Allometry. The Problem of Size & Scaling. Get it??? A LLAMA TREE

Size: px
Start display at page:

Download "Allometry. The Problem of Size & Scaling. Get it??? A LLAMA TREE"

Transcription

1 Allometry The Problem of Size & Scaling Get it??? A LLAMA TREE

2 Allometry How does body size affect physiological function? 8,000 species of birds 8,000 species of mammals 20,000 species of fish >2,000 species of reptiles/amphibians Great Differences in Size

3 Allometry Mammals: Etruscan Shew (2.5g) Blue Whale (120 tons)

4 Allometry Birds: Humming bird (2.0g) Ostrich (100kg)

5 Allometry Can we study one end of the continuum and know something about the other end? Are there structural and/or functional consequences of changes in size scale in similar organisms?

6 Metabolic Rate & Body Size Animal Body Mass (kg) Total VO 2 (LO 2 /hr) Shrew Dog Elephant

7 Metabolic Rate & Body Size Semi-Log Plot y = a*mass b ELEPHANT VO 2 SHREW DOG Log Body Mass

8 Metabolic Rate & Body Size y = a*mass b y = physiological variable of interest a = intercept b = mass exponent Tells us something about the shape of the relationship (slope of line).

9 Metabolic Rate & Body Size To transform everything into log-log: Log y = Log a + b(log mass)

10 Metabolic Rate & Body Size Log-Log Plot y = a*mass b ELEPHANT Log VO 2 DOG SHREW Log Body Mass

11 Metabolic Rate & Body Size Fundamental debate as to what the scaling exponent b is. Originally thought to be 2/3 rds Max Rubner 1880s In 1932 Max Kliber concluded BMR scaled to the 3/4 ths power (b=3/4).

12 Exponent b y = a*mass b If b is + : physiological variable with body mass If b is - : physiological variable with body mass If b is 0: physiological variable is unaffected by scale

13 Exponent b Physiological Variable (b = 0) Log Body Mass

14 Metabolic Rate & Body Size Kliber Mouse to Elephant Curve Log VO 2 /HR b= 3/4 Log Body Mass

15 Mass-Specific Relationships Animal Body Mass (kg) Total VO 2 (LO 2 /hr) VO 2 /mass (LO 2 /hr*kg) Shrew Dog Elephant What seems obvious at the whole animal level gets turned upside down at the mass specific tissue level!

16 Mass-Specific Relationships Mass specific metabolic rate = looking at tissue level metabolism VO 2 /mass

17 Mass-Specific Relationships SHREW Mass Specific MR LO 2 /HR*kg DOG ELEPHANT Log Body Mass

18 Mass-Specific Relationships SHREW Log Mass Specific MR LO 2 /HR*kg DOG ELEPHANT Log Body Mass

19 Mass-Specific Relationships Therefore, we see that increasing body size results in a decrease in mass specific metabolic rate. WHOLE ANIMAL Log VO2 MASS SPECIFIC Log Body Mass

20 What does that mean??

21 Metabolic Rate Across Taxa What about differences between taxonomic groups?

22 Metabolic Rate Across Taxa Log MR Similarly sized endotherms will always have higher BMRs than their ectotherm counterparts. Log Body Mass

23 Metabolic Rate Across Taxa Log BMR Log Body Mass

24 Metabolic Rate Across Taxa BMR for marine mammals is 2x that of similarly sized terrestrial mammals Marsupials have a BMR 30% lower than you would predict for a terrestrial mammal.

25 Metabolic Pathways, Macromolecules, & High Energy Molecules

26 Energy Storage Energy can be stored in different forms: Gradients Chemical bonds

27 Gradients Molecules tend to disperse or diffuse randomly within available space.

28 Diffusion 2 aspects of diffusion govern properties of many biological systems: 1. Leads to random distribution of molecules, but rates can be slow. 2. Source of energy that cells can utilize.

29 Diffusion Gradients Biological systems can invest energy to move molecules out of random distribution, resulting in a diffusion gradient. This gradient is a form of energy storage that the cell can use for other purposes.

30 Diffusion Gradients Chemical Gradients Electrical Gradients Electrochemical Gradients

31 FIGURE 2.2

32 Chemical Bonds Most biologically available energy is stored in bonds Covalent bonds = Strong Bonds. Hold individual atoms together and form molecules by sharing electrons Non-Covalent bonds = Weak Bonds. Organize molecules into 3D structures.

33 Energy Acquisition How are organisms able to utilize the energy stored in chemical bonds? How are they able to convert the chemical energy stored in food into utilizable energy?

34 Metabolic Pathways Eat Food Fragment Enter Cells Oxidized thru Biochemical Pathways Energy, Heat, CO2, and H2O

35 Metabolic Pathways Metabolic pathway: Series of consecutive enzymatic reactions that catalyze the conversion of substrates to products Metabolic flux: flow through a pathway

36 Metabolic Pathways Metabolic pathways can be: Synthetic (Anabolic) Degradative (Catabolic) Combination (Amphibolic) Energy metabolism revolves around the production of ATP and other energy-rich molecules.

37 Enzymes Enzymes = biological catalysts that aid in the conversion of substrate to product. Most are composed of protein Animals control the inner workings of cells through the use of enzymes, which interconvert macromolecules to create building blocks and control the flow of energy

38 Enzymes 3 Important properties of enzymes: Active at very low concentrations within cell Speed up the rate of reaction without being altered in the process Do not change the nature of the products

39

40 Enzymes Enzymes aid in the transfer energy from nutrients to molecules that function as energy stores. These energy rich molecules act as substrate and product in hundreds of different metabolic reactions.

41 Reducing Equivalents Cells store energy in the form of reducing equivalents to drive metabolic processes: NAD + : Nicotinamide adenine dinucleotide NADP + : Nicotinamide adenine dinucleotide phosphate

42 Redox Reactions REDduction-OXidation reactions Transfer of electrons Oxidation loss of electrons increase in oxidation state Reduction gain of electrons decrease in oxidation state

43 Redox Reactions NAD + is an oxidizing agent. It accepts electrons from other molecules and becomes reduced. NAD + NADH NADH can then be used as a reducing agent to donate electrons.

