Chem 454, Spring Exam I R, the ideal gas law constant = x 10-3 kj/mol = x 10-3 kcal/mol

Size: px
Start display at page:

Download "Chem 454, Spring Exam I R, the ideal gas law constant = x 10-3 kj/mol = x 10-3 kcal/mol"

Transcription

1 Name Chem 454, Spring Exam I R, the ideal gas law constant = x 10-3 kj/mol = x 10-3 kcal/mol 1. Metabolism can be divided into two processes: catabolism and anabolism. a. Define metabolism, catabolism and anabolism. b. Describe how the oxidation state of carbon-based molecules is related to catabolism and anabolism. c. Describe how phosphoryl transfer potential is related to catabolism and anabolism. 2. In glycolysis, there is a reaction in which oxidation of a carbon-based molecule is coupled to the production of a phosphate with a high phosphoryl transfer potential. a. Write the net reaction equation for this reaction. b. The product of this reaction contains two phosphate groups, the one which has a high phosphoryl transfer potential, and the other which does not. Explain the structural reasons for this difference. 1

2 c. There are two amino acid side chains that are involved in the catalytic mechanism for this reaction. Identify each and describe the role that each plays in the reaction. d. This reaction involves a coenzyme; identify this coenzyme and describe two roles it has in the mechanism for the reaction. e. Catalysts increase the rate of a reaction by lowering the activation free energy for a reaction. Describe how the enzyme that catalyzes this reaction lowers the activation energy for the reaction. 3. Describe what an activated carrier is. a. Describe what is carried by each of the following carrier molecules. Identify, by name, a reaction in glycolysis, gluconeogenesis, or the citric acid cycle that each participates in. i) ADP ii) FAD iii) NAD + iv) Coenzyme A v) Lipoamide vi) Biotin b. Which of these carriers contain a remnant of the ancient RNA world, a time when RNA served as both catalysts and information-storage molecules. 2

3 4. The DG ' for the phosphoglucose isomerase reaction glycolysis is +1.7 kj/mol, whereas in vivo, in cells, DG' is 2.5 kj/mol. a. Using structural formulas, write the balanced chemical equation for this reaction b. The one free energy difference indicates a favorable reaction, whereas the other does not. Explain the difference. c. If under standard conditions of temperature and pressure, the cellular concentration of glucose 6-phosphate is 5 mm, what is the concentration of the product of this reaction? d. If under standard conditions of temperature and pressure, the equilibrium concentration of glucose 6-phosphate is 5 mm, what is the concentration of the product of this reaction? e. Propose a mechanism for this reaction based on the mechanism for triose phosphate isomerase. 3

4 5. When the hormone glucagon binds to receptors on liver cells it leads to the activation of the enzyme protein kinase A (PKA), which in turn leads to the phosphorylation of the bifunctional enzyme phophofructokinase 2 (PFK2)/fructose bisphosphatase 2 (FBPase2). a. Under what conditions is glucagon released into the bloodstream? b. What effect does the phosphorylation by PKA have on the activity of the bifunctional enzyme? c. What effect does this in turn have on glycolysis? d. If glucagon is the primary messenger in this signal transduction pathway, what is the second messenger? e. Describe the points in the signal transduction pathway, from glucagon binding to the activation of PKA, where signal amplification occurs. 6. Describe the purpose of the citric acid cycle a. Using structural formulas, write the balanced chemical equation for the two reactions were CO 2 is produced. 4

5 b. Using structural formulas, write the chemical equation for a reaction in the citric acid cycle that is an example of an isomerization reaction. c. Using structural formulas, write the chemical equation for a reaction in the citric acid cycle that is an example of an addition (lyase) reaction. d. Using structural formulas, write the chemical equation for the reaction in which GTP is produced from GDP and P i. 5

Chem Lecture 8 Carbohydrate Metabolism Part I: Glycolysis

Chem Lecture 8 Carbohydrate Metabolism Part I: Glycolysis Chem 352 - Lecture 8 Carbohydrate Metabolism Part I: Glycolysis Introduction Carbohydrate metabolism involves a collection of pathways. Glycolysis Hexoses 3-Carbon molecules Gluconeogenesis 3-Carbon molecules

More information

Review of Carbohydrate Digestion

Review of Carbohydrate Digestion Review of Carbohydrate Digestion Glycolysis Glycolysis is a nine step biochemical pathway that oxidizes glucose into two molecules of pyruvic acid. During this process, energy is released and some of it

More information

CHAPTER 16. Glycolysis

CHAPTER 16. Glycolysis CHAPTER 16 Glycolysis Net reaction of Glycolysis Converts: 1 Glucose Hexose stage 2 pyruvate - Two molecules of ATP are produced - Two molecules of NAD + are reduced to NADH Triose stage Glucose + 2 ADP

More information

Photosynthesis in chloroplasts. Cellular respiration in mitochondria ATP. ATP powers most cellular work

