microbiology Seventh Edition

Foundations in Microbiology Seventh Edition Lecture PowerPoint to accompany Foundations in Microbiology Seventh Edition Talaro Chapter 8 An Introduction to Microbial Metabolism Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction

More information

Cell Respiration - 1

Cell Respiration - 1 Cell Respiration - 1 All cells must do work to stay alive and maintain their cellular environment. The energy needed for cell work comes from the bonds of ATP. Cells obtain their ATP by oxidizing organic

More information

7 Cellular Respiration and Fermentation

7 Cellular Respiration and Fermentation CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 7 Cellular Respiration and Fermentation Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION

More information

CH 7: Cell Respiration and Fermentation Overview. Concept 7.1: Catabolic pathways yield energy by oxidizing organic fuels

CH 7: Cell Respiration and Fermentation Overview. Concept 7.1: Catabolic pathways yield energy by oxidizing organic fuels CH 7: Cell Respiration and Fermentation Overview Living cells require energy from outside sources Some animals obtain energy by eating plants, and some animals feed on other organisms Energy flows into

More information

Cellular Respiration Harvesting Chemical Energy ATP

Cellular Respiration Harvesting Chemical Energy ATP Cellular Respiration Harvesting Chemical Energy ATP 2006-2007 What s the point? The point is to make ATP! ATP 2006-2007 Harvesting stored energy Energy is stored in organic molecules carbohydrates, fats,

More information

Ch 9: Cellular Respiration

Ch 9: Cellular Respiration Ch 9: Cellular Respiration Cellular Respiration An overview Exergonic reactions and catabolic pathway Energy stored in bonds of food molecules is transferred to ATP Cellular respiration provides the energy

More information

cell respiration bi Biology Junction Everything you need in Biology Cellular Respiration All Materials Cmassengale

cell respiration bi Biology Junction Everything you need in Biology Cellular Respiration All Materials Cmassengale Biology Junction Everything you need in Biology cell respiration bi Cellular Respiration All Materials Cmassengale C6H12O6 + 6O2 > 6CO2 + 6H20 + energy (heat and ATP) Energy http://www.biologyjunction.com/cell_respiration_bi.htm

More information

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 9 Cellular Respiration and Fermentation

More information

Introduction. Living is work. To perform their many tasks, cells must bring in energy from outside sources.

Introduction. Living is work. To perform their many tasks, cells must bring in energy from outside sources. Introduction Living is work. To perform their many tasks, cells must bring in energy from outside sources. In most ecosystems, energy enters as sunlight. Light energy trapped in organic molecules is available

More information

Harvesting Energy: Glycolysis and Cellular Respiration

Harvesting Energy: Glycolysis and Cellular Respiration Lesson 5 Harvesting Energy: Glycolysis and Cellular Respiration Introduction to Life Processes - SCI 102 1 How Cells Obtain Energy Cells require a constant flow of energy Most cellular energy is stored

More information

Campbell Biology 9. Chapter 9 Cellular Respiration and Fermentation. Chul-Su Yang, Ph.D., Lecture on General Biology 1

Campbell Biology 9. Chapter 9 Cellular Respiration and Fermentation. Chul-Su Yang, Ph.D., Lecture on General Biology 1 Lecture on General Biology 1 Campbell Biology 9 th edition Chapter 9 Cellular Respiration and Fermentation Chul-Su Yang, Ph.D., chulsuyang@hanyang.ac.kr Infection Biology Lab., Dept. of Molecular & Life

More information

Biological Science 101 General Biology

Biological Science 101 General Biology Lecture Seven: Cellular Respiration Ch. 9, Pgs. 163-181 Figs. 9.2-9.20 Biological Science 101 General Biology Cellular Respiration: - A series of processes that is involved in converting food to energy

More information

RESPIRATION Worksheet

RESPIRATION Worksheet A.P. Bio L.C. RESPIRATION Worksheet 1. In the conversion of glucose and oxygen to carbon dioxide and water a) which molecule becomes reduced? b) which molecule becomes oxidized? c) what happens to the

More information

Cellular Metabolism 6/20/2015. Metabolism. Summary of Cellular Respiration. Consists of all the chemical reactions that take place in a cell!