44 Reducing Equivalents In an enzymatic reaction, electrons are transferred to NAD + or NADP + Reduced NADH or NADPH can be used to drive other reactions.

45 Redox Status Measure of how much reducing energy is stored to drive metabolic reactions Redox Status = [NADH] [NAD + ] High Ratio = cell rich in reducing energy Low Ratio = call poor in reducing energy

46 Reducing Equivalents Why are they important? Reducing equivalents are used in metabolic pathways in order to produce high energy molecules.

47 High Energy Molecules High energy molecules are used as energy currency by cells: Adenosine Triphosphate (ATP) Phosphocreatine (PCR) Acetyl CoA

48 High Energy Molecules

49 Energy Currency The storage of high energy phosphates and controlled release of energy is the mechanism behind metabolism. ATP = The universal source of immediate energy in cellular metabolism.

50 Adenosine Triphosphate (ATP)

51 Adenosine Triphosphate (ATP) Each of the high energy bonds provided the same amount of energy. ATP ADP AMP Energy is not stored in the bond, but is released when the bond is broken.

52 Adenosine Triphosphate (ATP)

53 Phosphocreatine (PCR) PCR is used when ATP demand temporarily out strips the capacity to produce ATP. Hummingbirds, greyhounds, and cheetahs have high levels of PCR

54 Phosphocreatine (PCR) Can diffuse easily into areas needing energy. When ATP is low, the energy stored in PCR is transferred to ADP or AMP.

55 ADP ATP Cycle Locomotion, Heart Fxn, Biosynthesis, Growth, etc. ATP ADP Oxidation of Fuel

56 Energy Exchange ATP-ADP cycle is the fundamental mode of energy exchange in biological systems. Recycling is a cyclic process fueled by the food you eat and oxygen you consume.

57 Diving Marine Mammals ATP ADP AMP PCR FAST AND CYCLIC PROCESS Levels Back to Normal

58 Types of Fuel Macromolecules: Proteins Carbohydrates Lipids (fatty acids)

59 Proteins Form exoskeletons, extracellular matrices, & enzymes Building blocks = amino acids (20) Long strands of amino acids are folded into 3D conformations. The structure of proteins are stabilized by many weak bonds.

60 Proteins

61 Proteins Environmental conditions such as temperature can alter weak bonds and disrupt 3D shape. When proteins begin to unfold, or denature, they are no longer capable of performing their function. Negatively impacts enzymatic function and metabolism.

62 Carbohydrates Glucose = C 6 H 12 O 6 Most common carbohydrate in animal diets. Versatile: cells can break it down for energy, store it for later consumption, or use it to build other needed carbohydrates.

63 Carbohydrates Polysaccharides = larger polymers of carbohydrates that serve in energy storage and structure. Glycogen = polysaccharide that acts as an internal energy store. Broken down for use in glycolysis Important for endurance

64 Glycogen Stores

65 Lipids Hydrophobic Organic Molecules: Fatty Acids Triglycerides Phospholipids Steroids

66 Fatty Acids The mammalian heart derives more than 70% of its energy from fatty acids. Fatty acids are long chains of carbon atoms that end in a carboxyl group. They can be 2-30 carbons long, and are either saturated or unsaturated.

67 Fatty Acids Saturated F.A. = no double bonds. Unsaturated F.A. = 1 double bonds.

68 Fatty Acids Fatty Acids are oxidized in the mitochondria. Pairs of carbons are sequentially cut off the ends of fatty acid chains in the form of Acetyl CoA. Cycle repeats itself until the entire fatty acid chain is broken down.

69 Fatty Acids The most abundant energy source available to the muscle fiber is fat. The breakdown of fat to yield ATP is referred to as lipolysis. The rate at which lipolysis occurs is the limiting factor in obtaining ATP.

70 Fatty Acids Lipolysis is responsible for resting muscle activity. Contribution to overall muscle energy supply decreases as contraction intensity increases. Once glycogen depletion occurs, exercise intensity will be reduced dramatically. Hitting The Wall

71 % Fuel Type Sprinter v. Marathoner 60% FAT CHO Exercise Intensity 60-75%

72 Biochemical Processes Biochemical pathways can be either: AEROBIC ANAEROBIC

73 Aerobic and Anearobic Metabolism 2 Major Pathways: Glycolysis (anaerobic) takes place in the cytosol of a cell TCA / Krebs Cycle (aerobic) takes place in the mitochondrial matrix followed by oxidation by the electron transport system (ETS) in the inner mitochondrial membrane.

74 Glycolysis Low efficiency high velocity pathway. It is the pathways that breaks down glucose. Vital source of ATP because it can proceed in the absence of oxygen (anoxia) and can produce ATP rapidly, though for brief periods.

75

76 Glycolysis Glucose + 2ADP + 2NAD + 2ATP + 2 Pyruvate + 2 NADH + 2 H + Negative feedback regulation: ATP levels = ATP production

77 Glycolysis Within the cytoplasm (no oxygen present): pyruvate + NADH + H + lactate + NAD + Regenerates NAD + for glycolysis Lactate is slightly toxic. It can be tolerated for short periods by being retained in tissues or exported into extracellular fluid. Must me metabolized and removed from system. Associated with muscle fatigue in athletes.

78 Glycolysis (anaerobic) So why bother? FAST! No Oxygen Needed! Environmental hypoxia: Environmental O2 levels fall below critical levels for prolonged periods. Functional anoxia: Tissue O2 demands outstrip O2 delivery from blood (ex. Exercise/diving animals).

79 Glycolysis When oxygen is present, pyruvate is converted to Acetyl CoA and used in mitochondrial metabolism.

80 Mitochondrial Metabolism Aerobic uses oxygen Main point of entry for mitochondrial energy producing pathway is Acetyl CoA. Acetyl CoA: Produced in many pathways.

81 Mitochondrial Metabolism 2 Main Processes: TCA / Krebs Cycle Occurs in mitochondrial matrix Produces reducing equivalents used in ETS Oxidative Phosphorylation Occurs in Inner mitochondrial membrane Produces ATP

82 Mitochondrial Metabolism

83 TCA / Krebs Cycle Acetyl CoA is oxidized to form reducing equivalents: NADH and FADH 2 Provides fuel for mitochondrial ATP production.