Photosynthesis in chloroplasts. Cellular respiration in mitochondria ATP. ATP powers most cellular work Light energy ECOSYSTEM CO + H O Photosynthesis in chloroplasts Cellular respiration in mitochondria Organic molecules + O powers most cellular work Heat energy 1 becomes oxidized (loses electron) becomes

More information

GLYCOLYSIS Generation of ATP from Metabolic Fuels

GLYCOLYSIS Generation of ATP from Metabolic Fuels GLYCOLYSIS Generation of ATP from Metabolic Fuels - Catabolic process degradative pathway - Energy stored in sugars (carbohydrates) released to perform biological work - Transforms GLUCOSE to PYRUVATE

More information

Chemical Energy. Valencia College

Chemical Energy. Valencia College 9 Pathways that Harvest Chemical Energy Valencia College 9 Pathways that Harvest Chemical Energy Chapter objectives: How Does Glucose Oxidation Release Chemical Energy? What Are the Aerobic Pathways of

More information

Glycolysis. Glycolysis Expectations. Glycolysis 10/20/2015. Chapter 16, Stryer Short Course. Memorize/learn Figure 16.1

Glycolysis. Glycolysis Expectations. Glycolysis 10/20/2015. Chapter 16, Stryer Short Course. Memorize/learn Figure 16.1 Glycolysis Chapter 16, Stryer Short Course Glycolysis Expectations Memorize/learn Figure 16.1 Know overall reaction and stages Explain chemical/physiological purpose of each step Learn structures Reversible/Irreversible

More information

Glycolysis. Degradation of Glucose to yield pyruvate

Glycolysis. Degradation of Glucose to yield pyruvate Glycolysis Degradation of Glucose to yield pyruvate After this Lecture you will be able to answer: For each step of glycolysis: How does it occur? Why does it occur? Is it Regulated? How? What are the

More information

Metabolism. Metabolic pathways. BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 11: Metabolic Pathways

Metabolism. Metabolic pathways. BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 11: Metabolic Pathways BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 11: Metabolic Pathways http://compbio.uchsc.edu/hunter/bio5099 Larry.Hunter@uchsc.edu Metabolism Metabolism is the chemical change of

More information

Citric Acid Cycle: Central Role in Catabolism. Entry of Pyruvate into the TCA cycle

Citric Acid Cycle: Central Role in Catabolism. Entry of Pyruvate into the TCA cycle Citric Acid Cycle: Central Role in Catabolism Stage II of catabolism involves the conversion of carbohydrates, fats and aminoacids into acetylcoa In aerobic organisms, citric acid cycle makes up the final

More information

Chem 454, Spring Exam II F, Faraday's constant, = kcal/mol V

Chem 454, Spring Exam II F, Faraday's constant, = kcal/mol V Name Chem 454, Spring 2003 - Exam II F, Faraday's constant, = 23.06 kcal/mol V 1. Analysis of electron transport pathway in a pathogenic gram-negative bacterium reveals the presence of six electron transport

More information

Chapter 13 Carbohydrate Metabolism

Chapter 13 Carbohydrate Metabolism Chapter 13 Carbohydrate Metabolism Metabolism of Foods Food is broken down into carbohydrates, lipids, and proteins and sent through catabolic pathways to produce energy. Glycolysis glucose 2 P i 2 ADP

More information

CHAPTER 24: Carbohydrate, Lipid, & Protein Metabolism. General, Organic, & Biological Chemistry Janice Gorzynski Smith

CHAPTER 24: Carbohydrate, Lipid, & Protein Metabolism. General, Organic, & Biological Chemistry Janice Gorzynski Smith CHAPTER 24: Carbohydrate, Lipid, & Protein Metabolism General, Organic, & Biological Chemistry Janice Gorzynski Smith CHAPTER 24: Carbohydrate, Lipid, & Protein Metabolism Learning Objectives: q Role in

More information

Biology 30 Structure & Function of Cells (Part 2) Bioenergetics: Energy: Potential energy: Examples: Kinetic energy. Examples:

Biology 30 Structure & Function of Cells (Part 2) Bioenergetics: Energy: Potential energy: Examples: Kinetic energy. Examples: Biology 30 Structure & Function of Cells (Part 2) Bioenergetics: Energy: Potential energy: Examples: Kinetic energy Examples: Energy can be transformed: Thermodynamics: First law of Thermodynamics: Second

More information

Tutorial 27: Metabolism, Krebs Cycle and the Electron Transport Chain

Tutorial 27: Metabolism, Krebs Cycle and the Electron Transport Chain Tutorial 27: Metabolism, Krebs Cycle and the Electron Transport Chain Goals: To be able to describe the overall catabolic pathways for food molecules. To understand what bonds are hydrolyzed in the digestion

More information

CITRIC ACID CYCLE ERT106 BIOCHEMISTRY SEM /19 BY: MOHAMAD FAHRURRAZI TOMPANG

CITRIC ACID CYCLE ERT106 BIOCHEMISTRY SEM /19 BY: MOHAMAD FAHRURRAZI TOMPANG CITRIC ACID CYCLE ERT106 BIOCHEMISTRY SEM 1 2018/19 BY: MOHAMAD FAHRURRAZI TOMPANG Chapter Outline (19-1) The central role of the citric acid cycle in metabolism (19-2) The overall pathway of the citric

More information

By: Dr Hadi Mozafari 1

By: Dr Hadi Mozafari 1 By: Dr Hadi Mozafari 1 Gluconeogenesis is the process of converting noncarbohydrate precursors to glucose or glycogen. The major substrates are the glucogenic amino acids, and lactate, glycerol, and propionate.