Cellular Metabolism 6/20/2015. Metabolism. Summary of Cellular Respiration. Consists of all the chemical reactions that take place in a cell! Cellular Metabolism Biology 105 Lecture 6 Chapter 3 (pages 56-61) Metabolism Consists of all the chemical reactions that take place in a cell! Cellular metabolism: Aerobic cellular respiration requires

More information

Bio 103 Section A02 Summer 2003 Exam #2 Study Guide Dr. Largen

Bio 103 Section A02 Summer 2003 Exam #2 Study Guide Dr. Largen Chapter 4 - Cell Structure Bio 103 Section A02 Summer 2003 Exam #2 Study Guide Dr. Largen Microscopes provide windows to the world of the cell compare light versus electron microscopes illumination type

More information

Chapter 6 : How Cells Harvest Energy (B) Dr. Chris Doumen 10/28/14 CITRIC ACID CYCLE. Acetyl CoA CoA CoA CO 2 NAD + FADH 2 NADH FAD + 3 H + ADP + ATP

Chapter 6 : How Cells Harvest Energy (B) Dr. Chris Doumen 10/28/14 CITRIC ACID CYCLE. Acetyl CoA CoA CoA CO 2 NAD + FADH 2 NADH FAD + 3 H + ADP + ATP Chapter 6 : How Cells Harvest Energy (B) Dr. Chris Doumen Acetyl CoA CoA CoA Oxaloacetate Citrate CITRIC ACID CYCLE CO FADH 3 NAD + FAD 3 NADH ADP + P + 3 1 Pyruvate oxida.on and Citric Acid Cycle Thus

More information

Cell Respiration. Anaerobic & Aerobic Respiration

Cell Respiration. Anaerobic & Aerobic Respiration Cell Respiration Anaerobic & Aerobic Respiration Understandings/Objectives 2.8.U1: Cell respiration is the controlled release of energy from organic compounds to produce ATP. Define cell respiration State

More information

BIOLOGY - CLUTCH CH.9 - RESPIRATION.

BIOLOGY - CLUTCH CH.9 - RESPIRATION. !! www.clutchprep.com CONCEPT: REDOX REACTIONS Redox reaction a chemical reaction that involves the transfer of electrons from one atom to another Oxidation loss of electrons Reduction gain of electrons

More information

7. The pentose phosphate pathway produces: a. CO2 b. Glyceraldehyde-3-phosphate c. NADPH d. All of the above e. A & C

7. The pentose phosphate pathway produces: a. CO2 b. Glyceraldehyde-3-phosphate c. NADPH d. All of the above e. A & C SI Practice Exam Three Please remember I do not write these questions myself, and use resources and practice tests provided to me by your professor and they are also approved by the professor prior to

More information

Chapter 9. Cellular Respiration: Harvesting Chemical Energy

Chapter 9. Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy Living cells require energy from outside sources Energy flows into an ecosystem as sunlight and leaves as heat Photosynthesis generates O 2 and

More information

7 Cellular Respiration and Fermentation

7 Cellular Respiration and Fermentation CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 7 Cellular Respiration and Fermentation Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION

More information

How Cells Harvest Chemical Energy. Chapter 9

How Cells Harvest Chemical Energy. Chapter 9 How Cells Harvest Chemical Energy Chapter 9 Cellular Respiration Releasing energy (ATP) from glucose (chemical energy) in the presence of O 2 Energy flows Matter cycles True or False Plants only perform

More information

Section B: The Process of Cellular Respiration

Section B: The Process of Cellular Respiration CHAPTER 9 CELLULAR RESPIRATION: HARVESTING CHEMICAL ENERGY Section B: The Process of Cellular Respiration 1. Respiration involves glycolysis, the Krebs cycle, and electron transport: an overview 2. Glycolysis

More information

Cellular Metabolism 9/24/2013. Metabolism. Cellular Metabolism. Consists of all the chemical reactions that take place in a cell!

Cellular Metabolism 9/24/2013. Metabolism. Cellular Metabolism. Consists of all the chemical reactions that take place in a cell! Cellular Metabolism Biology 105 Lecture 6 Chapter 3 (pages 56-61) Metabolism Consists of all the chemical reactions that take place in a cell! Cellular Metabolism Aerobic cellular respiration requires

More information

Cellular Respiration Guided Notes

Cellular Respiration Guided Notes Respiration After you hear word 'respiration', you may now think about breathing. During breathing, the is entered with each inhale and is released with each exhale. You may have noticed that breathing