84 TCA / Krebs Cycle

85 TCA / Krebs Cycle For every Acetly CoA that enters cycle: 2 CO 2 3 NADH 1 FADH 2 1 GTP are produced.

86 Oxidative Phosphorylation Electron Transport System (ETS) Phosphorylation

87 Electron Transport System (ETS) Mitochondria utilize reducing equivalents in ETS to aide in ATP production. ETS maintains an electrochemical gradient found in the inner mitochondrial membrane and utilizes it to drive ATP synthesis.

88 Electron Transport System (ETS)

89 Electron Transport System (ETS) Break down of NADH and FADH 2 produces energy used to pump H + into outer compartment of the mitochondria

90 Oxidative Phosphorilation ATP is generated as H+ moves down its concentration gradient through a special enzyme called ATP synthase

91 Oxidative Phosphorylation

92 Net Final Score Oxidative Phosphorylation= 36 mol ATP / mol Glucose Efficient but slow Glycolysis = 2 mol ATP / mol Glucose Inefficient but fast

93 Energy & Metabolism Cells must produce ATP at rates that match ATP demand. There will be different fuels and pathways utilized depending on the activity state of an individual

94 Energy System v. Running Speed The primary energy source for sprinting distances up to 400 m is PCr. From 400 m to 1,500 m, anaerobic glycolysis is the primary energy source. Distances longer than 1,500 m, athletes rely primarily on aerobic metabolism.

95

96 Speed and Distance With increasing distances, average speeds decline. The average speed for the marathon world record is 12.1 mph, which is 55% of the world record sprinting speed. Remarkable since the marathon is more than 200 times the length of a 200 m race.

97

Chapter 5. Microbial Metabolism

Chapter 5. Microbial Metabolism Chapter 5 Microbial Metabolism Metabolism Collection of controlled biochemical reactions that take place within a microbe Ultimate function of metabolism is to reproduce the organism Metabolic Processes

More information

How Cells Release Chemical Energy. Chapter 7

How Cells Release Chemical Energy. Chapter 7 How Cells Release Chemical Energy Chapter 7 7.1 Overview of Carbohydrate Breakdown Pathways All organisms (including photoautotrophs) convert chemical energy of organic compounds to chemical energy of

More information

Lecture Sixteen: METABOLIC ENERGY: [Based on GENERATION Chapter 15

Lecture Sixteen: METABOLIC ENERGY: [Based on GENERATION Chapter 15 Lecture Sixteen: METABOLIC ENERGY: [Based on GENERATION Chapter 15 AND STORAGE Berg, (Figures in red are for the 7th Edition) Tymoczko (Figures in Blue are for the 8th Edition) & Stryer] Two major questions

More information

Ch 9: Cellular Respiration

Ch 9: Cellular Respiration Ch 9: Cellular Respiration Cellular Respiration An overview Exergonic reactions and catabolic pathway Energy stored in bonds of food molecules is transferred to ATP Cellular respiration provides the energy

More information

Higher Biology. Unit 2: Metabolism and Survival Topic 2: Respiration. Page 1 of 25

Higher Biology. Unit 2: Metabolism and Survival Topic 2: Respiration. Page 1 of 25 Higher Biology Unit 2: Metabolism and Survival Topic 2: Respiration Page 1 of 25 Sub Topic: Respiration I can state that: All living cells carry out respiration. ATP is the energy currency of the cell

More information

Cellular Respiration

Cellular Respiration Cellular Respiration C 6 H 12 O 6 + 6O 2 -----> 6CO 2 + 6H 2 0 + energy (heat and ATP) 1. Energy Capacity to move or change matter Forms of energy are important to life include Chemical, radiant (heat

More information

Chapter 9: Cellular Respiration

Chapter 9: Cellular Respiration Chapter 9: Cellular Respiration To perform their many tasks, living cells require energy from outside sources. Energy stored in food utimately comes from the sun. Photosynthesis makes the raw materials

More information

BIO16 Mapua Institute of Technology

BIO16 Mapua Institute of Technology BIO16 Mapua Institute of Technology The Marathon If somebody challenged you to a run a race, how should you prepare to win? 1. Practice 2. Eat the right foods 3. Drink the right liquids Energy All living

More information

Biol 219 Lec 7 Fall 2016

Biol 219 Lec 7 Fall 2016 Cellular Respiration: Harvesting Energy to form ATP Cellular Respiration and Metabolism Glucose ATP Pyruvate Lactate Acetyl CoA NAD + Introducing The Players primary substrate for cellular respiration

More information

Lesson Overview. Cellular Respiration: An Overview. 9.2 process of cell respiration

Lesson Overview. Cellular Respiration: An Overview. 9.2 process of cell respiration 9.2 process of cell respiration Glycolysis During glycolysis, glucose is broken down into 2 molecules of the 3-carbon molecule pyruvic acid. Pyruvic acid is a reactant in the Krebs cycle. ATP and NADH

More information

3.7.1 Define cell respiration [Cell respiration is the controlled release of energy from organic compounds in cells to form ATP]

3.7.1 Define cell respiration [Cell respiration is the controlled release of energy from organic compounds in cells to form ATP] 3.7 Cell respiration ( Chapter 9 in Campbell's book) 3.7.1 Define cell respiration [Cell respiration is the controlled release of energy from organic compounds in cells to form ATP] Organic compounds store

More information

Enzymes and Metabolism

Enzymes and Metabolism PowerPoint Lecture Slides prepared by Vince Austin, University of Kentucky Enzymes and Metabolism Human Anatomy & Physiology, Sixth Edition Elaine N. Marieb 1 Protein Macromolecules composed of combinations

More information

III. 6. Test. Respiració cel lular

III. 6. Test. Respiració cel lular III. 6. Test. Respiració cel lular Chapter Questions 1) What is the term for metabolic pathways that release stored energy by breaking down complex molecules? A) anabolic pathways B) catabolic pathways

More information

Cellular Respiration

Cellular Respiration Cellular Respiration 1. To perform cell work, cells require energy. a. A cell does three main kinds of work: i. Mechanical work, such as the beating of cilia, contraction of muscle cells, and movement