More information

METABOLISM Biosynthetic Pathways

METABOLISM Biosynthetic Pathways METABOLISM Biosynthetic Pathways Metabolism Metabolism involves : Catabolic reactions that break down large, complex molecules to provide energy and smaller molecules. Anabolic reactions that use ATP energy

More information

Lecture 34. Carbohydrate Metabolism 2. Glycogen. Key Concepts. Biochemistry and regulation of glycogen degradation

Lecture 34. Carbohydrate Metabolism 2. Glycogen. Key Concepts. Biochemistry and regulation of glycogen degradation Lecture 34 Carbohydrate Metabolism 2 Glycogen Key Concepts Overview of Glycogen Metabolism Biochemistry and regulation of glycogen degradation Biochemistry and regulation of glycogen synthesis What mechanisms

More information

Biochemistry 7/11/ Bio-Energetics & ATP. 5.1) ADP, ATP and Cellular Respiration OVERVIEW OF ENERGY AND METABOLISM

Biochemistry 7/11/ Bio-Energetics & ATP. 5.1) ADP, ATP and Cellular Respiration OVERVIEW OF ENERGY AND METABOLISM Biochemistry 5. Bio-Energetics & ATP 5.1) ADP, ATP and Cellular Respiration Prof. Dr. Klaus Heese OVERVIEW OF ENERGY AND METABOLISM 1. The food we eat, (carbohydrates/ glucose /sugar, lipids/fat, proteins),

More information

III. Metabolism - Gluconeogenesis

III. Metabolism - Gluconeogenesis Department of Chemistry and Biochemistry University of Lethbridge III. Metabolism - Gluconeogenesis Carl & Gertrude Cori Slide 1 Carbohydrate Synthesis Lactate, pyruvate and glycerol are the important

More information

OVERVIEW OF ENERGY AND METABOLISM

OVERVIEW OF ENERGY AND METABOLISM Biochemistry 5. Bio-Energetics & ATP 5.1) ADP, ATP and Cellular Respiration OVERVIEW OF ENERGY AND METABOLISM 1. The food we eat, (carbohydrates/ glucose /sugar, lipids/fat, proteins), are our only source

More information

Microbial Metabolism

Microbial Metabolism PowerPoint Lecture Slides for MICROBIOLOGY ROBERT W. BAUMAN Chapter 5 Microbial Metabolism Microbial Metabolism The sum total of chemical reactions that take place within cells (of an organism) Metabolic

More information

Photosynthesis in chloroplasts CO2 + H2O. Cellular respiration in mitochondria ATP. powers most cellular work. Heat energy

Photosynthesis in chloroplasts CO2 + H2O. Cellular respiration in mitochondria ATP. powers most cellular work. Heat energy Figure 9-01 LE 9-2 Light energy ECOSYSTEM Photosynthesis in chloroplasts CO2 + H2O Cellular respiration in mitochondria Organic + O molecules 2 powers most cellular work Heat energy LE 9-UN161a becomes

More information

Aerobic Respiration. The four stages in the breakdown of glucose

Aerobic Respiration. The four stages in the breakdown of glucose Aerobic Respiration The four stages in the breakdown of glucose 1 I. Aerobic Respiration Why can t we break down Glucose in one step? (Flaming Gummy Bear) Enzymes gently lower the potential energy until

More information

3.7 CELLULAR RESPIRATION. How are these two images related?

3.7 CELLULAR RESPIRATION. How are these two images related? 3.7 CELLULAR RESPIRATION How are these two images related? CELLULAR RESPIRATION Cellular respiration is the process whereby the body converts the energy that we get from food (glucose) into an energy form

More information

RESPIRATION: SYNTHESIS OF ATP. Clickers!