More information

9.2 The Process of Cellular Respiration

9.2 The Process of Cellular Respiration 9.2 The Process of Cellular Respiration Oxygen Carbon 2 2 Dioxide 34 Water Glycolysis Glycolysis is the first stage of cellular respiration. During glycolysis, glucose is broken down into 2 molecules of

More information

BIOLOGY 101. CHAPTER 9: Cellular Respiration - Fermentation: Life is Work

BIOLOGY 101. CHAPTER 9: Cellular Respiration - Fermentation: Life is Work BIOLOGY 101 CHAPTER 9: Cellular Respiration - Fermentation: Life is Work An Introduction to Metabolism: Energy of Life 8.3 ATP powers cellular work by coupling exergonic reactions to endergonic reactions

More information

Cellular Metabolism. Biology 105 Lecture 6 Chapter 3 (pages 56-61)

Cellular Metabolism. Biology 105 Lecture 6 Chapter 3 (pages 56-61) Cellular Metabolism Biology 105 Lecture 6 Chapter 3 (pages 56-61) Metabolism Consists of all the chemical reactions that take place in a cell! Cellular Metabolism Aerobic cellular respiration requires

More information

Chapter 9 Notes. Cellular Respiration and Fermentation

Chapter 9 Notes. Cellular Respiration and Fermentation Chapter 9 Notes Cellular Respiration and Fermentation Objectives Distinguish between fermentation and anaerobic respiration. Name the three stages of cellular respiration and state the region of the cell

More information

Cellular Metabolism. Biol 105 Lecture 6 Read Chapter 3 (pages 63 69)

Cellular Metabolism. Biol 105 Lecture 6 Read Chapter 3 (pages 63 69) Cellular Metabolism Biol 105 Lecture 6 Read Chapter 3 (pages 63 69) Metabolism Consists of all of the chemical reactions that take place in a cell Metabolism Animation Breaking Down Glucose For Energy

More information

Chapter 8. An Introduction to Microbial Metabolism

Chapter 8. An Introduction to Microbial Metabolism Chapter 8 An Introduction to Microbial Metabolism The metabolism of microbes Metabolism sum of all chemical reactions that help cells function Two types of chemical reactions: Catabolism -degradative;

More information

ATP. Principles of Energy Harvest. Chapter 9~ The point is to make ATP! Cellular Respiration: Harvesting Chemical Energy. What s the point?

ATP. Principles of Energy Harvest. Chapter 9~ The point is to make ATP! Cellular Respiration: Harvesting Chemical Energy. What s the point? Chapter 9~ Cellular Respiration: Harvesting Chemical Energy What s the point? The point is to make! 2006-2007 Principles of Energy Harvest Catabolic pathway Fermentation Cellular Respiration C6H126 + 62

More information

Cellular Respiration. Unit 5: Plants, Photosynthesis, and Cellular Respiration

Cellular Respiration. Unit 5: Plants, Photosynthesis, and Cellular Respiration Cellular Respiration Unit 5: Plants, Photosynthesis, and Cellular Respiration Overview! Organisms obtain energy (ATP) by breaking down (catabolic pathway, exergonic reaction) organic molecules (glucose)

More information

Foundations in Microbiology Seventh Edition

Foundations in Microbiology Seventh Edition Lecture PowerPoint to accompany Foundations in Microbiology Seventh Edition Talaro Chapter 8 To run the animations you must be in Slideshow View. Use the buttons on the animation to play, pause, and turn

More information

Tutorial 27: Metabolism, Krebs Cycle and the Electron Transport Chain

Tutorial 27: Metabolism, Krebs Cycle and the Electron Transport Chain Tutorial 27: Metabolism, Krebs Cycle and the Electron Transport Chain Goals: To be able to describe the overall catabolic pathways for food molecules. To understand what bonds are hydrolyzed in the digestion

More information

Energy Transformations. VCE Biology Unit 3

Energy Transformations. VCE Biology Unit 3 Energy Transformations VCE Biology Unit 3 Contents Energy Cellular Respiration Photosynthesis Storing Energy Energy Energy exists in many forms: light, heat, sound, mechanical, electrical, chemical and

More information

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Photosynthesis in chloroplasts. Light energy ECOSYSTEM. Organic molecules CO 2 + H 2 O

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Photosynthesis in chloroplasts. Light energy ECOSYSTEM. Organic molecules CO 2 + H 2 O 9 Cellular Respiration and Fermentation CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Figure 9.1 Figure 9.2

More information