More information

In glycolysis, glucose is converted to pyruvate. If the pyruvate is reduced to lactate, the pathway does not require O 2 and is called anaerobic

In glycolysis, glucose is converted to pyruvate. If the pyruvate is reduced to lactate, the pathway does not require O 2 and is called anaerobic Glycolysis 1 In glycolysis, glucose is converted to pyruvate. If the pyruvate is reduced to lactate, the pathway does not require O 2 and is called anaerobic glycolysis. If this pyruvate is converted instead

More information

4. Which step shows a split of one molecule into two smaller molecules? a. 2. d. 5

4. Which step shows a split of one molecule into two smaller molecules? a. 2. d. 5 1. Which of the following statements about NAD + is false? a. NAD + is reduced to NADH during both glycolysis and the citric acid cycle. b. NAD + has more chemical energy than NADH. c. NAD + is reduced

More information

Energy Transformation: Cellular Respiration Outline 1. Sources of cellular ATP 2. Turning chemical energy of covalent bonds between C-C into energy

Energy Transformation: Cellular Respiration Outline 1. Sources of cellular ATP 2. Turning chemical energy of covalent bonds between C-C into energy Energy Transformation: Cellular Respiration Outline 1. Sources of cellular ATP 2. Turning chemical energy of covalent bonds between C-C into energy for cellular work (ATP) 3. Importance of electrons and

More information

Cellular Pathways That Harvest Chemical Energy. Cellular Pathways That Harvest Chemical Energy. Cellular Pathways In General

Cellular Pathways That Harvest Chemical Energy. Cellular Pathways That Harvest Chemical Energy. Cellular Pathways In General Cellular Pathways That Harvest Chemical Energy A. Obtaining Energy and Electrons from Glucose Lecture Series 12 Cellular Pathways That Harvest Chemical Energy B. An Overview: Releasing Energy from Glucose

More information

How Cells Harvest Chemical Energy

How Cells Harvest Chemical Energy How Cells Harvest Chemical Energy Global Athlete Outreach Program US CytoThesis Systems Medicine Center www.cytothesis.us US OncoTherapy Systems BioMedicine Group CytoThesis Bioengineering Research Group

More information

Cellular Respiration. Cellular Respiration. C 6 H 12 O 6 + 6O > 6CO 2 + 6H energy. Heat + ATP. You need to know this!

Cellular Respiration. Cellular Respiration. C 6 H 12 O 6 + 6O > 6CO 2 + 6H energy. Heat + ATP. You need to know this! Cellular Respiration LISA Biology Cellular Respiration C 6 H 12 O 6 + 6O 2 - - - - - > 6CO 2 + 6H 2 0 + energy You need to know this! Heat + ATP 1 Did that equation look familiar? * The equation for cellular

More information

Chemical Energy. Valencia College

Chemical Energy. Valencia College 9 Pathways that Harvest Chemical Energy Valencia College 9 Pathways that Harvest Chemical Energy Chapter objectives: How Does Glucose Oxidation Release Chemical Energy? What Are the Aerobic Pathways of

More information

cell respiration bi Biology Junction Everything you need in Biology Cellular Respiration All Materials Cmassengale

cell respiration bi Biology Junction Everything you need in Biology Cellular Respiration All Materials Cmassengale Biology Junction Everything you need in Biology cell respiration bi Cellular Respiration All Materials Cmassengale C6H12O6 + 6O2 > 6CO2 + 6H20 + energy (heat and ATP) Energy http://www.biologyjunction.com/cell_respiration_bi.htm

More information

Introduction. Living is work. To perform their many tasks, cells must bring in energy from outside sources.

Introduction. Living is work. To perform their many tasks, cells must bring in energy from outside sources. Introduction Living is work. To perform their many tasks, cells must bring in energy from outside sources. In most ecosystems, energy enters as sunlight. Light energy trapped in organic molecules is available

More information

Chapter 9 Notes. Cellular Respiration and Fermentation

Chapter 9 Notes. Cellular Respiration and Fermentation Chapter 9 Notes Cellular Respiration and Fermentation Objectives Distinguish between fermentation and anaerobic respiration. Name the three stages of cellular respiration and state the region of the cell

More information

9.2 The Process of Cellular Respiration

9.2 The Process of Cellular Respiration 9.2 The Process of Cellular Respiration Oxygen Carbon 2 2 Dioxide 34 Water Glycolysis Glycolysis is the first stage of cellular respiration. During glycolysis, glucose is broken down into 2 molecules of

More information

A cell has enough ATP to last for about three seconds.

A cell has enough ATP to last for about three seconds. Energy Transformation: Cellular Respiration Outline 1. Energy and carbon sources in living cells 2. Sources of cellular ATP 3. Turning chemical energy of covalent bonds between C-C into energy for cellular

More information

Unit 2: Metabolic Processes

Unit 2: Metabolic Processes How is energy obtained biologically? Recall: Red Ox Reactions Unit 2: Metabolic Processes Oxidation Is the chief mechanism by which chemical potential energy is released This energy comes from reduced

More information

Chapter 7 Cellular Respiration and Fermentation*

Chapter 7 Cellular Respiration and Fermentation* Chapter 7 Cellular Respiration and Fermentation* *Lecture notes are to be used as a study guide only and do not represent the comprehensive information you will need to know for the exams. Life Is Work

More information

Name Class Date. 1. Cellular respiration is the process by which the of "food"

Name Class Date. 1. Cellular respiration is the process by which the of food Name Class Date Cell Respiration Introduction Cellular respiration is the process by which the chemical energy of "food" molecules is released and partially captured in the form of ATP. Carbohydrates,

More information

Bioenergetics. Chapter 3. Objectives. Objectives. Introduction. Photosynthesis. Energy Forms

Bioenergetics. Chapter 3. Objectives. Objectives. Introduction. Photosynthesis. Energy Forms Objectives Chapter 3 Bioenergetics Discuss the function of cell membrane, nucleus, & mitochondria Define: endergonic, exergonic, coupled reactions & bioenergetics Describe how enzymes work Discuss nutrients