RESPIRATION: SYNTHESIS OF ATP. Clickers! RESPIRATION: SYNTHESIS OF ATP Clickers! Respiration is a series of coupled reactions Carbon (in glucose) is oxidized ATP is formed from ADP plus phosphate O 2 ADP + Pi CO 2 + H 2 O ATP Synthesis of ATP

More information

Yield of energy from glucose

Yield of energy from glucose Paper : Module : 05 Yield of Energy from Glucose Principal Investigator, Paper Coordinator and Content Writer Prof. Ramesh Kothari, Professor Dept. of Biosciences, Saurashtra University, Rajkot - 360005

More information

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 9 Cellular Respiration and Fermentation Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Figure 9.2 Light energy

More information

Metabolic Pathways and Energy Metabolism

Metabolic Pathways and Energy Metabolism Metabolic Pathways and Energy Metabolism Last Week Energy Metabolism - The first thing a living organism has got to be able to do is harness energy from the environment - Plants do it by absorbing sunlight

More information

(de novo synthesis of glucose)

(de novo synthesis of glucose) Gluconeogenesis (de novo synthesis of glucose) Gluconeogenesis Gluconeogenesis is the biosynthesis of new glucose. The main purpose of gluconeogenesis is to maintain the constant blood Glc concentration.

More information

Microbiology AN INTRODUCTION

Microbiology AN INTRODUCTION TORTORA FUNKE CASE Microbiology AN INTRODUCTION EIGHTH EDITION B.E Pruitt & Jane J. Stein Chapter 5, part A Microbial Metabolism PowerPoint Lecture Slide Presentation prepared by Christine L. Case Microbial

More information

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Photosynthesis in chloroplasts. Light energy ECOSYSTEM. Organic molecules CO 2 + H 2 O

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Photosynthesis in chloroplasts. Light energy ECOSYSTEM. Organic molecules CO 2 + H 2 O 9 Cellular Respiration and Fermentation CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Figure 9.1 Figure 9.2

More information

Major Pathways in Carbohydrate Metabolism

Major Pathways in Carbohydrate Metabolism Major Pathways in Carbohydrate Metabolism 70 Stage 1: Digestion of Carbohydrates In Stage 1, the digestion of carbohydrates Begins in the mouth where salivary amylase breaks down polysaccharides to smaller

More information

In glycolysis, glucose is converted to pyruvate. If the pyruvate is reduced to lactate, the pathway does not require O 2 and is called anaerobic

In glycolysis, glucose is converted to pyruvate. If the pyruvate is reduced to lactate, the pathway does not require O 2 and is called anaerobic Glycolysis 1 In glycolysis, glucose is converted to pyruvate. If the pyruvate is reduced to lactate, the pathway does not require O 2 and is called anaerobic glycolysis. If this pyruvate is converted instead

More information

Coupled, interconnecting reactions

Coupled, interconnecting reactions Metabolism: Basic concepts Hand-out for the CBT version November 2011 This module is based on 'Biochemistry' by Berg, Tymoczko and Stryer, seventh edition (2011), Chapter 15: Metabolism: Basic Concepts

More information

7 Pathways That Harvest Chemical Energy

7 Pathways That Harvest Chemical Energy 7 Pathways That Harvest Chemical Energy Pathways That Harvest Chemical Energy How Does Glucose Oxidation Release Chemical Energy? What Are the Aerobic Pathways of Glucose Metabolism? How Is Energy Harvested

More information

Cellular Respiration. Overview of Cellular Respiration. Lecture 8 Fall Overview of Cellular Respiration. Overview of Cellular Respiration

Cellular Respiration. Overview of Cellular Respiration. Lecture 8 Fall Overview of Cellular Respiration. Overview of Cellular Respiration Overview of Cellular Respiration 1 Cellular Respiration Lecture 8 Fall 2008 All organisms need ATP to do cellular work Cellular Respiration: The conversion of chemical energy of carbon compounds into another

More information

Chapter 24 Lecture Outline

Chapter 24 Lecture Outline Chapter 24 Lecture Outline Carbohydrate Lipid and Protein! Metabolism! In the catabolism of carbohydrates, glycolysis converts glucose into pyruvate, which is then metabolized into acetyl CoA. Prepared

More information

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 7 Cellular Respiration and Fermentation Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy You should be able to: 1. Explain how redox reactions are involved in energy exchanges. Name and describe the three stages of cellular respiration;

More information

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 7 Cellular Respiration and Fermentation Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION

More information

7 Cellular Respiration and Fermentation

7 Cellular Respiration and Fermentation CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 7 Cellular Respiration and Fermentation Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION

More information

7 Cellular Respiration and Fermentation

7 Cellular Respiration and Fermentation CAMPBELL BIOLOGY IN FOCUS Urry Cain Wasserman Minorsky Jackson Reece 7 Cellular Respiration and Fermentation Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge Overview: Life Is Work Living

More information

7 Cellular Respiration and Fermentation

7 Cellular Respiration and Fermentation CAMPBELL BIOLOGY IN FOCUS Urry Cain Wasserman Minorsky Jackson Reece 7 Cellular Respiration and Fermentation Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge Overview: Life Is Work Living

More information

Comparison of catabolic and anabolic pathways

Comparison of catabolic and anabolic pathways Comparison of catabolic and anabolic pathways Three stages of catabolism Glucose Synthesis of compounds e.g. lactose glycolipids Glucose-6-P Pentosephosphate Pathway Glycolysis Glycogenesis Acetyl-CoA

More information

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 9 Cellular Respiration and Fermentation Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Life Is Work Living cells

More information

CH 7: Cell Respiration and Fermentation Overview. Concept 7.1: Catabolic pathways yield energy by oxidizing organic fuels

CH 7: Cell Respiration and Fermentation Overview. Concept 7.1: Catabolic pathways yield energy by oxidizing organic fuels CH 7: Cell Respiration and Fermentation Overview Living cells require energy from outside sources Some animals obtain energy by eating plants, and some animals feed on other organisms Energy flows into

More information

Chapter 13 Carbohydrate Metabolism

Chapter 13 Carbohydrate Metabolism Chapter 13 Carbohydrate Metabolism Chapter bjectives: Learn about Blood glucose. Learn about the glycolysis reaction pathways and the regulation of glycolysis. Learn about the fates of pyruvate under various

More information

BIOLOGY. Cellular Respiration and Fermentation. Concept 9.1: Catabolic pathways yield energy by oxidizing organic fuels

BIOLOGY. Cellular Respiration and Fermentation. Concept 9.1: Catabolic pathways yield energy by oxidizing organic fuels 9 Cellular Respiration and Fermentation CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson Energy flows into an ecosystem as sunlight and leaves as heat Photosynthesis generates

More information

Respiration. Organisms can be classified based on how they obtain energy: Autotrophs

Respiration. Organisms can be classified based on how they obtain energy: Autotrophs Respiration rganisms can be classified based on how they obtain energy: Autotrophs Able to produce their own organic molecules through photosynthesis Heterotrophs Live on organic compounds produced by

More information

Physiological Chemistry II Exam IV Dr. Melissa Kelley April 13, 2004

Physiological Chemistry II Exam IV Dr. Melissa Kelley April 13, 2004 Name Write your name on the back of the exam Physiological Chemistry II Exam IV Dr. Melissa Kelley April 13, 2004 This examination consists of forty-four questions, each having 2 points. The remaining

More information

Biology 638 Biochemistry II Exam-1

Biology 638 Biochemistry II Exam-1 Biology 638 Biochemistry II Exam-1 Using the following values, answer questions 1-3. ATP + H 2 O ADP + P i ΔG = -30 kj/mol Creatine-phosphate + H 2 O Creatine + P i ΔG = -12 kj/mol ½O 2 + 2H + + 2e - H

More information

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 9 Cellular Respiration and Fermentation Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Life Is Work Living cells

More information

TCA CYCLE (Citric Acid Cycle)

TCA CYCLE (Citric Acid Cycle) TCA CYCLE (Citric Acid Cycle) TCA CYCLE The Citric Acid Cycle is also known as: Kreb s cycle Sir Hans Krebs Nobel prize, 1953 TCA (tricarboxylic acid) cycle The citric acid cycle requires aerobic conditions!!!!

More information

Introduction to Carbohydrate metabolism

Introduction to Carbohydrate metabolism Introduction to Carbohydrate metabolism Some metabolic pathways of carbohydrates 1- Glycolysis 2- Krebs cycle 3- Glycogenesis 4- Glycogenolysis 5- Glyconeogenesis - Pentose Phosphate Pathway (PPP) - Curi

More information

0.40. Biochemistry of Carbohydrates

0.40. Biochemistry of Carbohydrates 0.40 Biochemistry of Carbohydrates Biochemistry of Carbohydrates ATP ADP Glycolysis The Breakdown of Glucose Primary Energy Source of Cells Central Metabolic Pathway All Reactions Occur in Cytoplasm Two

More information

Chapter 9. Cellular Respiration and Fermentation

Chapter 9. Cellular Respiration and Fermentation Chapter 9 Cellular Respiration and Fermentation Energy flows into an ecosystem as sunlight and leaves as heat Photosynthesis generates O 2 and organic molecules, which are used in cellular respiration

More information

7 Cellular Respiration and Fermentation

7 Cellular Respiration and Fermentation CAMPBELL BIOLOGY IN FOCUS Urry Cain Wasserman Minorsky Jackson Reece 7 Cellular Respiration and Fermentation Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge Overview: Life Is Work Living

More information

2/25/2013. The Mechanism of Enzymatic Action

2/25/2013. The Mechanism of Enzymatic Action 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Chapter 5 Microbial Metabolism Catabolic and Anabolic Reactions Metabolism: The sum of the chemical reactions in an organism Catabolic and Anabolic Reactions Catabolism:

More information

Glycolysis. BCH 340 lecture 3 Chapter 8 in Lippincott 5 th edition

Glycolysis. BCH 340 lecture 3 Chapter 8 in Lippincott 5 th edition Glycolysis B 40 lecture hapter 8 in Lippincott 5 th edition All carbohydrates to be catabolized must enter the glycolytic pathway Glycolysis is degradation of glucose to generate energy (ATP) and to provide