More information

Introduction to Carbohydrate metabolism

Introduction to Carbohydrate metabolism Introduction to Carbohydrate metabolism Some metabolic pathways of carbohydrates 1- Glycolysis 2- Krebs cycle 3- Glycogenesis 4- Glycogenolysis 5- Glyconeogenesis - Pentose Phosphate Pathway (PPP) - Curi

More information

g) Cellular Respiration Higher Human Biology

g) Cellular Respiration Higher Human Biology g) Cellular Respiration Higher Human Biology What can you remember about respiration? 1. What is respiration? 2. What are the raw materials? 3. What are the products? 4. Where does it occur? 5. Why does

More information

3.7 CELLULAR RESPIRATION. How are these two images related?

3.7 CELLULAR RESPIRATION. How are these two images related? 3.7 CELLULAR RESPIRATION How are these two images related? CELLULAR RESPIRATION Cellular respiration is the process whereby the body converts the energy that we get from food (glucose) into an energy form

More information

MULTIPLE CHOICE QUESTIONS

MULTIPLE CHOICE QUESTIONS MULTIPLE CHOICE QUESTIONS 1. Which of the following statements concerning anabolic reactions is FALSE? A. They are generally endergonic. B. They usually require ATP. C. They are part of metabolism. D.

More information

How Cells Harvest Energy. Chapter 7. Respiration

How Cells Harvest Energy. Chapter 7. Respiration How Cells Harvest Energy Chapter 7 Respiration Organisms classified on how they obtain energy: autotrophs: produce their own organic molecules through photosynthesis heterotrophs: live on organic compounds

More information

Chapter Seven (Cellular Respiration)

Chapter Seven (Cellular Respiration) Chapter Seven (Cellular Respiration) 1 SECTION ONE: GLYCOLYSIS AND FERMENTATION HARVESTING CHEMICAL ENERGY Cellular respiration is the process in which cells make adenosine triphosphate (ATP) by breaking

More information

2/4/17. Cellular Metabolism. Metabolism. Cellular Metabolism. Consists of all of the chemical reactions that take place in a cell.

2/4/17. Cellular Metabolism. Metabolism. Cellular Metabolism. Consists of all of the chemical reactions that take place in a cell. Metabolism Cellular Metabolism Consists of all of the chemical reactions that take place in a cell. Can be reactions that break things down. (Catabolism) Or reactions that build things up. (Anabolism)

More information

Metabolism. Chapter 5. Catabolism Drives Anabolism 8/29/11. Complete Catabolism of Glucose

Metabolism. Chapter 5. Catabolism Drives Anabolism 8/29/11. Complete Catabolism of Glucose 8/29/11 Metabolism Chapter 5 All of the reactions in the body that require energy transfer. Can be divided into: Cell Respiration and Metabolism Anabolism: requires the input of energy to synthesize large

More information

BY: RASAQ NURUDEEN OLAJIDE

BY: RASAQ NURUDEEN OLAJIDE BY: RASAQ NURUDEEN OLAJIDE LECTURE CONTENT INTRODUCTION CITRIC ACID CYCLE (T.C.A) PRODUCTION OF ACETYL CoA REACTIONS OF THE CITIRC ACID CYCLE THE AMPHIBOLIC NATURE OF THE T.C.A CYCLE THE GLYOXYLATE CYCLE

More information

How Did Energy-Releasing Pathways Evolve? (cont d.)

How Did Energy-Releasing Pathways Evolve? (cont d.) How Did Energy-Releasing Pathways Evolve? (cont d.) 7.1 How Do Cells Access the Chemical Energy in Sugars? In order to use the energy stored in sugars, cells must first transfer it to ATP The energy transfer

More information

Introduction to Metabolism Cell Structure and Function

Introduction to Metabolism Cell Structure and Function Introduction to Metabolism Cell Structure and Function Cells can be divided into two primary types prokaryotes - Almost all prokaryotes are bacteria eukaryotes - Eukaryotes include all cells of multicellular

More information

Cellular Metabolism 6/20/2015. Metabolism. Summary of Cellular Respiration. Consists of all the chemical reactions that take place in a cell!

Cellular Metabolism 6/20/2015. Metabolism. Summary of Cellular Respiration. Consists of all the chemical reactions that take place in a cell! Cellular Metabolism Biology 105 Lecture 6 Chapter 3 (pages 56-61) Metabolism Consists of all the chemical reactions that take place in a cell! Cellular metabolism: Aerobic cellular respiration requires

More information

Reading Assignments. A. Energy and Energy Conversions. Lecture Series 9 Cellular Pathways That Harvest Chemical Energy. gasoline) or elevated mass.

Reading Assignments. A. Energy and Energy Conversions. Lecture Series 9 Cellular Pathways That Harvest Chemical Energy. gasoline) or elevated mass. Lecture Series 9 Cellular Pathways That Harvest Chemical Energy Reading Assignments Review Chapter 3 Energy, Catalysis, & Biosynthesis Read Chapter 13 How Cells obtain Energy from Food Read Chapter 14

More information

WHY IS THIS IMPORTANT?

WHY IS THIS IMPORTANT? CHAPTER 3 ESSENTIALS OF METABOLISM WHY IS THIS IMPORTANT? It is important to have a basic understanding of metabolism because it governs the survival and growth of microorganisms The growth of microorganisms

More information

What is Respiration? The process of respiration is where organisms convert chemical energy into cellular energy, which is known as ATP. Adenine Ribose P P P Cellular Respiration high energy sugar low energy

More information

Structure of the Mitochondrion. Cell Respiration. Cellular Respiration. Catabolic Pathways. Photosynthesis vs. Cell Respiration ATP 10/14/2014

Structure of the Mitochondrion. Cell Respiration. Cellular Respiration. Catabolic Pathways. Photosynthesis vs. Cell Respiration ATP 10/14/2014 Structure of the Mitochondrion Cellular Respiration Chapter 9 Pgs. 163 183 Enclosed by a double membrane Outer membrane is smooth Inner, or cristae, membrane is folded - this divides the mitochondrion

More information

Foundations in Microbiology Seventh Edition

Foundations in Microbiology Seventh Edition Lecture PowerPoint to accompany Foundations in Microbiology Seventh Edition Talaro Chapter 8 An Introduction to Microbial Metabolism Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction

More information

Class XI Chapter 14 Respiration in Plants Biology. 1. It is a biochemical process. 1. It is a physiochemical process.

Class XI Chapter 14 Respiration in Plants Biology. 1. It is a biochemical process. 1. It is a physiochemical process. Question 1: Differentiate between (a) Respiration and Combustion (b) Glycolysis and Krebs cycle (c) Aerobic respiration and Fermentation (a) Respiration and combustion Respiration Combustion 1. It is a

More information

Cellular Metabolism 9/24/2013. Metabolism. Cellular Metabolism. Consists of all the chemical reactions that take place in a cell!

Cellular Metabolism 9/24/2013. Metabolism. Cellular Metabolism. Consists of all the chemical reactions that take place in a cell! Cellular Metabolism Biology 105 Lecture 6 Chapter 3 (pages 56-61) Metabolism Consists of all the chemical reactions that take place in a cell! Cellular Metabolism Aerobic cellular respiration requires

More information

How Cells Release Chemical Energy. Chapter 8

How Cells Release Chemical Energy. Chapter 8 How Cells Release Chemical Energy Chapter 8 Impacts, Issues: When Mitochondria Spin Their Wheels More than forty disorders related to defective mitochondria are known (such as Friedreich s ataxia); many

More information

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 9 Cellular Respiration and Fermentation

More information

BIOLOGY - CLUTCH CH.9 - RESPIRATION.

BIOLOGY - CLUTCH CH.9 - RESPIRATION. !! www.clutchprep.com CONCEPT: REDOX REACTIONS Redox reaction a chemical reaction that involves the transfer of electrons from one atom to another Oxidation loss of electrons Reduction gain of electrons

More information

Respiration. Respiration. How Cells Harvest Energy. Chapter 7

Respiration. Respiration. How Cells Harvest Energy. Chapter 7 How Cells Harvest Energy Chapter 7 Respiration Organisms can be classified based on how they obtain energy: autotrophs: are able to produce their own organic molecules through photosynthesis heterotrophs:

More information

Cellular Metabolism. Biology 105 Lecture 6 Chapter 3 (pages 56-61)

Cellular Metabolism. Biology 105 Lecture 6 Chapter 3 (pages 56-61) Cellular Metabolism Biology 105 Lecture 6 Chapter 3 (pages 56-61) Metabolism Consists of all the chemical reactions that take place in a cell! Cellular Metabolism Aerobic cellular respiration requires

More information

Concept 9.1: Catabolic pathways yield energy by oxidizing organic fuels Several processes are central to cellular respiration and related pathways

Concept 9.1: Catabolic pathways yield energy by oxidizing organic fuels Several processes are central to cellular respiration and related pathways Overview: Life Is Work Living cells require energy from outside sources Some animals, such as the chimpanzee, obtain energy by eating plants, and some animals feed on other organisms that eat plants Energy

More information

Chapter 7 How Cells Release Chemical Energy

Chapter 7 How Cells Release Chemical Energy Chapter 7 How Cells Release Chemical Energy 7.1 Mighty Mitochondria More than forty disorders related to defective mitochondria are known (such as Friedreich s ataxia); many of those afflicted die young

More information

Cellular Metabolism. Biol 105 Lecture 6 Read Chapter 3 (pages 63 69)

Cellular Metabolism. Biol 105 Lecture 6 Read Chapter 3 (pages 63 69) Cellular Metabolism Biol 105 Lecture 6 Read Chapter 3 (pages 63 69) Metabolism Consists of all of the chemical reactions that take place in a cell Metabolism Animation Breaking Down Glucose For Energy

More information

Ch. 9 Cell Respiration. Title: Oct 15 3:24 PM (1 of 53)

Ch. 9 Cell Respiration. Title: Oct 15 3:24 PM (1 of 53) Ch. 9 Cell Respiration Title: Oct 15 3:24 PM (1 of 53) Essential question: How do cells use stored chemical energy in organic molecules and to generate ATP? Title: Oct 15 3:28 PM (2 of 53) Title: Oct 19

More information

Question 1: Differentiate between (a) Respiration and Combustion (b) Glycolysis and Krebs cycle (c) Aerobic respiration and Fermentation (a) Respiration and combustion Respiration Combustion 1. It is a

More information

Respiration. Respiration. Respiration. How Cells Harvest Energy. Chapter 7

Respiration. Respiration. Respiration. How Cells Harvest Energy. Chapter 7 How Cells Harvest Energy Chapter 7 Organisms can be classified based on how they obtain energy: autotrophs: are able to produce their own organic molecules through photosynthesis heterotrophs: live on

More information

Chapter 9 Cellular Respiration

Chapter 9 Cellular Respiration Chapter 9 Cellular Respiration Biology and Society: Marathoners versus Sprinters Sprinters do not usually compete at short and long distances. Natural differences in the muscles of these athletes favor

More information

CITRIC ACID CYCLE ERT106 BIOCHEMISTRY SEM /19 BY: MOHAMAD FAHRURRAZI TOMPANG

CITRIC ACID CYCLE ERT106 BIOCHEMISTRY SEM /19 BY: MOHAMAD FAHRURRAZI TOMPANG CITRIC ACID CYCLE ERT106 BIOCHEMISTRY SEM 1 2018/19 BY: MOHAMAD FAHRURRAZI TOMPANG Chapter Outline (19-1) The central role of the citric acid cycle in metabolism (19-2) The overall pathway of the citric

More information

Metabolism Energy Pathways Biosynthesis. Catabolism Anabolism Enzymes

Metabolism Energy Pathways Biosynthesis. Catabolism Anabolism Enzymes Topics Microbial Metabolism Metabolism Energy Pathways Biosynthesis 2 Metabolism Catabolism Catabolism Anabolism Enzymes Breakdown of complex organic molecules in order to extract energy and dform simpler

More information

Cellular Respiration. How is energy in organic matter released for used for in living systems?