More information

Citrate Cycle. Lecture 28. Key Concepts. The Citrate Cycle captures energy using redox reactions

Citrate Cycle. Lecture 28. Key Concepts. The Citrate Cycle captures energy using redox reactions Citrate Cycle Lecture 28 Key Concepts The Citrate Cycle captures energy using redox reactions Eight reactions of the Citrate Cycle Key control points in the Citrate Cycle regulate metabolic flux What role

More information

BIO 311C Spring Lecture 27 Monday 5 Apr. 1

BIO 311C Spring Lecture 27 Monday 5 Apr. 1 BIO 311C Spring 2010 Lecture 27 Monday 5 Apr. 1 Review Metabolic Pathways and Processes that Participate in Respiration - Glycolysis Occurs in the cytoplasmic matrix - Pyruvate dehydrogenase - Krebs Cycle

More information

Glucose is the only source of energy in red blood cells. Under starvation conditions ketone bodies become a source of energy for the brain

Glucose is the only source of energy in red blood cells. Under starvation conditions ketone bodies become a source of energy for the brain Glycolysis 4 / The Text :- Some Points About Glucose Glucose is very soluble source of quick and ready energy. It is a relatively stable and easily transported. In mammals, the brain uses only glucose

More information

Moh Tarek. Razi Kittaneh. Jaqen H ghar

Moh Tarek. Razi Kittaneh. Jaqen H ghar 14 Moh Tarek Razi Kittaneh Jaqen H ghar Naif Karadsheh Gluconeogenesis is making glucose from non-carbohydrates precursors. Although Gluconeogenesis looks like Glycolysis in many steps, it is not the simple

More information

Campbell Biology 9. Chapter 9 Cellular Respiration and Fermentation. Chul-Su Yang, Ph.D., Lecture on General Biology 1

Campbell Biology 9. Chapter 9 Cellular Respiration and Fermentation. Chul-Su Yang, Ph.D., Lecture on General Biology 1 Lecture on General Biology 1 Campbell Biology 9 th edition Chapter 9 Cellular Respiration and Fermentation Chul-Su Yang, Ph.D., chulsuyang@hanyang.ac.kr Infection Biology Lab., Dept. of Molecular & Life

More information

Carbohydrate Metabolism

Carbohydrate Metabolism Chapter 34 Carbohydrate Metabolism Carbohydrate metabolism is important for both plants and animals. Introduction to General, Organic, and Biochemistry, 10e John Wiley & Sons, Inc Morris Hein, Scott Pattison,

More information

Aerobic Fate of Pyruvate. Chapter 16 Homework Assignment. Chapter 16 The Citric Acid Cycle

Aerobic Fate of Pyruvate. Chapter 16 Homework Assignment. Chapter 16 The Citric Acid Cycle Chapter 16 Homework Assignment The following problems will be due once we finish the chapter: 1, 3, 7, 10, 16, 19, 20 Additional Problem: Write out the eight reaction steps of the Citric Acid Cycle, using

More information

2. You will need a Scantron and a pencil for this exam.

2. You will need a Scantron and a pencil for this exam. Exam III Chemistry 306 Fall 2009 Roper Name Exam Number Instructions: 1. Please turn in your chapter 21 and 23 homework. 2. You will need a Scantron and a pencil for this exam. 3. Please bring your backpacks

More information

Dr. DerVartanian is ill and will likely not be able to give lectures this week.

Dr. DerVartanian is ill and will likely not be able to give lectures this week. Dr. DerVartanian is ill and will likely not be able to give lectures this week. Today s slides will be put on-line today, and are designed to introduce you to glycolysis. You should use these slides, along

More information

Cellular Pathways That Harvest Chemical Energy. Cellular Pathways That Harvest Chemical Energy. Cellular Pathways In General

Cellular Pathways That Harvest Chemical Energy. Cellular Pathways That Harvest Chemical Energy. Cellular Pathways In General Cellular Pathways That Harvest Chemical Energy A. Obtaining Energy and Electrons from Glucose Lecture Series 12 Cellular Pathways That Harvest Chemical Energy B. An Overview: Releasing Energy from Glucose

More information

Citrate Cycle Supplemental Reading

Citrate Cycle Supplemental Reading Citrate Cycle Supplemental Reading Key Concepts - The Citrate Cycle captures energy using redox reactions - Eight enzymatic reactions of the Citrate Cycle - Key control points in the citrate cycle regulate

More information

Cells extract energy from their environment and use the energy for a host of biological activities including biosynthesis.