Cellular Respiration. How is energy in organic matter released for used for in living systems? Cellular Respiration How is energy in organic matter released for used for in living systems? Cellular Respiration Organisms that perform cellular respiration are called chemoheterotrophs Includes both

More information

Background knowledge

Background knowledge Background knowledge This is the required background knowledge: State three uses of energy in living things Give an example of an energy conversion in a living organism State that fats and oils contain

More information

Section B: The Process of Cellular Respiration

Section B: The Process of Cellular Respiration CHAPTER 9 CELLULAR RESPIRATION: HARVESTING CHEMICAL ENERGY Section B: The Process of Cellular Respiration 1. Respiration involves glycolysis, the Krebs cycle, and electron transport: an overview 2. Glycolysis

More information

Cellular Respiration: Obtaining Energy from Food

Cellular Respiration: Obtaining Energy from Food Chapter 6 Cellular Respiration: Obtaining Energy from Food PowerPoint Lectures for Campbell Essential Biology, Fourth Edition Eric Simon, Jane Reece, and Jean Dickey Campbell Essential Biology with Physiology,

More information

Metabolism. Metabolism. Energy. Metabolism. Energy. Energy 5/22/2016

Metabolism. Metabolism. Energy. Metabolism. Energy. Energy 5/22/2016 5//016 Metabolism Metabolism All the biochemical reactions occurring in the body Generating, storing and expending energy ATP Supports body activities Assists in constructing new tissue Metabolism Two

More information

ADP, ATP and Cellular Respiration

ADP, ATP and Cellular Respiration ADP, ATP and Cellular Respiration What Is ATP? Energy used by all Cells Adenosine Triphosphate Organic molecule containing highenergy Phosphate bonds Chemical Structure of ATP Adenine Base 3 Phosphates

More information

Energy Production In A Cell (Chapter 25 Metabolism)

Energy Production In A Cell (Chapter 25 Metabolism) Energy Production In A Cell (Chapter 25 Metabolism) Large food molecules contain a lot of potential energy in the form of chemical bonds but it requires a lot of work to liberate the energy. Cells need

More information

OVERVIEW OF ENERGY AND METABOLISM

OVERVIEW OF ENERGY AND METABOLISM Biochemistry 5. Bio-Energetics & ATP 5.1) ADP, ATP and Cellular Respiration OVERVIEW OF ENERGY AND METABOLISM 1. The food we eat, (carbohydrates/ glucose /sugar, lipids/fat, proteins), are our only source

More information

10/25/2010 CHAPTER 9 CELLULAR RESPIRATION. Life is Work. Types of cellular respiration. Catabolic pathways = oxidizing fuels

10/25/2010 CHAPTER 9 CELLULAR RESPIRATION. Life is Work. Types of cellular respiration. Catabolic pathways = oxidizing fuels CHAPTER 9 CELLULAR RESPIRATION Life is Work Living cells require transfusions of energy from outside sources to perform their many tasks: Chemical work Transport work Mechanical work Energy stored in the

More information

Biochemistry 7/11/ Bio-Energetics & ATP. 5.1) ADP, ATP and Cellular Respiration OVERVIEW OF ENERGY AND METABOLISM

Biochemistry 7/11/ Bio-Energetics & ATP. 5.1) ADP, ATP and Cellular Respiration OVERVIEW OF ENERGY AND METABOLISM Biochemistry 5. Bio-Energetics & ATP 5.1) ADP, ATP and Cellular Respiration Prof. Dr. Klaus Heese OVERVIEW OF ENERGY AND METABOLISM 1. The food we eat, (carbohydrates/ glucose /sugar, lipids/fat, proteins),

More information

What s the point? The point is to make ATP! ATP

What s the point? The point is to make ATP! ATP 2006-2007 What s the point? The point is to make ATP! ATP Glycolysis 2 ATP Kreb s cycle 2 ATP Life takes a lot of energy to run, need to extract more energy than 4 ATP! There s got to be a better way!

More information

Chap 3 Metabolism and Growth

Chap 3 Metabolism and Growth Chap 3 Metabolism and Growth I. Metabolism Definitions: Metabolism includes two parts: anabolism and catabolism Catabolism: Anabolism: Aerobic metabolism: catabolism anabolis m catabolis anabolis m Anaerobic

More information

What is Glycolysis? Breaking down glucose: glyco lysis (splitting sugar)

What is Glycolysis? Breaking down glucose: glyco lysis (splitting sugar) What is Glycolysis? Breaking down glucose: glyco lysis (splitting sugar) Most ancient form of energy capture. Starting point for all cellular respiration. Inefficient: generates only 2 ATP for every 1

More information

Unit 2 Cellular Respiration

Unit 2 Cellular Respiration Metabolism Unit 2 Cellular Respiration Living organisms must continually to carry out the functions of life. Without energy, comes to an end. The breakdown of complex substances are the result of. The

More information

Chapter 5 Microbial Metabolism: The Chemical Crossroads of Life

Chapter 5 Microbial Metabolism: The Chemical Crossroads of Life Chapter 5 Microbial Metabolism: The Chemical Crossroads of Life Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. The Metabolism of Microbes metabolism all chemical

More information

How Cells Harvest Chemical Energy

How Cells Harvest Chemical Energy How Cells Harvest Chemical Energy Chapter 6 Introduction: How Is a Marathoner Different from a Sprinter? Individuals inherit various percentages of the two main types of muscle fibers, slow and fast The

More information

Harvesting energy: photosynthesis & cellular respiration

Harvesting energy: photosynthesis & cellular respiration Harvesting energy: photosynthesis & cellular respiration Learning Objectives Know the relationship between photosynthesis & cellular respiration Know the formulae of the chemical reactions for photosynthesis

More information

Cellular Respiration

Cellular Respiration Cellular I can describe cellular respiration Cellular respiration is a series of metabolic pathways releasing energy from a foodstuff e.g. glucose. This yields energy in the form of ATP adenosine P i P

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy You should be able to: 1. Explain how redox reactions are involved in energy exchanges. Name and describe the three stages of cellular respiration;

More information

Cellular Respiration Harvesting Chemical Energy ATP

Cellular Respiration Harvesting Chemical Energy ATP Cellular Respiration Harvesting Chemical Energy ATP 2006-2007 What s the point? The point is to make ATP! ATP 2006-2007 Harvesting stored energy Energy is stored in organic molecules carbohydrates, fats,