Cells extract energy from their environment and use the energy for a host of biological activities including biosynthesis. ATP=cellular energy Cells extract energy from their environment and use the energy for a host of biological activities including biosynthesis. The reactions of energy extraction and energy use are called

More information

Chapter 9. Cellular Respiration: Harvesting Chemical Energy

Chapter 9. Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy Living cells require energy from outside sources Energy flows into an ecosystem as sunlight and leaves as heat Photosynthesis generates O 2 and

More information

Chapter 9 Overview. Aerobic Metabolism I: The Citric Acid Cycle. Live processes - series of oxidation-reduction reactions. Aerobic metabolism I

Chapter 9 Overview. Aerobic Metabolism I: The Citric Acid Cycle. Live processes - series of oxidation-reduction reactions. Aerobic metabolism I n n Chapter 9 Overview Aerobic Metabolism I: The Citric Acid Cycle Live processes - series of oxidation-reduction reactions Ingestion of proteins, carbohydrates, lipids Provide basic building blocks for

More information

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 9 Cellular Respiration and Fermentation

More information

Chapter 9: Cellular Respiration Overview: Life Is Work. Living cells. Require transfusions of energy from outside sources to perform their many tasks

Chapter 9: Cellular Respiration Overview: Life Is Work. Living cells. Require transfusions of energy from outside sources to perform their many tasks Chapter 9: Cellular Respiration Overview: Life Is Work Living cells Require transfusions of energy from outside sources to perform their many tasks Biology, 7 th Edition Neil Campbell and Jane Reece The

More information

Biology 638 Biochemistry II Exam-2

Biology 638 Biochemistry II Exam-2 Biology 638 Biochemistry II Exam-2 Biol 638, Exam-2 (Code-1) 1. Assume that 16 glucose molecules enter into a liver cell and are attached to a liner glycogen one by one. Later, this glycogen is broken-down

More information

Metabolism. Chapter 5. Catabolism Drives Anabolism 8/29/11. Complete Catabolism of Glucose

Metabolism. Chapter 5. Catabolism Drives Anabolism 8/29/11. Complete Catabolism of Glucose 8/29/11 Metabolism Chapter 5 All of the reactions in the body that require energy transfer. Can be divided into: Cell Respiration and Metabolism Anabolism: requires the input of energy to synthesize large

More information

Integration of Metabolism

Integration of Metabolism Integration of Metabolism Metabolism is a continuous process. Thousands of reactions occur simultaneously in order to maintain homeostasis. It ensures a supply of fuel, to tissues at all times, in fed

More information

BIOCHEMISTRY #12 BY: AMMAR AL-HABAHBEH فيصل الخطيب. October 11, 2012

BIOCHEMISTRY #12 BY: AMMAR AL-HABAHBEH فيصل الخطيب. October 11, 2012 BIOCHEMISTRY #12 د. فيصل الخطيب October 11, 2012 BY: AMMAR AL-HABAHBEH The Beginning Degradation and synthesis does not occur in a single step but in several steps where sequence of steps converts starting

More information

Biol 219 Lec 7 Fall 2016

Biol 219 Lec 7 Fall 2016 Cellular Respiration: Harvesting Energy to form ATP Cellular Respiration and Metabolism Glucose ATP Pyruvate Lactate Acetyl CoA NAD + Introducing The Players primary substrate for cellular respiration

More information

III. 6. Test. Respiració cel lular

III. 6. Test. Respiració cel lular III. 6. Test. Respiració cel lular Chapter Questions 1) What is the term for metabolic pathways that release stored energy by breaking down complex molecules? A) anabolic pathways B) catabolic pathways

More information

Gluconeogenesis. Gluconeogenesis / TCA 11/12/2009. Free energy changes in glycolysis 11/13/2009

Gluconeogenesis. Gluconeogenesis / TCA 11/12/2009. Free energy changes in glycolysis 11/13/2009 Gluconeogenesis Gluconeogenesis / TCA 11/12/2009 Gluconeogenesis is the process whereby precursors such as lactate, pyruvate, glycerol, and amino acids are converted to glucose. Fasting requires all the

More information

3/1/2011. Enzymes. Enzymes and Activation Energy. Enzymes Enzyme Structure and Action. Chapter 4 Outline. Enzymes

3/1/2011. Enzymes. Enzymes and Activation Energy. Enzymes Enzyme Structure and Action. Chapter 4 Outline. Enzymes Free content 3/1/2011 Chapter 4 Outline Enzymes as catalysts Control of enzyme activity Bioenergetics Enzymes 4-2 4-3 Enzymes Enzymes - function as biological catalysts permit reactions to occur rapidly

More information

CHE 242 Exam 3 Practice Questions

CHE 242 Exam 3 Practice Questions CHE 242 Exam 3 Practice Questions Glucose metabolism 1. Below is depicted glucose catabolism. Indicate on the pathways the following: A) which reaction(s) of glycolysis are irreversible B) where energy

More information

INTRODUCTORY BIOCHEMISTRY. BI 28 Second Midterm Examination April 3, 2007

INTRODUCTORY BIOCHEMISTRY. BI 28 Second Midterm Examination April 3, 2007 INTRODUCTORY BIOCHEMISTRY BI 28 Second Midterm Examination April 3, 2007 Name SIS # Make sure that your name or SIS # is on every page. This is the only way we have of matching you with your exam after

More information

Dr. Mohnen s notes on GLUCONEOGENESIS

Dr. Mohnen s notes on GLUCONEOGENESIS Dr. Mohnen s notes on GLUCONEOGENESIS Note: Even though we did not get through all of these slides during lecture, I advise you to look them all through because they will be helpful to you as you learn

More information

Krebs Cycle. Dr. Leena S Barhate

Krebs Cycle. Dr. Leena S Barhate Krebs Cycle Dr. Leena S Barhate Acknowledgement www.worldofteaching.com www2.fiu.edu/~bch3033/handouts/lh6ch16t CA.ppt www.uh.edu/sibs/faculty/glegge/lecture_23a. ppt cronus.uwindsor.ca/units/biochem/web/bioch

More information

CHEM121 Unit 2: Carbohydrate Metabolism

CHEM121 Unit 2: Carbohydrate Metabolism CHEM121 Unit 2: Carbohydrate Metabolism Lecture 3 At the end of the lecture, students should be able to: Define metabolism Discuss the structure and function of ATP in metabolism Discuss glycolysis in

More information

CHY2026: General Biochemistry UNIT 7& 8: CARBOHYDRATE METABOLISM

CHY2026: General Biochemistry UNIT 7& 8: CARBOHYDRATE METABOLISM CHY2026: General Biochemistry UNIT 7& 8: CARBOHYDRATE METABOLISM Metabolism Bioenergetics is the transfer and utilization of energy in biological systems The direction and extent to which a chemical reaction

More information

Krebs cycle Energy Petr Tůma Eva Samcová

Krebs cycle Energy Petr Tůma Eva Samcová Krebs cycle Energy - 215 Petr Tůma Eva Samcová Overview of Citric Acid Cycle Key Concepts The citric acid cycle (Krebs cycle) is a multistep catalytic process that converts acetyl groups derived from carbohydrates,

More information

Chapter 9: Cellular Respiration: Harvesting Chemical Energy

Chapter 9: Cellular Respiration: Harvesting Chemical Energy AP Biology Reading Guide Name: Date: Period Chapter 9: Cellular Respiration: Harvesting Chemical Energy Overview: Before getting involved with the details of cellular respiration and photosynthesis, take

More information

Marah Bitar. Faisal Nimri ... Nafeth Abu Tarboosh

Marah Bitar. Faisal Nimri ... Nafeth Abu Tarboosh 8 Marah Bitar Faisal Nimri... Nafeth Abu Tarboosh Summary of the 8 steps of citric acid cycle Step 1. Acetyl CoA joins with a four-carbon molecule, oxaloacetate, releasing the CoA group and forming a six-carbon

More information

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation Chapter 9 LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Cellular Respiration and Fermentation

More information

Objective: You will be able to construct an explanation for how each phase of respiration captures and stores free energy.

Objective: You will be able to construct an explanation for how each phase of respiration captures and stores free energy. Objective: You will be able to construct an explanation for how each phase of respiration captures and stores free energy. Do Now: Compare and contrast the three black equations below ADP + P + Energy

More information

Lecture'22:'April'30,'2013 Ch.%29:%Metabolism,%catabolism,%anabolism Metabolic%energy%&%ATP%Coupling Glycolysis%and%the%Link%ReacDon

Lecture'22:'April'30,'2013 Ch.%29:%Metabolism,%catabolism,%anabolism Metabolic%energy%&%ATP%Coupling Glycolysis%and%the%Link%ReacDon CM'224' 'rganic'chemistry'ii pring'2013,'des'laines' 'rof.'chad'landrie 2 2 2 Gº' = -7.3 + + + Lecture'22:'April'30,'2013 Ch.%29:%Metabolism,%catabolism,%anabolism Metabolic%energy%&%AT%Coupling Glycolysis%and%the%Link%ReacDon

More information

CELLULAR RESPIRATION SUMMARY EQUATION. C 6 H 12 O 6 + O 2 6CO2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION

CELLULAR RESPIRATION SUMMARY EQUATION. C 6 H 12 O 6 + O 2 6CO2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION CELLULAR RESPIRATION SUMMARY EQUATION C 6 H 12 O 6 + O 2 6CO2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION Oxidation: partial or complete loss of electrons Reduction: partial or complete gain of electrons

More information

Respiration. Respiration. Respiration. How Cells Harvest Energy. Chapter 7

Respiration. Respiration. Respiration. How Cells Harvest Energy. Chapter 7 How Cells Harvest Energy Chapter 7 Organisms can be classified based on how they obtain energy: autotrophs: are able to produce their own organic molecules through photosynthesis heterotrophs: live on

More information

Cellular Respiration

Cellular Respiration Cellular I can describe cellular respiration Cellular respiration is a series of metabolic pathways releasing energy from a foodstuff e.g. glucose. This yields energy in the form of ATP adenosine P i P

More information