More information

Chapter 6 Cellular Respiration: Obtaining Energy from Food

Chapter 6 Cellular Respiration: Obtaining Energy from Food Chapter 6 Cellular Respiration: Obtaining Energy from Food PowerPoint Lectures for Campbell Essential Biology, Fifth Edition, and Campbell Essential Biology with Physiology, Fourth Edition Eric J. Simon,

More information

Chapter 9: Cellular Respiration Overview: Life Is Work. Living cells. Require transfusions of energy from outside sources to perform their many tasks

Chapter 9: Cellular Respiration Overview: Life Is Work. Living cells. Require transfusions of energy from outside sources to perform their many tasks Chapter 9: Cellular Respiration Overview: Life Is Work Living cells Require transfusions of energy from outside sources to perform their many tasks Biology, 7 th Edition Neil Campbell and Jane Reece The

More information

7 Cellular Respiration and Fermentation

7 Cellular Respiration and Fermentation CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 7 Cellular Respiration and Fermentation Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION

More information

Releasing Chemical Energy

Releasing Chemical Energy Releasing Chemical Energy Ø Energy From Carbohydrates Ø Aerobic Respiration/ Stages Ø Fermentation Ø Food as a Source of Energy How Do Cells Access the Chemical Energy in Carbohydrayes? Aerobic Respiration

More information

Chapter 8. An Introduction to Microbial Metabolism

Chapter 8. An Introduction to Microbial Metabolism Chapter 8 An Introduction to Microbial Metabolism The metabolism of microbes Metabolism sum of all chemical reactions that help cells function Two types of chemical reactions: Catabolism -degradative;

More information

Cell Respiration. Anaerobic & Aerobic Respiration

Cell Respiration. Anaerobic & Aerobic Respiration Cell Respiration Anaerobic & Aerobic Respiration Understandings/Objectives 2.8.U1: Cell respiration is the controlled release of energy from organic compounds to produce ATP. Define cell respiration State

More information

What s the point? The point is to make ATP! ATP

What s the point? The point is to make ATP! ATP ATP Chapter 8 What s the point? The point is to make ATP! ATP Flows into an ecosystem as sunlight and leaves as heat Energy is stored in organic compounds Carbohydrates, lipids, proteins Heterotrophs eat

More information

Harvesting Energy: Glycolysis and Cellular Respiration

Harvesting Energy: Glycolysis and Cellular Respiration Lesson 5 Harvesting Energy: Glycolysis and Cellular Respiration Introduction to Life Processes - SCI 102 1 How Cells Obtain Energy Cells require a constant flow of energy Most cellular energy is stored

More information

Test next Thursday, the 24 th will only cover the lecture

Test next Thursday, the 24 th will only cover the lecture Test next Thursday, the 24 th will only cover the lecture material, not lab stuff! Objectives Understand how muscles differ Fiber types Understand how we fuel muscle Glycogen Fats How many ATP from each

More information

Cellular Respiration: Harvesting Chemical Energy CHAPTER 9

Cellular Respiration: Harvesting Chemical Energy CHAPTER 9 Cellular Respiration: Harvesting Chemical Energy CHAPTER 9 9.1 Metabolic pathways that release energy are exergonic and considered catabolic pathways. Fermentation: partial degradation of sugars that occurs

More information

Chapter 9: Cellular Respiration: Harvesting Chemical Energy

Chapter 9: Cellular Respiration: Harvesting Chemical Energy AP Biology Reading Guide Name: Date: Period Chapter 9: Cellular Respiration: Harvesting Chemical Energy Overview: Before getting involved with the details of cellular respiration and photosynthesis, take

More information

2/25/2015. Anaerobic Pathways. Glycolysis. Alternate Endpoints. Gluconeogenesis fate of end products

2/25/2015. Anaerobic Pathways. Glycolysis. Alternate Endpoints. Gluconeogenesis fate of end products Anaerobic Pathways Glycolysis Glucose + 2 ATP 4 ATP + 2 Pyruvate No oxygen required Fairly low energy yield Lactate byproduct Resting levels low Tolerances 40 mmole/kg in humans, 200 mmole/kg in sea turtles

More information

Cellular Respiration Harvesting Chemical Energy ATP

Cellular Respiration Harvesting Chemical Energy ATP Cellular Respiration Harvesting Chemical Energy ATP 2006-2007 What s the point? The point is to make ATP! ATP 2006-2007 Harvesting stored energy Energy is stored in organic molecules carbohydrates, fats,

More information

Carbohydrate Metabolism

Carbohydrate Metabolism Chapter 34 Carbohydrate Metabolism Carbohydrate metabolism is important for both plants and animals. Introduction to General, Organic, and Biochemistry, 10e John Wiley & Sons, Inc Morris Hein, Scott Pattison,

More information

Aerobic vs Anaerobic Respiration. 1. Glycolysis 2. Oxidation of Pyruvate and Krebs Cycle

Aerobic vs Anaerobic Respiration. 1. Glycolysis 2. Oxidation of Pyruvate and Krebs Cycle CELLULAR RESPIRATION Student Packet SUMMARY ALL LIVING SYSTEMS REQUIRE CONSTANT INPUT OF FREE ENERGY Cellular respiration is a catabolic pathway in which glucose and other organic fuels (such as starch,

More information

Consists of all of the chemical reactions that take place in a cell. Summary of Cellular Respiration. Electrons transferred. Cytoplasm Blood vessel

Consists of all of the chemical reactions that take place in a cell. Summary of Cellular Respiration. Electrons transferred. Cytoplasm Blood vessel 7/19/2014 Metabolism Cellular Metabolism Metabolism Consists of all of the chemical reactions that take place in a cell PLAY Animation Breaking Down Glucose For Energy Biol 105 Lecture Packet 6 Read Chapter

More information

Cellular Respiration- -conversion of stored energy in glucose to usable energy for the cell -energy in cells is stored in the form of ATP

Cellular Respiration- -conversion of stored energy in glucose to usable energy for the cell -energy in cells is stored in the form of ATP Cellular Respiration Notes Chapter 7 How Cells Make ATP Energy Releasing Pathways Cellular Respiration- -conversion of stored energy in glucose to usable energy for the cell -energy in cells is stored

More information